JP2010000905A - Thruster with duct for ship - Google Patents

Thruster with duct for ship Download PDF

Info

Publication number
JP2010000905A
JP2010000905A JP2008161431A JP2008161431A JP2010000905A JP 2010000905 A JP2010000905 A JP 2010000905A JP 2008161431 A JP2008161431 A JP 2008161431A JP 2008161431 A JP2008161431 A JP 2008161431A JP 2010000905 A JP2010000905 A JP 2010000905A
Authority
JP
Japan
Prior art keywords
duct
pod
thruster
maximum diameter
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008161431A
Other languages
Japanese (ja)
Other versions
JP4531828B2 (en
Inventor
Isao Funeno
功 舩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2008161431A priority Critical patent/JP4531828B2/en
Priority to PCT/JP2009/001681 priority patent/WO2009153906A1/en
Publication of JP2010000905A publication Critical patent/JP2010000905A/en
Application granted granted Critical
Publication of JP4531828B2 publication Critical patent/JP4531828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • B63H2005/1254Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
    • B63H2005/1256Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis with mechanical power transmission to propellers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thruster with a duct having a high propulsion force. <P>SOLUTION: The thruster 1 with the duct for ships includes a strut 3 extending downward from a bottom part 2 of a ship, a pod 4 connected to a lower portion of the strut 3 and extending backwardly, a propeller 5 connected to a rear portion of the pod 4 to generate the water flow, and a duct 6 arranged behind the strut 3 to surround the propeller 5. A maximum diameter part 4a of the pod 4 is arranged at the position corresponding to a front end 6a of the duct in the longitudinal direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、船舶に推力を発生させるダクト付きスラスタに関するものである。   The present invention relates to a ducted thruster that generates thrust in a ship.

従来、タグボート等の大きな曳引力を要する船舶には、高推力で推力方向を変更可能なダクト付きスラスタを搭載したものがある(例えば、特許文献1参照)。ダクト付きスラスタは、船内にある原動機の駆動力を船底から下方に突出したストラットの内部を通る垂直回転軸に伝達し、その駆動力をストラット下部に接続されたポッド(ギヤケース)内にあるベベルギヤにて水平回転軸周りの回転に変換し、プロペラを駆動する。また、このダクト付きスラスタは、船内の別の原動機による動力で垂直回転軸まわりに回転することで、推力方向を変更することも可能となっている。そして、プロペラの周りには翼型断面を有するリング状のダクトが配置されているため、プロペラの回転で生じる水流がダクトにより案内され、効率良く船舶の推進力が発生する。
特開平10−81299号公報
2. Description of the Related Art Conventionally, there is a ship equipped with a ducted thruster that can change a thrust direction with a high thrust, such as a tugboat that requires a large pulling force (see, for example, Patent Document 1). The thruster with a duct transmits the driving force of the prime mover in the ship to the vertical rotating shaft passing through the inside of the strut protruding downward from the bottom of the ship, and the driving force is transmitted to the bevel gear in the pod (gear case) connected to the lower part of the strut. Convert to rotation around the horizontal rotation axis, and drive the propeller. In addition, the thruster with the duct can change the thrust direction by rotating around the vertical rotation axis by the power of another prime mover in the ship. And since the ring-shaped duct which has an airfoil cross section is arrange | positioned around the propeller, the water flow which arises by rotation of a propeller is guided by a duct, and the propulsive force of a ship generate | occur | produces efficiently.
Japanese Patent Laid-Open No. 10-81299

ところで、ポッドのストラットとの接続部分にはベベルギヤが収容されるため、ポッドの最大直径部は当該接続部分に位置しており、ポッドの外周面はその最大直径部から後方に向けて略直線的に縮径しているのが通常である。しかしながら、ダクトはポッドの縮径した小径の後部を囲むように配置されることなるため、ダクト内周面とポッド外周面との間の流路断面積が大きくなり、ダクトに流入する水の流速が遅くなる。   By the way, since the bevel gear is accommodated in the connection portion of the pod with the strut, the maximum diameter portion of the pod is located in the connection portion, and the outer peripheral surface of the pod is substantially linear from the maximum diameter portion to the rear. Usually, the diameter is reduced. However, since the duct is disposed so as to surround the rear part of the small diameter of the pod, the flow passage cross-sectional area between the inner peripheral surface of the duct and the outer peripheral surface of the pod is increased, and the flow velocity of water flowing into the duct is increased. Becomes slower.

ダクトの前端部近傍には圧力低下領域が発生し、その圧力低下に起因してダクト自身に推進力に寄与する力が生じるが、ベルヌーイの定理から分かるように、ダクトに流入する水の流速が遅くなるとダクト前端部近傍の圧力が十分に低下しないため、ダクトによる推進力の発生が十分ではなくなる。   A pressure drop region is generated near the front end of the duct, and due to the pressure drop, a force that contributes to the propulsive force is generated in the duct itself, but as can be seen from Bernoulli's theorem, the flow velocity of water flowing into the duct is When it becomes late, the pressure in the vicinity of the front end of the duct does not sufficiently decrease, so that the propulsive force is not sufficiently generated by the duct.

そこで本発明は、推進効率の良いダクト付きスラスタを提供することを目的としている。   Accordingly, an object of the present invention is to provide a ducted thruster with good propulsion efficiency.

本発明は前記事情に鑑みてなされたものであり、本発明に係る船舶用ダクト付きスラスタは、船舶の底部から下方に向けて延出するストラットと、前記ストラットの下部に接続されて後方に延出するポッドと、前記ポッドの後部に接続されて水流を発生させるプロペラと、前記プロペラを囲むように前記ストラットの後方に配置されたダクトと、を備え、前記ポッドの最大直径部が、前後方向において前記ダクトの前端部に対応する位置に配置されていることを特徴とする。   The present invention has been made in view of the above circumstances, and a thruster with a duct for a ship according to the present invention is connected to a strut extending downward from the bottom of the ship and a lower part of the strut and extends backward. A pod that exits, a propeller that is connected to the rear of the pod to generate a water flow, and a duct that is disposed behind the strut so as to surround the propeller. It is arrange | positioned in the position corresponding to the front-end part of the said duct.

前記構成によれば、ポッドの最大直径部が前後方向においてダクトの前端部に対応する位置に配置されているので、ダクトの前端近傍においてダクト内周面とポッド外周面との間の流路断面積が低減され、ダクトに流入する水の流速が速くなる。そうすると、ダクトの前端近傍における圧力低下が促進され、ダクトにより生じる推進力を向上することができる。   According to the above configuration, since the maximum diameter portion of the pod is disposed at a position corresponding to the front end portion of the duct in the front-rear direction, the flow path is cut off between the inner peripheral surface of the duct and the outer surface of the pod in the vicinity of the front end of the duct. The area is reduced and the flow rate of water flowing into the duct is increased. Then, the pressure drop near the front end of the duct is promoted, and the propulsive force generated by the duct can be improved.

前記ポッドの最大直径部と前記ダクトの前端との間の前後方向における距離Lmが、前記ダクトの前後方向における長さLpの0.2倍以下であってもよい。 The distance L m in the front-rear direction between the maximum diameter portion of the pod and the front end of the duct may be 0.2 times or less the length L p in the front-rear direction of the duct.

前記構成によれば、ポッドの最大直径部が、前後方向においてダクトの前端又はその近傍に対応して位置するので、ダクトの前端近傍においてダクトに流入する水の流速を好適に速めることができる。   According to the said structure, since the largest diameter part of a pod is located corresponding to the front end of a duct in the front-back direction or its vicinity, the flow velocity of the water which flows into a duct in the front end vicinity of a duct can be increased suitably.

前記プロペラの直径Dpに対する前記ポッドの前記最大直径部の直径Dgの割合Dg/Dpが、0.25以上0.45以下であってもよい。 Ratio D g / D p of diameter D g of the largest diameter portion of the pod relative to the diameter D p of the propeller, may be 0.25 to 0.45.

前記構成によれば、推進効率を高めることができる。なぜなら、Dg/Dpが0.25未満である場合には、プロペラを通過する水の流路断面積が大きくなることで、ダクトに流入する水の流速が低下し、ダクトの前端近傍における圧力低下が不十分となり、Dg/Dpが0.45を超えた場合には、ポッドの水流に対する抵抗が大きくなるからである。 According to the said structure, propulsion efficiency can be improved. This is because when D g / D p is less than 0.25, the flow passage cross-sectional area of the water passing through the propeller is increased, so that the flow velocity of the water flowing into the duct is reduced, and in the vicinity of the front end of the duct. This is because when the pressure drop is insufficient and D g / D p exceeds 0.45, the resistance of the pod to the water flow increases.

前記ポッドの外周面は、前記最大直径部から後端にかけて外側に向けて凸となる略円弧状に縮径していてもよい。   The outer peripheral surface of the pod may be reduced in a substantially arc shape that protrudes outward from the maximum diameter portion to the rear end.

前記構成によれば、最大直径部から後端にかけて縮径の勾配が緩やかな領域が広くなるので、ダクト内周面とポッド外周面との間の流路断面積の小さい領域が広くなり、ダクト内でプロペラに流入する水における流速が速い領域が十分に確保される。   According to the above configuration, since the region where the gradient of the diameter reduction is gradual from the maximum diameter portion to the rear end is widened, the region where the channel cross-sectional area between the inner peripheral surface of the duct and the outer surface of the pod is small is widened. A region where the flow velocity of water flowing into the propeller is fast is sufficiently secured.

前記ポッドの前記最大直径部の直径Dgに対する前記ポッドの前端から前記最大直径部までの長さLgの割合Lg/Dgが0.5より大であり、前記ポッドの外周面は、前記前端から前記最大直径部まで徐々に拡径していてもよい。 The ratio L g / D g of the length L g from the front end of the pod to the maximum diameter portion with respect to the diameter D g of the maximum diameter portion of the pod is greater than 0.5, and the outer peripheral surface of the pod is The diameter may be gradually increased from the front end to the maximum diameter portion.

前記構成によれば、ポッドが水流から受ける抵抗を低減することができる。即ち、従来はポッドの前端面は半球状に形成されていたため、前方からの水流により受ける正圧抵抗が大きくなるが、本発明のようにLg/Dgが0.5より大とし、翼断面の前端部のように徐々に拡径する構成とすることで、ポッドが受ける水流抵抗を低減して推進効率を向上させることができる。 According to the said structure, the resistance which a pod receives from a water flow can be reduced. That is, since the front end surface of the pod has been formed in a hemispherical shape, the positive pressure resistance received by the water flow from the front increases. However, as in the present invention, L g / D g is greater than 0.5, and the blade By adopting a configuration in which the diameter gradually increases like the front end portion of the cross section, the water flow resistance received by the pod can be reduced and the propulsion efficiency can be improved.

以上の説明から明らかなように、本発明によれば、ダクトに流入する水の流速が速くなることでダクトの前端近傍に生じる圧力低下が促進されるため、ダクトにより生じる推進力を向上することができる。   As is clear from the above description, according to the present invention, since the flow rate of water flowing into the duct is increased, the pressure drop generated in the vicinity of the front end of the duct is promoted, so that the propulsive force generated by the duct is improved. Can do.

以下、本発明に係る実施形態を図面を参照して説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

(第1実施形態)
図1は本発明の第1実施形態に係る船舶用ダクト付きスラスタ1の正面図である。図2は図1に示す船舶用ダクト付きスラスタ1を一部断面にした側面図である。図1及び2に示すように、船舶用ダクト付きスラスタ1は、船舶の底部2から下方に延出するストラット3を備えている。そのストラット3の下部には断面円形状で後方(下流側)に向けて延出するポッド4が接続されている。ポッド4の後部には、水流を発生させるプロペラ5が回転可能に接続されている。プロペラ5は、ストラット3の後方に配置されたダクト6により取り囲まれている。
(First embodiment)
FIG. 1 is a front view of a thruster 1 with a marine duct according to a first embodiment of the present invention. FIG. 2 is a side view of the marshalling duct thruster 1 shown in FIG. As shown in FIGS. 1 and 2, the marine ducted thruster 1 includes a strut 3 extending downward from the bottom 2 of the marine vessel. A pod 4 having a circular cross section and extending rearward (downstream) is connected to the lower portion of the strut 3. A propeller 5 that generates a water flow is rotatably connected to the rear portion of the pod 4. The propeller 5 is surrounded by a duct 6 disposed behind the strut 3.

ストラット3の内部空間には、垂直回転軸11が軸受12に回転自在に支持された状態で配置されており、その垂直回転軸11の上端部には船内にあるプロペラ用原動機9の出力軸に動力伝達可能に連結されている。垂直回転軸11の下端部は、ポッド4内部まで延びている。ポッド4の内部空間には、後方に向けて延びる水平回転軸14が軸受15に回転自在に支持された状態で配置されている。垂直回転軸11の下端部と水平回転軸14の前端部とはベベルギヤ13を介して動力伝達可能に接続されている。水平回転軸14の後端部は、プロペラ5に接続されている。このような構成により、プロペラ用原動機9の回転動力によりプロペラ5が回転することとなる。   In the internal space of the strut 3, a vertical rotary shaft 11 is disposed so as to be rotatably supported by a bearing 12. An upper end portion of the vertical rotary shaft 11 is connected to an output shaft of a propeller prime mover 9 in the ship. It is connected so that power can be transmitted. The lower end portion of the vertical rotation shaft 11 extends to the inside of the pod 4. In the internal space of the pod 4, a horizontal rotating shaft 14 extending rearward is disposed in a state of being rotatably supported by a bearing 15. A lower end portion of the vertical rotating shaft 11 and a front end portion of the horizontal rotating shaft 14 are connected via a bevel gear 13 so that power can be transmitted. The rear end portion of the horizontal rotating shaft 14 is connected to the propeller 5. With such a configuration, the propeller 5 is rotated by the rotational power of the propeller prime mover 9.

また、ストラット3は、垂直回転軸11回りに回転可能なように船舶の底部2に軸受10及びシール部材7を介して接続されており、ストラット3自体を回転させる駆動力を発生する旋回用原動機8に連結されている。よって、旋回用原動機8による回転動力によりストラット3が垂直回転軸11回りに回転し、それと一体的にポッド4、プロペラ5及びダクト6が旋回し、推力発生方向を変更しうる。   The strut 3 is connected to the bottom 2 of the ship through a bearing 10 and a seal member 7 so as to be rotatable around the vertical rotation shaft 11 and generates a driving force for rotating the strut 3 itself. 8 is connected. Therefore, the strut 3 is rotated around the vertical rotation shaft 11 by the rotational power of the turning prime mover 8, and the pod 4, the propeller 5 and the duct 6 are turned integrally therewith, and the thrust generation direction can be changed.

ダクト6は、リング状で翼型断面を有している。ダクト6の前端部6bは、その内周面が前方(上流側)に向けて徐々に拡径しており、前端部6b以外の本体部6cの内周面は略同一径となっている。即ち、ダクト6の前端部6aの内周面は前方に向けて拡径するように反った形状となっている。このダクト6には、ポッド4の後側部分が収容され、ポッド4の前側部分はダクト6よりも前方に突出している。詳細には、ポッド4のダクト6に収容されている部分における前後方向の長さは、ポッド4のダクト6より前方に突出している部分における前後方向の長さよりも短くなるように設定されている。   The duct 6 is ring-shaped and has an airfoil cross section. The inner peripheral surface of the front end portion 6b of the duct 6 gradually increases in diameter toward the front (upstream side), and the inner peripheral surface of the main body portion 6c other than the front end portion 6b has substantially the same diameter. That is, the inner peripheral surface of the front end portion 6a of the duct 6 has a warped shape so as to increase in diameter toward the front. The duct 6 accommodates the rear portion of the pod 4, and the front portion of the pod 4 projects forward from the duct 6. Specifically, the length in the front-rear direction in the portion accommodated in the duct 6 of the pod 4 is set to be shorter than the length in the front-rear direction in the portion protruding forward from the duct 6 of the pod 4. .

ポッド4は、前端4cから後方に向けて徐々に拡径しており、その最大直径部4aが前後方向においてダクト6の前端部6bに対応する位置に配置されている。具体的には、ポッド4の最大直径部4aとダクト6の前端6aとの間の前後方向における距離Lmが、ダクト6の前後方向における長さLpの0.2倍以下となるように設定されている。また、ポッド4の外周面は、最大直径部4aから後端4dにかけて外側に向けて凸となる略円弧状に縮径したテール部4bを有している。さらに、ポッド4の最大直径部4aの直径をDgとし、プロペラ5の直径をDpとすると、Dg/Dpは0.25以上0.45以下に設定されている。 The diameter of the pod 4 gradually increases from the front end 4c toward the rear, and the maximum diameter portion 4a is disposed at a position corresponding to the front end portion 6b of the duct 6 in the front-rear direction. Specifically, the distance L m in the front-rear direction between the maximum diameter portion 4 a of the pod 4 and the front end 6 a of the duct 6 is not more than 0.2 times the length L p in the front-rear direction of the duct 6. Is set. Further, the outer peripheral surface of the pod 4 has a tail portion 4b having a reduced diameter in a substantially arc shape that protrudes outward from the maximum diameter portion 4a to the rear end 4d. Further, the diameter of the maximum diameter portion 4a of the pod 4 and D g, when the diameter of the propeller 5 to D p, D g / D p is set to 0.25 to 0.45.

図3は図2の要部拡大図である。図3に示すように、ダクト6の前端部6bの内周面近傍には、圧力低下領域20が形成される。これは、ポッド4に沿ってダクト6内に流入する水や、ダクト6の外面近傍から前端6aに沿ってダクト6内に巻き込まれる水などの影響により、ダクト6の前端部6bの内周面近傍で流速が速くなるからである。そして、この圧力低下領域20により、ダクト6の前端部6bの内周面には、図3の矢印で示すような力Fが発生する。   FIG. 3 is an enlarged view of a main part of FIG. As shown in FIG. 3, a pressure drop region 20 is formed in the vicinity of the inner peripheral surface of the front end portion 6 b of the duct 6. This is because the inner peripheral surface of the front end portion 6b of the duct 6 is affected by the water flowing into the duct 6 along the pod 4 or the water drawn into the duct 6 along the front end 6a from the vicinity of the outer surface of the duct 6. This is because the flow velocity increases in the vicinity. And the force F as shown by the arrow of FIG. 3 generate | occur | produces on the internal peripheral surface of the front-end part 6b of the duct 6 by this pressure fall area | region 20. As shown in FIG.

この力Fは、垂直分力FVと水平分力FHとに分けることができる。図3に示す垂直分力FVは、ダクト6の上側部に対して下方に向けた力を生じているが、ダクト6の下側部には上方に向けた力が生じるため、それらが互いに打ち消しあうことでダクト6全体には力Fの垂直分力FVの影響はなくなる。一方、水平分力FHは、前方に向けた力を生じるため、推進力に寄与することとなる。 This force F can be divided into a vertical component force F V and a horizontal component force F H. The vertical component force F V shown in FIG. 3 generates a downward force with respect to the upper portion of the duct 6, but an upward force is generated at the lower portion of the duct 6. By canceling each other, the influence of the vertical component force F V of the force F is eliminated on the entire duct 6. On the other hand, since the horizontal component force F H generates a force directed forward, it contributes to the propulsive force.

ここで、ポッド4の最大直径部4aは、前後方向においてダクト6の前端部6bに対応する位置に配置されているので、ダクト6の前端部6b近傍においてダクト6の内周面とポッド4の外周面との間の流路断面積が小さくなっている。これにより、ダクト6に流入する水の流速は速くなり、ベルヌーイの定理より、ダクト6の前端部6b近傍における圧力低下領域20の圧力低下が促進されることとなる。   Here, since the maximum diameter portion 4 a of the pod 4 is disposed at a position corresponding to the front end portion 6 b of the duct 6 in the front-rear direction, the inner peripheral surface of the duct 6 and the pod 4 are located in the vicinity of the front end portion 6 b of the duct 6. The cross-sectional area of the channel between the outer peripheral surface is small. Thereby, the flow velocity of the water flowing into the duct 6 is increased, and the pressure drop in the pressure drop region 20 in the vicinity of the front end portion 6b of the duct 6 is promoted according to Bernoulli's theorem.

また、ポッド4のテール部4bは、最大直径部4aから後端4dにかけて外側に向けて凸となる略円弧状に縮径しているので、最大直径部4aから後端4dにかけて縮径の勾配が緩やかとなり、ダクト6の内周面とポッド4の外周面との間の流路断面積の小さい領域が前後方向に広くなる。これにより、ダクト6内でプロペラ5に流入する水において、流速が速くなる領域が十分に確保され、ダクト6の前端部6b近傍における圧力低下領域20の圧力低下がさらに促進されることとなる。   Further, since the tail portion 4b of the pod 4 is reduced in a substantially arc shape that protrudes outward from the maximum diameter portion 4a to the rear end 4d, a gradient of the diameter reduction from the maximum diameter portion 4a to the rear end 4d. And the region having a small flow path cross-sectional area between the inner peripheral surface of the duct 6 and the outer peripheral surface of the pod 4 becomes wider in the front-rear direction. Thereby, in the water flowing into the propeller 5 in the duct 6, a region where the flow velocity is increased is sufficiently secured, and the pressure drop in the pressure drop region 20 in the vicinity of the front end portion 6 b of the duct 6 is further promoted.

以上より、図3に示したダクト6の前端部6bの内周面に生じる力Fは増大することとなり、推進力に寄与する水平分力FHが増大する。したがって、ダクト6により生じる推進力は向上することとなる。 As described above, the force F generated on the inner peripheral surface of the front end portion 6b of the duct 6 shown in FIG. 3 increases, and the horizontal component force F H contributing to the propulsive force increases. Accordingly, the propulsive force generated by the duct 6 is improved.

図4は図1に示す船舶用ダクト付きスラスタ1の推進効率ηとDg/Dpとの関係を示したグラフである。なお、図1に示すようにポッド4の最大直径部4aの直径をDgとし、プロペラ5の直径をDpと定義する。図4は、CFD(Computational Fluid Dynamics)による数値計算で船舶用ダクト付きスラスタ1の推進効率ηとDg/Dpとの関係を出力したグラフである。なお、縦軸は推進効率ηをその最大値で割った値η/ηmaxとし、横軸をDg/Dpとしている。 FIG. 4 is a graph showing the relationship between the propulsion efficiency η and D g / D p of the marine duct thruster 1 shown in FIG. Incidentally, the diameter of the maximum diameter portion 4a of the pod 4, as shown in FIG. 1 as D g, a diameter of the propeller 5 is defined as D p. FIG. 4 is a graph in which the relationship between the propulsion efficiency η and D g / D p of the thruster 1 with a ship duct is output by numerical calculation using CFD (Computational Fluid Dynamics). The vertical axis represents the value η / η max obtained by dividing the propulsion efficiency η by the maximum value, and the horizontal axis represents D g / D p .

図4によれば、η/ηmaxは、Dg/Dpが0.38あたりをピークとしており、Dg/Dpが0.25以上0.45以下の範囲で優れた推進効率を発揮することが分かる。なぜなら、Dg/Dpが0.25未満である場合には、プロペラ5を通過する水の流路断面積が大きくなることで、ダクト6に流入する水の流速が低下し、ダクト6の前端部6b近傍における圧力低下が不十分となるからである。また、Dg/Dpが0.45を超えた場合には、ポッド4の水流に対する抵抗が大きくなるからである。よって、本実施形態のポッド4とプロペラ5は、Dg/Dpが0.25以上0.45以下の範囲内になるように設定されている。 According to FIG. 4, η / η max has a peak when D g / D p is around 0.38, and exhibits excellent propulsive efficiency when D g / D p is in the range of 0.25 to 0.45. I understand that This is because when D g / D p is less than 0.25, the flow passage cross-sectional area of the water passing through the propeller 5 is increased, so that the flow velocity of the water flowing into the duct 6 is reduced. This is because the pressure drop in the vicinity of the front end 6b is insufficient. In addition, when D g / D p exceeds 0.45, the resistance of the pod 4 to the water flow increases. Therefore, the pod 4 and the propeller 5 of the present embodiment are set so that D g / D p is in the range of 0.25 to 0.45.

(第2実施形態)
図5は本発明の第2実施形態に係る船舶用ダクト付きスラスタ31を一部断面にした側面図である。なお、第1実施形態と共通する構成については同一符号を付して説明を省略する。図5に示すように、本実施形態のポッド34は、その最大直径部4aが前後方向においてダクト6の前端6aと略一致する位置に配置されている。また、ポッド34の外周面は、最大直径部34aから後端34dにかけて外側に向けて凸となる略円弧状に縮径したテール部34bを有している。
(Second Embodiment)
FIG. 5 is a side view, partly in section, of a marine ducted thruster 31 according to a second embodiment of the present invention. In addition, about the structure which is common in 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted. As shown in FIG. 5, the pod 34 of the present embodiment is disposed at a position where the maximum diameter portion 4 a substantially coincides with the front end 6 a of the duct 6 in the front-rear direction. Further, the outer peripheral surface of the pod 34 has a tail portion 34b having a reduced diameter in a substantially arc shape that protrudes outward from the maximum diameter portion 34a to the rear end 34d.

さらに、ポッド34のダクト6より前方に突出している部分における前後方向の長さは、ポッド34のダクト6に収容されている部分における前後方向の長さよりもかなり長く、ポッド34の最大直径部34aよりも前側の部分34eの外周面は前後方向に長尺であり、前端34cから最大直径部34aまで緩やかに拡径した形状である。具体的には、ポッド34の最大直径部34aの直径をDgとし、ポッド34の前端34cから最大直径部34aまでの長さをLgとすると、Lg/Dgが0.5より大となるように設定されている。このような構成により、ポッド4が前方からの水流により受ける正圧抵抗が低減され、推進効率が向上することとなる。 Further, the length in the front-rear direction at the portion of the pod 34 protruding forward from the duct 6 is considerably longer than the length in the front-rear direction at the portion accommodated in the duct 6 of the pod 34, and the maximum diameter portion 34 a of the pod 34. The outer peripheral surface of the front portion 34e is longer in the front-rear direction and has a shape that is gradually expanded from the front end 34c to the maximum diameter portion 34a. Specifically, the diameter of the maximum diameter portion 34a of the pod 34 and D g, and the length from the front end 34c of the pod 34 to the maximum diameter portion 34a and L g, L g / D g is greater than 0.5 It is set to become. With such a configuration, the positive pressure resistance received by the water flow from the front of the pod 4 is reduced, and the propulsion efficiency is improved.

以上のように、本発明に係る船舶用ダクト付きスラスタは、推進力が向上する優れた効果を有し、この効果の意義を発揮できる船舶推進装置に広く適用すると有益である。   As described above, the thruster with a marine duct according to the present invention has an excellent effect of improving the propulsive force, and it is beneficial to be widely applied to a marine vessel propulsion apparatus that can exhibit the significance of this effect.

本発明の第1実施形態に係る船舶用ダクト付きスラスタの正面図である。It is a front view of the thruster with a ship duct concerning a 1st embodiment of the present invention. 図1に示す船舶用ダクト付きスラスタを一部断面にした側面図である。It is the side view which made the cross section of the thruster with a ship duct shown in FIG. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2. 図1に示す船舶用ダクト付きスラスタの推進効率とDg/Dpとの関係を示したグラフである。It is a graph showing the relationship between the propulsion efficiency and D g / D p marine ducted thrusters shown in Figure 1. 本発明の第2実施形態に係る船舶用ダクト付きスラスタを一部断面にした側面図である。It is the side view which made the thruster with a ship duct which concerns on 2nd Embodiment of this invention into a partial cross section.

符号の説明Explanation of symbols

1,31 ダクト付きスラスタ
3 ストラット
4,34 ポッド
4a,34a 最大直径部
5 プロペラ
6 ダクト
1,31 Thruster with duct 3 Strut 4,34 Pod 4a, 34a Maximum diameter part 5 Propeller 6 Duct

Claims (5)

船舶の底部から下方に向けて延出するストラットと、
前記ストラットの下部に接続されて後方に延出するポッドと、
前記ポッドの後部に接続されて水流を発生させるプロペラと、
前記プロペラを囲むように前記ストラットの後方に配置されたダクトと、を備え、
前記ポッドの最大直径部が、前後方向において前記ダクトの前端部に対応する位置に配置されていることを特徴とする船舶用ダクト付きスラスタ。
A strut extending downward from the bottom of the ship;
A pod connected to the lower portion of the strut and extending backward,
A propeller connected to the rear of the pod to generate a water flow;
A duct disposed behind the strut so as to surround the propeller,
A thruster with a marine duct, wherein the maximum diameter portion of the pod is disposed at a position corresponding to the front end portion of the duct in the front-rear direction.
前記ポッドの最大直径部と前記ダクトの前端との間の前後方向における距離Lmが、前記ダクトの前後方向における長さLpの0.2倍以下である請求項1に記載の船舶用ダクト付きスラスタ。 2. The marine duct according to claim 1, wherein a distance L m in the front-rear direction between the maximum diameter portion of the pod and the front end of the duct is 0.2 times or less of a length L p in the front-rear direction of the duct. With thruster. 前記プロペラの直径Dpに対する前記ポッドの前記最大直径部の直径Dgの割合Dg/Dpが、0.25以上0.45以下である請求項1又は2に記載の船舶用ダクト付きスラスタ。 The ratio D g / D p of diameter D g of the largest diameter portion, marine ducted thruster according to claim 1 or 2 is 0.25 to 0.45 of the pod relative to the diameter D p of the propeller . 前記ポッドの外周面は、前記最大直径部から後端にかけて外側に向けて凸となる略円弧状に縮径している請求項1乃至3のいずれかに記載の船舶用ダクト付きスラスタ。   The thruster with a marine duct duct according to any one of claims 1 to 3, wherein an outer peripheral surface of the pod has a reduced diameter in a substantially arc shape that protrudes outward from the maximum diameter portion to a rear end. 前記ポッドの前記最大直径部の直径Dgに対する前記ポッドの前端から前記最大直径部までの長さLgの割合Lg/Dgが0.5より大であり、
前記ポッドの外周面は、前記前端から前記最大直径部まで徐々に拡径している請求項1乃至4のいずれかに記載の船舶用ダクト付きスラスタ。
The ratio L g / D g of the length L g from the front end of the pod to the maximum diameter portion with respect to the diameter D g of the maximum diameter portion of the pod is greater than 0.5,
The thruster with a marine duct according to any one of claims 1 to 4, wherein an outer peripheral surface of the pod is gradually enlarged from the front end to the maximum diameter portion.
JP2008161431A 2008-06-20 2008-06-20 Ship thruster with duct Active JP4531828B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008161431A JP4531828B2 (en) 2008-06-20 2008-06-20 Ship thruster with duct
PCT/JP2009/001681 WO2009153906A1 (en) 2008-06-20 2009-04-13 Ship thruster with duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161431A JP4531828B2 (en) 2008-06-20 2008-06-20 Ship thruster with duct

Publications (2)

Publication Number Publication Date
JP2010000905A true JP2010000905A (en) 2010-01-07
JP4531828B2 JP4531828B2 (en) 2010-08-25

Family

ID=41433832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161431A Active JP4531828B2 (en) 2008-06-20 2008-06-20 Ship thruster with duct

Country Status (2)

Country Link
JP (1) JP4531828B2 (en)
WO (1) WO2009153906A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101335256B1 (en) * 2011-06-16 2013-12-03 삼성중공업 주식회사 Tunnel thruster and ship having the same
JP2014530785A (en) * 2012-03-16 2014-11-20 ビーコン フィンランド リミティド オサケユイチア Retractable propulsion vessel with thruster

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010002213A1 (en) * 2010-02-22 2011-10-06 Becker Marine Systems Gmbh & Co. Kg Rotatable nozzle propeller for watercraft
CN102530216B (en) * 2012-02-14 2014-05-21 武汉船用机械有限责任公司 High-power rudder propeller with guide pipe and detaching method for blades of propeller
CN107472493A (en) * 2017-08-23 2017-12-15 北京臻迪科技股份有限公司 Propeller flow passage structure, propeller and submarine navigation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222393A (en) * 1984-01-25 1985-11-06 ビツカ−ス パブリツク リミテツド カンパニ− Ship with underwater propeller unit
JPS6162698U (en) * 1984-09-28 1986-04-26
JPS6272299U (en) * 1985-10-26 1987-05-08
JPS6272300U (en) * 1985-10-26 1987-05-08
JPH1081299A (en) * 1996-09-11 1998-03-31 Kawasaki Heavy Ind Ltd Marine rotary thruster
JP2004330809A (en) * 2003-04-30 2004-11-25 Shin Kurushima Dockyard Co Ltd Pod column structure for pod propulsion machine
JP2007535440A (en) * 2004-04-30 2007-12-06 アルストム A marine propulsion device having a pod configured to be installed in a lower portion of a ship hull

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222393A (en) * 1984-01-25 1985-11-06 ビツカ−ス パブリツク リミテツド カンパニ− Ship with underwater propeller unit
JPS6162698U (en) * 1984-09-28 1986-04-26
JPS6272299U (en) * 1985-10-26 1987-05-08
JPS6272300U (en) * 1985-10-26 1987-05-08
JPH1081299A (en) * 1996-09-11 1998-03-31 Kawasaki Heavy Ind Ltd Marine rotary thruster
JP2004330809A (en) * 2003-04-30 2004-11-25 Shin Kurushima Dockyard Co Ltd Pod column structure for pod propulsion machine
JP2007535440A (en) * 2004-04-30 2007-12-06 アルストム A marine propulsion device having a pod configured to be installed in a lower portion of a ship hull

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101335256B1 (en) * 2011-06-16 2013-12-03 삼성중공업 주식회사 Tunnel thruster and ship having the same
JP2014530785A (en) * 2012-03-16 2014-11-20 ビーコン フィンランド リミティド オサケユイチア Retractable propulsion vessel with thruster

Also Published As

Publication number Publication date
WO2009153906A1 (en) 2009-12-23
JP4531828B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4931879B2 (en) A device that reduces ship drive output requirements
JP4531828B2 (en) Ship thruster with duct
JP5231878B2 (en) Ship thruster with duct
JP2011178222A (en) Ship
KR20150050918A (en) Propulsion apparatus
WO2011102103A1 (en) Thruster with duct attached and vessel comprising same
JP2006306145A (en) Marine propeller
JP2009202873A (en) Vessel
JP2008149746A (en) Contra-rotating propeller device for ship
JP2010116007A (en) Propeller of marine vessel
WO2013027857A1 (en) Water vessel propulsion apparatus
KR101159205B1 (en) Rudder for ship and ship including the same
JP5244341B2 (en) Marine propulsion device and design method for marine propulsion device
KR20150076705A (en) Duct for Ship
JP2011116317A (en) Screw propeller and propulsion unit
JP2013043632A (en) Asymmetric twist flow control fin of ship
JP6493691B2 (en) Ship
WO2014125881A1 (en) Propeller wake flow straightener device
KR102095421B1 (en) Azimuth thruster
KR20160000207U (en) Propelling system for ship having rudder bulb
JP2012096751A (en) Propulsion device for marine vessel
KR101334333B1 (en) A ship
JP4842904B2 (en) Ship propulsion mechanism
KR20150046854A (en) Apparatus of ship thrust augmentation
KR20160017788A (en) Azimuth thruster apparatus for driving performance enhancing of ship

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Ref document number: 4531828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250