JP2010001864A - 内燃機関の可変動弁装置 - Google Patents

内燃機関の可変動弁装置 Download PDF

Info

Publication number
JP2010001864A
JP2010001864A JP2008163336A JP2008163336A JP2010001864A JP 2010001864 A JP2010001864 A JP 2010001864A JP 2008163336 A JP2008163336 A JP 2008163336A JP 2008163336 A JP2008163336 A JP 2008163336A JP 2010001864 A JP2010001864 A JP 2010001864A
Authority
JP
Japan
Prior art keywords
cylinder
engine
variable valve
motor
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008163336A
Other languages
English (en)
Inventor
Masataka Hattori
正敬 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008163336A priority Critical patent/JP2010001864A/ja
Publication of JP2010001864A publication Critical patent/JP2010001864A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】気筒休止運転の実行により気筒の稼働が休止されている気筒列にて、可変動弁機構を動作させるための無駄なエネルギ消費が生じることを抑制できる内燃機関の可変動弁装置を提供する。
【解決手段】エンジン1においては、通常は各バンク14,15の全ての気筒を稼働させる全気筒運転が行われ、予め定められたエンジン運転領域では一方のバンク15での気筒の稼働を休止させて他方のバンク14での気筒のみを稼働させる気筒休止運転が行われる。エンジン1での気筒休止運転の実行時には、バンク15において吸気バルブの開閉がリフト停止機構により停止されるとともに、その吸気バルブのバルブタイミングを可変とする可変動弁機構のモータへの通電が停止される。従って、そのときに可変動弁機構を無駄に動作させることはなく、その動作のための無駄なエネルギ消費が生じること、具体的にはモータでの電力消費が生じることを的確に抑制できる。
【選択図】図1

Description

本発明は、内燃機関の可変動弁装置に関する。
自動車等の車両に搭載される内燃機関においては、排気エミッション改善や出力向上を目的として、吸気バルブや排気バルブといった機関バルブの開閉特性を連続的に可変とする可変動弁機構が設けられたものが実用化されている。そして、上記可変動弁機構の設けられる内燃機関では、機関運転状態に基づき可変動弁機構の動作指令値が算出され、その動作指令値に基づき可変動弁機構を動作させることにより、機関バルブの開閉特性がそのときの機関運転での燃料の燃焼に適した特性とされる。
ところで、V型内燃機関など複数の気筒列を有する内燃機関においては、各気筒列毎に可変動弁機構が設けられるとともに、各気筒列における前記機関バルブの開閉特性の可変が同調して行われるよう気筒列毎に設けられた各々の可変動弁機構の動作が制御されることとなる。また、複数の気筒列を有する内燃機関では、例えば特許文献1に示されるように、気筒休止制御として、通常は全ての気筒列における気筒を稼働させる全気筒運転を行い、予め定められた機関運転領域では一部の気筒列における気筒の稼働を休止させて残りの気筒列における気筒のみを稼働させる気筒休止運転を行うようにしたものも知られている。なお、上記文献における気筒の稼働の休止は、その気筒に対する燃料噴射の停止を通じて実現される。
上記気筒休止制御としては、内燃機関の燃費改善を意図して、機関高負荷運転時に全気筒運転を行い、機関低負荷運転時には気筒休止運転を行うことが考えられる。内燃機関においては、機関高負荷運転が行われているとき、すなわち稼働気筒に対し1サイクル当たりに吸入される空気(混合気)の量が多くなる運転が行われているとき、燃費が良好になる傾向があり、こうした内燃機関の燃費特性を考慮して上記のように気筒休止制御が行われる。
すなわち、内燃機関の燃費が良好でない機関低負荷運転時、言い換えれば稼働気筒に対し1サイクル当たりに吸入される空気(混合気)の量が少なくなるおそれのある状況のときには、気筒休止運転により一部の気筒列における気筒の稼働が停止され、残りの気筒列の稼働気筒に対し1サイクル当たりに吸入される空気(混合気)の量が多くされる。その結果、気筒休止運転中の稼働気筒において、1サイクル当たりの吸入空気量(混合気の量)が、全気筒運転で機関高負荷運転となったときの稼働気筒における1サイクル当たりの吸入空気量(混合気の量)に近い値となり、機関低負荷運転時における内燃機関の燃費改善が図られるようになる。
また、稼働の休止される気筒においては、例えば特許文献2に示されるように、機関バルブのリフト(開閉)をリフト停止機構によって停止させることも提案されている。このリフト停止機構を特許文献1における気筒の稼働が停止される気筒列に設ければ、気筒休止運転中に上記気筒列における稼働の休止される気筒に空気が吸入されることがなくなる。このため、内燃機関の吸気通路を通過する空気のほとんどが上記気筒列の気筒以外の気筒、すなわち気筒休止運転中に稼働している気筒に吸入され、その稼働気筒での1サイクル当たりの吸入空気量を、全気筒運転で機関高負荷運転となったときの稼働気筒での1サイクル当たりの吸入空気量に近い値まで、的確に多くすることができるようになる。
特開平8−284700公報(段落[0002]、[0003]、[0017]、[0018]) 特開2003−322007公報(段落[0014])
ところで、気筒休止運転時に気筒の稼働が休止される気筒列において、機関バルブの開閉をリフト停止機構により停止させた場合、その機関バルブの開閉特性を可変動弁機構の動作を通じて変化させようとすることに意味はないにもかかわらず、同気筒列に設けられた可変動弁機構が動作されることになる。例えば、特許文献1に示されるように、上記気筒列に設けられた可変動弁機構の動作指令値が最大値または最小値に設定され、機関バルブの開閉特性を上記動作指令値に対応した特性とするための上記可変動弁機構の上記動作指令値に基づく動作が行われる。しかし、気筒の稼働が休止される気筒列では機関バルブの開閉がリフト停止機構により停止されていることから、その機関バルブの開閉特性を変化させようとして可変動弁機構を動作指令値に基づき動作させることに意味はなく、その可変動弁機構を動作するために無駄なエネルギ消費が生じることになる。
本発明はこのような実情に鑑みてなされたものであって、その目的は、気筒休止運転の実行により気筒の稼働が休止されている気筒列にて、可変動弁機構を動作させるための無駄なエネルギ消費が生じることを抑制できる内燃機関の可変動弁装置を提供することにある。
以下、上記目的を達成するための手段及びその作用効果について記載する。
上記目的を達成するため、請求項1記載の発明では、複数の気筒列毎にそれぞれ設けられて各気筒列の機関バルブの開閉特性を可変とすべくモータにより動作される可変動弁機構と、各気筒列における前記機関バルブの開閉特性の可変が同調して行われるよう気筒列毎に設けられた各々の前記可変動弁機構のモータを制御する制御手段とを備える内燃機関の可変動弁装置において、前記内燃機関は、全ての気筒列における気筒を稼働させる全気筒運転と、一部の気筒列における気筒の稼働を休止させて残りの気筒列における気筒のみを稼働させる気筒休止運転との間で、運転の切り換えが行われるものであり、前記気筒休止運転では、稼働の休止される気筒における前記機関バルブの開閉がリフト停止機構によって停止されるものであり、前記制御手段は、気筒休止運転の実行中、気筒の稼働を休止する気筒列に設けられた前記可変動弁機構のモータへの通電を停止させるものであることを要旨とした。
上記構成によれば、気筒休止運転時に気筒の稼働が休止される気筒列で機関バルブの開閉がリフト停止機構により停止される状況下では、その機関バルブの開閉特性を可変とする可変動弁機構を動作させるためのモータへの通電が停止される。従って、そのときに可変動弁機構を無駄に動作させることはなく、その動作のための無駄なエネルギ消費が生じること、具体的にはモータでの電力消費が生じることを抑制できるようになる。
なお、可変動弁機構には作動油の供給を通じて油圧駆動される油圧式のものもある。こうした油圧式の可変動弁機構を採用した場合において、気筒休止運転中に無駄なエネルギ消費を抑制することを意図して同機構への作動油の供給を停止させると、次のような問題が生じる。すなわち、内燃機関が気筒休止運転から全気筒運転に切り換えられ、気筒の稼働が休止されていた気筒列での可変動弁機構の動作を再開させるとき、同機構に作動油を供給しても同機構に作用する油圧が同機構を動作可能なレベルまですぐには上昇せず、同機構の動作を再開させるまでに応答遅れが生じる。こうした応答遅れをなくすため、気筒休止運転中、気筒の稼働が停止される気筒列の可変動弁機構に対し幾らかの作動油の供給を行い、同機構に作用する油圧が同機構を応答性よく動作可能なレベルに保持されるようにすることが考えられる。ただし、この場合には、気筒の稼働が停止される気筒列の可変動弁機構に対し上述したように作動油の供給が行われるため、その分のエネルギ消費が生じることは否めない。
これに対し、モータにより動作される電動式の可変動弁機構においては、モータの通電を停止させた状態にあるとき、同モータへの通電を開始すれば直ちに同機構を動作可能な状態とすることができる。従って、内燃機関が気筒休止運転から全気筒運転に切り換えられ、気筒の稼働が休止されていた気筒列での気筒の稼働が再開されて同気筒列の可変動弁機構の動作も再開されるとき、その動作をモータへの通電を通じて応答性よく開始することができる。このため、気筒休止運転から全気筒運転への切り換えに伴う可変動弁機構の動作再開時の応答性を気にすることなく、気筒休止運転中に可変動弁機構のモータへの通電を停止させることができ、それによって効果的に無駄なエネルギ消費(電力消費)の抑制を図ることができる。
請求項2記載の発明では、請求項1記載の発明において、前記可変動弁機構は、内燃機関の出力軸であるクランクシャフトと前記機関バルブを開閉させるカムシャフトとの間の回転伝達経路に設けられ、前記出力軸及び前記カムシャフトの回転と同期して回転する前記モータの回転の増減速を通じて前記クランクシャフトに対する前記カムシャフトの相対回転位相を変更することで、前記機関バルブの開閉タイミングを可変とするものであることを要旨とした。
上記構成によれば、モータへの通電を停止すると、そのモータがカムシャフトの回転に伴い従動回転するようになるため、同モータがカムシャフトの回転抵抗となる。こうした回転抵抗によりクランクシャフトに対するカムシャフトの相対回転位相が遅角側に変化するよう可変動弁機構が動作するため、上記相対回転位相をモータへの通電を行うことなく最遅角の状態で保持することができる。なお、仮に油圧式の可変動弁機構を採用した場合には、気筒休止運転中、クランクシャフトに対するカムシャフトの相対回転位相を一定の状態に保持しようとすると、そのために可変動弁機構に作動油を供給して同機構を油圧駆動しなければならず、エネルギ消費が生じることは避けられない。電動式の可変動弁機構では、こうしたエネルギ消費の発生を回避することができる。
請求項3記載の発明では、請求項2記載の発明において、前記可変動弁機構は、前記クランクシャフトと前記カムシャフトとの間の回転伝達経路上に設けられた減速機構及びリンク機構を備え、前記減速機構は、前記モータと繋がるとともに同モータの回転を互いに噛み合う複数のギヤにより減速させた状態で前記リンク機構に伝達するものであり、前記リンク機構は、前記減速機構から伝達される前記モータの回転の増減速に応じたリンクの変位により前記クランクシャフトに対する前記カムシャフトの相対回転位相を変更するものとした。
上記構成によれば、モータへの通電を停止したとき、同モータがカムシャフトの回転抵抗になるだけでなく、減速機構及びリンク機構での摩擦抵抗もカムシャフトの回転抵抗になるため、モータへの通電を停止したときにカムシャフトに作用する回転抵抗がより一層大きくなる。従って、モータへの通電を停止したとき、クランクシャフトに対するカムシャフトの相対回転位相を上記回転抵抗により的確に最遅角の状態に保持することができる。
以下、本発明を、自動車用のV型エンジンに適用した一実施形態について、図1〜図8を参照して説明する。
図1に示されるエンジン1では、二つのバンク(気筒列)14,15に対し、それぞれのバンク14,15の気筒に空気を供給するための吸気通路3が接続されている。この吸気通路3においては、同通路3を通過する空気の量を調整すべく開閉動作するスロットルバルブ29が設けられており、そのスロットルバルブ29より下流側で一方のバンク14側と他方のバンク15側とに分岐して各々のバンク14,15に接続されている。また、吸気通路3における上記分岐後の部分には、吸気通路3内に燃料を噴射供給する燃料噴射弁4がそれぞれ設けられている。そして、吸気通路3を通過する空気及び燃料噴射弁4から噴射される燃料がエンジン1の各バンク14,15に供給され、それら各バンク14,15にて空気と燃料とからなる混合気が燃焼されることでエンジン1が運転されるようになる。
上記エンジン1においては、気筒休止制御として、通常は各バンク14,15における全ての気筒を稼働させる全気筒運転を行い、予め定められたエンジン運転領域では一方のバンク15における気筒の稼働を休止させて他方のバンク14における気筒のみを稼働させる気筒休止運転を行うようにしている。ここで、気筒休止運転の実行の有無に関係なく気筒を稼働させるバンク14の構造と、気筒休止運転の実行時に気筒の稼働が休止されるバンク15の構造とについて、それぞれ個別に図2及び図3を参照しつつ詳しく説明する。
[バンク14の構造]
図2に示されるように、バンク14においては、各気筒の燃焼室2に上記吸気通路3及び排気通路8が接続されるとともに、上記吸気通路3から吸入される空気と同通路3に設けられた上記燃料噴射弁4から噴射される燃料とからなる混合気に対し燃焼室2内にて点火を行う点火プラグ5が設けられている。このように燃焼室2内で混合気に対する点火が行われると、同混合気が燃焼してピストン6が往復移動し、エンジン1の出力軸であるクランクシャフト7が回転する。そして、燃焼後の混合気は、排気として各燃焼室2から排気通路8に送り出される。
バンク14において、燃焼室2と吸気通路3との間は吸気バルブ9の開閉動作によって連通・遮断され、燃焼室2と排気通路8との間は排気バルブ10の開閉動作によって連通・遮断される。これら吸気バルブ9及び排気バルブ10に関しては、クランクシャフト7の回転が伝達される吸気カムシャフト11及び排気カムシャフト12の回転に伴い開閉動作する。
より詳しくは、吸気カムシャフト11に固定された吸気カム11aと上記吸気バルブ9との間にローラ18を備えたロッカアーム19が設けられ、回転する吸気カム11aのローラ18への押圧に基づき、ロッカアーム19がその一端を支持するラッシュアジャスタ20との接点を中心に回動して吸気バルブ9を押圧する。そして、このロッカアーム19による吸気バルブ9の押圧に基づき同吸気バルブ9が開閉動作する。ちなみに、吸気カムシャフト11の回転はクランクシャフト7の二回転につき一回となっており、それに合わせて吸気バルブ9の開閉動作もクランクシャフト7の二回転につき一回となっている。
また、排気カムシャフト12に固定された排気カム12aと上記排気バルブ10との間にローラ21を備えたロッカアーム22が設けられ、回転する排気カム12aのロッカアーム22への押圧に基づき、同ロッカアーム22がその一端を支持するラッシュアジャスタ23との接点を中心に回動して排気バルブ10を押圧する。そして、このロッカアーム22による排気バルブ10の押圧に基づき同排気バルブ10が開閉動作する。上記排気カムシャフト12の回転もクランクシャフト7の二回転につき一回となっており、それに合わせて排気バルブ10の開閉動作もクランクシャフト7の二回転につき一回となっている。
バンク14には、吸気バルブ9及び排気バルブ10といった機関バルブのうち、吸気バルブ9の開閉特性を連続的に可変とする可変動弁機構13が設けられている。この可変動弁機構13は、クランクシャフト7に対する吸気カムシャフト11の相対回転位相を変更することにより、吸気バルブ9のバルブタイミングを可変とするものである。こうした可変動弁機構13の駆動を通じて、吸気バルブ9の開弁期間(作動角)を一定に保持した状態で同バルブ9の開弁時期及び閉弁時期が共に進角又は遅角され、そのときのエンジン運転(混合気の燃焼)にとって最適な状態とされる。
[バンク15の構造]
図3に示されるように、バンク15は、上記バンク14とほぼ同じ構造を有しているため、以下ではバンク15におけるバンク14と異なる部分についてのみ詳しく説明し、バンク15におけるバンク14と同じ部分については同バンク14と同じ符号を付して説明を省略する。
バンク15においては、気筒休止制御における気筒休止運転時、燃料噴射弁4からの燃料噴射の停止及び混合気への点火のための点火プラグ5への通電の停止が行われるとともに、吸気バルブ9及び排気バルブ10のリフト(開閉)が停止させられることにより、気筒の稼働が停止される。なお、吸気バルブ9及び排気バルブ10のリフトの停止は、ロッカアーム19,22に設けられたリフト停止機構24,25によって行われる。
リフト停止機構24は、吸気カム11aの同ロッカアーム19(ローラ18)への押圧に基づく吸気バルブ9のリフト(開閉)を停止させるべく、吸気カム11aと吸気バルブ9との間のロッカアーム19に設けられている。このリフト停止機構24は、ローラ18をロッカアーム19に対し上記押圧の方向について相対移動可能とした状態と、その相対移動を禁止した状態との間で切り換えられるものであり、通常は上記相対移動を禁止した状態とされている。この状態にあっては、吸気カム11aによりローラ18が押圧されると、それに基づきロッカアーム19が上記のように回動して吸気バルブ9が開閉するようになる。一方、吸気バルブ9のリフトを停止させる際には、上記リフト停止機構24がローラ18のロッカアーム19に対する相対移動を可能とした状態に切り換えられる。この場合、吸気カム11aによりローラ18が押圧されると、同ローラ18がロッカアーム19に対し相対移動するため、そのロッカアーム19が吸気バルブ9を開閉させるように回動することはなく、吸気カム11aの回転に伴う同吸気バルブ9のリフトは停止されるようになる。
リフト停止機構25は、排気カム12aの同ロッカアーム22(ローラ21)への押圧に基づく排気バルブ10のリフト(開閉)を停止させるべく、排気カム12aと排気バルブ10との間のロッカアーム19に設けられている。このリフト停止機構25は、上述したリフト停止機構24と同様の構造を有しており、ローラ21をロッカアーム22に対し上記押圧の方向について相対移動可能とした状態と、その相対移動を禁止した状態との間で切り換えられるものであって、通常時にはローラ21のロッカアーム22に対する相対移動を禁止した状態とされている。この状態にあっては、排気カム12aによりローラ21が押圧されると、それに基づきロッカアーム22が上記のように回動して吸気バルブ9が開閉するようになる。一方、吸気バルブ9のリフトを停止させる際には、上記リフト停止機構25がローラ21のロッカアーム22に対する相対移動を可能とした状態に切り換えられる。この場合、排気カム12aによりローラ21が押圧されると、同ローラ21がロッカアーム22に対し相対移動するため、そのロッカアーム22が排気バルブ10を開閉させるように回動することはなく、排気カム12aの回転に伴う同排気バルブ10のリフトは停止されるようになる。
次に、各バンク14,15にそれぞれ個別に設けられた可変動弁機構13の詳細について、図4を参照して説明する。
可変動弁機構13は、クランクシャフト7と吸気カムシャフト11との間の回転伝達経路に設けられ、それらクランクシャフト7及び吸気カムシャフト11と同期して回転するモータ41により動作される電動式のものとなっている。この可変動弁機構13には、クランクシャフト7の回転を吸気カムシャフト11に伝達する減速機構42及びリンク機構43が設けられている。従って、これら減速機構42及びリンク機構43は、クランクシャフト7と吸気カムシャフト11との間の回転伝達経路上に設けられていることになる。上記減速機構42は、上記モータ41と繋がるとともに同モータ41の回転を互いに噛み合う複数のギヤ42a,42bにより減速させた状態で上記リンク機構43に伝達するものである。また、リンク機構43は、上記減速機構42から伝達されるモータ41の回転の増減速に応じたリンク43a〜43dの変位によりクランクシャフト7に対する吸気カムシャフト11の相対回転位相を変更するものである。
こうした可変動弁機構13においては、クランクシャフト7及び吸気カムシャフト11と同期して回転するモータ41の回転速度を増減速することにより、吸気カムシャフト11の回転速度がクランクシャフト7からの回転伝達を受けることによって得られる値(以下、基準速度という)に対して増減速する。なお、ここでの基準速度は、クランクシャフト7の回転速度が上昇するほど大きい値になり、逆に同シャフト7の回転速度が低下するほど小さい値になるものである。そして、吸気カムシャフト11の回転速度が上記基準速度と一致するようモータ41の回転速度を調整することにより、クランクシャフト7に対する吸気カムシャフト11の相対回転位相が一定に保持される。一方、吸気カムシャフト11の回転速度が上記基準速度よりも大きい値となるようモータ41の回転速度を上昇させると、クランクシャフト7に対する吸気カムシャフト11の相対回転位相が進角側に変更される。また、吸気カムシャフト11の回転速度が上記基準速度よりも小さい値となるようモータ41の回転速度を低下させると、クランクシャフト7に対する吸気カムシャフト11の相対回転位相が遅角側に変更される。
次に、本実施形態におけるエンジン1の可変動弁装置の電気的構成について、図5を参照して説明する。
この可変動弁装置には、エンジン1の運転制御など各種制御を行う電子制御装置26が設けられている。電子制御装置26は、上記各種制御にかかる演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果が一時的に記憶されるRAM、外部との間で信号を入・出力するための入・出力ポート等を備えて構成されている。
電子制御装置26の入力ポートには、以下に示す各種センサ等が接続されている。
・自動車の運転者によって踏み込み操作されるアクセルペダルの踏み込み量(アクセル踏込量)を検出するアクセルポジションセンサ28。
・スロットルバルブ29の開度(スロットル開度)を検出するスロットルポジションセンサ30。
・吸気通路3を流れる空気の量を検出するエアフローメータ32。
・クランクシャフト7の回転に対応する信号を出力し、エンジン回転速度の算出等に用いられるクランクポジションセンサ34。
・エンジン1の冷却水温を検出する水温センサ35。
電子制御装置26の出力ポートには、各バンク14,15の燃料噴射弁4、点火プラグ5、及び可変動弁機構13(電動モータ41)の駆動回路等が接続されるとともに、リフト停止機構24,25、及びスロットルバルブ29の駆動回路等も接続されている。
そして、電子制御装置26は、上記各種センサから入力した検出信号に基づき、アクセル踏込量、スロットル開度、吸入空気量、エンジン回転速度、及びエンジン負荷といったエンジン運転状態を把握する。なお、エンジン回転速度はクランクポジションセンサ34からの検出信号に基づき求められる。また、エンジン負荷は、アクセルポジションセンサ28、スロットルポジションセンサ30、及び、エアフローメータ32等の検出信号に基づき求められるエンジン1の吸入空気量とエンジン回転速度とから算出される。電子制御装置26は、上述したエンジン運転状態に応じて、上記出力ポートに接続された各種駆動回路に指令信号を出力する。こうして燃料噴射弁4の燃料噴射制御、点火プラグ5の点火時期制御、吸気バルブ9のバルブタイミングの制御、リフト停止機構24,25の駆動制御、及びスロットルバルブ29の開度制御等の各種制御が電子制御装置26を通じて実施される。
エンジン1においては、自動車の運転者によるアクセル踏込量の調整を通じてエンジン出力の調整が行われる。すなわち、アクセル踏込量が調整されると、それに基づきスロットル開度制御を通じてスロットルバルブ29が上記アクセル踏込量に対応した開度に調整される。更に、そのスロットルバルブ29の開度に応じてエンジン1の吸気通路を流れる空気の量(吸入空気量)が調整され、同吸入空気量に対応した量の燃料が燃料噴射量制御を通じて燃料噴射弁4から噴射される。その結果、エンジン1の燃焼室2内にアクセル踏込量に対応した量の混合気が供給され、その混合気に対し点火プラグ点火を行って同混合気を燃焼させることにより、アクセル踏込量に対応したエンジン出力が得られるようになる。
また、エンジン1で行われる吸気バルブ9のバルブタイミング制御に関しては、可変動弁機構13の動作を通じて、同吸気バルブ9のバルブタイミングがそのときのエンジン運転(燃焼状態)にとって適切な状態となるように行われる。具体的には、エンジン負荷及びエンジン回転速度に基づきマップを参照して、可変動弁機構13(モータ41)の動作指令値である進角量が算出される。そして、算出された進角量に基づきモータ41を制御して同モータ41の回転速度を増減速することにより、クランクシャフト7に対する吸気カムシャフト11の相対回転位相、言い換えれば吸気バルブ9のバルブタイミングがそのときのエンジン運転に適した状態となるよう制御される。なお、このように制御される吸気バルブ9のバルブタイミングに関しては、上記進角量が「0」のときに最遅角状態となり、その進角量が大きくなるほど進角した状態となる。
次に、エンジン運転状態に応じてエンジン1の全気筒運転と気筒休止運転とを切り換える気筒休止制御について詳しく説明する。
気筒休止制御では、図6に示されるマップを参照して、全気筒運転と気筒休止運転との切り換えが行われる。このマップは、エンジン回転速度及びエンジン負荷に基づき、気筒休止制御における気筒休止運転の実行されるエンジン運転領域である気筒休止領域APを規定するとともに、その気筒休止領域AP以外の領域であって全気筒運転の実行されるエンジン運転領域である全気筒領域AAを規定するものである。なお、上記気筒休止領域APは低回転低負荷領域に設定されており、上記全気筒領域AAは気筒休止領域APよりも高回転高負荷領域に設定されている。そして、エンジン回転速度及びエンジン負荷が上記気筒休止領域AP内にあるときには気筒休止運転が実行され、エンジン回転速度及びエンジン負荷が上記全気筒領域AA内にあるときには全気筒運転が実行される。
以上のように、気筒休止制御では、エンジン1の低回転低負荷運転時に気筒休止運転を行い、それ以外のときには全気筒運転を行うようにしている。これは、エンジン1においては、エンジン負荷の高い状態で運転されているとき、すなわち稼働気筒に対し1サイクル当たりに吸入される空気(混合気)の量が多くなる状態で運転されているとき、燃費が良好になる傾向があり、こうしたエンジン1の燃費特性を考慮して同エンジン1の燃費改善を図るためである。
上記気筒休止制御では、エンジン1の燃費が良好でないエンジン低負荷運転時、すなわち稼働気筒に対し1サイクル当たりに吸入される空気(混合気)の量が少なくなるおそれのある状況のときには、気筒休止運転により一部の気筒の稼働が停止されることにより、残りの稼働気筒に対し1サイクル当たりに吸入される空気(混合気)の量が多くされる。その結果、気筒休止運転中の稼働気筒において、1サイクル当たりの吸入空気量(混合気の量)が、全気筒運転でエンジン高負荷運転となったときの稼働気筒における1サイクル当たりの吸入空気量(混合気の量)に近い値となり、低負荷運転時におけるエンジン1の燃費改善が図られるようになる。
図7は、上述した気筒休止制御を実行するための気筒休止制御ルーチンを示すフローチャートである。この気筒休止制御ルーチンは、電子制御装置26を通じて、例えば所定時間毎の時間割り込みにて周期的に実行される。
同ルーチンにおいては、まず、エンジン1の温度が気筒休止制御を実行可能な値であるか否かを判断するための処理として、エンジン1の冷却水温が気筒休止制御の実行水温である所定値Aよりも高いか否かが判断される(S101)。なお、燃料の揮発性の低下等に関連して燃焼状態を良好に維持しにくくなるエンジン1の低温時には、気筒休止制御での気筒休止運転の実行が稼働気筒での燃焼状態の悪化といった不具合の発生を招くおそれがある。上記所定値Aに関しては、気筒休止運転を実行したときに上記不具合の生じるおそれがない値として予め実験等により定められた値が用いられる。
そして、上記ステップS101で否定判定であれば、気筒休止制御が停止され(S105)、全気筒運転が実行される。また、ステップS101で肯定判定であれば、図6に示されるマップを用いて気筒休止制御が実行される(図7のS102〜S104)。より詳しくは、上記マップを参照して、エンジン回転速度及びエンジン負荷といったエンジン運転状態が、気筒休止制御での気筒休止運転の行われる運転領域(気筒休止領域AP)にあるか否かが判断される(S102)。そして、エンジン運転状態が気筒休止領域APにあれば気筒休止運転が実行され(S103)、エンジン運転状態が気筒休止領域APになく全気筒領域AAにあれば全気筒運転が実行される(S104)。
次に、吸気バルブ9のバルブタイミング制御に関係する可変動弁機構13の動作手順について、可変動弁機構動作制御ルーチンを示す図8のフローチャートを参照して説明する。この可変動弁機構動作制御ルーチンは、電子制御装置26を通じて、例えば所定時間毎の時間割り込みにて周期的に実行される。
同ルーチンにおいては、エンジン1の冷却水温が上述した所定値Aよりも高い値であるか否か(S201)、言い換えれば冷却水温が気筒休止制御の実行水温よりも高い値であるか否かが判断される。ここで否定判定であれば、気筒休止制御が停止されて全気筒運転が実行されていることから、各バンク14,15の各々の可変動弁機構13が動作許可状態とされ(S204)、それら各バンク14,15での吸気バルブ9のバルブタイミング制御が実行される。すなわち、エンジン負荷及びエンジン回転速度に基づき可変動弁機構13(モータ41)の動作指令値である進角量が算出され、その進角量に基づく各バンク14,15の各々のモータ41の回転速度の制御を通じて、各バンク14,15における各々の吸気バルブ9のバルブタイミングがそのときのエンジン運転に適した状態となるよう制御される。
上記ステップS201で肯定判定がなされ、エンジン1の冷却水温が上記所定値Aよりも高い旨判断された場合には、気筒休止制御が実行されていることを意味する。この場合、気筒休止制御での気筒休止運転が実行されているか否かが判断され(S202)、ここで否定判定であって全気筒運転が実行されている旨判断されると、上記ステップS204の処理が実行される。また、ステップS202で肯定判定がなされて気筒休止運転が実行されている旨判断されると、気筒の稼働が休止されているバンク15に設けられた可変動弁機構13のモータ41に対する通電が停止される(S204)。
仮に、このときにバンク15の可変動弁機構13が動作許可状態とされ、同機構13のモータ41が進角量に基づき制御されてバンク15の吸気バルブ9のバルブタイミングが所定の状態に向けて制御されているとすると、次のような不具合を招くことになる。すなわち、気筒休止運転時のバンク15では、吸気バルブ9のリフト(開閉)をリフト停止機構24により停止させており、吸気バルブ9のバルブタイミングをモータ41の上記進角量に基づく制御を通じて変化させようとすることに意味はないにもかかわらず、同バンク15のモータ41が動作されることになる。その結果、バンク15において、上記モータ41を上記進角量に基づき動作させるために無駄なエネルギ消費(電力消費)が生じることになる。
しかし、バンク15においては、気筒休止運転の実行時に吸気バルブ9の開閉がリフト停止機構24により停止されると、その吸気バルブ9のバルブタイミングを可変とする可変動弁機構13のモータ41が上述したように通電停止されるため、そのときに同モータ41の上記進角量に基づく動作が無駄に行われることはない。従って、そのモータ41の動作のために無駄なエネルギ消費(電力消費)が生じることを抑制できるようになる。
なお、可変動弁機構には作動油の供給を通じて油圧駆動される油圧式のものもある。こうした油圧式の可変動弁機構を採用した場合において、気筒休止運転中に無駄なエネルギ消費を抑制することを意図して同機構への作動油の供給を停止させると、次のような問題が生じる。すなわち、エンジン1が気筒休止運転から全気筒運転に切り換えられ、気筒の稼働が休止されていたバンクでの可変動弁機構の動作を再開させるとき、同機構に作動油を供給しても同機構に作用する油圧が同機構を動作可能なレベルまですぐには上昇せず、同機構の動作を再開させるまでに応答遅れが生じる。こうした応答遅れをなくすため、気筒休止運転中、気筒の稼働が停止されるバンクの可変動弁機構に対し幾らかの作動油の供給を行い、同機構に作用する油圧が同機構を応答性よく動作可能なレベルに保持されるようにすることが考えられる。ただし、この場合には、気筒の稼働が停止されるバンクの可変動弁機構に対し上述したように作動油の供給が行われるため、その分のエネルギ消費が生じることは否めない。
これに対し、モータ41により動作される電動式の可変動弁機構13においては、モータ41の通電を停止させた状態にあるとき、同モータ41への通電を開始すれば直ちに同機構13を動作可能な状態とすることができる。従って、エンジン1が気筒休止運転から全気筒運転に切り換えられ、気筒の稼働が休止されていたバンク15での気筒の稼働が再開されて同バンクの可変動弁機構13の動作も再開されるとき、その動作をモータ41への通電を通じて応答性よく開始することができる。このため、気筒休止運転から全気筒運転への切り換えに伴う可変動弁機構13の動作再開時の応答性を気にすることなく、気筒休止運転中に可変動弁機構13のモータ41への通電を停止させることができ、それによって効果的に無駄なエネルギ消費(電力消費)の抑制を図ることができる。
以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)気筒休止運転の実行時、バンク15において吸気バルブ9の開閉がリフト停止機構24により停止されると、その吸気バルブ9のバルブタイミングを可変とする可変動弁機構13のモータ41への通電が停止される。従って、そのときに可変動弁機構13を無駄に動作させることはなく、その動作のための無駄なエネルギ消費が生じること、具体的にはモータ41での電力消費が生じることを的確に抑制できる。
(2)気筒休止運転の実行時、バンク15において可変動弁機構13のモータ41への通電が停止されると、そのモータ41が吸気カムシャフト11の回転に伴い従動回転するようになるため、同モータ41が吸気カムシャフト11の回転抵抗となる。こうした回転抵抗によりクランクシャフト7に対する吸気カムシャフト11の相対回転位相が遅角側に変化するよう可変動弁機構13が動作するため、上記相対回転位相をモータ41への通電を行うことなく最遅角の状態で保持することができる。なお、仮に油圧式の可変動弁機構を採用した場合には、気筒休止運転中、クランクシャフト7に対する吸気カムシャフト11の相対回転位相を一定の状態に保持しようとすると、そのために可変動弁機構に作動油を供給して同機構を油圧駆動しなければならず、エネルギ消費が生じることは避けられない。電動式の可変動弁機構13では、こうしたエネルギ消費の発生を回避することができる。
(3)気筒休止運転の実行時、バンク15において可変動弁機構13のモータ41への通電が停止されると、同モータ41が吸気カムシャフト11の回転抵抗になるだけでなく、減速機構42及びリンク機構43での摩擦抵抗も吸気カムシャフト11の回転抵抗になる。このため、モータ41への通電を停止したときに、吸気カムシャフト11に作用する回転抵抗がより一層大きくなる。従って、モータ41への通電を停止したとき、クランクシャフト7に対する吸気カムシャフト11の相対回転位相を上記回転抵抗により的確に最遅角の状態に保持することができる。
なお、上記実施形態は、例えば以下のように変更することもできる。
・気筒の稼働が休止されるバンクに関しては、バンク15に固定したが、バンク14とバンク15との間で可変としてもよい。この場合、バンク14にもリフト停止機構24,25が設けられ、バンク14が気筒の稼働を休止させるバンクとされたときには、気筒休止運転中にバンク14の吸気バルブ9及び排気バルブ10のリフト(開閉)が上記リフト停止機構24,25によって停止されることとなる。
・排気バルブ10のバルブタイミングを可変とする電動式の可変動弁機構を備えたエンジンに本発明を適用してもよい。
・可変動弁機構に関しては、気筒休止運転時であって同機構のモータへの通電が停止されるとき、クランクシャフトに対するカムシャフトの相対回転位相(バルブタイミング)が最遅角以外の状態、例えば最進角の状態や最遅角と最進角との間の状態となるようスプリング等による付勢力が作用するものであってもよい。
・吸気バルブ9や排気バルブ10といった機関バルブの開閉特性として同バルブの最大リフト量及び作動角を可変とする電動式の可変動弁機構を備えたエンジンに本発明を適用してもよい。
本実施形態の可変動弁機構の適用されるエンジン全体を示す略図。 同エンジンにおいて気筒休止運転の実行の有無に関係なく常に気筒が稼働されるバンクの構造を示す略図。 同エンジンにおいて気筒休止運転の実行に伴い気筒の稼働が休止されるバンクの構造を示す略図。 可変動弁機構の構造を示す略図。 同エンジンの可変動弁装置の電気的構成を示すブロック図。 気筒休止制御での全気筒領域と気筒休止領域とを規定したマップ。 気筒休止制御の実行手順を示すフローチャート。 可変動弁機構の動作の制御手順を示すフローチャート。
符号の説明
1…エンジン、2…燃焼室、3…吸気通路、4…燃料噴射弁、5…点火プラグ、6…ピストン、7…クランクシャフト、8…排気通路、9…吸気バルブ、10…排気バルブ、11…吸気カムシャフト、11a…吸気カム、12…排気カムシャフト、12a…排気カム、13…可変動弁機構、14,15…バンク、18…ローラ、19…ロッカアーム、20…ラッシュアジャスタ、21…ローラ、22…ロッカアーム、23…ラッシュアジャスタ、24,25…リフト停止機構、26…電子制御装置(制御手段)、28…アクセルポジションセンサ、29…スロットルバルブ、30…スロットルポジションセンサ、32…エアフローメータ、34…クランクポジションセンサ、35…水温センサ、41…モータ、42…減速機構、42a,42b…ギヤ、43…リンク機構、43a〜43d…リンク。

Claims (3)

  1. 複数の気筒列毎にそれぞれ設けられて各気筒列の機関バルブの開閉特性を可変とすべくモータにより動作される可変動弁機構と、各気筒列における前記機関バルブの開閉特性の可変が同調して行われるよう気筒列毎に設けられた各々の前記可変動弁機構のモータを制御する制御手段とを備える内燃機関の可変動弁装置において、
    前記内燃機関は、全ての気筒列における気筒を稼働させる全気筒運転と、一部の気筒列における気筒の稼働を休止させて残りの気筒列における気筒のみを稼働させる気筒休止運転との間で、運転の切り換えが行われるものであり、
    前記気筒休止運転では、稼働の休止される気筒における前記機関バルブの開閉がリフト停止機構によって停止されるものであり、
    前記制御手段は、気筒休止運転の実行中、気筒の稼働を休止する気筒列に設けられた前記可変動弁機構のモータへの通電を停止させるものである
    ことを特徴とする内燃機関の可変動弁装置。
  2. 前記可変動弁機構は、内燃機関の出力軸であるクランクシャフトと前記機関バルブを開閉させるカムシャフトとの間の回転伝達経路に設けられ、前記出力軸及び前記カムシャフトの回転と同期して回転する前記モータの回転の増減速を通じて前記クランクシャフトに対する前記カムシャフトの相対回転位相を変更することで、前記機関バルブの開閉タイミングを可変とするものである
    請求項1記載の内燃機関の可変動弁装置。
  3. 前記可変動弁機構は、前記クランクシャフトと前記カムシャフトとの間の回転伝達経路上に設けられた減速機構及びリンク機構を備え、
    前記減速機構は、前記モータと繋がるとともに同モータの回転を互いに噛み合う複数のギヤにより減速させた状態で前記リンク機構に伝達するものであり、
    前記リンク機構は、前記減速機構から伝達される前記モータの回転の増減速に応じたリンクの変位により前記クランクシャフトに対する前記カムシャフトの相対回転位相を変更するものである
    請求項2記載の内燃機関の可変動弁装置。
JP2008163336A 2008-06-23 2008-06-23 内燃機関の可変動弁装置 Pending JP2010001864A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008163336A JP2010001864A (ja) 2008-06-23 2008-06-23 内燃機関の可変動弁装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008163336A JP2010001864A (ja) 2008-06-23 2008-06-23 内燃機関の可変動弁装置

Publications (1)

Publication Number Publication Date
JP2010001864A true JP2010001864A (ja) 2010-01-07

Family

ID=41583768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163336A Pending JP2010001864A (ja) 2008-06-23 2008-06-23 内燃機関の可変動弁装置

Country Status (1)

Country Link
JP (1) JP2010001864A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105680A (ja) * 2012-11-29 2014-06-09 Toyota Motor Corp 内燃機関の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105680A (ja) * 2012-11-29 2014-06-09 Toyota Motor Corp 内燃機関の制御装置
US10316765B2 (en) 2012-11-29 2019-06-11 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4492710B2 (ja) 内燃機関の制御装置及び制御方法
RU2705493C9 (ru) Способ и система избирательной деактивации цилиндров
JP4793453B2 (ja) 内燃機関の制御装置
US8768601B2 (en) Control device for internal combustion engine having variable valve mechanism
CN101793199B (zh) 可变气门设备
JP2008031973A (ja) 内燃機関の可変バルブタイミング制御装置
JP2010138898A (ja) 可変動弁装置
JP2010001864A (ja) 内燃機関の可変動弁装置
JP2009191703A (ja) 内燃機関の制御装置
JP2009281303A (ja) 可変圧縮比内燃機関
JP6156224B2 (ja) エンジンの制御装置
JP2007162664A (ja) 内燃機関のバルブ作用角可変制御装置
JP2007182828A (ja) 内燃機関の制御装置
JP5947751B2 (ja) 多気筒内燃機関の可変動弁装置及び該可変動弁装置の制御装置
JP4306586B2 (ja) 内燃機関のバルブ特性制御装置
JP4924462B2 (ja) 内燃機関の可変動弁装置
JP2009216035A (ja) 内燃機関の制御装置
JP4502030B2 (ja) 内燃機関の制御装置
JP4325514B2 (ja) 内燃機関のバルブタイミング制御装置
JP2010043551A (ja) 内燃機関の制御装置
JP3873809B2 (ja) 内燃機関のバルブタイミング可変制御装置
JP5041167B2 (ja) エンジンの制御装置
JP2010084730A (ja) 内燃機関の制御装置
JP5229190B2 (ja) 内燃機関の制御装置
JP2013032745A (ja) 内燃機関