JP2010003549A - Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same - Google Patents

Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same Download PDF

Info

Publication number
JP2010003549A
JP2010003549A JP2008161568A JP2008161568A JP2010003549A JP 2010003549 A JP2010003549 A JP 2010003549A JP 2008161568 A JP2008161568 A JP 2008161568A JP 2008161568 A JP2008161568 A JP 2008161568A JP 2010003549 A JP2010003549 A JP 2010003549A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode catalyst
catalyst
weight
chalcogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008161568A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Ueno
幸義 上野
Hiroaki Takahashi
宏明 高橋
Le Lay Mikako
ル レイ ミカコ
Scott Keith
スコット キース
christensen Paul
クリステンセン ポール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008161568A priority Critical patent/JP2010003549A/en
Publication of JP2010003549A publication Critical patent/JP2010003549A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly active electrode catalyst for a fuel cell replacing platinum and having high four-electron reduction performance, and its manufacturing method. <P>SOLUTION: The method of manufacturing the electrode catalyst for the fuel cell represented by M<SB>1</SB>M<SB>2</SB>X (M<SB>1</SB>is Ru, M<SB>2</SB>is Fe and/or Ni, and X is at least one kind of chalcogen element) has processes for mixing alcohol and water with at least one kind of compound selected from an Fe nitric acid compound, an Ni nitric acid compound, an Fe hydrochloric acid compound and an Ni hydrochloric acid compound; adding an Ru chalcogen compound while agitating a mixture; adding a reducing agent while agitating the mixture to reduce the Fe and/or Ni compound; filtering and washing a product; and heat-treating the filtered object. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、従来の白金触媒の代替となる、初期活性及び耐久性に優れた新規燃料電池用電極触媒、その製造方法、及びそれを用いた燃料電池に関する。   The present invention relates to a novel electrode catalyst for fuel cells excellent in initial activity and durability, which is a substitute for a conventional platinum catalyst, a method for producing the same, and a fuel cell using the same.

高分子電解質型燃料電池のアノード用触媒としては主として白金や白金合金系触媒が用いられる。具体的には、白金を含む貴金属をカーボンブラックに担持した触媒が用いられてきた。白金担持カーボンブラックは、塩化白金酸水溶液に、亜硫酸水素ナトリウムを加えた後、過酸化水素水と反応させ、生じた白金コロイドをカーボンブラックに吸着させ、洗浄後、必要に応じて熱処理することにより調製する手法が一般的である。高分子電解質型燃料電池では、白金担持カーボンブラックを高分子電解質溶液に分散させてペーストとし、そのペーストをカーボンペーパーなどのガス拡散電極に塗布し、乾燥した後、2枚のガス拡散電極で高分子電解質膜をはさみ、ホットプレスをすることにより電解質膜−電極接合体(MEA)が製造される。   Platinum or a platinum alloy-based catalyst is mainly used as the anode catalyst for the polymer electrolyte fuel cell. Specifically, a catalyst in which a noble metal including platinum is supported on carbon black has been used. Platinum-supported carbon black is obtained by adding sodium hydrogen sulfite to a chloroplatinic acid aqueous solution, reacting with hydrogen peroxide solution, adsorbing the resulting platinum colloid to carbon black, washing, and heat-treating as necessary. The preparation method is general. In a polymer electrolyte fuel cell, platinum-supported carbon black is dispersed in a polymer electrolyte solution to form a paste. The paste is applied to a gas diffusion electrode such as carbon paper, dried, and then dried with two gas diffusion electrodes. An electrolyte membrane-electrode assembly (MEA) is manufactured by sandwiching a molecular electrolyte membrane and performing hot pressing.

高分子電解質型燃料電池を実用化する上での課題の一つは、材料コストである。これを解決する手段の一つが白金量の低減である。   One of the problems in putting a polymer electrolyte fuel cell into practical use is material cost. One means for solving this is to reduce the amount of platinum.

一方、酸素(O)を電解還元すると、1電子還元ではスーパーオキシドが生成し、2電子還元では過酸化水素が生成し、4電子還元では水が生成することが知られている。電極として白金や白金系触媒を用いた燃料電池セルスタックでは、何らかの原因で電圧低下が生じると、4電子還元性が低下し、2電子還元性となってしまう。このため、過酸化水素を発生し、MEAの劣化の原因となっていた。 On the other hand, it is known that when oxygen (O 2 ) is electrolytically reduced, superoxide is generated by one-electron reduction, hydrogen peroxide is generated by two-electron reduction, and water is generated by four-electron reduction. In a fuel cell stack using platinum or a platinum-based catalyst as an electrode, if a voltage drop occurs for some reason, the 4-electron reducibility is reduced and the 2-electron reducibility is obtained. For this reason, hydrogen peroxide is generated, which causes deterioration of MEA.

最近、酸素を4電子還元して水を生成させる反応により、高価な白金触媒を必要としない低コスト型の燃料電池触媒の開発が行われている。下記非特許文献1には、カルコゲン元素を有する触媒が4電子還元性に優れていることが開示され、燃料電池への適用も示唆されている。   Recently, a low-cost fuel cell catalyst that does not require an expensive platinum catalyst has been developed by a reaction in which oxygen is reduced by four electrons to generate water. Non-Patent Document 1 below discloses that a catalyst having a chalcogen element is excellent in 4-electron reducibility and suggests application to a fuel cell.

同様に、下記特許文献1には、白金代替触媒として、少なくとも1種の遷移金属及びカルコゲンからなる電極触媒であって、該遷移金属としてRu、カルコゲンとしてS又はSeからなる電極触媒が開示されている。ここで、Ru:Seのモル比が0.5〜2の範囲であり、且つ(Ru)nSeの化学量論数nが1.5〜2である旨が開示されている。   Similarly, Patent Document 1 below discloses an electrode catalyst composed of at least one transition metal and a chalcogen as a platinum substitute catalyst, wherein Ru is used as the transition metal, and S or Se is used as the chalcogen. Yes. Here, it is disclosed that the Ru: Se molar ratio is in the range of 0.5 to 2 and the stoichiometric number n of (Ru) nSe is 1.5 to 2.

また、下記特許文献2には、Pt代替触媒として、Fe又はRuから選択される遷移金属と、窒素含有有機金属遷移錯体、及びS等のカルコゲン成分を有する燃料電池用触媒材料が開示されている。   Patent Document 2 listed below discloses a fuel cell catalyst material having a transition metal selected from Fe or Ru, a nitrogen-containing organometallic transition complex, and a chalcogen component such as S as a Pt substitute catalyst. .

また、下記非特許文献1には、Mo−Ru−Se三元系電極触媒、及びその合成方法が開示されている。   Non-Patent Document 1 below discloses a Mo—Ru—Se ternary electrode catalyst and a synthesis method thereof.

更に、下記非特許文献2には、Ru−S、Mo−S、Mo−Ru−Sの二元系及び三元系電極触媒、及びその合成方法が開示されている。   Furthermore, Non-Patent Document 2 below discloses Ru-S, Mo-S, Mo-Ru-S binary and ternary electrode catalysts, and a synthesis method thereof.

更に、下記非特許文献3には、Ru−Mo−S、Ru−Mo−Seの三元系カルコゲナイド電極触媒が開示されている。   Further, Non-Patent Document 3 below discloses Ru—Mo—S and Ru—Mo—Se ternary chalcogenide electrode catalysts.

特表2001−502467号公報JP-T-2001-502467 特表2004−532734号公報JP-T-2004-532734 Electrochimica Acta,vol.39,No.11/12,pp.1647−1653,1994Electrochimica Acta, vol. 39, no. 11/12, pp. 1647-1653, 1994 J.Chem.Soc.、Faraday Trans.,1996,92(21),4311−4319J. et al. Chem. Soc. Faraday Trans. , 1996, 92 (21), 4311-4319. Electrochimica Acta,vol.45,pp.4237−4250,2000Electrochimica Acta, vol. 45, pp. 4237-4250, 2000

特許文献1や非特許文献1、2、3に記載の触媒は、活性及び四電子還元性能が十分ではなかった。   The catalysts described in Patent Document 1 and Non-Patent Documents 1, 2, and 3 are not sufficient in activity and four-electron reduction performance.

本発明者らは、二元系カルコゲン系触媒又は三元系カルコゲン系触媒の担持率を特定の範囲とすることで、上記課題が解決されることを見出し、本発明に到達した。   The present inventors have found that the above problems can be solved by setting the loading ratio of the binary chalcogen-based catalyst or the ternary chalcogen-based catalyst within a specific range, and have reached the present invention.

即ち、第1に、本発明は、少なくとも1種の遷移金属元素と少なくとも1種のカルコゲン元素とを含む燃料電池用電極触媒の発明であって、触媒重量÷(触媒重量+担体重量)で定義される担体への担持率が6〜32%、好ましくは、10〜20%であることを特徴とする。   That is, first, the present invention is an invention of a fuel cell electrode catalyst containing at least one transition metal element and at least one chalcogen element, and is defined by catalyst weight / (catalyst weight + carrier weight). It is characterized in that the loading ratio on the carrier is 6 to 32%, preferably 10 to 20%.

本発明の対象となる燃料電池用電極触媒は、少なくとも1種の遷移金属元素と少なくとも1種のカルコゲン元素とを含む燃料電池用電極触媒であって、二元系カルコゲナイド触媒や三元系以上のカルコゲナイド触媒である。具体的には、上記各特許文献や非特許文献に開示されたものが対象となる。これらの中で、一般式RuX(Xは少なくとも1種のカルコゲン元素)で表されるカルコゲナイド触媒が好ましく例示される。   An electrode catalyst for a fuel cell that is an object of the present invention is a fuel cell electrode catalyst containing at least one transition metal element and at least one chalcogen element, and is a binary chalcogenide catalyst or a ternary or higher catalyst. It is a chalcogenide catalyst. Specifically, those disclosed in the above patent documents and non-patent documents are targeted. Among these, chalcogenide catalysts represented by the general formula RuX (X is at least one chalcogen element) are preferably exemplified.

本発明のカルコゲナイド触媒のカルコゲン元素としては、イオウ(S)、セレン(Se)、及びテルル(Te)から選択される1種以上が好ましい。   The chalcogen element of the chalcogenide catalyst of the present invention is preferably at least one selected from sulfur (S), selenium (Se), and tellurium (Te).

第2に、本発明は、遷移金属元素種とカルコゲン元素種と担体を混合、還元した後、熱処理する、少なくとも1種の遷移金属元素と少なくとも1種のカルコゲン元素とを含む燃料電池用電極触媒の製造方法であって、触媒重量÷(触媒重量+担体重量)で定義される担体への担持率が6〜32%、好ましくは10〜20%となるように遷移金属元素種とカルコゲン元素種と担体を配合することを特徴とする。   Secondly, the present invention relates to an electrode catalyst for a fuel cell comprising at least one transition metal element and at least one chalcogen element which is heat-treated after mixing, reducing, and reducing the transition metal element species, the chalcogen element species and the support. The transition metal element species and the chalcogen element species so that the loading ratio on the carrier defined by catalyst weight ÷ (catalyst weight + carrier weight) is 6 to 32%, preferably 10 to 20%. And a carrier.

本発明の燃料電池用電極触媒の製造方法で用いられるカルコゲナイド触媒の種類、カルコゲナイド触媒の好ましい具体例、カルコゲン元素の例示などは上述の通りである。   The types of chalcogenide catalysts used in the method for producing an electrode catalyst for fuel cells of the present invention, preferred specific examples of chalcogenide catalysts, and examples of chalcogen elements are as described above.

本発明のカルコゲナイド触媒は熱処理されることが好ましく、具体的には、400〜600℃で10分〜5時間、より好ましくは、480〜520℃で30分〜2時間の熱処理である。
第3に、本発明は、上記の燃料電池用電極触媒を備えた燃料電池である。
The chalcogenide catalyst of the present invention is preferably heat-treated, specifically, heat treatment at 400 to 600 ° C. for 10 minutes to 5 hours, more preferably 480 to 520 ° C. for 30 minutes to 2 hours.
3rdly, this invention is a fuel cell provided with said electrode catalyst for fuel cells.

本発明の燃料電池用電極触媒、及び本発明の方法によって製造された燃料電池用電極触媒は、従来の遷移金属−カルコゲン元素系触媒と比べて、四電子還元性能が高く、高活性であり、従来の白金触媒の代替となりうるものである。   The fuel cell electrode catalyst of the present invention and the fuel cell electrode catalyst produced by the method of the present invention have high four-electron reduction performance and high activity compared to conventional transition metal-chalcogen element-based catalysts, It can replace the conventional platinum catalyst.

以下、実施例および比較例によって本発明をさらに詳細に説明する。
[実施例:触媒の調製]
本実施例では、原料として、Ru(CO)12、Se又はS、キシレン、カーボンブラックを用い、及び下記の合成法を用い、酸素還元能の熱処理温度依存性を調べた。
(1)上記原料を混合し、還流合成法(湿式化学、有機低温合成)を用いる。この際、カソードの担体(多孔性支持体)として、例えばカーボンブラックを上記の混合物溶液中に浸漬させることで触媒の担持を行なった。
(2)得られた生成物をろ過・洗浄し、50〜100℃にて真空乾燥を行なった。
(3)更に熱処理を行なった。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[Example: Preparation of catalyst]
In this example, Ru 3 (CO) 12 , Se or S, xylene, carbon black was used as a raw material, and the heat treatment temperature dependence of the oxygen reducing ability was examined using the following synthesis method.
(1) The above raw materials are mixed and a reflux synthesis method (wet chemistry, organic low temperature synthesis) is used. At this time, as a cathode carrier (porous support), for example, carbon black was immersed in the above mixture solution to carry the catalyst.
(2) The obtained product was filtered and washed, and vacuum-dried at 50 to 100 ° C.
(3) Further heat treatment was performed.

燃料電池電極触媒は、同一重量で比較した場合、その単位重量に対する表面積が大きいほど性能が高いことが般に言われている。本発明にて提案する二元系カルコゲナイド及び三元系カルコゲナイドにおいても、単位重量に対する表面積を大きくすることが性能向上への課題である。   It is generally said that the performance of a fuel cell electrode catalyst increases as the surface area per unit weight increases when compared with the same weight. In the binary chalcogenide and ternary chalcogenide proposed in the present invention, increasing the surface area per unit weight is a problem for improving performance.

燃料電池電極触媒は、カーボンブラック等の担体の上に担持されて使用される。二元系カルコゲナイドMX(M:Ru、XS又はSe)の粒径は、3〜4nmであることが上記特許文献1より知られている。だが、表面積が有限である担体上に担持する場合、高担持量の場合においては、互いの粒子の凝集により二次粒子が形成され、触媒表面積が減少し性能が低下するのが一般に言われている。   The fuel cell electrode catalyst is used by being supported on a carrier such as carbon black. It is known from Patent Document 1 that the particle size of the binary chalcogenide MX (M: Ru, XS or Se) is 3 to 4 nm. However, when it is supported on a carrier having a finite surface area, it is generally said that in the case of a high loading amount, secondary particles are formed by aggregation of the particles of each other, and the surface area of the catalyst is reduced and the performance is lowered. Yes.

そこで、本実施例では、二元系のカルコゲナイドMX(M:遷移金属、X:カルコゲン元素)のうち、MをRu、XをS又はSeとした触媒について、最適な担持率を規定した。図1に結果を示す。   Therefore, in this example, among the binary chalcogenide MX (M: transition metal, X: chalcogen element), an optimum loading rate is defined for a catalyst in which M is Ru and X is S or Se. The results are shown in FIG.

図1の結果より、触媒重量÷(触媒重量+担体重量)で定義される担持率が6〜32%であることが好ましく、担持率が10〜20%であることがより好ましいことが分かる。
なお、性能評価法は下記の通りに行った。
From the results of FIG. 1, it is understood that the loading rate defined by catalyst weight ÷ (catalyst weight + carrier weight) is preferably 6 to 32%, more preferably 10 to 20%.
The performance evaluation method was performed as follows.

[評価装置]
図2に示すように、3電極式の電気化学セルを用いて評価を実施した。電解液は0.1mol/L過塩素酸を用いた。参照極には銀−塩化銀電極を用いた。
[Evaluation equipment]
As shown in FIG. 2, the evaluation was carried out using a three-electrode electrochemical cell. As the electrolytic solution, 0.1 mol / L perchloric acid was used. A silver-silver chloride electrode was used as the reference electrode.

[電極作製法]
図3に、電極作製法を示す。重量比で、カーボンに1に対してナフィオンが0.1になるように触媒インクを配合した。インク組成は、触媒0.05g、0.5wt%Nf溶液1.0g、エタノール2.0gである。(1)Nfソリューション、エタノールと混合し、(2)超音波で分散し、(3)グラッシーカーボン・ディスク電極上へ触媒インクを滴下後自然乾燥させる。
[Electrode fabrication method]
FIG. 3 shows an electrode manufacturing method. Catalyst ink was blended in such a way that Nafion was 0.1 with respect to 1 by weight. The ink composition is 0.05 g of catalyst, 1.0 g of 0.5 wt% Nf solution, and 2.0 g of ethanol. (1) Mix with Nf solution and ethanol, (2) Disperse with ultrasonic waves, (3) Drop catalyst ink onto glassy carbon disk electrode and let it dry naturally.

[評価手順]
表1に、今回の評価手順を示す。下記表1の電極回転数とは、図2中の作用電極の回転数を示す。なお、活性を表す指標は、酸素還元電流=(表1中、O電気化学測定にて測定した還元電流)−(表1中N電気化学測定にて測定した還元電流)である。
[Evaluation procedure]
Table 1 shows the current evaluation procedure. The electrode rotation speed in Table 1 below indicates the rotation speed of the working electrode in FIG. The index representing the activity is oxygen reduction current = (reduction current measured by O 2 electrochemical measurement in Table 1) − (reduction current measured by N 2 electrochemical measurement in Table 1).

Figure 2010003549
Figure 2010003549

本発明の触媒重量÷(触媒重量+担体重量)で定義される担体への担持率が6〜32%、好ましくは10〜20%となるように調製された燃料電池用電極触媒は、従来の遷移金属一カルコゲン元素系触媒と比べて、四電子還元性能が高く、高活性であり、白金触媒の代替となりうるものである。これにより、燃料電池の実用化と普及に貢献する。   The fuel cell electrode catalyst prepared so that the loading ratio on the carrier defined by the catalyst weight / (catalyst weight + carrier weight) of the present invention is 6 to 32%, preferably 10 to 20%, Compared to transition metal monochalcogen element-based catalysts, it has a high four-electron reduction performance, is highly active, and can replace platinum catalysts. This contributes to the practical application and spread of fuel cells.

触媒重量÷(触媒重量+担体重量)で定義される担持率と発電性能の関係を示す。The relationship between the loading rate defined by catalyst weight ÷ (catalyst weight + carrier weight) and power generation performance is shown. 評価装置を示す。An evaluation apparatus is shown. 電極作製法を示す。An electrode manufacturing method will be described.

Claims (11)

少なくとも1種の遷移金属元素と少なくとも1種のカルコゲン元素とを含む燃料電池用電極触媒であって、触媒重量÷(触媒重量+担体重量)で定義される担体への担持率が6〜32%であることを特徴とする燃料電池用電極触媒。   An electrode catalyst for a fuel cell comprising at least one transition metal element and at least one chalcogen element, wherein the loading ratio on the carrier defined by catalyst weight ÷ (catalyst weight + carrier weight) is 6 to 32%. An electrode catalyst for a fuel cell, characterized in that 前記担持率が10〜20%であることを特徴とする請求項1に記載の燃料電池用電極触媒。   2. The fuel cell electrode catalyst according to claim 1, wherein the loading ratio is 10 to 20%. 前記少なくとも1種の遷移金属元素と少なくとも1種のカルコゲン元素とを含む燃料電池用電極触媒が、一般式RuX(Xは少なくとも1種のカルコゲン元素)で表されることを特徴とする請求項1又は2に記載の燃料電池用電極触媒。   2. The fuel cell electrode catalyst comprising at least one transition metal element and at least one chalcogen element is represented by the general formula RuX (X is at least one chalcogen element). Or the electrode catalyst for fuel cells of 2 or 2. 前記カルコゲン元素が、イオウ(S)、セレン(Se)、及びテルル(Te)から選択される1種以上であることを特徴とする請求項1乃至3のいずれかに記載の燃料電池用電極触媒。   4. The fuel cell electrode catalyst according to claim 1, wherein the chalcogen element is at least one selected from sulfur (S), selenium (Se), and tellurium (Te). 5. . 遷移金属元素種とカルコゲン元素種と担体を混合、還元した後、熱処理する、少なくとも1種の遷移金属元素と少なくとも1種のカルコゲン元素とを含む燃料電池用電極触媒の製造方法であって、触媒重量÷(触媒重量+担体重量)で定義される担体への担持率が6〜32%となるように遷移金属元素種とカルコゲン元素種と担体を配合することを特徴とする燃料電池用電極触媒の製造方法。   A method for producing an electrode catalyst for a fuel cell comprising at least one transition metal element and at least one chalcogen element, wherein the transition metal element seed, the chalcogen element seed, and the support are mixed, reduced, and heat-treated. A fuel cell electrode catalyst comprising a transition metal element species, a chalcogen element species, and a carrier so that the loading ratio on the carrier defined by weight ÷ (catalyst weight + carrier weight) is 6 to 32%. Manufacturing method. 前記担持率が10〜20%であることを特徴とする請求項5に記載の燃料電池用電極触媒の製造方法。   The method for producing an electrode catalyst for a fuel cell according to claim 5, wherein the loading ratio is 10 to 20%. 前記少なくとも1種の遷移金属元素と少なくとも1種のカルコゲン元素とを含む燃料電池用電極触媒が、一般式RuX(Xは少なくとも1種のカルコゲン元素)で表されることを特徴とする請求項5又は6に記載の燃料電池用電極触媒の製造方法。   6. The fuel cell electrode catalyst containing at least one transition metal element and at least one chalcogen element is represented by the general formula RuX (X is at least one chalcogen element). Or a method for producing an electrode catalyst for a fuel cell according to 6. 前記カルコゲン元素が、イオウ(S)、セレン(Se)、及びテルル(Te)から選択される1種以上であることを特徴とする請求項5乃至7のいずれかに記載の燃料電池用電極触媒の製造方法。   The fuel cell electrode catalyst according to any one of claims 5 to 7, wherein the chalcogen element is at least one selected from sulfur (S), selenium (Se), and tellurium (Te). Manufacturing method. 前記熱処理が、400〜600℃で10分〜5時間であることを特徴とする請求項5乃至8のいずれかに記載の燃料電池用電極触媒の製造方法。   The method for producing a fuel cell electrode catalyst according to any one of claims 5 to 8, wherein the heat treatment is performed at 400 to 600 ° C for 10 minutes to 5 hours. 前記熱処理が、480〜520℃で30分〜2時間であることを特徴とする請求項5乃至8のいずれかに記載の燃料電池用電極触媒の製造方法。   The method for producing an electrode catalyst for a fuel cell according to any one of claims 5 to 8, wherein the heat treatment is performed at 480 to 520 ° C for 30 minutes to 2 hours. 請求項1乃至4のいずれかに記載の燃料電池用電極触媒を備えた燃料電池。   A fuel cell comprising the fuel cell electrode catalyst according to claim 1.
JP2008161568A 2008-06-20 2008-06-20 Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same Pending JP2010003549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161568A JP2010003549A (en) 2008-06-20 2008-06-20 Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161568A JP2010003549A (en) 2008-06-20 2008-06-20 Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same

Publications (1)

Publication Number Publication Date
JP2010003549A true JP2010003549A (en) 2010-01-07

Family

ID=41585109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161568A Pending JP2010003549A (en) 2008-06-20 2008-06-20 Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP2010003549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068017A (en) * 2014-09-30 2016-05-09 ダイハツ工業株式会社 Oxygen reduction catalyst, method for producing the same and fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068017A (en) * 2014-09-30 2016-05-09 ダイハツ工業株式会社 Oxygen reduction catalyst, method for producing the same and fuel cell

Similar Documents

Publication Publication Date Title
JP6232505B2 (en) Fuel cell electrode catalyst and method for producing the same
KR101797782B1 (en) Catalyst with metal oxide doping for fuel cells
JP2003109614A (en) Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
Han et al. Highly stable and active Pt electrocatalysts on TiO2-Co3O4-C composite support for polymer exchange membrane fuel cells
EP2176914B1 (en) Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst
JP5252776B2 (en) Fuel cell electrode catalyst and method for producing the same
Rufino et al. The effect of methanol on the stability of Pt/C and Pt–RuOx/C catalysts
JP2006253146A (en) Carried electrode catalyst and manufacturing method of catalyst
WO2020059502A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2006236778A (en) Catalyst for fuel cell, membrane electrode complex, and solid polymer electrolyte fuel cell
JP2010027506A (en) Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same
WO2009020248A1 (en) Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst
JP2010003549A (en) Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same
JP5515309B2 (en) Cathode electrode catalyst layer and fuel cell using the same
JPWO2009051111A1 (en) Fuel cell supported catalyst and fuel cell
EP2176908B1 (en) Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst
JP2005135671A (en) Electrode for fuel cell
JP2010003537A (en) Method of manufacturing electrode catalyst for fuel cell, and fuel cell using the same
JP2020047431A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2010003576A (en) Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same
JP2004335328A (en) Electrode catalyst for solid polymer type fuel cell
JP2010003532A (en) Method of manufacturing electrode catalyst for fuel cell, and fuel cell using the same