JP2004283774A - Catalyst for fuel cell and its manufacturing method - Google Patents

Catalyst for fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2004283774A
JP2004283774A JP2003081210A JP2003081210A JP2004283774A JP 2004283774 A JP2004283774 A JP 2004283774A JP 2003081210 A JP2003081210 A JP 2003081210A JP 2003081210 A JP2003081210 A JP 2003081210A JP 2004283774 A JP2004283774 A JP 2004283774A
Authority
JP
Japan
Prior art keywords
catalyst
ruo
fuel cell
carrier
catalyst carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003081210A
Other languages
Japanese (ja)
Inventor
Masae Amano
昌江 天野
Kazuhiro Shiotani
和弘 塩谷
Kazu Nakamura
和 中村
Osamu Arai
修 新井
Katsuyoshi Tadenuma
克嘉 蓼沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaken Co Ltd
Original Assignee
Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaken Co Ltd filed Critical Kaken Co Ltd
Priority to JP2003081210A priority Critical patent/JP2004283774A/en
Publication of JP2004283774A publication Critical patent/JP2004283774A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a catalyst for a fuel cell, which has a long life and high activity, and to provide a method for manufacturing this catalyst for the fuel cell easily at a low cost by depositing a small amount of a catalytic component having small particle size on a carrier. <P>SOLUTION: RuO<SB>2</SB>is deposited on the carrier to obtain this catalyst in which RuO<SB>2</SB>is highly dispersed and which has the particle size of several nano size and higher activity. Pt/C or Pd is used as the carrier. The method for manufacturing this catalyst having RuO<SB>2</SB>of several nano size on the carrier comprises a step to bring RuO<SB>4</SB>gas into direct contact with the carrier or bring a solution containing RuO<SB>4</SB>into contact with the carrier or a step to apply the solution containing RuO<SB>4</SB>to the carrier and vaporize a solvent in the applied solution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池の電極触媒や改質器触媒、水素吸蔵触媒、化学合成活性触媒、検出器などのセンサー、光感応型有機物浄化触媒などに応用可能な触媒とその製造方法に関する。
【0002】
【従来の技術】
地球温暖化の原因とされる二酸化炭素の排出を削減する技術として、燃料電池が注目されている。燃料電池は、使用される電解質の違いにより幾つかの種類があり、リン酸型(AFC)、溶融炭酸塩型(MCFC)、固体高分子型(PEFC)、及び固体酸化物型(SOFC)などがある。
この中で、PEFCは、常温〜100℃での低温で運転可能であるが、水素を直接燃料とするため、水素の貯蔵方法の点及びエネルギーの体積密度が小さい点に問題がある。
【0003】
これに対し、液体燃料であるメタノールから改質した水素を用いる改質型の固体高分子型燃料電池は、水素を直接用いる方法で生じる問題点が解消される点で有力な方法である。さらに、メタノールを用いる燃料電池のうちでも、メタノールを直接電極上で反応させる直接メタノール型燃料電池(DMFC)は、改質器が不要なため、水素を燃料とする改質型の固体高分子型燃料電池と比較して、容積、効率、始動性などの点で優れている。
【0004】
しかしこのDMFCでは、メタノールなどの炭化水素系燃料を酸化する際に発生するCOが燃料陽極酸化用の電極の白金触媒と強く結合し、この結合の解離速度が遅い為に起電力が低下し、エネルギー効率低下の要因とされる。その対応策として、燃料電極に用いる耐被毒性触媒が検討されており、現在、燃料電池用触媒としてPt−Ruなどの触媒が広く用いられている。
【0005】
【発明が解決しようとしている課題】
しかしこのPt−Ru(1:1)触媒の活性は十分とは言えず、より高い活性を持つ燃料電池用触媒の開発が求められている。さらに、従来のPt−Ru触媒は、PtとRuを合金化したものであるため、厳しい条件下(高温、不活性雰囲気等)で製造する必要がある。加えてこの製造方法は、特殊な技術を必要とすることから、製造条件やコストの面で問題を抱えている。
【0006】
本発明は、前記従来の燃料電池用触媒とその製造方法における課題に鑑みなされたもので、その第一の目的は、長寿命で高活性な燃料電池用触媒を提供することであり、さらに第2の目的は、少量で小粒径な触媒担持により製造が簡便でそのコストの低減を図ることが出来る燃料電池用触媒の製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明では、前記の目的を達成するため、触媒担体として炭素、ゼオライト、フッ素樹脂系などの多孔質の無機質及び有機質材料、あるいは触媒機能を有する白金族元素(Pt、Pdなど)やNi,Co,Cr,Zn,Cuなど遷移金属触媒材料、またはそれらの複合材料に分子状のRuOを用いてRuOを担持させることにより、ナノサイズのRuOを担持することを可能としたものである。これにより、単位重量当たりの表面積が従来触媒と比較して著しく向上させることができるようにした。併せて製造技術の簡素化により、そのコスト低減を可能とし、これまでの各分野における触媒として高活性な触媒を低コストで製造、提供することを可能とした。
【0008】
すなわち、本発明による燃料電池用触媒は、触媒担体にRuOを担持させることにより、高分散されたナノサイズの触媒を調製し、より高い活性を得るものである。この場合の触媒担体として、炭素、ゼオライト、フッ素樹脂系などの多孔質の無機質及び有機質材料、あるいは触媒機能を有する白金族元素(Pt、Pdなど)やNi,Co,Cr,Zn,Cuなど遷移金属触媒材料、またはそれらの複合材料にナノサイズRuOを担持することによって、高活性な触媒材料となる。なお、Pt/Cの触媒担体を用いた場合、直接高活性なPt−RuO型の電極触媒が得られる。
これらの触媒担体は、膜−電極接合体(MEA)として構成された燃料電極そのものであってもよい。
【0009】
このような燃料電池用触媒の製造方法としては、第一に、Ru化合物の水溶液に酸化剤を添加することにより発生したRuOガスを前記のような触媒担体に接触させ、この触媒担体にRuOを担時させる方法を挙げることができる。第二に、RuOを含む溶液を気化させ、気化した溶液を触媒担体に接触させ、その後触媒担体に残った溶媒を気化させてRuOを触媒担体に担時させる方法を挙げることが出来る。さらに第三に、RuOを含む溶液を触媒担体に塗布し、その後溶液の溶媒を気化させることにより、触媒担体にRuOを担時させる方法を挙げることが出来る。
これらの場合において前述したように、膜−電極接合体(MEA)として構成された燃料電極そのものを触媒担体として、それにRuOを担時させてもよい。
【0010】
【発明の実施の形態】
次に、図面を参照しながら、本発明の実施の形態について、具体的且つ詳細に説明する。
触媒の活性度は、触媒の比表面積が大きいほど高いため、触媒粒子がより微細であること、かつ高分散されていることが望ましい。
本発明は、Pt/CやPd等の触媒担体に分子状RuOを作用させてRuOを沈着担持させることにより、高分散されたナノサイズ微粒子の触媒を調製し、より高い活性を有する触媒を得るものである。
【0011】
より具体的には、Ru溶液に酸化剤を作用させ、気化した分子状のRuOを不活性なフッ素系溶媒に溶解させ、RuO溶液として触媒担体に接触させ、その後溶媒を気化させる方法、また、気化した分子状RuOガスを直接触媒担体に吹き付け接触させる方法などにより、触媒担体と分子状RuOが速やかに反応し、RuOがRuOとして触媒担体に安定沈着することでナノサイズRuO触媒が得られる。
【0012】
従来の特に燃料電池用触媒に代表されるPt/Ru触媒は金属触媒であるため、その製造に多大な手間がかかるが、本発明は常温・常圧で、しかもその操作が極めて簡素である。また、本発明では、触媒担体にRuOを担持させることにより、高分散されたナノサイズ触媒が得られ、より高い活性を有する触媒が得られる。
【0013】
例えば、燃料電池用触媒としてのPt−RuOタイプの触媒は、Pt/CにRuOガスを接触させることで得ることができる。Pt/Cに接触させるRuOガス、Ru化合物の水溶液に酸化電位の高い酸化剤を添加して発生させる。この場合に例えば、Ru化合物としてはRu(NOやRuClが使用出来、酸化剤にはCe(NH(NOやHIOなどを使用することが出来る。
【0014】
Pt/CにRuOを接触させる他の手段として、RuOを含む溶液をN等の不活性ガスでバブリングして気化させ、気化した溶液をPt/Cを吹き付けて接触させ、その後Pt/Cに付着した溶媒を乾燥する方法もある。RuOを溶解させる溶媒としては、RuOに対し溶解度が高く無反応性のCOCHなどの有機フッ素系溶媒を利用することができる。
【0015】
さらに他の方法として、RuOを含む前記のような溶液をPt/Cに塗布し、その後溶媒を気化させることにより、Pt/CにRuOを担持させる方法も挙げられる。RuOを含む溶液をPt/Cに塗布する方法は、溶液の噴射による吹き付けや溶液へのPt/Cの浸漬等の手段による。
【0016】
RuOは有機物により還元されるため、Pt/C中に含まれるCと容易に反応し、Pt/C上にRuOを沈着させることが出来る。また、温度約110℃〜高温状態でRuOはRuOとOに分解するため、加温することで完全にRuOをRuOとしてPt/Cに担持できる。このようにして得られたRu酸化物は超微粒子である。
【0017】
このようにして製造されたPt−RuOタイプの触媒は、触媒粒子が微細であり、かつ高分散されているため、高い触媒活性を持つ。また、容易に調製が可能なため、コスト低減に役立つ。
さらに本発明では、前記触媒担体として例えばPdを用いることも出来る。これにより、水素吸蔵型の電極触媒が得られる。
【0018】
これらのPt/CやPd等の触媒担体は、膜・電極接合体(MEA)として構成された燃料電極であってもよい。例えば前述のようにして、膜・電極接合体(MEA)の燃料電極にRuOを直接または溶液として接触させ、膜・電極接合体(MEA)の燃料電極にRuOを担時させる。或いはRuOを含む溶液を塗布し、その後溶媒を気化させることにより膜・電極接合体(MEA)の燃料電極にRuOを担持させる。
【0019】
図1に燃料電池用触媒の製造装置の一例を示す。反応槽に入れたRu(NO溶液を撹拌しながらその溶液にCe(NH(NO溶液を添加し、RuOガスを発生させる。キャリアガスとしてNガスを用い、発生したRuOガスを管の中に入れたPt/C等の触媒担体に噴射し、その後、100℃以上の温度に加熱し、燃料電池用触媒を得る。余剰のRuOガスは、HClを含むエタノール溶液に通した後、オフガスとして系外に排出する。
【0020】
図2に燃料電池用触媒の製造装置の他の例を示す。RuOをCOCHで溶解した溶液をNガスでバブリングして気化させ、気化した溶液をMEAの燃料電極に噴射し、その後燃料電極に残った溶媒を乾燥させる。余剰の溶液や燃料電極の乾燥により発生した溶媒のガスは、HClを含むエタノール溶液に通した後、オフガスとして系外に排出する。
【0021】
【実施例】
次に、本発明の実施例として、Pt−RuOタイプの燃料電池用触媒の製造方法の例と、これにより製造されたPt−RuOタイプの燃料電池用触媒の特性評価の結果について具体的に説明する。
【0022】
(実施例1)
図1に示した燃料電池用触媒の製造装置を使用し、反応槽のRu(NO溶液を撹拌しながらその溶液にCe(NH(NO溶液を添加し、RuOガスを発生させた。このRuOガスをキャリアガスであるNガスと共にPt/C等の触媒担体を入れた管の中に噴射し、その後、110℃で1時間乾燥させて、Pt−RuOタイプの燃料電池用触媒を得た。
【0023】
このようにして製造したPt−RuOタイプの燃料電池用触媒について、エネルギ−分散型X線検出器(EDX)による成分測定を行った結果を図3に示す。図3から明らかなように、この燃料電池用触媒からRuが検出され、PtとRuのモル%は、Pt85%、Ru15%であったことが分かる。なお、Ruの含有率は、Pt/C等の触媒担体へのRuOガスの濃度・通気時間・処理温度などで制御できる。
【0024】
また、製造したPt−RuOタイプの燃料電池用触媒について、透過電子顕微鏡(TEM)による観察を行った結果を図4に示す。図4の下側が前述のようにして製造したPt−RuOタイプの燃料電池用触媒であり、上側は比較のため同様にして観察したPt−Ruタイプの燃料電池用触媒である。
【0025】
この観察結果から見ると、粒子の分布状態は双方の燃料電池用触媒試料ともほぼ均一であった。しかし、Pt−Ruタイプの燃料電池用触媒は、粒子サイズは小粒径の場合が平均約5nmで、全体的にはサイズ20nm程度の大粒径の粒子も存在する。これに対しPt−RuOタイプの燃料電池用触媒の粒子サイズは全体的に約1〜3nmで、Pt−Ruタイプの燃料電池用触媒より微細でありしかも均質なナノサイズとなっている。
【0026】
Pt−Ruタイプの燃料電池用触媒及び前記のようにして製造したPt−RuOタイプの燃料電池用触媒をそれぞれ用いてMEAを製作し、その性能評価を行った。セル温度80℃、常圧においてメタノールとジメチルエーテルの混合ガス燃料を供給する方式で陽極酸化したときの試験結果として電流密度−セル電圧特性を図5に示す。上が直接メタノール型燃料電池(DMFC)としての性能評価であり、下が直接ジメチルエーテル型燃料電池(DDFC)としての性能評価である。
【0027】
この結果、Pt−RuOタイプの燃料電池用触媒は、メタノールに対してはPt−Ruタイプの燃料電池用触媒と同等の性能を示し、ジメチルエーテルに対してはPt−Ruタイプの燃料電池用触媒より優れた性能を示した。
【0028】
(実施例2)
図2に示した燃料電池用触媒の製造装置を使用し、RuOを含むCOCH溶液にNガスをバブリングし、気化した溶液をPt/Cに噴射し、その後110℃で1時間乾燥させて、Pt−RuOタイプの燃料電池用触媒を得た。なお、図2では、容器にMEAを入れた如く記載されているが、ここではPt/Cの場合でも同様である。
【0029】
このようにして製造したPt−RuOタイプの燃料電池用触媒について、実施例1と同様にしてエネルギ−分散型X線検出器(EDX)による成分測定、透過電子顕微鏡(TEM)による観察、及びMEAによる性能評価を行った。その結果実施例1と同様の結果が得られた。
【0030】
(実施例3)
RuOを含むCOCHにPt/Cを浸漬し、24時間振とうさせた後、110℃で1時間乾燥させて、Pt−RuOタイプの燃料電池用触媒を得た。
このようにして製造したPt−RuOタイプの燃料電池用触媒について、実施例1と同様にしてエネルギ−分散型X線検出器(EDX)による成分測定、透過電子顕微鏡(TEM)による観察、及びMEAによる性能評価を行った。その結果実施例1と同様の結果が得られた。
【0031】
(実施例4)
図2に示した燃料電池用触媒の製造装置を使用し、RuOを含むCOCHにNガスをバブリングし、気化したRuOをMEAの燃料電極に噴射し、Pt−RuOタイプの燃料電池用触媒を得た。
このMEAを使用し、性能評価を行った結果、実施例1と同様の結果が得られた。
【0032】
【発明の効果】
以上に説明した通り、本発明によれば、ナノサイズのRuOを触媒担体に担持させることにより、燃料電池用触媒としてより高活性なPt−RuOタイプの燃料電池用触媒を得ることが可能である。しかも、容易に製造出来るため、製造コストの低減を図ることができる。また、触媒担体として例えばカーボンナノチューブなどの超微細構造を有し、比表面積の多大な材料を使用し、これにナノサイズのRuOを担持することで、さらなる触媒活性化が期待できる。
さらに、Pdなど水素吸蔵金属を触媒担体として使用し、これにナノサイズRuOを担持すれば、水素吸蔵能力の向上、高寿命化などへの期待や、化学合成用活性触媒、検出器の感度向上触媒等の用途が開かれ、その用途は多大である。
【図面の簡単な説明】
【図1】本発明による燃料電池用触媒の製造方法を実施するための製造装置の一実施形態を示す概略図である。
【図2】本発明による燃料電池用触媒の製造方法を実施するための製造装置の他の実施形態を示す概略図である。
【図3】前記図1の装置により製造されたPt−RuOタイプの燃料電池用触媒について、エネルギ−分散型X線検出器(EDX)による成分測定を行った結果を示す成分検出図である。
【図4】前記図1の装置により製造されたPt−RuOタイプの燃料電池用触媒と比較例であるPt−Ruタイプの燃料電池用触媒について、透過電子顕微鏡(TEM)による観察を行った結果を示す顕微鏡写真である。
【図5】前記図1の装置により製造されたPt−RuOタイプの燃料電池用触媒と比較例であるPt−Ruタイプの燃料電池用触媒をそれぞれ用いてMEAを製作し、メタノールとジメチルエーテルについてその性能評価を行った結果の電流密度−セル電圧特性の図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst applicable to a fuel cell electrode catalyst, a reformer catalyst, a hydrogen storage catalyst, a chemically synthesized active catalyst, a sensor such as a detector, a light-sensitive organic substance purifying catalyst, and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art Fuel cells have attracted attention as a technology for reducing the emission of carbon dioxide, which causes global warming. There are several types of fuel cells depending on the type of electrolyte used, such as phosphoric acid (AFC), molten carbonate (MCFC), polymer electrolyte (PEFC), and solid oxide (SOFC). There is.
Among them, PEFC can be operated at a low temperature of room temperature to 100 ° C., but has a problem in a method of storing hydrogen and a small energy volume density because hydrogen is used directly as a fuel.
[0003]
On the other hand, a reforming polymer electrolyte fuel cell using hydrogen reformed from methanol, which is a liquid fuel, is an effective method in that the problems caused by a method using hydrogen directly are eliminated. Further, among the fuel cells using methanol, the direct methanol fuel cell (DMFC) in which methanol is reacted directly on the electrode does not require a reformer, and thus is a reformed solid polymer fuel cell using hydrogen as fuel. Compared with fuel cells, they are superior in terms of volume, efficiency, startability, and the like.
[0004]
However, in this DMFC, CO generated when oxidizing a hydrocarbon-based fuel such as methanol is strongly bonded to the platinum catalyst of the fuel anodizing electrode, and the electromotive force is reduced due to the slow dissociation rate of this bond. It is considered to be a factor in lowering energy efficiency. As a countermeasure, a poison-resistant catalyst used for a fuel electrode is being studied, and a catalyst such as Pt-Ru is widely used as a fuel cell catalyst.
[0005]
[Problems to be solved by the invention]
However, the activity of this Pt-Ru (1: 1) catalyst cannot be said to be sufficient, and the development of a catalyst for a fuel cell having higher activity is required. Further, since the conventional Pt-Ru catalyst is obtained by alloying Pt and Ru, it must be manufactured under severe conditions (high temperature, inert atmosphere, etc.). In addition, since this manufacturing method requires a special technique, it has problems in manufacturing conditions and cost.
[0006]
The present invention has been made in view of the problems in the conventional fuel cell catalyst and the method for producing the same. A first object of the present invention is to provide a long-life, highly active fuel cell catalyst. Another object of the present invention is to provide a method for manufacturing a catalyst for a fuel cell, which can be easily manufactured by supporting a small amount of a small-sized catalyst and can reduce the cost.
[0007]
[Means for Solving the Problems]
In the present invention, in order to achieve the above object, a porous inorganic or organic material such as carbon, zeolite, or fluororesin, or a platinum group element (Pt, Pd, etc.) having a catalytic function, Ni, Co , Cr, Zn, Cu, or other transition metal catalyst materials, or composite materials thereof, by using molecular RuO 4 to support RuO 2 , thereby enabling nano-size RuO 2 to be supported. . As a result, the surface area per unit weight can be significantly improved as compared with the conventional catalyst. At the same time, the simplification of the production technology has made it possible to reduce the cost, and it has become possible to produce and provide highly active catalysts at low cost as catalysts in various fields up to now.
[0008]
That is, in the fuel cell catalyst according to the present invention, a highly dispersed nano-sized catalyst is prepared by supporting RuO 2 on a catalyst carrier, and higher activity is obtained. In this case, the catalyst carrier may be a porous inorganic or organic material such as carbon, zeolite, or fluororesin, or a platinum group element (Pt, Pd, etc.) having a catalytic function, or a transition such as Ni, Co, Cr, Zn, Cu. By supporting nano-sized RuO 2 on a metal catalyst material or a composite material thereof, a highly active catalyst material can be obtained. When a Pt / C catalyst carrier is used, a highly active Pt—RuO 2 type electrode catalyst can be obtained directly.
These catalyst supports may be the fuel electrodes themselves configured as a membrane-electrode assembly (MEA).
[0009]
As a method for producing such a fuel cell catalyst, first, a RuO 4 gas generated by adding an oxidizing agent to an aqueous solution of a Ru compound is brought into contact with the catalyst carrier as described above, and RuO 4 gas is applied to the catalyst carrier. 2 can be cited. Secondly, there is a method in which a solution containing RuO 4 is vaporized, the vaporized solution is brought into contact with the catalyst carrier, and then the solvent remaining on the catalyst carrier is vaporized so that RuO 2 is supported on the catalyst carrier. Third, there is a method in which RuO 2 is supported on the catalyst carrier by applying a solution containing RuO 4 to the catalyst carrier and thereafter evaporating the solvent of the solution.
In these cases, as described above, the fuel electrode itself configured as a membrane-electrode assembly (MEA) may be used as a catalyst carrier, and RuO 2 may be supported thereon.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described specifically and in detail with reference to the drawings.
Since the activity of the catalyst increases as the specific surface area of the catalyst increases, it is desirable that the catalyst particles be finer and highly dispersed.
The present invention prepares highly dispersed nano-sized fine particle catalysts by allowing molecular RuO 4 to act on a catalyst carrier such as Pt / C or Pd to deposit and support RuO 2 , and a catalyst having higher activity. Is what you get.
[0011]
More specifically, a method in which an oxidizing agent is allowed to act on the Ru solution, the vaporized molecular RuO 4 is dissolved in an inert fluorine-based solvent, and the RuO 4 solution is brought into contact with the catalyst carrier as a RuO 4 solution, and then the solvent is vaporized. In addition, the catalyst carrier and the molecular RuO 4 react quickly by a method such as spraying the vaporized molecular RuO 4 gas directly onto the catalyst carrier, and the RuO 4 is stably deposited on the catalyst carrier as RuO 2 , resulting in nano-size. A RuO 2 catalyst is obtained.
[0012]
Conventional Pt / Ru catalysts, especially fuel cell catalysts, are metal catalysts, and therefore require a great deal of time and effort to produce them. However, the present invention is at room temperature and pressure and its operation is extremely simple. Further, in the present invention, by supporting RuO 2 on the catalyst carrier, a highly dispersed nanosize catalyst is obtained, and a catalyst having higher activity is obtained.
[0013]
For example, a Pt-RuO 2 type catalyst as a fuel cell catalyst can be obtained by bringing RuO 4 gas into contact with Pt / C. It is generated by adding an oxidizing agent having a high oxidation potential to an aqueous solution of RuO 4 gas or Ru compound to be brought into contact with Pt / C. In this case, for example, Ru (NO 3 ) 3 or RuCl 3 can be used as the Ru compound, and Ce (NH 4 ) 2 (NO 3 ) 6 or HIO 4 can be used as the oxidizing agent.
[0014]
As another means for bringing RuO 4 into contact with Pt / C, a solution containing RuO 4 is vaporized by bubbling with an inert gas such as N 2 , and the vaporized solution is brought into contact with Pt / C by spraying, followed by Pt / C. There is also a method of drying the solvent attached to C. As a solvent for dissolving RuO 4 , an organic fluorine-based solvent such as C 4 F 9 OCH 3 having high solubility in RuO 4 and having no reactivity can be used.
[0015]
As still another method, there is a method in which RuO 2 is supported on Pt / C by applying the above-described solution containing RuO 4 to Pt / C and then evaporating the solvent. The method of applying the solution containing RuO 4 to Pt / C is based on means such as spraying by spraying the solution or immersing Pt / C in the solution.
[0016]
Since RuO 4 is reduced by an organic substance, it easily reacts with C contained in Pt / C, and RuO 2 can be deposited on Pt / C. Further, RuO 4 at a temperature of about 110 ° C. ~ hot state to decompose in the RuO 2 and O 2, a fully RuO 4 by warming can be supported on the Pt / C as RuO 2. The Ru oxide thus obtained is ultrafine particles.
[0017]
The Pt-RuO 2 type catalyst thus produced has high catalytic activity because the catalyst particles are fine and highly dispersed. In addition, it can be easily prepared, which contributes to cost reduction.
Further, in the present invention, for example, Pd can be used as the catalyst carrier. Thereby, a hydrogen storage type electrode catalyst is obtained.
[0018]
The catalyst carrier such as Pt / C or Pd may be a fuel electrode configured as a membrane-electrode assembly (MEA). For example, as described above, RuO 4 is brought into contact with the fuel electrode of the membrane-electrode assembly (MEA) directly or as a solution, and RuO 2 is carried on the fuel electrode of the membrane-electrode assembly (MEA). Alternatively, RuO 2 is supported on the fuel electrode of the membrane-electrode assembly (MEA) by applying a solution containing RuO 4 and thereafter evaporating the solvent.
[0019]
FIG. 1 shows an example of an apparatus for producing a fuel cell catalyst. While stirring the Ru (NO 3 ) 3 solution placed in the reaction tank, a Ce (NH 4 ) 2 (NO 3 ) 6 solution is added to the solution to generate RuO 4 gas. Using N 2 gas as a carrier gas, the generated RuO 4 gas is injected into a catalyst carrier such as Pt / C or the like placed in a tube, and then heated to a temperature of 100 ° C. or higher to obtain a fuel cell catalyst. Excess RuO 4 gas is passed through an ethanol solution containing HCl and then discharged out of the system as off-gas.
[0020]
FIG. 2 shows another example of an apparatus for producing a fuel cell catalyst. A solution in which RuO 4 is dissolved in C 4 F 9 OCH 3 is vaporized by bubbling with N 2 gas, and the vaporized solution is injected to the fuel electrode of the MEA, and then the solvent remaining on the fuel electrode is dried. Excess solution or solvent gas generated by drying the fuel electrode is passed through an ethanol solution containing HCl and then discharged out of the system as off-gas.
[0021]
【Example】
Next, as an example of the present invention, a specific example of a method for producing a Pt-RuO 2 type fuel cell catalyst and a result of characteristic evaluation of the Pt-RuO 2 type fuel cell catalyst produced by the method will be specifically described. Will be described.
[0022]
(Example 1)
Using the apparatus for producing a fuel cell catalyst shown in FIG. 1, a Ce (NH 4 ) 2 (NO 3 ) 6 solution was added to the Ru (NO 3 ) 3 solution while stirring the Ru (NO 3 ) 3 solution in the reaction vessel, and RuO was added. Four gases were generated. This RuO 4 gas is injected together with N 2 gas as a carrier gas into a tube containing a catalyst carrier such as Pt / C, and then dried at 110 ° C. for 1 hour to obtain a Pt-RuO 2 type fuel cell. A catalyst was obtained.
[0023]
FIG. 3 shows the results of measurement of the components of the Pt-RuO 2 type fuel cell catalyst thus manufactured using an energy dispersive X-ray detector (EDX). As is clear from FIG. 3, Ru was detected from this fuel cell catalyst, and it was found that the mol% of Pt and Ru was 85% of Pt and 15% of Ru. The Ru content can be controlled by the concentration of RuO 4 gas to the catalyst carrier such as Pt / C, the aeration time, the treatment temperature, and the like.
[0024]
FIG. 4 shows the results of observation of the manufactured Pt-RuO 2 type fuel cell catalyst by a transmission electron microscope (TEM). The lower part of FIG. 4 is a Pt-RuO 2 type fuel cell catalyst produced as described above, and the upper part is a Pt-Ru type fuel cell catalyst similarly observed for comparison.
[0025]
From these observation results, the distribution state of the particles was almost uniform in both catalyst samples for fuel cells. However, the catalyst for a Pt-Ru type fuel cell has an average particle size of about 5 nm in the case of a small particle size, and there are also large particles having a size of about 20 nm as a whole. On the other hand, the particle size of the Pt-RuO 2 type fuel cell catalyst is about 1 to 3 nm as a whole, which is finer and more uniform than the Pt-Ru type fuel cell catalyst.
[0026]
An MEA was manufactured using each of the Pt-Ru type fuel cell catalyst and the Pt-RuO 2 type fuel cell catalyst manufactured as described above, and the performance thereof was evaluated. FIG. 5 shows current density-cell voltage characteristics as test results when anodizing was performed by supplying a mixed gas fuel of methanol and dimethyl ether at a cell temperature of 80 ° C. and normal pressure. The upper part shows the performance evaluation as a direct methanol fuel cell (DMFC), and the lower part shows the performance evaluation as a direct dimethyl ether fuel cell (DDFC).
[0027]
As a result, the Pt—RuO 2 type fuel cell catalyst exhibits the same performance as methanol as the Pt—Ru type fuel cell catalyst, and the Pt—Ru type fuel cell catalyst as to dimethyl ether. It showed better performance.
[0028]
(Example 2)
Using the fuel cell catalyst manufacturing apparatus shown in FIG. 2, N 2 gas is bubbled into a C 4 F 9 OCH 3 solution containing RuO 4 , and the vaporized solution is injected into Pt / C, and then at 110 ° C. After drying for 1 hour, a Pt-RuO 2 type fuel cell catalyst was obtained. Although FIG. 2 illustrates that the container is filled with MEA, the same applies to the case of Pt / C.
[0029]
The Pt-RuO 2 type fuel cell catalyst thus manufactured was subjected to component measurement using an energy dispersive X-ray detector (EDX), observation using a transmission electron microscope (TEM), and the same as in Example 1. Performance evaluation by MEA was performed. As a result, the same result as in Example 1 was obtained.
[0030]
(Example 3)
Pt / C was immersed in C 4 F 9 OCH 3 containing RuO 4 , shaken for 24 hours, and then dried at 110 ° C. for 1 hour to obtain a Pt—RuO 2 type fuel cell catalyst.
The Pt-RuO 2 type fuel cell catalyst thus produced was subjected to component measurement using an energy dispersive X-ray detector (EDX), observation using a transmission electron microscope (TEM), and observation in the same manner as in Example 1. Performance evaluation by MEA was performed. As a result, the same result as in Example 1 was obtained.
[0031]
(Example 4)
Using the fuel cell catalyst manufacturing apparatus shown in FIG. 2, N 2 gas is bubbled through C 4 F 9 OCH 3 containing RuO 4 , and the vaporized RuO 4 is injected to the fuel electrode of the MEA to form a Pt-RuO. Two types of fuel cell catalysts were obtained.
Performance evaluation was performed using this MEA, and as a result, a result similar to that of Example 1 was obtained.
[0032]
【The invention's effect】
As described above, according to the present invention, by supporting nano-sized RuO 2 on a catalyst carrier, a more active Pt—RuO 2 type fuel cell catalyst can be obtained as a fuel cell catalyst. It is. In addition, since it can be easily manufactured, the manufacturing cost can be reduced. Further, by using a material having an ultra-fine structure such as a carbon nanotube and having a large specific surface area as a catalyst carrier and carrying nano-sized RuO 2 thereon, further catalyst activation can be expected.
Furthermore, if a hydrogen storage metal such as Pd is used as a catalyst carrier and nano-sized RuO 2 is supported on it, expectation for improved hydrogen storage capacity and longer life, sensitivity of active catalyst for chemical synthesis and detector sensitivity Applications for improved catalysts and the like are open, and their uses are enormous.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a production apparatus for carrying out a method for producing a fuel cell catalyst according to the present invention.
FIG. 2 is a schematic view showing another embodiment of a production apparatus for carrying out a method for producing a fuel cell catalyst according to the present invention.
FIG. 3 is a component detection diagram showing a result obtained by performing a component measurement with an energy dispersive X-ray detector (EDX) on a Pt-RuO 2 type fuel cell catalyst manufactured by the apparatus of FIG. 1; .
4 is a transmission electron microscope (TEM) observation of a Pt-RuO 2 type fuel cell catalyst manufactured by the apparatus of FIG. 1 and a Pt—Ru type fuel cell catalyst as a comparative example. It is a microscope picture which shows a result.
FIG. 5 is a diagram showing an example in which a Pt-RuO 2 type fuel cell catalyst manufactured by the apparatus shown in FIG. 1 and a Pt—Ru type fuel cell catalyst as a comparative example are used to manufacture MEAs; It is a figure of the current density-cell voltage characteristic as a result of having performed the performance evaluation.

Claims (7)

燃料電池用触媒において、触媒担体にRuOを担持させることにより、高分散されたナノサイズの触媒を調製し、より高い活性を得ることを特徴とした燃料電池用触媒。A catalyst for a fuel cell, wherein a highly dispersed nano-sized catalyst is prepared by supporting RuO 2 on a catalyst carrier to obtain higher activity. 触媒担体がPt/Cである請求項1に記載のPt−RuO/Cタイプの燃料電池用触媒。 Pt-RuO 2 / C type fuel cell catalyst of claim 1 the catalyst support is a Pt / C. 触媒担体が炭素、ゼオライト、フッ素樹脂系などの多孔質の無機質及び有機質材料、あるいは触媒機能を有する白金族元素(Pt、Pdなど)やNi,Co,Cr,Zn,Cuなど遷移金属触媒材料、またはそれらの複合材料にナノサイズRuOを担持する請求項1に記載の燃料電池用触媒。The catalyst carrier is a porous inorganic or organic material such as carbon, zeolite or fluororesin, or a platinum group element (Pt, Pd, etc.) having a catalytic function, or a transition metal catalyst material such as Ni, Co, Cr, Zn, Cu; 2. The fuel cell catalyst according to claim 1, wherein the composite material supports nano-sized RuO 2. 3. 燃料電池用触媒の製造において、Ru化合物の水溶液に酸化剤を添加することにより発生したRuOガスを触媒担体に接触させ、RuOを触媒担体に担時させることを特徴とする燃料電池用触媒の製造方法。In the production of a catalyst for a fuel cell, a catalyst for a fuel cell is characterized in that RuO 4 gas generated by adding an oxidizing agent to an aqueous solution of a Ru compound is brought into contact with a catalyst carrier to carry RuO 2 on the catalyst carrier. Manufacturing method. 燃料電池用触媒の製造において、RuOを含む溶液を気化させ、気化した溶液を触媒担体に接触させ、その後触媒担体に残った溶媒を気化させてRuOを触媒担体に担時させることを特徴とする燃料電池用触媒の製造方法。In the production of a fuel cell catalyst, a solution containing RuO 4 is vaporized, the vaporized solution is brought into contact with a catalyst carrier, and then the solvent remaining on the catalyst carrier is vaporized to carry RuO 2 on the catalyst carrier. Of producing a fuel cell catalyst. 燃料電池用触媒の製造において、RuOを含む溶液を触媒担体に塗布し、その後溶液の溶媒を気化させて触媒担体にRuOを担時させることを特徴とする燃料電池用触媒の製造方法。A method for producing a catalyst for a fuel cell, comprising: applying a solution containing RuO 4 to a catalyst carrier in the production of the catalyst for a fuel cell; and evaporating a solvent of the solution to allow the catalyst carrier to carry RuO 2 . ナノサイズRuOを担持させた触媒担体が膜−電極接合体(MEA)の電極であることを特徴とする請求項4〜6の何れかに記載の燃料電池用触媒の製造方法。Method for producing a catalyst for a fuel cell according to any one of claims 4-6, characterized in that an electrode of the electrode assembly (MEA) - catalyst carrier obtained by supporting nano-sized RuO 2 membrane.
JP2003081210A 2003-03-24 2003-03-24 Catalyst for fuel cell and its manufacturing method Pending JP2004283774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003081210A JP2004283774A (en) 2003-03-24 2003-03-24 Catalyst for fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081210A JP2004283774A (en) 2003-03-24 2003-03-24 Catalyst for fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004283774A true JP2004283774A (en) 2004-10-14

Family

ID=33294848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081210A Pending JP2004283774A (en) 2003-03-24 2003-03-24 Catalyst for fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004283774A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114942A1 (en) * 2005-04-21 2006-11-02 Hitachi Maxell, Ltd. Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
WO2007046279A1 (en) * 2005-10-19 2007-04-26 Shin-Etsu Chemical Co., Ltd. Electrode catalyst for fuel cell
WO2007088291A1 (en) * 2006-02-03 2007-08-09 Commissariat A L'energie Atomique Cathode for electrochemical reactor, electrochemical reactor incorporating such cathodes and method for making said cathode
JP2008091101A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Fuel cell and fuel cell power generating system
JP2010519412A (en) * 2007-02-21 2010-06-03 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for forming a ruthenium-based film on a substrate
JP2014013742A (en) * 2012-07-03 2014-01-23 Hyundai Motor Company Co Ltd Method of manufacturing anode for fuel cell

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224738A (en) * 1987-03-14 1988-09-19 Johoku Kagaku Kogyo Kk Production of ruthenium dioxide carring catalyst
JPH0322361A (en) * 1989-06-20 1991-01-30 Matsushita Electric Ind Co Ltd Catalyst for liquid fuel cell and manufacture thereof
JPH05177137A (en) * 1991-11-29 1993-07-20 Ishikawajima Harima Heavy Ind Co Ltd Preparation of ruthenium catalyst and device therefor
JPH06121788A (en) * 1992-10-12 1994-05-06 Kenzo Masuko Latent fingerprint detecting method
JPH06138292A (en) * 1992-03-03 1994-05-20 Cie Generale Des Matieres Uncleares (Cogema) Method for recovering gaseous ruthenium with polyvinylpyridine
JPH10273327A (en) * 1997-03-27 1998-10-13 Mitsubishi Gas Chem Co Inc Production of ruthenium tetraoxide
JP2000083929A (en) * 1998-09-16 2000-03-28 Kenzo Masuko Method for detecting latent fingerprint
JP2002100373A (en) * 2000-06-23 2002-04-05 Wautekku Kk Manufacturing method of catalyzed porous carbon electrode for fuel cell
JP2003508877A (en) * 1999-08-23 2003-03-04 バラード パワー システムズ インコーポレイティド Anode structure of fuel cell for obtaining resistance to voltage reversal
WO2004011140A1 (en) * 2002-07-26 2004-02-05 Wako Pure Chemical Industries, Ltd. Ruthenium compound supported on polymer having tertiary amino group
JP2004146223A (en) * 2002-10-25 2004-05-20 National Institute Of Advanced Industrial & Technology Negative electrode catalyst for fuel cell

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224738A (en) * 1987-03-14 1988-09-19 Johoku Kagaku Kogyo Kk Production of ruthenium dioxide carring catalyst
JPH0322361A (en) * 1989-06-20 1991-01-30 Matsushita Electric Ind Co Ltd Catalyst for liquid fuel cell and manufacture thereof
JPH05177137A (en) * 1991-11-29 1993-07-20 Ishikawajima Harima Heavy Ind Co Ltd Preparation of ruthenium catalyst and device therefor
JPH06138292A (en) * 1992-03-03 1994-05-20 Cie Generale Des Matieres Uncleares (Cogema) Method for recovering gaseous ruthenium with polyvinylpyridine
JPH06121788A (en) * 1992-10-12 1994-05-06 Kenzo Masuko Latent fingerprint detecting method
JPH10273327A (en) * 1997-03-27 1998-10-13 Mitsubishi Gas Chem Co Inc Production of ruthenium tetraoxide
JP2000083929A (en) * 1998-09-16 2000-03-28 Kenzo Masuko Method for detecting latent fingerprint
JP2003508877A (en) * 1999-08-23 2003-03-04 バラード パワー システムズ インコーポレイティド Anode structure of fuel cell for obtaining resistance to voltage reversal
JP2002100373A (en) * 2000-06-23 2002-04-05 Wautekku Kk Manufacturing method of catalyzed porous carbon electrode for fuel cell
WO2004011140A1 (en) * 2002-07-26 2004-02-05 Wako Pure Chemical Industries, Ltd. Ruthenium compound supported on polymer having tertiary amino group
JP2004146223A (en) * 2002-10-25 2004-05-20 National Institute Of Advanced Industrial & Technology Negative electrode catalyst for fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAILLARD F, GLOAGUEN F, LEGER J-M: "Preparation of methanol oxidation electrocatalysts: ruthenium deposition on carbon-supported platinu", J. APPL. ELECTROCHEM., vol. Vol.33, No.1,, JPN6008047583, January 2003 (2003-01-01), GB, pages 1 - 8, ISSN: 0001139314 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114942A1 (en) * 2005-04-21 2006-11-02 Hitachi Maxell, Ltd. Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
GB2439690A (en) * 2005-04-21 2008-01-02 Hitachi Maxell Particle containing carbon particle platinum and ruthenium oxide and method for producing same
GB2439690B (en) * 2005-04-21 2009-12-16 Hitachi Maxell Particles comprising carbon particles, platinum and ruthenium oxide, and method for producing the same
WO2007046279A1 (en) * 2005-10-19 2007-04-26 Shin-Etsu Chemical Co., Ltd. Electrode catalyst for fuel cell
JP2007115471A (en) * 2005-10-19 2007-05-10 Shin Etsu Chem Co Ltd Electrode catalyst for fuel cell
WO2007088291A1 (en) * 2006-02-03 2007-08-09 Commissariat A L'energie Atomique Cathode for electrochemical reactor, electrochemical reactor incorporating such cathodes and method for making said cathode
FR2897205A1 (en) * 2006-02-03 2007-08-10 Commissariat Energie Atomique CATHODE FOR ELECTROCHEMICAL REACTOR, ELECTROCHEMICAL REACTOR INTEGRATION OF SUCH CATHODES AND METHOD OF MANUFACTURING SUCH CATHODE
US8318375B2 (en) 2006-02-03 2012-11-27 Commissariat A L'energie Atomique Cathode for electrochemical reactor, electrochemical reactor incorporating such cathodes and method for making said cathode
JP2008091101A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Fuel cell and fuel cell power generating system
JP2010519412A (en) * 2007-02-21 2010-06-03 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for forming a ruthenium-based film on a substrate
JP2014013742A (en) * 2012-07-03 2014-01-23 Hyundai Motor Company Co Ltd Method of manufacturing anode for fuel cell
US9450251B2 (en) 2012-07-03 2016-09-20 Hyundai Motor Company Method of manufacturing fuel cell anode

Similar Documents

Publication Publication Date Title
CA2627312C (en) Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof
US6670301B2 (en) Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation
JP4083721B2 (en) High concentration carbon supported catalyst, method for producing the same, catalyst electrode using the catalyst, and fuel cell using the same
US7691780B2 (en) Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof
JP3861146B2 (en) Anode catalyst for fuel cell
US7855021B2 (en) Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof
Zhou et al. Interfacial Pd–O–Ce linkage enhancement boosting formic acid electrooxidation
US7608560B2 (en) Platinum-titanium-tungsten fuel cell catalyst
JP4676958B2 (en) Platinum-copper fuel cell catalyst
US7662740B2 (en) Platinum-chromium-copper/nickel fuel cell catalyst
US20070037696A1 (en) Platinum-palladium-titanium fuel cell catalyst
US7101639B2 (en) Fuel cell electrocatalyst of Pt-Rh-Mo-Ni/Fe
JP2007066908A (en) Catalyst for cathode electrode of fuel cell and its manufacturing method, as well as, membrane electrode assembly for fuel cell
US7479343B2 (en) Platinum-indium-iron/tungsten/manganese fuel cell electrocatalyst
US20080166623A1 (en) Platinum-Nickel-Iron Fuel Cell Catalyst
Burhan et al. Direct methanol fuel cells (DMFCs)
US7635533B2 (en) Fuel cell electrocatalyst of Pt-Mn-Co
CN101578726A (en) Fuel cell catalyst, fuel cell cathode and polymer electrolyte fuel cell including the same
US7851399B2 (en) Method of making chalcogen catalysts for polymer electrolyte fuel cells
US8021798B2 (en) Fuel cell electrocatalyst of Pt-Zn-Ni/Fe
US20080044719A1 (en) Platinum-copper-titanium fuel cell catalyst
JP2004283774A (en) Catalyst for fuel cell and its manufacturing method
US20070054802A1 (en) Platinum-vanadium-iron fuel cell electrocatalyst
Zhou et al. Tailoring three-phase microenvironment for high-performance oxygen reduction reaction in PEMFCs
JP2009123391A (en) Electrode catalyst for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090129