JP2010003576A - Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same - Google Patents

Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same Download PDF

Info

Publication number
JP2010003576A
JP2010003576A JP2008162258A JP2008162258A JP2010003576A JP 2010003576 A JP2010003576 A JP 2010003576A JP 2008162258 A JP2008162258 A JP 2008162258A JP 2008162258 A JP2008162258 A JP 2008162258A JP 2010003576 A JP2010003576 A JP 2010003576A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode catalyst
catalyst
producing
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008162258A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Ueno
幸義 上野
Hiroaki Takahashi
宏明 高橋
Le Lay Mikako
ル レイ ミカコ
Scott Keith
スコット キース
christensen Paul
クリステンセン ポール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008162258A priority Critical patent/JP2010003576A/en
Publication of JP2010003576A publication Critical patent/JP2010003576A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a highly active electrode catalyst for a fuel cell replacing platinum and having high four-electron reduction performance and a high recycling property without using Fe carbonyl or Ni carbonyl which is a toxic substance in a manufacturing process. <P>SOLUTION: The method of manufacturing the electrode catalyst for the fuel cell represented by M<SB>1</SB>M<SB>2</SB>X (M<SB>1</SB>is Ru, M<SB>2</SB>is Fe and/or Ni, and X is at least one kind of chalcogen element) has processes for mixing alcohol and water with at least one kind of compound selected from an Fe nitric acid compound, an Ni nitric acid compound, an Fe hydrochloric acid compound and an Ni hydrochloric acid compound; adding an Ru chalcogen compound while agitating a mixture; adding a reducing agent while agitating the mixture to reduce the Fe and/or Ni compound; filtering and washing a product; and heat-treating the filtered object. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、従来の白金触媒の代替となる、初期活性及び耐久性に優れた新規燃料電池用電極触媒、Feカルボニル、Niカルボニル等の有害物を使用しないその製造方法、及びそれを用いた燃料電池に関する。   The present invention relates to a novel fuel cell electrode catalyst excellent in initial activity and durability, which is an alternative to a conventional platinum catalyst, a production method thereof that does not use harmful substances such as Fe carbonyl, Ni carbonyl, and fuel using the same It relates to batteries.

高分子電解質型燃料電池のアノード用触媒としては主として白金や白金合金系触媒が用いられる。具体的には、白金を含む貴金属をカーボンブラックに担持した触媒が用いられてきた。白金担持カーボンブラックは、塩化白金酸水溶液に、亜硫酸水素ナトリウムを加えた後、過酸化水素水と反応させ、生じた白金コロイドをカーボンブラックに吸着させ、洗浄後、必要に応じて熱処理することにより調製する手法が一般的である。高分子電解質型燃料電池では、白金担持カーボンブラックを高分子電解質溶液に分散させてペーストとし、そのペーストをカーボンペーパーなどのガス拡散電極に塗布し、乾燥した後、2枚のガス拡散電極で高分子電解質膜をはさみ、ホットプレスをすることにより電解質膜−電極接合体(MEA)が製造される。   Platinum or a platinum alloy-based catalyst is mainly used as the anode catalyst for the polymer electrolyte fuel cell. Specifically, a catalyst in which a noble metal including platinum is supported on carbon black has been used. Platinum-supported carbon black is obtained by adding sodium hydrogen sulfite to a chloroplatinic acid aqueous solution, reacting with hydrogen peroxide solution, adsorbing the resulting platinum colloid to carbon black, washing, and heat-treating as necessary. The preparation method is general. In a polymer electrolyte fuel cell, platinum-supported carbon black is dispersed in a polymer electrolyte solution to form a paste. The paste is applied to a gas diffusion electrode such as carbon paper, dried, and then dried with two gas diffusion electrodes. An electrolyte membrane-electrode assembly (MEA) is manufactured by sandwiching a molecular electrolyte membrane and performing hot pressing.

高分子電解質型燃料電池を実用化する上での課題の一つは、材料コストである。これを解決する手段の一つが白金量の低減である。   One of the problems in putting a polymer electrolyte fuel cell into practical use is material cost. One means for solving this is to reduce the amount of platinum.

一方、酸素(O)を電解還元すると、1電子還元ではスーパーオキシドが生成し、2電子還元では過酸化水素が生成し、4電子還元では水が生成することが知られている。電極として白金や白金系触媒を用いた燃料電池セルスタックでは、何らかの原因で電圧低下が生じると、4電子還元性が低下し、2電子還元性となってしまう。このため、過酸化水素を発生し、MEAの劣化の原因となっていた。 On the other hand, it is known that when oxygen (O 2 ) is electrolytically reduced, superoxide is generated by one-electron reduction, hydrogen peroxide is generated by two-electron reduction, and water is generated by four-electron reduction. In a fuel cell stack using platinum or a platinum-based catalyst as an electrode, if a voltage drop occurs for some reason, the 4-electron reducibility is reduced and the 2-electron reducibility is obtained. For this reason, hydrogen peroxide is generated, which causes deterioration of MEA.

最近、酸素を4電子還元して水を生成させる反応により、高価な白金触媒を必要としない低コスト型の燃料電池触媒の開発が行われている。下記非特許文献1には、カルコゲン元素を有する触媒が4電子還元性に優れていることが開示され、燃料電池への適用も示唆されている。   Recently, a low-cost fuel cell catalyst that does not require an expensive platinum catalyst has been developed by a reaction in which oxygen is reduced by four electrons to generate water. Non-Patent Document 1 below discloses that a catalyst having a chalcogen element is excellent in 4-electron reducibility and suggests application to a fuel cell.

同様に、下記特許文献1には、白金代替触媒として、少なくとも1種の遷移金属及びカルコゲンからなる電極触媒であって、該遷移金属としてRu、カルコゲンとしてS又はSeからなる電極触媒が開示されている。ここで、Ru:Seのモル比が0.5〜2の範囲であり、且つ(Ru)nSeの化学量論数nが1.5〜2である旨が開示されている。   Similarly, Patent Document 1 below discloses an electrode catalyst composed of at least one transition metal and a chalcogen as a platinum substitute catalyst, wherein Ru is used as the transition metal, and S or Se is used as the chalcogen. Yes. Here, it is disclosed that the Ru: Se molar ratio is in the range of 0.5 to 2 and the stoichiometric number n of (Ru) nSe is 1.5 to 2.

また、下記特許文献2には、Pt代替触媒として、Fe又はRuから選択される遷移金属と、窒素含有有機金属遷移錯体、及びS等のカルコゲン成分を有する燃料電池用触媒材料が開示されている。   Patent Document 2 listed below discloses a fuel cell catalyst material having a transition metal selected from Fe or Ru, a nitrogen-containing organometallic transition complex, and a chalcogen component such as S as a Pt substitute catalyst. .

また、下記非特許文献1には、Mo−Ru−Se三元系電極触媒、及びその合成方法が開示されている。   Non-Patent Document 1 below discloses a Mo—Ru—Se ternary electrode catalyst and a synthesis method thereof.

更に、下記非特許文献2には、Ru−S、Mo−S、Mo−Ru−Sの二元系及び三元系電極触媒、及びその合成方法が開示されている。   Furthermore, Non-Patent Document 2 below discloses Ru-S, Mo-S, Mo-Ru-S binary and ternary electrode catalysts, and a synthesis method thereof.

更に、下記非特許文献3には、Ru−Mo−S、Ru−Mo−Seの三元系カルコゲナイド電極触媒が開示されている。   Further, Non-Patent Document 3 below discloses Ru—Mo—S and Ru—Mo—Se ternary chalcogenide electrode catalysts.

特表2001−502467号公報JP-T-2001-502467 特表2004−532734号公報JP-T-2004-532734 Electrochimica Acta,vol.39,No.11/12,pp.1647−1653,1994Electrochimica Acta, vol. 39, no. 11/12, pp. 1647-1653, 1994 J.Chem.Soc.、Faraday Trans.,1996,92(21),4311−4319J. et al. Chem. Soc. Faraday Trans. , 1996, 92 (21), 4311-4319. Electrochimica Acta,vol.45,pp.4237−4250,2000Electrochimica Acta, vol. 45, pp. 4237-4250, 2000

特許文献1や非特許文献1、2、3に記載の触媒は、四電子還元性能が十分ではなかった。   The catalysts described in Patent Document 1 and Non-Patent Documents 1, 2, and 3 did not have sufficient four-electron reduction performance.

加えて、従来の触媒製造方法では、FeカルボニルやNiカルボニル等の有害物を使用していた。例えば、上記非特許文献1に記載の方法では、用いる原料が限られることで以下の問題が生じるため、他の方法による合成法の開発が望まれていた。
(1)原料として用いるFeカルボニルやNiカルボニルは毒性の強いものである。且つこれら原料はリサイクル性が低いものがある。
(2)カルボニル化できる金属は、第6〜10族元素に限られ、カルボニル化できない遷移金属を触媒構成組成として使用できず、触媒開発が制限されていた。
(3)(1)の理由により、触媒合成後に、残存する原料の廃棄が困難であり、合成語に残存する廃液のリサイクルが困難である。
In addition, the conventional catalyst manufacturing method uses harmful substances such as Fe carbonyl and Ni carbonyl. For example, in the method described in Non-Patent Document 1, since the following problems occur due to limited raw materials used, development of a synthesis method by another method has been desired.
(1) Fe carbonyl and Ni carbonyl used as raw materials are highly toxic. Some of these raw materials have low recyclability.
(2) Metals that can be carbonylated are limited to Group 6 to 10 elements, and transition metals that cannot be carbonylated cannot be used as catalyst constituents, and catalyst development has been limited.
(3) For the reason of (1), it is difficult to discard the remaining raw materials after catalyst synthesis, and it is difficult to recycle the waste liquid remaining in the synthesized words.

そこで、本発明は、白金の代替となり、四電子還元性能が高く高活性な燃料電池用電極触媒であり、且つその製造方法に有害物を使用しない安全で、リサイクル性の高い燃料電池用電極触媒の製造方法を提供することを目的とする。   Therefore, the present invention is a fuel cell electrode catalyst which is an alternative to platinum, has a high four-electron reduction performance and is highly active, and does not use harmful substances in its production method, and is safe and highly recyclable. It aims at providing the manufacturing method of.

本発明者らは、(1)特定の遷移元素を含むカルコゲン系触媒を、(2)特定の製造プロセスを採用することで、上記課題が解決されることを見出し、本発明に到達した。   The present inventors have found that the above problems can be solved by employing (1) a chalcogen-based catalyst containing a specific transition element and (2) a specific production process, and have reached the present invention.

即ち、第1に、本発明は、MX(MはRu、MはFe及び/又はNi、Xは少なくとも1種のカルコゲン元素)で表される三元系カルコゲナイドからなる燃料電池用電極触媒である。 That is, first, the present invention relates to a fuel comprising a ternary chalcogenide represented by M 1 M 2 X (M 1 is Ru, M 2 is Fe and / or Ni, and X is at least one chalcogen element). It is an electrode catalyst for batteries.

前記カルコゲン元素としては、イオウ(S)、セレン(Se)、及びテルル(Te)から選択される1種以上が好ましく例示される。   As the chalcogen element, one or more selected from sulfur (S), selenium (Se), and tellurium (Te) are preferably exemplified.

本発明の燃料電池用電極触媒としてより具体的には、Ru−Fe−Se三元系触媒又はRu−Ni−Se三元系触媒が好ましく例示される。   More specifically, the fuel cell electrode catalyst of the present invention is preferably exemplified by a Ru-Fe-Se three-way catalyst or a Ru-Ni-Se three-way catalyst.

第2に、本発明は、上記のMX(MはRu、MはFe及び/又はNi、Xは少なくとも1種のカルコゲン元素)で表される燃料電池用電極触媒の製造方法の発明であって、Fe硝酸化合物、Ni硝酸化合物、Fe塩酸化合物及びNi塩酸化合物から選択される1種以上の化合物と、アルコールと、水とを混合する工程と、該混合物を攪拌しつつ、Ruカルコゲン化合物を添加する工程と、該混合物を攪拌しつつ還元剤を添加して該Fe及び/又はNi化合物を還元する工程と、生成物をろ過・洗浄する工程と、該ろ過物を熱処理する工程とを有する。 Second, the present invention provides a fuel cell electrode catalyst represented by the above M 1 M 2 X (M 1 is Ru, M 2 is Fe and / or Ni, and X is at least one chalcogen element). An invention of a method comprising: mixing one or more compounds selected from an Fe nitrate compound, an Ni nitrate compound, an Fe hydrochloric acid compound, and an Ni hydrochloric acid compound, an alcohol, and water; and stirring the mixture A step of adding a Ru chalcogen compound, a step of reducing the Fe and / or Ni compound by adding a reducing agent while stirring the mixture, a step of filtering and washing the product, and heat treating the filtrate The process of carrying out.

本発明の燃料電池用電極触媒の製造方法において、カルコゲン元素として、イオウ(S)、セレン(Se)、及びテルル(Te)から選択される1種以上が好ましく例示される。   In the method for producing a fuel cell electrode catalyst of the present invention, the chalcogen element is preferably exemplified by one or more selected from sulfur (S), selenium (Se), and tellurium (Te).

また、本発明の燃料電池用電極触媒の製造方法において、前記アルコールとしてイソプロパノールが、前記還元剤としてヒドラジンが好ましく例示される。   In the method for producing a fuel cell electrode catalyst of the present invention, isopropanol is preferably exemplified as the alcohol, and hydrazine is preferably exemplified as the reducing agent.

また、前記熱処理として、400〜600℃で10分〜5時間が好ましく、480〜520℃で30分〜2時間がより好ましい。   Moreover, as said heat processing, 10 minutes-5 hours are preferable at 400-600 degreeC, and 30 minutes-2 hours are more preferable at 480-520 degreeC.

本発明の燃料電池用電極触媒の製造方法では、Fe原料及び/又はNi原料が硝酸物や塩化物であり、廃液中でFe及び/又はNiがイオン状態で存在するため回収が容易である。これに対して、従来法のように金属カルボニルを用いた場合は金属は0価で存在するため回収が困難である。そこで、更に、燃料電池用電極触媒の製造方法で発生した廃液中に残存するFeイオン及び/又はNiイオンを回収する工程を設けることが環境問題上好ましい。   In the method for producing a fuel cell electrode catalyst of the present invention, the Fe raw material and / or Ni raw material are nitrates and chlorides, and Fe and / or Ni are present in an ionic state in the waste liquid, so that the recovery is easy. On the other hand, when metal carbonyl is used as in the conventional method, the metal is present in zero valence, and is difficult to recover. Therefore, it is preferable in view of environmental problems to further provide a step of recovering Fe ions and / or Ni ions remaining in the waste liquid generated by the method for producing the fuel cell electrode catalyst.

具体的な、廃液中に残存するFeイオン及び/又はNiイオンを回収する公報としては、めっき法、還元晶析法、及び溶液のPHを7.0以上として水酸化物とした後ゼオライトを用いて回収する方法の1種以上が好ましく例示される。   Specifically, as a publication for recovering Fe ions and / or Ni ions remaining in the waste liquid, use is made of a plating method, a reductive crystallization method, and a zeolite after making the pH of the solution 7.0 or higher to be a hydroxide. One or more of the methods of recovering in this manner are preferably exemplified.

第3に、本発明は、上記の燃料電池用電極触媒を備えた燃料電池の発明であり、MX(MはRu、MはFe及び/又はNi、Xは少なくとも1種のカルコゲン元素)で表される燃料電池用電極触媒を備えた燃料電池である。 Third, the present invention is an invention of a fuel cell comprising the above fuel cell electrode catalyst, M 1 M 2 X (M 1 is Ru, M 2 is Fe and / or Ni, X is at least one It is a fuel cell provided with the electrode catalyst for fuel cells represented by (chalcogen element).

本発明の燃料電池用電極触媒、及び本発明の方法によって製造された燃料電池用電極触媒は、従来の遷移金属−カルコゲン元素系触媒と比べて、安価で、四電子還元性能が高く高活性であり、従来の白金触媒の代替となりうるものであることに加えて、その製造過程において、有害物質であるFeカルボニルやNiカルボニルを使用せず、有害物質を発生させることがない。   The fuel cell electrode catalyst of the present invention and the fuel cell electrode catalyst produced by the method of the present invention are less expensive, have higher four-electron reduction performance and higher activity than conventional transition metal-chalcogen element catalysts. In addition to being a substitute for the conventional platinum catalyst, no harmful substances such as Fe carbonyl and Ni carbonyl are used in the production process and no harmful substances are generated.

以下、実施例および比較例によって本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

[実施例1:触媒の調製]
表1に示した原料を用い、図1に示す反応スキームに従って、触媒を調整した。なお、RuSe/Cは従来法により調整した。
[Example 1: Preparation of catalyst]
Using the raw materials shown in Table 1, a catalyst was prepared according to the reaction scheme shown in FIG. Note that RuSe / C was adjusted by a conventional method.

Figure 2010003576
Figure 2010003576

図2及び図3に、実施例1で合成された触媒の酸素還元能の評価結果を示す。図2及び図3の結果より、遷移金属元素として鉄(Fe)又はニッケル(Ni)を含む、Ruと少なくとも1種のカルコゲン元素からなる燃料電池用電極触媒は高活性であることが分かる。   2 and 3 show the evaluation results of the oxygen reducing ability of the catalyst synthesized in Example 1. FIG. 2 and 3, it can be seen that the fuel cell electrode catalyst comprising Ru and at least one chalcogen element containing iron (Fe) or nickel (Ni) as a transition metal element is highly active.

なお、性能評価法は下記の通りである。   The performance evaluation method is as follows.

[評価装置]
図4に示すように、3電極式の電気化学セルを用いて評価を実施した。電解液は0.1mol/L過塩素酸を用いた。
[Evaluation equipment]
As shown in FIG. 4, the evaluation was carried out using a three-electrode electrochemical cell. As the electrolytic solution, 0.1 mol / L perchloric acid was used.

[電極作製法]
図5に、電極作製法を示す。重量比で、カーボンに1に対してナフィオンが0.1になるように触媒インクを配合した。インク組成は、触媒0.05g、0.5wt%Nf溶液1.0g、エタノール2.0gである。(1)Nfソリューション、エタノールと混合し、(2)超音波で分散し、(3)グラッシーカーボン・ディスク電極上へ触媒インクを滴下後自然乾燥させる。
[Electrode fabrication method]
FIG. 5 shows an electrode manufacturing method. Catalyst ink was blended in such a way that Nafion was 0.1 with respect to 1 by weight. The ink composition is 0.05 g of catalyst, 1.0 g of 0.5 wt% Nf solution, and 2.0 g of ethanol. (1) Mix with Nf solution and ethanol, (2) Disperse with ultrasonic waves, (3) Drop catalyst ink onto glassy carbon disk electrode and let it dry naturally.

[評価手順]
表2に、今回の評価手順を示す。下記表2の電極回転数とは、図4中の作用電極の回転数を示す。なお、活性を表す指標は、酸素還元電流=(表1中、O電気化学測定にて測定した還元電流)−(表1中N電気化学測定にて測定した還元電流)である。
[Evaluation procedure]
Table 2 shows the current evaluation procedure. The electrode rotation speed in Table 2 below indicates the rotation speed of the working electrode in FIG. The index representing the activity is oxygen reduction current = (reduction current measured by O 2 electrochemical measurement in Table 1) − (reduction current measured by N 2 electrochemical measurement in Table 1).

Figure 2010003576
Figure 2010003576

[実施例2:触媒の調製]
上記非特許文献1に開示された、Mo−Ru−Se三元系電極触媒の合成方法では、用いる前駆物質が限られることで以下の問題が生じる。このため、他のルートによる合成法の開拓が必要である。
(1)前駆体として用いる金属カルボニルの中にはニッケルカルボニルや鉄カルボニルのような毒性が高いものがある。例えば、NiカルボニルはMSDSで毒物に指定されており、Feカルボニルは安全性データシートで人の健康への影響が大きい化合物と記載されている。
(2)カルボニル化できる金属は、第6〜10族元素に限られ、カルボニル化できない遷移金属を触媒構成組成として使用できない。
[Example 2: Preparation of catalyst]
In the method for synthesizing the Mo—Ru—Se ternary electrode catalyst disclosed in Non-Patent Document 1, the following problems arise because the precursors used are limited. For this reason, it is necessary to pioneer synthesis methods by other routes.
(1) Some metal carbonyls used as precursors have high toxicity such as nickel carbonyl and iron carbonyl. For example, Ni carbonyl is designated as a poison by MSDS, and Fe carbonyl is described as a compound having a great influence on human health in a safety data sheet.
(2) The metals that can be carbonylated are limited to Group 6 to 10 elements, and transition metals that cannot be carbonylated cannot be used as the catalyst constituent composition.

そこで、図6に示される従来の合成法に替えて、図1に示される本発明の方法でFe−RuSe/C(20wt%)を調整した。本発明と従来法の酸化還元能の評価結果を表3に示す。   Therefore, Fe—RuSe / C (20 wt%) was adjusted by the method of the present invention shown in FIG. 1 instead of the conventional synthesis method shown in FIG. Table 3 shows the evaluation results of the redox ability of the present invention and the conventional method.

Figure 2010003576
Figure 2010003576

表3の結果より、本発明の製法による触媒が、従来法によるものと比べて、酸化還元能が格段に向上することが分かる。   From the results in Table 3, it can be seen that the oxidation-reduction ability of the catalyst produced by the production method of the present invention is remarkably improved as compared with the catalyst produced by the conventional method.

本発明の燃料電池用電極触媒、及び本発明の方法によって製造された燃料電池用電極触媒は、従来の遷移金属−カルコゲン元素系触媒と比べて、四電子還元性能が高く高活性であり、従来の白金触媒の代替となりうるものである。また、FeカルボニルやNiカルボニルという有害物を用いない点で好ましい。更に、本発明は、リサイクル性の高い方法である。これにより、燃料電池の実用化と普及に貢献する。   The fuel cell electrode catalyst of the present invention and the fuel cell electrode catalyst produced by the method of the present invention have high four-electron reduction performance and high activity as compared with conventional transition metal-chalcogen element-based catalysts. It can be an alternative to the platinum catalyst. Moreover, it is preferable at the point which does not use harmful substances, such as Fe carbonyl and Ni carbonyl. Furthermore, the present invention is a highly recyclable method. This contributes to the practical application and spread of fuel cells.

本発明のFe−RuSe/C合成法を示すチャート。The chart which shows the Fe-RuSe / C synthesis method of this invention. 実施例1で合成された触媒の酸素還元能の評価結果を示す。The evaluation result of the oxygen reduction ability of the catalyst synthesize | combined in Example 1 is shown. 実施例1で合成された触媒の酸素還元能の他の評価結果を示す。The other evaluation result of the oxygen reduction ability of the catalyst synthesize | combined in Example 1 is shown. 評価装置を示す。An evaluation apparatus is shown. 電極作製法を示す。An electrode manufacturing method will be described. 従来のFe−RuSe/C合成法を示すチャート。The chart which shows the conventional Fe-RuSe / C synthesis method.

Claims (12)

X(MはRu、MはFe及び/又はNi、Xは少なくとも1種のカルコゲン元素)で表される燃料電池用電極触媒。 An electrode catalyst for a fuel cell represented by M 1 M 2 X (M 1 is Ru, M 2 is Fe and / or Ni, and X is at least one chalcogen element). 前記カルコゲン元素が、イオウ(S)、セレン(Se)、及びテルル(Te)から選択される1種以上であることを特徴とする請求項1に記載の燃料電池用電極触媒。   2. The fuel cell electrode catalyst according to claim 1, wherein the chalcogen element is at least one selected from sulfur (S), selenium (Se), and tellurium (Te). Ru−Fe−Se三元系触媒又はRu−Ni−Se三元系触媒であることを特徴とする請求項1または2に記載の燃料電池用電極触媒。   The fuel cell electrode catalyst according to claim 1 or 2, which is a Ru-Fe-Se three-way catalyst or a Ru-Ni-Se three-way catalyst. X(MはRu、MはFe及び/又はNi、Xは少なくとも1種のカルコゲン元素)で表される燃料電池用電極触媒の製造方法であって、Fe硝酸化合物、Ni硝酸化合物、Fe塩酸化合物及びNi塩酸化合物から選択される1種以上の化合物と、アルコールと、水とを混合する工程と、該混合物を攪拌しつつ、Ruカルコゲン化合物を添加する工程と、該混合物を攪拌しつつ還元剤を添加して該Fe及び/又はNi化合物を還元する工程と、生成物をろ過・洗浄する工程と、該ろ過物を熱処理する工程とを有する燃料電池用電極触媒の製造方法。 A method for producing an electrode catalyst for a fuel cell represented by M 1 M 2 X (M 1 is Ru, M 2 is Fe and / or Ni, and X is at least one chalcogen element), which comprises an Fe nitrate compound, Ni A step of mixing one or more compounds selected from a nitric acid compound, a Fe hydrochloric acid compound and a Ni hydrochloric acid compound, an alcohol and water, a step of adding a Ru chalcogen compound while stirring the mixture, and the mixture Of a fuel cell electrode catalyst comprising a step of reducing the Fe and / or Ni compound by adding a reducing agent while stirring, a step of filtering and washing the product, and a step of heat treating the filtrate Method. 前記カルコゲン元素が、イオウ(S)、セレン(Se)、及びテルル(Te)から選択される1種以上であることを特徴とする請求項4に記載の燃料電池用電極触媒の製造方法。   The method for producing an electrode catalyst for a fuel cell according to claim 4, wherein the chalcogen element is at least one selected from sulfur (S), selenium (Se), and tellurium (Te). 前記アルコールが、イソプロパノールであることを特徴とする請求項4又は5に記載の燃料電池用電極触媒の製造方法。   The method for producing an electrode catalyst for a fuel cell according to claim 4 or 5, wherein the alcohol is isopropanol. 前記還元剤が、ヒドラジンであることを特徴とする請求項4乃至6のいずれかに記載の燃料電池用電極触媒の製造方法。   The method for producing an electrode catalyst for a fuel cell according to any one of claims 4 to 6, wherein the reducing agent is hydrazine. 前記熱処理が、400〜600℃で10分〜5時間であることを特徴とする請求項4乃至7のいずれかに記載の燃料電池用電極触媒の製造方法。   The method for producing a fuel cell electrode catalyst according to any one of claims 4 to 7, wherein the heat treatment is performed at 400 to 600 ° C for 10 minutes to 5 hours. 前記熱処理が、480〜520℃で30分〜2時間であることを特徴とする請求項4乃至7のいずれかに記載の燃料電池用電極触媒の製造方法。   The method for producing a fuel cell electrode catalyst according to any one of claims 4 to 7, wherein the heat treatment is performed at 480 to 520 ° C for 30 minutes to 2 hours. 更に、燃料電池用電極触媒の製造方法で発生した廃液中に残存するFeイオン及び/又はNiイオンを回収する工程を有することを特徴とする請求項4乃至9のいずれかに記載の燃料電池用電極触媒の製造方法。   10. The fuel cell according to claim 4, further comprising a step of recovering Fe ions and / or Ni ions remaining in the waste liquid generated by the method for producing a fuel cell electrode catalyst. A method for producing an electrode catalyst. 前記廃液中に残存するFeイオン及び/又はNiイオンを回収する工程が、めっき法、還元晶析法、及び溶液のPHを7.0以上として水酸化物とした後ゼオライトを用いて回収する方法の1種以上であることを特徴とする請求項10に記載の燃料電池用電極触媒の製造方法。   The step of recovering Fe ions and / or Ni ions remaining in the waste liquid includes a plating method, a reductive crystallization method, and a method of recovering using a zeolite after converting the pH of the solution to 7.0 or higher to be a hydroxide. It is 1 or more types of these, The manufacturing method of the electrode catalyst for fuel cells of Claim 10 characterized by the above-mentioned. 請求項1乃至3のいずれかに記載の燃料電池用電極触媒を備えた燃料電池。   A fuel cell comprising the fuel cell electrode catalyst according to any one of claims 1 to 3.
JP2008162258A 2008-06-20 2008-06-20 Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same Pending JP2010003576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008162258A JP2010003576A (en) 2008-06-20 2008-06-20 Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008162258A JP2010003576A (en) 2008-06-20 2008-06-20 Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same

Publications (1)

Publication Number Publication Date
JP2010003576A true JP2010003576A (en) 2010-01-07

Family

ID=41585131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162258A Pending JP2010003576A (en) 2008-06-20 2008-06-20 Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP2010003576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015526843A (en) * 2012-06-22 2015-09-10 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Preparation method of nanoparticles for cathodic reduction of diatomic oxygen in the presence of methanol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015526843A (en) * 2012-06-22 2015-09-10 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Preparation method of nanoparticles for cathodic reduction of diatomic oxygen in the presence of methanol
EP3062375A1 (en) * 2012-06-22 2016-08-31 Centre National De La Recherche Scientifique Process for preparing catalyst nanoparticles for cathodic reduction of dioxygen in the presence of methanol

Similar Documents

Publication Publication Date Title
DE112006001131B4 (en) fuel cell
KR102097952B1 (en) Fuel cell electrode catalyst and manufacturing method thereof
Wang et al. Electrocatalytic activity of perovskite La1− xSrxMnO3 towards hydrogen peroxide reduction in alkaline medium
WO2014181873A1 (en) Fuel cell electrode catalyst and method for activating catalyst
US8236462B2 (en) Electrode catalyst for fuel cell, method for producing the electrode catalyst, and polymer electrolyte fuel cell using the electrode catalyst
EP2169749A1 (en) Electrode catalyst for fuel cell, method for producing the same, and fuel cell using the electrode catalyst
CN101808734A (en) Catalyst and method for the production and use thereof
KR20180124921A (en) Metal-doped tin oxide for electrocatalyst applications
Gunasooriya et al. First-row transition metal antimonates for the oxygen reduction reaction
Tang et al. Multifunctional carbon-armored Ni electrocatalyst for hydrogen evolution under high current density in alkaline electrolyte solution
Lee et al. Metal-nitrogen intimacy of the nitrogen-doped ruthenium oxide for facilitating electrochemical hydrogen production
US8383287B2 (en) Fuel cell electrode catalyst and polymer electrolyte fuel cell using the same
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
JP2011150867A (en) Manufacturing method of ternary system electrode catalyst for fuel cell, and solid polymer fuel cell using the same
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP5056257B2 (en) ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR EVALUATING PERFORMANCE OF OXYGEN REDUCTION CATALYST, AND SOLID POLYMER FUEL CELL
Rufino et al. The effect of methanol on the stability of Pt/C and Pt–RuOx/C catalysts
JP5252776B2 (en) Fuel cell electrode catalyst and method for producing the same
KR101111486B1 (en) manufacturing method of Electrocatalyst material for direct methanol fuel cell
KR101391707B1 (en) Pemfc containing complex catalyst and preparing method for the complex catalyst
JP2010003576A (en) Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same
JP2010027506A (en) Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same
EP2176908B1 (en) Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst
JP2010003549A (en) Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the same
US20120122666A1 (en) Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst