JP5252776B2 - Fuel cell electrode catalyst and method for producing the same - Google Patents
Fuel cell electrode catalyst and method for producing the same Download PDFInfo
- Publication number
- JP5252776B2 JP5252776B2 JP2005304335A JP2005304335A JP5252776B2 JP 5252776 B2 JP5252776 B2 JP 5252776B2 JP 2005304335 A JP2005304335 A JP 2005304335A JP 2005304335 A JP2005304335 A JP 2005304335A JP 5252776 B2 JP5252776 B2 JP 5252776B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- electrode catalyst
- supported
- fuel cell
- carbon material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1009—Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
- H01M8/1011—Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
本発明は、固体高分子型燃料電池用電極触媒及びその製造方法に関する。 The present invention relates to an electrode catalyst for a polymer electrolyte fuel cell and a method for producing the same .
燃料電池は、その電解質の違いにより何種類かのタイプがあるが、中でも水素を燃料とする固体高分子型燃料電池(PEFC)は、比較的低温で運転可能であるため、自動車用や家庭用電源として利用可能な利点からその実用化を目指した開発が現在大いに進められている。また、メタノールを燃料とする固体高分子型燃料電池(DMFC)は、エネルギー密度が大きいため、携帯機器用の小型電源として注目されている。しかし、このDMFCの場合は、メタノールを酸化する際に生成する一酸化炭素(CO)が燃料電池の陽極に使われる電極触媒の白金(Pt)と強く結合し、触媒毒となって発電効率が低下するという問題があった。その解決のため、固体高分子型燃料電池の燃料極としてのアノード触媒材料としては、これまでPt−Ru,Pt−Mn、Pt−Cr、Pt−Fe、Pt−Moなどの様々な合金系触媒が開発され、現在その実用化開発が進められている。しかし、現状の触媒ではまだ出力が十分ではなく、更なる向上が期待されている。 There are several types of fuel cells depending on their electrolytes. Among them, polymer electrolyte fuel cells (PEFCs) that use hydrogen as fuel can be operated at relatively low temperatures, so they can be used for automobiles and households. Developments aimed at practical use are currently under way because of the advantages that can be used as a power source. In addition, a polymer electrolyte fuel cell (DMFC) using methanol as a fuel is attracting attention as a compact power source for portable devices because of its high energy density. However, in the case of this DMFC, carbon monoxide (CO) produced when methanol is oxidized strongly binds to platinum (Pt), which is an electrode catalyst used for the anode of the fuel cell, and becomes a catalyst poison, resulting in power generation efficiency. There was a problem of lowering. In order to solve this problem, various alloy catalysts such as Pt—Ru, Pt—Mn, Pt—Cr, Pt—Fe, and Pt—Mo have been used as anode catalyst materials as a fuel electrode of a polymer electrolyte fuel cell. Has been developed and is currently being developed for practical use. However, the output of the current catalyst is not yet sufficient, and further improvement is expected.
白金又は白金合金などの貴金属は、電極触媒層中の活性サイトとして働き、その分散性と安定性が触媒活性と寿命を決めるため、触媒はカーボンブラックなどの炭素材料に担持されているが、炭素材料は電気導電性をもたらすとともに、触媒粒子の分散性と安定性にも影響することが知られている。 Noble metals such as platinum or platinum alloys act as active sites in the electrode catalyst layer, and their dispersibility and stability determine catalyst activity and life, so the catalyst is supported on a carbon material such as carbon black. It is known that the material provides electrical conductivity and also affects the dispersibility and stability of the catalyst particles.
非特許文献1(E.S.Smontkin et al., Elctrochimica Acta,43(24),3657,1998)では、カーボンブラックに担持した貴金属触媒と、貴金属のみの電極触媒の比較検討を行い、炭素材料の利用は貴金属の分散性が向上し、電極触媒としての性能向上に寄与することを開示している。 Non-Patent Document 1 (ES Smontkin et al., Elctrochimica Acta, 43 (24), 3657, 1998) conducted a comparative study of a noble metal catalyst supported on carbon black and an electrode catalyst containing only a noble metal. It is disclosed that the use of this improves the dispersibility of the noble metal and contributes to the performance improvement as an electrode catalyst.
また、特許文献1(特開2000−3712号公報)では、電極触媒の性能は、炭素材料の表面状態に影響される実験結果を開示している。 Moreover, in patent document 1 (Unexamined-Japanese-Patent No. 2000-3712), the performance of an electrode catalyst is disclosing the experimental result influenced by the surface state of a carbon material.
しかしながら、特許文献1では、炭素材料の表面を修飾する工夫はなされておらず、燃料電池の電極触媒としての性能はまだ十分ではなかった。 However, in Patent Document 1, no attempt has been made to modify the surface of a carbon material, and the performance as an electrode catalyst for a fuel cell has not been sufficient.
また、特許文献2(特開2005−138204号公報)では、四酸化ルテニウムを用いて、炭素材料上に二酸化ルテニウムを分散担持させる技術が開示され、白金が担持されたカーボンブラックに二酸化ルテニウムを分散担持することで燃料電池電極触媒の特性が向上する実験結果が示されている。しかし、この方法では、白金上にも二酸化ルテニウムが担持される可能性があり、触媒活性を損なわない二酸化ルテニウムの担持量に限界があるため、触媒特性の大幅向上には限界があった。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2005-138204) discloses a technique in which ruthenium tetroxide is used to disperse and carry ruthenium dioxide on a carbon material, and the ruthenium dioxide is dispersed on carbon black carrying platinum. Experimental results have been shown in which the characteristics of the fuel cell electrode catalyst are improved by loading. However, in this method, there is a possibility that ruthenium dioxide is supported on platinum, and there is a limit to the amount of ruthenium dioxide that does not impair the catalytic activity.
本発明は、上記事情に鑑みなされたもので、優れた触媒性能を有する燃料電池用の高性能電極触媒及びその製造方法を提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the high performance electrode catalyst for fuel cells which has the outstanding catalyst performance, and its manufacturing method .
本発明者らは、上記目的を達成するため鋭意検討を行った結果、従来のカーボンブラックやカーボンナノチューブなどの炭素材料に、予め二酸化ルテニウム(RuO2)を分散担持し、次いで、貴金属を担持することにより、貴金属の触媒活性を損なうことなく、電極触媒の分散性と安定性が改善され、電極触媒としての性能が向上することを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have previously supported ruthenium dioxide (RuO 2 ) on a conventional carbon material such as carbon black or carbon nanotube, and then supported a noble metal. As a result, it was found that the dispersibility and stability of the electrode catalyst were improved without impairing the catalytic activity of the noble metal, and the performance as an electrode catalyst was improved, and the present invention was completed.
従って、本発明は、下記の燃料電池用電極触媒及びその製造方法を提供する。
請求項1:
二酸化ルテニウムを予め分散担持した炭素材料に貴金属を担持したことを特徴とする燃料電池用電極触媒。
請求項2:
炭素材料が、活性炭、カーボンブラック、カーボン繊維、カーボンナノチューブ、カーボンナノホーン、グラファイト、グラファイトナノファイバー、フラーレン、フラーレンナノウィスカー、フラーレンナノファイバー、グラファイト化処理を施したフラーレンナノウィスカー及びフラーレンナノファイバー、並びにそれらから構成される炭素複合材料から選ばれるものであることを特徴とする請求項1記載の燃料電池用電極触媒。
請求項3:
四酸化ルテニウムを炭素材料に接触させて該炭素材料に二酸化ルテニウムを分散担持したことを特徴とする請求項1又は2記載の燃料電池用電極触媒。
請求項4:
貴金属が白金又は白金ルテニウム合金であることを特徴とする請求項1,2又は3記載の燃料電池用電極触媒。
請求項5:
炭素材料に、予め二酸化ルテニウムを分散担持し、次いで、貴金属を担持することを特徴とする燃料電池用電極触媒の製造方法。
請求項6:
四酸化ルテニウムを炭素材料に接触させて該炭素材料に二酸化ルテニウムを分散担持することを特徴とする請求項5記載の製造方法。
Accordingly, the present invention provides the following fuel cell electrode catalyst and method for producing the same.
Claim 1:
An electrode catalyst for a fuel cell, wherein a noble metal is supported on a carbon material in which ruthenium dioxide is preliminarily dispersed and supported.
Claim 2:
Carbon materials are activated carbon, carbon black, carbon fiber, carbon nanotube, carbon nanohorn, graphite, graphite nanofiber, fullerene, fullerene nanowhisker, fullerene nanofiber, fullerene nanowhisker and fullerene nanofiber subjected to graphitization treatment, and those 2. The fuel cell electrode catalyst according to claim 1, wherein the electrode catalyst is selected from the group consisting of carbon composite materials.
Claim 3:
3. The fuel cell electrode catalyst according to claim 1, wherein ruthenium tetroxide is brought into contact with the carbon material and ruthenium dioxide is dispersedly supported on the carbon material.
Claim 4:
4. The fuel cell electrode catalyst according to claim 1, wherein the noble metal is platinum or a platinum ruthenium alloy.
Claim 5:
A method for producing an electrode catalyst for a fuel cell, characterized in that ruthenium dioxide is preliminarily dispersed and supported on a carbon material, and then a precious metal is supported.
Claim 6:
6. The production method according to claim 5, wherein ruthenium tetroxide is brought into contact with the carbon material, and ruthenium dioxide is dispersedly supported on the carbon material.
本発明に係る二酸化ルテニウムを分散担持した炭素材料に貴金属を担持した電極触媒は、貴金属微粒子の分散・安定性が良好で、優れた触媒性能を示すと同時に、反応物質及びその中間物質の輸送性能に優れるため、高性能の固体高分子型燃料電池を提供できる。 The electrode catalyst having a noble metal supported on a carbon material in which ruthenium dioxide is dispersedly supported according to the present invention has excellent dispersion and stability of noble metal fine particles and excellent catalyst performance, and at the same time, transport performance of a reactant and its intermediate substance. Therefore, a high-performance polymer electrolyte fuel cell can be provided.
本発明で使用される炭素材料としては、活性炭、カーボンブラック、カーボン繊維、カーボンナノチューブ、カーボンナノホーン、グラファイト、グラファイトナノファイバー、フラーレン、フラーレンナノウィスカー、フラーレンナノファイバー、グラファイト化処理を施したフラーレンナノウィスカーやフラーレンナノファイバー、あるいはそれらから構成される炭素複合材料が利用できる。中でも、カーボンブラック、カーボンナノホーン、活性炭カーボン、カーボンナノチューブ、フラーレンが好適であり、特にカーボンブラックが好適である。 Examples of the carbon material used in the present invention include activated carbon, carbon black, carbon fiber, carbon nanotube, carbon nanohorn, graphite, graphite nanofiber, fullerene, fullerene nanowhisker, fullerene nanofiber, and fullerene nanowhisker subjected to graphitization treatment. Or fullerene nanofibers, or carbon composite materials composed of them. Among these, carbon black, carbon nanohorn, activated carbon, carbon nanotube, and fullerene are preferable, and carbon black is particularly preferable.
炭素材料に二酸化ルテニウム(RuO2)を分散担持する方法としては、四酸化ルテニウム(RuO4)のガスを生成させ、その状態のまま炭素材料へRuO2を担持する方法が例示される。この場合、Ru(NO3)2やRuCl3の水溶液に酸化剤としてCe4+やI7+を添加し、この溶液に窒素ガスなどの不活性ガスをバブリングさせれば、RuO4が気化する。このRuO4を含むガスを炭素材料へ吹きつければ、その炭素材料に超微粒子のRuO2を担持することができる。これらのRuO4生成反応並びに炭素材料へのRuO2担持処理は、その全ての工程を常温・常圧で行うことができる。 Examples of the method of dispersing and supporting ruthenium dioxide (RuO 2 ) on the carbon material include a method of generating ruthenium tetroxide (RuO 4 ) gas and supporting RuO 2 on the carbon material in that state. In this case, if Ce 4+ or I 7+ is added as an oxidizing agent to an aqueous solution of Ru (NO 3 ) 2 or RuCl 3 and an inert gas such as nitrogen gas is bubbled into this solution, RuO 4 is vaporized. . If this gas containing RuO 4 is blown onto a carbon material, ultrafine RuO 2 can be supported on the carbon material. The RuO 4 production reaction and the RuO 2 loading treatment on the carbon material can be performed at normal temperature and normal pressure for all the steps.
また、上記と同様に溶液中でRuO4を生成させ、そのRuO4を一旦有機溶媒に溶媒抽出し、そのRuO4を含む溶液を炭素材料へ吹きつけ、あるいは接触させてRuO2として担持する方法も例示される。RuO4を抽出する有機溶媒としては、それらに対し溶解度が高く、かつ無反応性のC4F9OCH3などの有機フッ素系溶媒を利用することが好ましい。このRuO4を含む有機溶媒を炭素材料へ吹きつければ、その炭素材料に超微粒子のRuO2を担持することができる。これらのRuO4生成反応並びに炭素材料へのRuO2担持処理は、その全ての工程を常温・常圧で行うことができる。 Also, a method of generating RuO 4 in a solution in the same manner as described above, extracting the RuO 4 once into an organic solvent, and spraying or contacting the solution containing the RuO 4 on a carbon material to carry it as RuO 2. Are also illustrated. As an organic solvent for extracting RuO 4 , it is preferable to use an organic fluorine-based solvent such as C 4 F 9 OCH 3 which has high solubility and is non-reactive with them. If this organic solvent containing RuO 4 is sprayed onto a carbon material, ultrafine RuO 2 can be supported on the carbon material. The RuO 4 production reaction and the RuO 2 loading treatment on the carbon material can be performed at normal temperature and normal pressure for all the steps.
本発明において、炭素材料に分散担持するRuO2の量は、炭素材料に対し、0.01質量%以上であることが好ましく、より好ましくは1質量%以上である。RuO2の量が0.01質量%より少ないと、触媒の性能向上に効果が十分でない。なお、その上限は特に制限されないが、100質量%以下、特に50質量%以下が好ましい。 In the present invention, the amount of RuO 2 dispersed and supported on the carbon material is preferably 0.01% by mass or more, more preferably 1% by mass or more based on the carbon material. When the amount of RuO 2 is less than 0.01% by mass, the effect of improving the performance of the catalyst is not sufficient. The upper limit is not particularly limited, but is preferably 100% by mass or less, particularly preferably 50% by mass or less.
本発明で使用する貴金属は、白金、ルテニウム、パラジウム、ロジウム、金などからなる群から選ばれる1種又は2種以上が好適であり、これらの合金であってもよい。特にアノード触媒としては、白金又は白金−ルテニウムが好適に用いられる。 Precious metals for use in the present invention, platinum, ruthenium, palladium, rhodium, and is preferably one or more selected from the group consisting of gold, may be alloys. In particular, platinum or platinum-ruthenium is preferably used as the anode catalyst.
貴金属又はその合金を炭素材料に担持する方法は、公知の方法、例えば、金属コロイドを用いた担持法、含浸法、イオン注入法などが好適に用いられる。 As a method for supporting a noble metal or an alloy thereof on a carbon material, a known method, for example, a supporting method using a metal colloid, an impregnation method, an ion implantation method or the like is preferably used.
本発明において、貴金属又はその合金は、電極触媒全質量の5〜70質量%であることが好ましく、より好ましくは10〜60質量%である。 In this invention, it is preferable that a noble metal or its alloy is 5-70 mass% of an electrode catalyst total mass, More preferably, it is 10-60 mass%.
本発明の電極触媒は、燃料電池用として特にPEFCやDMFC、とりわけDMFC用電極触媒として有効に用いられるが、この場合、電極触媒の使用態様、燃料電池構成は、公知のものとすることができる。 The electrode catalyst of the present invention is effectively used as a fuel cell, particularly as an electrode catalyst for PEFC or DMFC, especially DMFC. In this case, the use mode of the electrode catalyst and the fuel cell configuration can be known. .
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[実施例1]
ケッチェンブラックEC(ライオン(株)製)10gとパーフルオロブチルメチルエーテル200gを反応容器に仕込み、撹拌下、25℃で四酸化ルテニウム5gを吹き込んだ。この操作は、四酸化ルテニウム5gを含むパーフルオロブチルメチルエーテル200gをケッチェンブラックEC10gと混合しても同様な効果が得られる。1時間撹拌した後、未反応の四酸化ルテニウムとパーフルオロブチルメチルエーテルをエバポレータで減圧除去することで、二酸化ルテニウムが20質量%担持されたカーボンブラックを得た。
[Example 1]
10 g of ketjen black EC (manufactured by Lion Corporation) and 200 g of perfluorobutyl methyl ether were charged into a reaction vessel, and 5 g of ruthenium tetroxide was blown at 25 ° C. with stirring. This operation can obtain the same effect even when 200 g of perfluorobutyl methyl ether containing 5 g of ruthenium tetroxide is mixed with 10 g of ketjen black EC. After stirring for 1 hour, unreacted ruthenium tetroxide and perfluorobutyl methyl ether were removed under reduced pressure with an evaporator to obtain carbon black carrying 20% by mass of ruthenium dioxide.
PtCl4 0.2326g(0.00069モル)、RuCl3 0.1383g(0.00067モル)、苛性ソーダ4gとエチレングリコール50mlを混合し、160℃で3時間加熱することで、平均粒子径約2.5nmのPtRu(モル比1:1)のコロイドを得た。 By mixing 0.2326 g (0.00069 mol) of PtCl 4, 0.1383 g (0.00067 mol) of RuCl 3 , 4 g of caustic soda and 50 ml of ethylene glycol, and heating at 160 ° C. for 3 hours, an average particle size of about 2. A colloid of 5 nm PtRu (molar ratio 1: 1) was obtained.
RuO2担持カーボンブラック0.16gを水50mlに分散したものを上記PtRuコロイド10mlと混合し、超音波分散後、室温で15時間撹拌した。混合液をろ紙ろ過した結果、ろ液は透明で、PtRuはRuO2担持カーボンブラックに担持されていた。ろ紙上の残存物を乾燥することで、RuO2担持カーボンブラックにPtRuが20質量%担持された電極触媒を得た。 A dispersion of 0.16 g of RuO 2 -supported carbon black in 50 ml of water was mixed with 10 ml of the above PtRu colloid, and after ultrasonic dispersion, the mixture was stirred at room temperature for 15 hours. As a result of filtering the mixed solution with filter paper, the filtrate was transparent and PtRu was supported on RuO 2 -supported carbon black. The residue on the filter paper was dried to obtain an electrode catalyst in which 20% by mass of PtRu was supported on RuO 2 -supported carbon black.
この電極触媒をグラッシーカーボンに0.005mg搭載したものを作用電極、電解液は0.5M硫酸にメタノールを1M添加したものを用い、対向電極にPtワイヤー、標準電極Ag/AgCl/飽和KCl水溶液を用いて、スイープ速度1mV/s、25℃のメタノール酸化の電気化学評価を行った。立ち上がり電位、0.4Vの電流値(PtRu1mg当り)、ピーク電位、ピーク電流値(PtRu1mg当り)を表1に示す。 This electrode catalyst with 0.005 mg of glassy carbon mounted on the working electrode, the electrolyte is 0.5M sulfuric acid with 1M methanol added, the counter electrode is Pt wire, standard electrode Ag / AgCl / saturated KCl aqueous solution Using this, electrochemical evaluation of methanol oxidation at a sweep rate of 1 mV / s and 25 ° C. was performed. Table 1 shows the rising potential, the current value of 0.4 V (per 1 mg of PtRu), the peak potential, and the peak current value (per 1 mg of PtRu).
[比較例1]
RuO2が担持されていないケッチェンブラックECにPtRuコロイドを実施例1の方法で担持し、RuO2が担持されていないカーボンブラックにPtRuが20質量%担持された電極触媒を得た。実施例1と同様にしてメタノール酸化の電気化学評価を行った結果を表1に示す。
[Comparative Example 1]
A PtRu colloid was supported on the ketjen black EC not supporting RuO 2 by the method of Example 1 to obtain an electrode catalyst in which 20% by mass of PtRu was supported on carbon black not supporting RuO 2 . The results of electrochemical evaluation of methanol oxidation in the same manner as in Example 1 are shown in Table 1.
上記結果から、RuO2処理した炭素材料に白金ルテニウム合金を担持した電極触媒は、メタノール酸化触媒活性の向上が著しく、燃料電池用、特にDMFC用に有用である。
From the above results, an electrode catalyst in which a platinum ruthenium alloy is supported on a RuO 2 -treated carbon material is remarkably improved in methanol oxidation catalytic activity, and is useful for fuel cells, particularly DMFC.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005304335A JP5252776B2 (en) | 2005-10-19 | 2005-10-19 | Fuel cell electrode catalyst and method for producing the same |
PCT/JP2006/320278 WO2007046279A1 (en) | 2005-10-19 | 2006-10-11 | Electrode catalyst for fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005304335A JP5252776B2 (en) | 2005-10-19 | 2005-10-19 | Fuel cell electrode catalyst and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007115471A JP2007115471A (en) | 2007-05-10 |
JP5252776B2 true JP5252776B2 (en) | 2013-07-31 |
Family
ID=37962375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005304335A Expired - Fee Related JP5252776B2 (en) | 2005-10-19 | 2005-10-19 | Fuel cell electrode catalyst and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5252776B2 (en) |
WO (1) | WO2007046279A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5266749B2 (en) * | 2007-12-21 | 2013-08-21 | 旭硝子株式会社 | Membrane electrode assembly for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell |
WO2010048407A1 (en) | 2008-10-24 | 2010-04-29 | Nanosys, Inc. | Electrochemical catalysts for fuel cells |
JP2011134477A (en) * | 2009-12-22 | 2011-07-07 | Shinshu Univ | Method of manufacturing electrode catalyst for fuel cell |
WO2016103494A1 (en) * | 2014-12-26 | 2016-06-30 | 国立大学法人信州大学 | Electrode catalyst for fuel cells and method for producing same |
CN105817200B (en) * | 2016-05-12 | 2018-08-24 | 梁吉 | A kind of composite mesoporous pellet of carbon nanotube/activated carbon and preparation method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62254361A (en) * | 1986-04-26 | 1987-11-06 | Furukawa Electric Co Ltd:The | Halogen electrode for cell |
JPH1032009A (en) * | 1996-07-16 | 1998-02-03 | Fuji Electric Co Ltd | Manufacture of fuel cell |
US7361426B2 (en) * | 2002-04-10 | 2008-04-22 | Hewlett-Packard Development Company, L.P. | Surface structure for enhancing catalyst reactivity and method of manufacturing thereof |
JP2004283774A (en) * | 2003-03-24 | 2004-10-14 | Kaken:Kk | Catalyst for fuel cell and its manufacturing method |
JP2005138204A (en) * | 2003-11-05 | 2005-06-02 | Kaken:Kk | Ultrafine particle carrying carbon material, its manufacturing method, and carrying processor |
KR100552697B1 (en) * | 2003-11-13 | 2006-02-20 | 삼성에스디아이 주식회사 | Metal oxide-carbon composite catalyst support and fuel cell comprising the same |
JP2005353408A (en) * | 2004-06-10 | 2005-12-22 | Sharp Corp | Fuel cell |
US20090068546A1 (en) * | 2005-04-21 | 2009-03-12 | Yoshinori Sato | Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same |
-
2005
- 2005-10-19 JP JP2005304335A patent/JP5252776B2/en not_active Expired - Fee Related
-
2006
- 2006-10-11 WO PCT/JP2006/320278 patent/WO2007046279A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2007046279A1 (en) | 2007-04-26 |
JP2007115471A (en) | 2007-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sankar et al. | Cobalt-modified palladium bimetallic catalyst: a multifunctional electrocatalyst with enhanced efficiency and stability toward the oxidation of ethanol and formate in alkaline medium | |
Wong et al. | Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications | |
JP5322110B2 (en) | Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material | |
JP5209474B2 (en) | Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles | |
JP5893305B2 (en) | Electrocatalyst for polymer electrolyte fuel cell and method for producing the same | |
US20070161501A1 (en) | Method for making carbon nanotube-supported platinum alloy electrocatalysts | |
Cruz-Martínez et al. | Mexican contributions for the improvement of electrocatalytic properties for the oxygen reduction reaction in PEM fuel cells | |
KR102539195B1 (en) | Precious metal single atom-nanoparticle catalysts derived from single atom sites using hydrothermal method and Manufacturing method of the Same | |
Habibi et al. | Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media | |
JP5252776B2 (en) | Fuel cell electrode catalyst and method for producing the same | |
JP4785757B2 (en) | Method for producing noble metal-supported electrode catalyst and noble metal-supported electrode catalyst obtained by the production method | |
JP4937527B2 (en) | Platinum catalyst for fuel cell and fuel cell including the same | |
Han et al. | Highly stable and active Pt electrocatalysts on TiO2-Co3O4-C composite support for polymer exchange membrane fuel cells | |
JP2018190545A (en) | Electrode catalyst for fuel cell and method for producing the same | |
JP4863735B2 (en) | Supported electrode catalyst and catalyst production method | |
JP2019169289A (en) | Air electrode catalyst for fuel cell, manufacturing method of the same, and fuel cell using fuel cell air electrode catalyst | |
US11955647B2 (en) | Method for preparing nanosponge-structured graphene dot-palladium hybrid, and nanosponge-structured graphene dot-palladium hybrid prepared thereby | |
KR101111486B1 (en) | manufacturing method of Electrocatalyst material for direct methanol fuel cell | |
Ferreira et al. | A Comparative Study of the Catalytic Performance of Pt-Based Bi and Trimetallic Nanocatalysts Towards Methanol, Ethanol, Ethylene Glycol, and Glycerol Electro-Oxidation | |
JP2005246380A (en) | Platinum based catalyst and methanol fuel cell using it | |
US7825057B2 (en) | Method for preparing the mixed electrode catalyst materials for a PEM fuel cell | |
KR101673003B1 (en) | Catalyst for preparing hydrogen peroxide, MEA including the same and Method for preparing the catalyst | |
Jeon et al. | Ternary Pt 45 Ru 45 M 10/C (M= Mn, Mo and W) catalysts for methanol and ethanol electro-oxidation | |
KR20100005507A (en) | Electrocatalyst, membrane electrode assembly and manufacturing method thereof | |
Marinho et al. | Ethylene glycol oxidation on ternary PtRhNi/C electrocatalyst with different metal compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081010 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120314 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120514 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120815 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20121113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130416 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160426 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |