JPH10273327A - Production of ruthenium tetraoxide - Google Patents

Production of ruthenium tetraoxide

Info

Publication number
JPH10273327A
JPH10273327A JP7558397A JP7558397A JPH10273327A JP H10273327 A JPH10273327 A JP H10273327A JP 7558397 A JP7558397 A JP 7558397A JP 7558397 A JP7558397 A JP 7558397A JP H10273327 A JPH10273327 A JP H10273327A
Authority
JP
Japan
Prior art keywords
ruthenium
ozone
oxidizing
tetraoxide
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7558397A
Other languages
Japanese (ja)
Inventor
Hidechika Wakabayashi
英親 若林
Toru Takahashi
徹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP7558397A priority Critical patent/JPH10273327A/en
Publication of JPH10273327A publication Critical patent/JPH10273327A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily produce ruthenium tetraoxide without causing the problems of the generation and removal of by-products by oxidizing ruthenium metal or a specific ruthenium compound with ozone. SOLUTION: A ruthenium compound selected from ruthenium metal, ruthenium metal/carrier, ruthenium dioxide, a ruthenium trihalide, ruthenium sulfate and a ruthenium complex is dissolved in water, a solvent stable to ruthenium tetraoxide, ozone and oxygen used as an oxidizing agent or a mixed solvent stable to water and oxidizing agent. Ozone/air or ozone/oxygen generated by an ozonizer is passed through the solution under stirring and the ruthenium compound is oxidized at pH <=10, preferably <=9, more preferably <=7 and 0-100 deg.C, preferably 5-50 deg.C to obtain ruthenium tetraoxide. The produced ruthenium tetraoxide has high purity and is obtained in the form of an aqueous solution or a mixed solution stable to ruthenium tetraoxide, ozone and oxygen used as an oxidizing agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、四酸化ルテニウム
の製造方法に関する。より詳しくは、本発明は、ルテニ
ウム化合物をオゾンで酸化して四酸化ルテニウムを製造
する方法に関する。本発明により得られる四酸化ルテニ
ウムは、有機化合物の多目的な酸化剤として利用され
る。
[0001] The present invention relates to a method for producing ruthenium tetroxide. More specifically, the present invention relates to a method for producing ruthenium tetroxide by oxidizing a ruthenium compound with ozone. Ruthenium tetroxide obtained according to the present invention is utilized as a versatile oxidizing agent for organic compounds.

【0002】[0002]

【従来の技術】従来、四酸化ルテニウムを製造する方法
は種々知られている。例えば、ルテニウム酸カリウムを
塩素で酸化する方法(J.L.How et al.,J.Am.Chem.Soc.,
23,775(1901).)、硫酸ルテニウムを過マンガン酸カリウ
ムで酸化する方法(E.C.Robertet al.,J.Am.Chem.Soc.,
74,5012(1952).)、二酸化ルテニウムもしくは三塩化ル
テニウムを過ヨウ素酸ナトリウムで酸化する方法(J.Ca
puto et al.,Tetrahedron Letter,4729(1967).)、三塩
化ルテニウムを臭素酸ナトリウムで酸化する方法(L.M.
Berkowitz et al.,J.Am.Chem.Soc.,80,6682(1958),三塩
化ルテニウムを次亜塩素酸ナトリウムで酸化する方法
(S.Wolfe et al.,J.Chem.Soc.D,1420(1970).)、三塩
化ルテニウムもしくは二酸化ルテニウムを過酢酸などの
過酸で酸化する方法(USP 3997578)、三塩化ルテニウム
を過硫酸塩で酸化する方法(M.Schroder et al.,J.Che
m.Soc.Chem.Comun.,58(1978).)、三塩化ルテニウムを
硫酸第二セリウムで酸化する方法(S.Gidding et al.,
J.Org.Chem.,53,1103(1988).)、三塩化ルテニウムをフ
ェリシアン化カリウムで酸化する方法(L.P.Singh et a
l.,J.Indian Chem.Soc.,58,1204(1981).)などの製造方
法が知られている。
2. Description of the Related Art Conventionally, various methods for producing ruthenium tetroxide have been known. For example, a method of oxidizing potassium ruthenate with chlorine (JLHow et al., J. Am. Chem. Soc.,
23,775 (1901).), A method of oxidizing ruthenium sulfate with potassium permanganate (EC Robert et al., J. Am. Chem. Soc.,
74,5012 (1952).), A method of oxidizing ruthenium dioxide or ruthenium trichloride with sodium periodate (J. Ca
puto et al., Tetrahedron Letter, 4729 (1967).), a method of oxidizing ruthenium trichloride with sodium bromate (LM
Berkowitz et al., J. Am. Chem. Soc., 80, 6682 (1958), a method of oxidizing ruthenium trichloride with sodium hypochlorite (S. Wolfe et al., J. Chem. Soc. D. 1420 (1970).), A method of oxidizing ruthenium trichloride or ruthenium dioxide with a peracid such as peracetic acid (US Pat. No. 3,997,578), and a method of oxidizing ruthenium trichloride with a persulfate (M. Schroder et al., J. Che
m. Soc. Chem. Comun., 58 (1978).), a method of oxidizing ruthenium trichloride with ceric sulfate (S. Gidding et al.,
J. Org. Chem., 53, 1103 (1988).), A method of oxidizing ruthenium trichloride with potassium ferricyanide (LPSingh et a
l., J. Indian Chem. Soc., 58, 1204 (1981)).

【0003】しかし、ルテニウム酸カリウムを塩素で酸
化する方法では、塩化カリウムを、硫酸ルテニウムを過
マンガン酸カリウムで酸化する方法では、酸化マンガン
を必ず等量以上副生する。酸化ルテニウムもしくは三塩
化ルテニウムを、過ヨウ素酸ナトリウム、臭素酸ナトリ
ウムまたは次亜塩素酸ナトリウムで酸化する方法では、
ヨウ素酸ナトリウム、臭化ナトリウム、塩化ナトリウム
などの塩が必ず等量以上副生する。また、過酢酸などの
過酸で酸化する方法でも必ず等量以上の酸が副生する。
さらに、過硫酸塩、硫酸第二セリウム、フェリシアン化
カリウムで酸化する方法でも硫酸塩、硫酸第一セリウ
ム、フェロシアン化カリウムの塩が必ず等量以上副生す
る。従って、従来の方法では、反応後の副生物の発生・
除去という問題点があり工業的な製法として適当でなか
った。
[0003] However, in the method of oxidizing potassium ruthenate with chlorine, the method of oxidizing potassium chloride with ruthenium sulfate with potassium permanganate always produces by-produced manganese oxide in an equivalent amount or more. In the method of oxidizing ruthenium oxide or ruthenium trichloride with sodium periodate, sodium bromate or sodium hypochlorite,
Salts such as sodium iodate, sodium bromide and sodium chloride are always by-produced in equal amounts or more. Further, even in the method of oxidizing with a peracid such as peracetic acid, an acid in an equal amount or more is always produced as a by-product.
Further, even in the method of oxidizing with persulfate, ceric sulfate, and potassium ferricyanide, equal amounts or more of sulfate, cerous sulfate, and potassium ferrocyanide are always produced as by-products. Therefore, in the conventional method, generation of by-products after the reaction
There was a problem of removal, and it was not suitable as an industrial production method.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の従来
技術の問題点を解決するためになされたもので酸化剤と
して有用な四酸化ルテニウムを副生物の発生・除去の問
題もなく容易に製造することができる工業的な方法を提
供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and easily converts ruthenium tetroxide, which is useful as an oxidizing agent, without generating or removing by-products. It is to provide an industrial method that can be manufactured.

【0005】[0005]

【課題を解決するための手段】本発明者らは、副生物の
発生・除去の問題がない四酸化ルテニウムを製造する方
法を検討した結果、本発明を完成するに至った。すなわ
ち、本発明は水溶媒、酸化剤である四酸化ルテニウム、
オゾン及び酸素に安定な溶媒または水と酸化剤に安定な
混合溶媒中でルテニウム化合物の酸化剤として、オゾン
を用いることを特徴とした四酸化ルテニウムの製造方法
である。
Means for Solving the Problems The present inventors have studied a method for producing ruthenium tetroxide having no problem of generation and removal of by-products, and as a result, have completed the present invention. That is, the present invention is an aqueous solvent, ruthenium tetroxide oxidizing agent,
A process for producing ruthenium tetroxide, characterized by using ozone as an oxidizing agent for a ruthenium compound in a solvent stable to ozone and oxygen or a mixed solvent stable to water and an oxidizing agent.

【0006】[0006]

【発明の実施の形態】本発明において使用するルテニウ
ム化合物としては、ルテニウム金属、各種ルテニウム化
合物が用いられる。具体的には、二酸化ルテニウムなど
のルテニウム酸化物;水酸化ルテニウム;硫酸ルテニウ
ム;塩化ルテニウム、臭化ルテニウムなどのハロゲン化
ルテニウム;ルテニウムドデカカルボニウムなどのルテ
ニウム錯体が挙げられる。さらに、ルテニウム金属を各
種担体に担持させたルテニウム金属担持物を使用するこ
ともできる。具体的には、ルテニウム金属/アルミナ、
ルテニウム金属/炭素、ルテニウム金属/シリカアルミ
ナ、ルテニウム金属/チタニアなどが挙げげられる。
BEST MODE FOR CARRYING OUT THE INVENTION As the ruthenium compound used in the present invention, ruthenium metal and various ruthenium compounds are used. Specific examples include ruthenium oxides such as ruthenium dioxide; ruthenium hydroxide; ruthenium sulfate; ruthenium halides such as ruthenium chloride and ruthenium bromide; and ruthenium complexes such as ruthenium dodecacarbonium. Further, a ruthenium metal support in which ruthenium metal is supported on various carriers can also be used. Specifically, ruthenium metal / alumina,
Ruthenium metal / carbon, ruthenium metal / silica alumina, ruthenium metal / titania and the like can be mentioned.

【0007】本発明において使用するルテニウム化合物
の酸化剤であるオゾンは、清浄な乾燥空気や酸素中で無
声放電を行う方法(オゾン発生器:オゾナイザー)、紫
外線を空気、酸素に照射する方法、低温で希硫酸を電解
する方法、フッ素と水との反応やリン酸を酸化する化学
的な方法などで得ることができる。これらの方法の中で
オゾン発生器による方法は、大量のオゾンを容易に得る
ことができ、最近では、クリーンな飲料水の殺菌剤、排
水処理剤として大規模に使用されるようになり工業的な
方法としても最も好ましい。
Ozone, which is an oxidizing agent for a ruthenium compound used in the present invention, is a method of performing silent discharge in clean dry air or oxygen (ozone generator: ozonizer), a method of irradiating ultraviolet rays to air or oxygen, a method of low temperature. For electrolysis of diluted sulfuric acid, a reaction between fluorine and water, and a chemical method for oxidizing phosphoric acid. Among these methods, the method using an ozone generator can easily obtain a large amount of ozone. Recently, it has been used on a large scale as a bactericide for clean drinking water and a wastewater treatment agent, and industrially. This is the most preferable method.

【0008】本発明において使用する反応溶媒は、通
常、水溶媒や酸化剤である四酸化ルテニウム、オゾン及
び酸素に安定な溶媒もしくは水と酸化剤に安定な混合溶
媒が使用される。酸化剤に安定な溶媒として具体的に
は、酢酸などの有機酸;四塩化炭素、クロロホルム、ジ
クロロメタンなどのハロゲン化炭化水素;ペンタン、ヘ
キサンなどのメタン系飽和炭化水素;シクロヘキサンな
どのシクロパラフィン系炭化水素などが挙げられる。こ
れらの溶媒のうち有機酸、ハロゲン化炭化水素、パラフ
ィン系溶媒が特に好ましい。また、水と不均一な混合溶
媒になる場合は、撹拌を充分に行うことによって反応速
度を促進させることができる。
As a reaction solvent used in the present invention, an aqueous solvent, ruthenium tetroxide as an oxidizing agent, a solvent stable to ozone and oxygen, or a mixed solvent stable to water and an oxidizing agent are usually used. Specific examples of the solvent stable to the oxidizing agent include organic acids such as acetic acid; halogenated hydrocarbons such as carbon tetrachloride, chloroform and dichloromethane; methane-based saturated hydrocarbons such as pentane and hexane; cycloparaffin-based carbon such as cyclohexane. Hydrogen and the like. Among these solvents, organic acids, halogenated hydrocarbons and paraffin solvents are particularly preferred. In addition, when the mixed solvent becomes non-uniform with water, the reaction rate can be accelerated by sufficiently stirring.

【0009】本発明で得られる四酸化ルテニウムは、紫
外−可視分光分析法により高純度な四酸化ルテニウムで
あることが分かる。この四酸化ルテニウムは、水溶液、
酸化剤である四酸化ルテニウム、オゾン及び酸素に安定
な溶液または水と酸化剤に安定な混合溶液として得られ
る。これらの溶液は、用いる四酸化ルテニウム酸化反応
に応じて最もふさわしい溶液を反応溶媒として選ぶこと
ができる。
The ruthenium tetroxide obtained in the present invention is found to be high purity ruthenium tetroxide by UV-visible spectroscopy. This ruthenium tetroxide is an aqueous solution,
It is obtained as a solution stable to ruthenium tetroxide as an oxidizing agent, ozone and oxygen, or a mixed solution stable to water and an oxidizing agent. For these solutions, the most suitable solution can be selected as the reaction solvent according to the ruthenium tetroxide oxidation reaction to be used.

【0010】本発明の方法は、通常、ルテニウム化合物
を、水溶媒、酸化剤である四酸化ルテニウム、オゾン及
び酸素に安定な溶媒または水と酸化剤に安定な混合溶媒
に、撹拌しながらオゾン発生器によって発生させたオゾ
ン/空気もしくはオゾン/酸素を通気させ、反応温度0
〜100℃好ましくは5〜50℃、反応液のpHは10
以下、好ましくは9以下、さらに好ましくは7以下で反
応させる。反応に要する時間は、ルテニウム化合物の
量、オゾン発生速度、反応温度、反応液のpHなどの反
応条件によって異なる。
In the method of the present invention, the ruthenium compound is usually mixed with an aqueous solvent, ruthenium tetroxide as an oxidizing agent, a solvent stable to ozone and oxygen, or a mixed solvent stable to water and an oxidizing agent while generating ozone while stirring. Ozone / air or ozone / oxygen generated by the vessel was ventilated, and the reaction temperature was 0
-100 ° C, preferably 5-50 ° C, and the pH of the reaction solution is 10
The reaction is carried out below, preferably below 9, more preferably below 7. The time required for the reaction varies depending on the reaction conditions such as the amount of the ruthenium compound, the ozone generation rate, the reaction temperature, and the pH of the reaction solution.

【0011】[0011]

【参照例・実施例】以下、参照例・実施例により詳しく
説明する。実施例において、オゾン発生器は、オゾナイ
ザーSG−01A (住友精密工業製)を使用した。また、紫
外可視吸収スペクトルの測定には、日立自記分光光度計
330を使用した。
Reference Examples and Embodiments Hereinafter, reference examples and embodiments will be described in detail. In Examples, an ozonizer SG-01A (manufactured by Sumitomo Precision Industries) was used as an ozone generator. The UV-visible absorption spectrum was measured using a Hitachi autograph spectrophotometer.
330 was used.

【0012】参照例1 撹拌機、温度計、pH計、コンデンサ−、ミクロビュレ
ットを備えた500ml容丸底パイレックスフラスコに水300
ml、三塩化ルテニウム46.8mg(0.225mmol)を入れ、温
度室温(約20℃)で撹拌しながらミクロビュレットから
6.8%次亜塩素酸ナトリウムを0.66ml(0.603mmol)添加し
た。次亜塩素酸ナトリウム添加直前の溶液のpHは、3.
0、色調は黒色であったが添加直後には、直ちにpHは
5.5に、色調は黄色に変化した。このまま10分間反応を
継続したがpH、色調ともに変化がなかった。反応終了
後、黄色の反応液の紫外可視吸収スペクトル(200 〜60
0nm )を測定した。その測定吸収スペクトルを図1に示
した。また、吸収波長(λ)、モル吸光係数(ε)を表
1に示した。また、四酸化ルテニウムの紫外可視スペク
トルの文献1(E.C.Robert et al.,J.Am.Chem.Soc.,74,
5012(1952).)を表1および図3に示した。その結果、
三塩化ルテニウム/次亜塩素酸ナトリウム系の吸収スペ
クトルは、文献1と一致していることから四酸化ルテニ
ウムが生成していることが分かった。
Reference Example 1 Water was placed in a 500 ml round bottom Pyrex flask equipped with a stirrer, thermometer, pH meter, condenser, and microburette.
ml, 46.8 mg (0.225 mmol) of ruthenium trichloride, and from the microburette with stirring at room temperature (about 20 ° C)
0.66 ml (0.603 mmol) of 6.8% sodium hypochlorite was added. The pH of the solution immediately before the addition of sodium hypochlorite is 3.
0, the color was black, but immediately after the addition, the pH was immediately
At 5.5, the color changed to yellow. The reaction was continued for 10 minutes, but there was no change in pH or color tone. After the completion of the reaction, the ultraviolet-visible absorption spectrum of the yellow reaction solution (200 to 60
0 nm). FIG. 1 shows the measured absorption spectrum. Table 1 shows the absorption wavelength (λ) and the molar extinction coefficient (ε). In addition, reference 1 of the ultraviolet-visible spectrum of ruthenium tetroxide (EC Robert et al., J. Am. Chem. Soc., 74,
5012 (1952).) Is shown in Table 1 and FIG. as a result,
Since the absorption spectrum of the ruthenium trichloride / sodium hypochlorite system was consistent with that of Reference 1, it was found that ruthenium tetroxide was generated.

【0013】実施例1 撹拌機、温度計、pH計、コンデンサ−を備えた500ml
容丸底パイレックスフラスコに水300ml 、三塩化ルテニ
ウム46.8mg(0.225mmol)を入れ温度室温(約20℃)で
撹拌しながらこの溶液にオゾン発生器よって酸素からオ
ゾンを0.112g(2.3mmol)/分の速度で発生させた気体
を導入した。通気直前の溶液のpHは、3.0、色調は黒
色であったが通気1分後には、pHは2.8 に、色調は黄
色に変色した。このまま10分間反応を継続した。10分後
のpHは2.7 、色調は黄色であった。反応終了後、黄色
の反応液の紫外可視吸収スペクトル(200〜600nm)を測
定した。その測定吸収スペクトルを図2に示した。ま
た、吸収波長(λ)、モル吸光係数(ε)を表1に示し
た。その結果、三塩化ルテニウム/オゾン系の吸収スペ
クトルは、参照例1及び文献1と一致していることから
四酸化ルテニウムが生成していることが分かった。
Example 1 500 ml equipped with a stirrer, thermometer, pH meter and condenser
A round bottom Pyrex flask is charged with 300 ml of water and 46.8 mg (0.225 mmol) of ruthenium trichloride. While stirring at room temperature (about 20 ° C.), 0.112 g (2.3 mmol) / min of ozone from oxygen is added to this solution using an ozone generator. The gas generated at the speed of was introduced. The pH of the solution immediately before aeration was 3.0 and the color tone was black, but one minute after the aeration, the pH changed to 2.8 and the color tone changed to yellow. The reaction was continued for 10 minutes. After 10 minutes, the pH was 2.7 and the color was yellow. After the completion of the reaction, an ultraviolet-visible absorption spectrum (200 to 600 nm) of the yellow reaction solution was measured. The measured absorption spectrum is shown in FIG. Table 1 shows the absorption wavelength (λ) and the molar extinction coefficient (ε). As a result, the absorption spectrum of the ruthenium trichloride / ozone system was consistent with that in Reference Example 1 and Reference 1, indicating that ruthenium tetroxide was generated.

【0014】実施例2 実施例2と同様な反応装置でルテニウム化合物に二酸化
ルテニウムを30mg(0.225mmol)用いた以外は実施例1
と全く同様に反応した。通気直前の溶液のpHは、5.
5、色調は黒色であったが通気1分後には、pHは4.9、
色調は黄色に変色した。このまま10分間反応を継続し
た。10分後のpHは4.7、色調は黄色であった。反応終
了後、黄色の反応液の紫外可視吸収スペクトル(200〜6
00nm)を測定した。その結果、測定吸収スペクトルは実
施例1と全く同じであった。また、吸収波長(λ)、モ
ル吸光係数(ε)を表1に示した。その結果、二酸化ル
テニウム/オゾン系の吸収スペクトルは、参照例1及び
文献1と一致していることから四酸化ルテニウムが生成
していることが分かった。
Example 2 Example 1 was repeated except that 30 mg (0.225 mmol) of ruthenium dioxide was used as the ruthenium compound in the same reactor as in Example 2.
And reacted exactly the same. The pH of the solution immediately before aeration is 5.
5, the color was black, but after 1 minute of ventilation, the pH was 4.9,
The color changed to yellow. The reaction was continued for 10 minutes. After 10 minutes, the pH was 4.7 and the color was yellow. After completion of the reaction, the ultraviolet-visible absorption spectrum of the yellow reaction solution (200 to 6
00 nm). As a result, the measured absorption spectrum was exactly the same as in Example 1. Table 1 shows the absorption wavelength (λ) and the molar extinction coefficient (ε). As a result, since the absorption spectrum of the ruthenium dioxide / ozone system was in agreement with Reference Example 1 and Reference 1, it was found that ruthenium tetroxide was generated.

【0015】実施例3 反応液のpHを1N水酸化ナトリウムで9に維持し、ル
テニウム化合物として硫酸ルテニウムを用いた以外は全
く実施例2と同様にして反応した。反応終了後、黄色の
反応液の紫外可視吸収スペクトル(200〜600nm)を測定
した。その結果、測定吸収スペクトルは実施例2と全く
同じであった。その測定スペクトルの吸収波長(λ)、
モル吸光係数(ε)を表1に示した。この結果、硫酸ル
テニウム/オゾン系の吸収スペクトルは、参照例1及び
文献1と一致していることから四酸化ルテニウムが生成
していることが分かった。
Example 3 The reaction was carried out in the same manner as in Example 2 except that the pH of the reaction solution was maintained at 9 with 1N sodium hydroxide and ruthenium sulfate was used as the ruthenium compound. After the completion of the reaction, an ultraviolet-visible absorption spectrum (200 to 600 nm) of the yellow reaction solution was measured. As a result, the measured absorption spectrum was exactly the same as in Example 2. Absorption wavelength (λ) of the measured spectrum,
The molar extinction coefficient (ε) is shown in Table 1. As a result, since the absorption spectrum of the ruthenium sulfate / ozone system was in agreement with Reference Example 1 and Reference 1, it was found that ruthenium tetroxide was produced.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】本発明に従えば、副生物の発生・除去の
問題もなく高純度の四酸化ルテニウムが容易に得られ、
工業的な四酸化ルテニウムの製造法として好適である。
According to the present invention, high-purity ruthenium tetroxide can be easily obtained without any problem of generation and removal of by-products.
It is suitable as an industrial method for producing ruthenium tetroxide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】参照例1の紫外可視吸収スペクトルFIG. 1 shows an ultraviolet-visible absorption spectrum of Reference Example 1.

【図2】実施例1の紫外可視吸収スペクトル(257nm は
オゾンの吸収)
FIG. 2 shows an ultraviolet-visible absorption spectrum of Example 1 (257 nm is absorption of ozone).

【図3】文献1の四酸化ルテニウム(Ru+8)、過ルテ
ニウム酸塩(Ru+7)、ルテニウム酸塩(Ru+6)の紫
外可視吸収スペクトル。
FIG. 3 is an ultraviolet-visible absorption spectrum of ruthenium tetroxide (Ru +8 ), perruthenate (Ru +7 ), and ruthenate (Ru +6 ) of Literature 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ルテニウム化合物をオゾンで酸化すること
を特徴とする四酸化ルテニウムの製造方法。
1. A method for producing ruthenium tetroxide, comprising oxidizing a ruthenium compound with ozone.
【請求項2】ルテニウム化合物がルテニウム金属、ルテ
ニウム金属/担体、二酸化ルテニウム、三ハロゲン化ル
テニウム、硫酸ルテニウムまたはルテニウム錯体である
請求項1記載の四酸化ルテニウムの製造方法。
2. The process for producing ruthenium tetroxide according to claim 1, wherein the ruthenium compound is ruthenium metal, ruthenium metal / carrier, ruthenium dioxide, ruthenium trihalide, ruthenium sulfate or a ruthenium complex.
JP7558397A 1997-03-27 1997-03-27 Production of ruthenium tetraoxide Pending JPH10273327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7558397A JPH10273327A (en) 1997-03-27 1997-03-27 Production of ruthenium tetraoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7558397A JPH10273327A (en) 1997-03-27 1997-03-27 Production of ruthenium tetraoxide

Publications (1)

Publication Number Publication Date
JPH10273327A true JPH10273327A (en) 1998-10-13

Family

ID=13580369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7558397A Pending JPH10273327A (en) 1997-03-27 1997-03-27 Production of ruthenium tetraoxide

Country Status (1)

Country Link
JP (1) JPH10273327A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2820417A1 (en) 2001-02-08 2002-08-09 Commissariat Energie Atomique DISSOLUTION AND DECONTAMINATION PROCESS
US6458183B1 (en) * 1999-09-07 2002-10-01 Colonial Metals, Inc. Method for purifying ruthenium and related processes
JP2004283774A (en) * 2003-03-24 2004-10-14 Kaken:Kk Catalyst for fuel cell and its manufacturing method
EP2762452A1 (en) * 2011-05-31 2014-08-06 National University Corporation Hamamatsu University School of Medicine Recovery of reusable osmium tetroxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458183B1 (en) * 1999-09-07 2002-10-01 Colonial Metals, Inc. Method for purifying ruthenium and related processes
FR2820417A1 (en) 2001-02-08 2002-08-09 Commissariat Energie Atomique DISSOLUTION AND DECONTAMINATION PROCESS
JP2004283774A (en) * 2003-03-24 2004-10-14 Kaken:Kk Catalyst for fuel cell and its manufacturing method
EP2762452A1 (en) * 2011-05-31 2014-08-06 National University Corporation Hamamatsu University School of Medicine Recovery of reusable osmium tetroxide
EP2762452A4 (en) * 2011-05-31 2014-12-10 Nat Univ Corp Hamamatsu Recovery of reusable osmium tetroxide
US9284623B2 (en) 2011-05-31 2016-03-15 National University Corporation Hamamatsu University School Of Medicine Recovery of reusable osmium tetroxide

Similar Documents

Publication Publication Date Title
US6222031B1 (en) Process for preparing water-soluble tricarboxypolysaccharide
DK1189856T3 (en) UV-activated chlorination
JP2013181028A (en) Use of mixture obtained by irradiating halogenated hydrocarbon with light
US7488875B2 (en) Process for purifying carbon nanotubes made on refractory oxide supports
JP2956024B2 (en) Process for producing polyfluorochloride and perfluorocarboxylic acid chloride
JPH10273327A (en) Production of ruthenium tetraoxide
JPH07508704A (en) Method for producing ferric chloride
FI85261B (en) FOER FARING FOR FRAMSTAELLNING AV ETT MATERIAL.
JPH1072455A (en) Production of epoxidized products of olefin compounds
WO2018016359A1 (en) Noble metal catalyst for manufacturing hydrogen peroxide, and method for manufacturing hydrogen peroxide
JP3857369B2 (en) Method for producing chlorinated hydrocarbons
JPH09241009A (en) Production of hydrogen peroxide
Wilson et al. Heme models of peroxidase enzymes: deuteroferriheme-catalyzed chlormation of monochlorodimedone by sodium chlorite
Tatarova et al. Reaction of carbon tetrachloride with hydrogen peroxide
IE42413B1 (en) Improved process for preparing bis-(2-pyridyl-1-oxide) disulfide
JPH09315805A (en) Production of hydrogen peroxide
JP2005145750A (en) Preparation method of hexaammine ruthenium (iii) trichloride
JPH0238592B2 (en)
JP3257371B2 (en) Method for producing 5-phthalimido-4-oxopentenoic acid or its pyridine salt
JPH01151534A (en) Production of aldehyde
JPH05339208A (en) Production of pyruvic ester
US3115392A (en) Production of ozonides
JP4447867B2 (en) Method for producing ferrocene derivative
Roberts Jr et al. Oxygenation by superoxide ion of tetrachloromethane, trichlorofluoromethane, trichloromethane, p, p'-DDT and related trichloromethyl substrates (RCCl3) in aprotic solvents
JP6628800B2 (en) Method for producing alcohol and / or ketone