JP2009543214A - 画像特徴を意識した画像欠陥除去 - Google Patents

画像特徴を意識した画像欠陥除去 Download PDF

Info

Publication number
JP2009543214A
JP2009543214A JP2009518368A JP2009518368A JP2009543214A JP 2009543214 A JP2009543214 A JP 2009543214A JP 2009518368 A JP2009518368 A JP 2009518368A JP 2009518368 A JP2009518368 A JP 2009518368A JP 2009543214 A JP2009543214 A JP 2009543214A
Authority
JP
Japan
Prior art keywords
image
defect
defects
local
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009518368A
Other languages
English (en)
Other versions
JP4792109B2 (ja
Inventor
キシレブ・パーベル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of JP2009543214A publication Critical patent/JP2009543214A/ja
Application granted granted Critical
Publication of JP4792109B2 publication Critical patent/JP4792109B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/409Edge or detail enhancement; Noise or error suppression
    • H04N1/4097Removing errors due external factors, e.g. dust, scratches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • G06T5/30Erosion or dilatation, e.g. thinning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/77Retouching; Inpainting; Scratch removal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00092Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to the original or to the reproducing medium, e.g. imperfections or dirt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

【課題】スキャンされた写真又は他の画像から欠陥を除去することに適用可能なシステム、方法および処理技法を提供する。
【解決手段】局所的画像特性を使用して、画像内のいずれの潜在的欠陥が補正されるべきかを判断するシステム、方法、及び技法が提供される。代表的な一実施の形態では、画像内の潜在的欠陥は、そのエッジの鮮明度に基づいて特定され、種々の潜在的欠陥の強度の測定値が計算される。次に、潜在的欠陥の強度の測定値は、補正される画像欠陥を特定するために、このような潜在的欠陥のすぐ近傍における、画像の一定の局所的特性を考慮して評価される。
【選択図】図1

Description

本発明は、画像処理システム、画像処理方法、及び画像処理技法に関し、特に、スキャンされた写真又は他の画像から欠陥を除去することに適用可能である。
ほこり、ひっかき傷、及び他の欠陥を画像から除去するための既存の自動化された技法に関する重大な問題は、このような技法が、多くの場合、線分及びさまざまなテクスチャ等の実際の画像特徴を、写真をスキャンする時に生じるアーティファクト等の真の欠陥と十分に区別することができないということである。
加えて、このような既存の技法は、多くの場合、特に、このような低コントラストの欠陥がより暗い領域に位置している場合に、低コントラストの欠陥を分離するのが非常に不得手であり、このような技法の本来的な限界により、多くの場合、このような欠陥を頻繁に見落とすか、又は、画像特徴を欠陥として頻繁に分類を誤るかの二者択一に直面する。
本発明は、スキャンされた写真又は他の画像から欠陥を除去することに適用可能なシステム、方法および処理技法を提供する。
本発明は、局所的画像特性を使用して、画像内のいずれの潜在的欠陥が補正されるべきかを判断することにより、この問題に対処する。
代表的な一実施の形態では、画像内の潜在的欠陥は、そのエッジの鮮明度に基づいて特定され、種々の潜在的欠陥の強度の測定値が計算される。
次に、潜在的欠陥の強度の測定値は、補正される画像欠陥を特定するために、このような潜在的欠陥のすぐ近傍における、画像の一定の局所的特性を考慮して評価される。
上記概要は、単に、本発明の一般的な性質の簡潔な説明を提供することを意図しているにすぎない。
本発明のより完全な理解は、特許請求の範囲、及び、添付の図面に関する好ましい実施形態の以下の詳細な説明を参照することによって得ることができる。
本発明の第1の代表的な実施形態による、画像欠陥を除去するためのシステムを示すブロック図である。 本発明の代表的な一実施形態による、第1の構造要素を使用する画像のトップハット変換の結果を示す図である。 本発明の代表的な一実施形態による、第2の構造要素を使用する画像のトップハット変換の結果を示す図である。 本発明の代表的な一実施形態による、第1のスケールにおける欠陥マップを示す図である。 本発明の代表的な一実施形態による、第2のスケールにおける欠陥マップを示す図である。 本発明の第2の代表的な実施形態による、画像欠陥を除去するためのシステムを示すブロック図である。 本発明の第3の代表的な実施形態による、画像欠陥を除去するためのシステムを示すブロック図である。
図1は、本発明の第1の代表的な実施形態による、画像欠陥を除去するためのシステム10を示すブロック図である。図示するように、画像12(たとえば、スキャンされた写真又は他の任意のデジタル写真)がシステム10に入力される。
欠陥を検出するために、本発明は、包括的には、画像特徴を比較して、欠陥エッジの鮮明度の差分に依拠する。
この点について、画像内の欠陥は、たとえば、写真プリント上のひっかき傷の結果の場合もあるし、又はスキャナプラテン上のほこり、インク、若しくは毛髪の結果の場合もある。
このような欠陥は、一般に、周辺エッジ、すなわち、異なるピクセル値の領域を分離する比較的細い線又は他の形状の曲線、を有する閉じた形状によって表すことができる。
換言すれば、エッジは、ピクセル値の突然の変化が生じる境界をマークするものである。
実際の画像のコンテキストでは、このようなエッジ又は境界は、多くの場合、「画像特徴」と呼ばれる。
以下の論述では、エッジは、欠陥エッジであろうと画像特徴であろうと、多くの場合、「特徴」と呼ばれる。
エッジの鮮明度は、ピクセル値がどれくらい突然に変化するのかを示す。
すなわち、2つの異なる領域間のピクセル値の変化に関して、それらの領域間で遷移領域の幅がどれくらい狭いのかを示す。
たとえば、非常に鮮明なエッジの場合、変化全体を2つの隣接するピクセル間で観察することができる(すなわち、真のエッジは、3つのピクセルにわたるピクセル境界に正確に含まれない。ただし、その場合でも、傾きは2ピクセルである)。
他のエッジは、たとえば、4〜5ピクセルにわたって、幾分、より段階的な変化を示す。
これらのエッジは、適度な高解像度画像の場合、依然として肉眼にはかなり鮮明に見える。
上記で言及した鮮明度の差分は、画像が十分な高解像度(たとえば、200ドット毎インチ(dpi)以上)でスキャンされた場合に、欠陥が、多くの場合、画像特徴のエッジよりも鮮明なエッジを示すという観察結果に基づいている。
たとえ画像特徴の全体のコントラストが欠陥のコントラストよりも大きくなる可能性があっても、画像特徴は、通例、より大きな度合いのブラーを示す。
より具体的には、画像特徴は、欠陥エッジについてよくある段差状の変化ではなく、通例、グレイレベルプロファイルの直線的で単調な変化を有する。
この差は、画像特徴が、多くの場合、複数のブラーを受けるということに起因する可能性が最も高い。
たとえば、多くの場合、最初のブラーリング段階は、写真が撮影されたカメラの光学素子によって引き起こされる。
また、デジタル写真撮影の場合、圧縮及びノイズ除去等のさまざまな画像後処理ステップがあり、さらなる量のブラーリングを引き起こす。
最後に、写真がスキャンされる時は、スキャナ光学素子によってブラーリングが引き起こされる。
これとは対照的に、たとえば、ひっかき傷及びほこりによる遮蔽によって引き起こされる物理的な欠陥の結果としてスキャン画像に現れるオブジェクトは、たった1つのブラーリング段階、すなわち、スキャナの光学素子によって導入されたブラーリング段階しか受けない。
したがって、これらの特徴は、非常に鮮明な段差状のエッジを有する傾向がある。
システム10の初期処理段階14は、画像12内の潜在的欠陥の強度の測定値を求めると共に、それらの潜在的欠陥を特定して出力する。
より具体的には、好ましい実施形態では、潜在的欠陥は、それらの潜在的欠陥のエッジの鮮明度に少なくとも部分的に基づいて検出され、各欠陥の強度は、好ましくは、対応する潜在的欠陥のエッジの鮮明度、及び、潜在的欠陥の背景に対するその潜在的欠陥のコントラストの双方を反映する。
本発明による、このような潜在的欠陥を特定してこのような強度の測定値を求めるための好ましい技法は、形態学に基づいている。
具体的には、この技法は、2つの異なる構造要素を有するトップハット変換を適用することによって取得された2つの極大値マップを比較し、また、2つの異なる構造要素を有するトップハット変換を適用することによって取得された2つの極小値マップも比較する。
最初に、或る背景を論述する。2つの基本的なグレイ値形態学的演算が次のように定義される。
画像X[m,n]のグレイ値拡張
Figure 2009543214
は、
Figure 2009543214
によって定義される。
上記定義から、
Figure 2009543214
の各出力座標[m,n]は、特定の構造要素Sを、画像Xのシフトされたバージョンとまず合計することによって取得される。
次に、SのJ×K領域内のすべてのシフトにわたる最大値が結果として選ばれる。画像拡張(たとえば、対称的なもの)が、Xの境界エリアに使用される。
画像X[m,n]のグレイ値侵食は、
Figure 2009543214
によって定義される。
グレイ値の拡張及び侵食の二重性を使用すると、
Figure 2009543214
となることに留意されたい。
ここで、
Figure 2009543214
は、S[j,k]をS[−j,−k]に置換することによって取得される。
上記グレイレベル形態学的演算の特別な場合は、単純な構造要素を使用することによって達成することができる。
たとえば、S=定数=0の特定の場合には、上記2つの演算は、領域[j,k]⊂S上の最小値及び最大値、すなわち、
Figure 2009543214
に低減される。
より高レベルの形態学的演算は、以下のように定義される。
グレイ値のオープニングは、
Figure 2009543214
である。
グレイ値のクロージングは、
Figure 2009543214
である。
二重性を使用すると、
Figure 2009543214
である。
クロージング演算子は、極小値の検出に適していることが知られている。
したがって、暗い欠陥(すなわち、それよりも明るい背景に対する)の検出にはクロージング演算子が使用される。
これとは対照的に、オープニング演算子は、極大値の検出に適しており、したがって、明るい欠陥(すなわち、それよりも暗い背景に対する)の検出にはオープニング演算子が使用される。
トップハット変換は、
dark(X[m,n],S)=(X・S)[m,n]−X[m,n]、及び
bright(X[m,n],S)=X[m,n]−(XoS)[m,n]
として計算される。
dark(X[m,n],S)は、極大値と、対応する局所的な背景レベルとの間の差分を反映することに留意されたい。
同様に、Ybright(X[m,n],S)は、極小値と、対応する局所的な背景レベルとの間の差分を反映する。
換言すれば、これらは、一般的に、局所的な特徴コントラストのマップと考えることができる。
以下の論述では、提示を容易にするために、暗い欠陥(すなわち、それよりも明るい背景に対する)の場合のみに言及し、Yに関して「暗い」又は「明るい」というインデックスを省略することにする。
同様の考慮は、明るい欠陥(すなわち、それよりも暗い背景に対して)の場合にも適用される。
欠陥は、Ydark(又はYbright)が所定のしきい値Tよりも大きいピクセルにおいて特定することができる。
しかしながら、このような手法の欠点は、この手法が、欠陥と、線分及びさまざまなテクスチャ等の本来的な画像特徴との区別を行わないということである。
したがって,好ましい実施形態では、以下の手法が採用される。
たとえば、L. Joyeux、S. Boukir、B. Besserer、O. Buisson著「Reconstruction of Degraded Image Sequences. Application to Film Restoration」(Image and Vision Computing, 19, 2001, pp. 503-516)に論述されているように、ピラミッド形状の構造要素が使用される。
より具体的には、好ましい実施形態では、以下のような2つの別個の構造要素、すなわち、
Figure 2009543214
が構築される。
ここで、tは、たとえば1〜10の範囲にある経験的に選択されたパラメータである。発明者のこれまでの経験では、本技法は、特に、tに使用される正確な値の特徴の影響は受けにくい。
構造要素は、オープニングを計算するのに使用されるとき、マスクとして働き、その結果のマップは、マスクパターンが見つかった箇所を特定する。
逆に、同じ構造要素が、クロージングを計算するのに使用されるとき、マスクパターンの反転したものが見つかった箇所を特定する。
したがって、Sは、それらの背景とのコントラストを最も強く有する孤立した1ピクセルスポットを見つける傾向があるが、任意の線分及びエッジセグメントも特定する。
また、Sも、それらの背景とのコントラストを有する1ピクセルスポットを見つける傾向があるが、このようなスポットが、3つの隣接するピクセルにわたってピクセル値の直線的な変化を示す場合に、いっそう大きな規模の結果を提供する。
同様に、Sは、エッジも特定し、このようなエッジが、3つの隣接するピクセルにわたってピクセル値の直線的な変化を示す場合に、いっそう大きな規模の結果を提供する。換言すれば、S及びSは、エッジ鮮明度の異なるレベルに対して異なる応答を有するマスクとして機能する。
結果のトップハット変換は、このように、コントラストの関数だけでなくエッジ鮮明度の関数でもあり、特徴の強度の全体の測定値を提供する。特徴の鮮明度に対するトップハット変換の感度は、構造要素S及びSのいずれが使用されていたかによって決まる。
非常に鮮明なエッジと比較的平滑な(又はブラーリングされた)エッジとの間の相違を示すために、2つの異なる構造要素S及びSについて取得される、画像の2つのトップハット変換の間の差分が以下のように計算される。
dY=|Y(X[m,n],S)−Y(X[m,n],S)|
非常に鮮明な特徴は、一般に、双方のトップハット変換にほぼ同じように現れる。
これとは対照的に、単調でブラーのあるエッジプロファイルを示す特徴は、第2の構造要素Sが使用されたときに、第1の構造要素Sで取得された同じ特徴と比較してより強く現れる。
したがって、双方のマップY(X[m,n],S)及びY(X[m,n],S)に現れる特定の特徴が、欠陥に対応するのか、それとも、本来的な画像特徴であるのかの第1の指示は、差分マップdYから取得することができる。
対応するdY値が所定のしきい値TdY(たとえば、1グレイレベル)よりも小さい特徴は、非常に鮮明であり、したがって、ほこり、ひっかき傷、又は他の或るタイプの欠陥に対応すると考えられる。
その結果、以下のように、dYがTdYよりも大きいYのピクセルをゼロにすることによって、2つの構造要素の潜在的欠陥の初期しきい値処理マップ
Figure 2009543214
が取得される。
Figure 2009543214
同様に、
Figure 2009543214
Figure 2009543214
及び
Figure 2009543214
は、極小値と、対応する局所的な背景レベルとの差分のTdYしきい値処理マップであることに留意されたい。
換言すれば、これらは、局所的な特徴コントラストのTdYしきい値処理マップである。
本発明の本実施形態では、(各欠陥の強度の測定値と共に潜在的欠陥を特定する)しきい値処理された
Figure 2009543214
及び
Figure 2009543214
のマップ15が、検出モジュール14から出力される。
3つ以上の異なる構造要素も本発明のさまざまな実施形態で使用できることに留意すべきである。
実際には、異なるサイズの欠陥を特定するには、構造要素を追加することが有益である可能性がある。
たとえば、上記で具体的に特定された2つの構造要素に関してのみトップハット変換を計算することによって、多くの場合、非常に大きな欠陥を特定することが困難になり、特に、低いコントラストを有する大きな欠陥を特定することが困難になる。
すなわち、この技法は、コントラストが十分大きいという条件で、欠陥の境界(非常に鮮明なエッジを有する)を特定することができるが、欠陥の内部(ほとんど変化を有しないか、又は、少なくとも全般に鮮明な変化を何ら有しない)を特定することはできない。
したがって、異なるサイズの欠陥を特定するには、他のいくつかの処理ステップが一般に望ましい。
1つの手法は、最大の構造要素が、予想される最大の欠陥を検出することができる、多数の異なるサイズの構造要素を使用することである。
代替的な一手法は、以下でより詳細に説明するように、原画像のいくつかのバージョン、すなわち、原画像のいくつかの異なる解像度に適用される上記2つの構造要素を使用することである。
より大きな潜在的欠陥を特定するために、2つの構造要素が、上述したものと同様の方法であるが、中央部分がより多くのゼロ値の要素を含む(欠陥の内部空間に対応する)方法で構成される。
たとえば、次に大きなスケールでは、2つの構造要素は、好ましくは、ゼロから成る2×2矩形行列(rectangle)を含み、その次に大きなスケールでは、2つの構造要素は、好ましくは、ゼロから成る4×4矩形行列を含み、以下同様である。
したがって、本処理は、異なるスケールに関して(すなわち、異なる潜在的欠陥サイズについて)繰り返すことができ、2つの構造要素は、各スケールにおいて使用される。
一般的に言えば、本実施形態は、単一のスケールのみを考慮する。後述する他の実施形態は、異なるサイズの欠陥を検出するために考慮すべき事項をより詳細に対処する。
また、上記説明は、より鮮明なエッジ又は特徴を、それよりも鮮明でないエッジ又は特徴と区別するための1つの技法にしか言及していない。
しかしながら、本発明によれば、さまざまな異なるエッジ検出技法及びさまざまな鮮明度測定値のいずれかをこの目的のために利用できることに留意すべきである。
この点について、本発明による技法は、たとえば異なるパラメータを有する2つ以上の異なるエッジ検出器を代わりに使用することができる。
たとえば、この目的のために、さまざまな度合いの平滑化を有する微分フィルタを画像12に適用することができる。
いずれにしても、エッジが処理モジュール14で特定されているのと同時に、局所的な画像解析が、モジュール17で入力画像12に対して行われる。
このような局所的な画像解析は、本来的な画像特徴と欠陥との弁別をさらに改善するのに使用されると共に、疑わしい欠陥に関する処理を調整するのにも使用される。
本発明の好ましい実施形態では、局所的な画像特性が計算され、それらの局所的な画像特性を使用して、特徴に依存したしきい値マップが生成される。
最後に、このようなマップは、暗い(又は明るい)欠陥のマップ15
Figure 2009543214
に適用される。
次の論述は、この技法の背後にある一定のヒューリスティクスを解説している。
第一に、モジュール17で求められたしきい値は、好ましくは、局所ルミナンスレベルに依存する。
この点について、より明るい領域に現れる暗い欠陥は、より暗い領域に現れる同じ明るさの欠陥よりも知覚されるコントラストが高い。
したがって、本発明の一般的なルールとして、しきい値は、明るいエリアほど高く設定される。
このヒューリスティクスは、潜在的欠陥を誤って分類した可能性があるあらゆる可能性に基づくのではなく、人間の知覚(人間視覚モデルHVS)にのみ基づいていることに留意する。
換言すれば、このヒューリスティクスは、人間の知覚の一定の特性に依拠して、一定の状況において誤差のより大きなマージンを提供する。
第二に、ビジーな(たとえば、テクスチャを含むか又はエッジを含む)エリアでは、(たとえば、ほこりによる遮蔽によって引き起こされた)欠陥は、平滑なエリアに現れる欠陥よりも混乱を引き起こすことは少ない(別の考慮すべき事項は、一定の状況で誤差のより大きなマージンを許容できる人間の知覚に関係するものである)。
加えて、このようなエリアでは、一般に、本来的な画像特徴を欠陥として誤って分類する確率はより高くなる。
この後者の考慮すべき事項は、潜在的欠陥のマップ15を生成する際に生じた可能性がある誤差に対応することを対象とする。
上記理由の双方により、本発明の一般的なルールとして、非常にビジーなエリアでは、しきい値は、平坦で平滑なエリアよりも高く設定される。
したがって、1)平均局所ルミナンスレベル、2)エリアのビジー度の指標である局所的分散、及び3)エッジが存在することの指標である、局所的勾配の絶対値の合計、の3つのパラメータの関数としてしきい値マップが定義される。
したがって、ルミナンスに加えて、局所的領域全体にわたる全体のピクセル変化(たとえば、分散)が考慮され、また、局所的領域内の直接的変化(たとえば、局所的勾配等のピクセルごとの変化)の或る複合測定値も考慮される。
換言すれば、ピクセル変化の2つの空間スケールが、各局所的領域内で考慮される。
全体のピクセル変化は、局所的領域にエッジ又はテクスチャのいずれかが存在することを示すことができる一方、直接的ピクセル変化は、局所的領域に複数のエッジが存在することを示す。
局所的領域それ自体は、好ましくは、検出モジュール14でエッジを特定するのに使用された領域よりも大きくなるように定義される(後者は、一般に、幅が2〜3ピクセルにすぎない)。
一般に、他の統計的記述子を同様に(又は代わりに)使用することができる。
たとえば、ビジーで、テクスチャを含むか又はエッジを含むエリアを検出するために、局所的な尖度及び疎性を使用することができる。
本発明の本実施形態では、ブロックBについて計算された最初の2つのパラメータである平均局所的ルミナンスμ及び局所的分散sは、
Figure 2009543214
によって定義される。
本実施形態の第3のパラメータは、局所的勾配の絶対値の合計である。より具体的には、導関数の単純なゼロ次近似
Figure 2009543214
が使用される。
本発明の好ましい実施形態では、コンテキスト適応型しきい値関数を構築するための以下のストラテジーが使用される。
まず、しきい値の初期値Tが設定される。この値は、ユーザがインタラクティブに入力することもできるし、実証的研究に基づいて事前に設定することもできる。次に、鮮明なエッジ、すなわち、欠陥のマップ15
Figure 2009543214
及び
Figure 2009543214
に現れる非ゼロの要素、の勾配値の経験的分布の平均及び標準偏差が評価される。
次に、最小欠陥しきい値(すなわち、許容される最小の欠陥コントラスト)が、
Figure 2009543214
として定義される。
ここで、
Figure 2009543214

及び
Figure 2009543214

は、初期欠陥マップ
Figure 2009543214
の経験的な平均及び経験的な標準偏差である(
Figure 2009543214

についても同様である)。
σは、たとえばユーザによって定義された所望の検出レベルに反比例する定数である。
σの一般的な値は、1〜6である。
最小欠陥しきい値を定義するこのストラテジーの背後にある洞察は、以下の通りである。
たとえば、Tが事前に20に設定されていたが、
Figure 2009543214
に関する欠陥コントラストの平均値が20未満である場合であっても、上記定義を使用することによって、20未満のコントラストを有する欠陥が見つけることが可能になる。
他方、あまりにも多くの誤った検出が見られる場合、これは、Cσの値をより高く設定することによって解決することができる。
上記しきい値は、開始点として使用され、画像の局所的なコンテンツに従って局所的に補正される。
本実施形態では、この補正は、上述したヒューリスティクスに基づいており、上記で言及した3つのパラメータの値(すなわち、平均局所ルミナンスレベル、局所的分散、及び、局所的勾配の絶対値の合計)に依存する。
より具体的には、本実施形態では、局所的なブロック依存しきい値は、
(S)=Tmin(S)[1+Cμ+C+C]、及び
(S)=Tmin(S)[1+Cμ+C+C
によって定義される。
ここで、C、C、及びCは、経験的に求められる定数である。
好ましくは、これらの定数は、それらの対応するパラメータを正規化するように選ばれる。
たとえば、C、C、及びCは、1/max(μ)、1/max(s)、及び1/max(g)、にそれぞれ比例して選ぶことができる。
代替的な実施形態では、パラメータの非線形関数が代わりに使用される。これらの関数は、たとえばHVSモデルに基づいて定義することができる。
欠陥マップ処理モジュール19では、上記しきい値は、その後、以下のように、欠陥のマップ15
Figure 2009543214
及び
Figure 2009543214
に適用される。
Figure 2009543214
上述した前提によれば、欠陥は、2つの構造要素について計算された双方のマップに現れるはずである。
したがって、2つの構造要素のマップを結合することによって、欠陥Λの最終マップ22が取得される。
好ましくは、これは、欠陥の2つのマップ
Figure 2009543214
及び
Figure 2009543214
の成分ごとの乗算、すなわち、
Figure 2009543214
によって行われる。
上記論述は、一般に、単一のスケールのみが処理されると仮定していることに留意されたい。
複数のスケールが上記のように処理された場合、複数の複合欠陥マップΛ(各異なる解像度iにつき1つ)が、マップの対応する対から生成される。
これらの複数の異なるマップΛは、次に、平均化、又はピクセル単位の最大値の選択、すなわち、
Figure 2009543214
等の算術演算を使用して結合され、欠陥Λの単一の最終マップ22にされる。
或いは、欠陥が2値シンボル(たとえば、欠陥の場合に1、欠陥がない場合に0)を使用して特定されていた場合、マップは、ピクセル単位のブール「OR」演算子を使用して結合することができる。
いずれにしても、任意のスケールで所与のピクセルについてしきい値を超える場合、そのピクセルは、補正される欠陥とみなされるべきである。
再構成モジュール24では、原画像12が、最終欠陥マップ22に基づいて修正される。
具体的には、最終マップ22内の欠陥に対応する原画像12内のピクセルは、周囲のピクセルデータに基づく画像データに置換される。
しかしながら、本発明は、単に周囲のピクセルデータの平均を使用するのではなく、好ましくは、画像データの任意の方向的な傾向を保存する、方向感受性の置換技法を使用する。
したがって、たとえば、欠陥が、原画像12の特徴エッジ上に生じている場合、置換画像データは、好ましくは、そのエッジを維持する。
実際には、この時点で、1つは暗い欠陥を示し、1つは明るい欠陥を示す2つの欠陥マップ22があることに留意すべきである。
これらは、以下で対処される。
画像データの方向感受性の置換を行うための1つの技法は、クロージング演算及びオープニング演算に基づいている。
まず、点接続性の問題に対処するために、欠陥ピクセルのマップ22が拡張される(ただし、他の方法を代わりに使用することもできる)。
スキャンされた画像ピクセルは、マップ22の対応するエントリーが非ゼロの値を有する場合に、欠陥として特定される。
次に、暗い欠陥の場合、これらの欠陥ピクセルは、画像12のクロージングからの対応するピクセルに置換される。
明るい欠陥の場合、欠陥として特定されたピクセルは、画像12のオープニングからの対応するピクセルに置換される。
すなわち、
dark([m,n]∈D)=(X・S)([m,n]∈D)、及び
bright([m,n]∈D)=(XoS)([m,n]∈D)
となる。
ここで、Dは、欠陥ピクセル、すなわち、Λの非ゼロの値のピクセル、の部分集合であり、Sが、好ましくはSの代わりに使用される。Dに含まれない、X内のピクセルは、変化しないままである。
原画像は、欠陥ピクセルが上述したように置換されると、その後、再構成画像27として出力される。
図2〜図5は、上記処理の一例を示している。
より具体的には、図2は、上述したS構造要素を使用する一例の画像(図示せず)のトップハット変換50を示し、図3は、上述したS構造要素を使用する同じ画像のトップハット変換51を示している(すなわち、共に単一のゼロ値の中央ピクセルを有する)。
上述したように、変換50及び51の双方は、画像特徴(たとえば、特徴52〜54)を示す。
しかしながら、これらの画像特徴は、幾分、ブラーリングされ、それによって、構造要素Sのパターンとより密接にマッチングするので、変換50よりも変換51ではるかに強くなっている。
同時に、欠陥61〜64が、変換50及び51の双方で全く同一に現れている。
欠陥61及び63は、変換50及び51の双方で全く同一に特定されるが、それよりも大きな欠陥62及び64は、輪郭の形でしか示されないことにも留意されたい。
すなわち、使用される2つの構造要素は、欠陥62又は欠陥64のいずれかのすべてをキャプチャするほど十分大きなものではない。
実際には、輪郭であっても、コントラストが十分高くない限り、キャプチャされていない可能性がある。
2つの変換50と51との差分を取り、次いで、指定されたしきい値よりも小さな対応する差分値を有する変換マップ(50又は51のいずれか)のあらゆるピクセルをゼロにした後の結果の欠陥マップ22Aを図4に示す。
欠陥マップ22Aにおいて特定された欠陥ピクセルを単に置換するだけで、欠陥62又は64の全体が削除されるものではなく、むしろそれらの欠陥の周囲しか削除されない(すなわち、それらの欠陥はより小さくなる)。したがって、これは、(異なる欠陥サイズに対応する)複数の異なるスケールにおける処理が望ましい場合の一例である。
構造要素のより大きな対による処理の結果、図5に示す欠陥マップ22Bが得られる。図から分かるように、欠陥61及び63のいずれもこの欠陥マップ22Bにおいてキャプチャされないが、欠陥62及び64の双方は、この場合、それらの全体がキャプチャされる。
しかしながら、たとえばブール「OR」演算又は算術演算(たとえば、最大化(max)又は平均化)を使用して、2つの欠陥マップ22A及び22Bを結合することにより、すべての欠陥61〜64が十分特定される。
計算効率をより良くすることができる、異なるサイズの欠陥を検索する他の手法は、原画像12の異なるバージョンを作成することを伴う。
各バージョンは、異なる解像度を有する。次に、上記技法の1つが、各異なる解像度に適用され、結果が結合される。
このようなシステム80の一例が図6に示されている。容易に理解されるように、システム80の処理モジュールの多くは、(図1に示す)システム10の同じ要素符号を有する処理モジュールと同一である。
したがって、このような処理モジュールは、この実施形態では、概略のみが論述される。
本実施形態における1つの相違は、原画像12がモジュール85内で変換されて、複数の異なるバージョン86にされるということである。
各バージョンは、異なる解像度を有する。これは、たとえば、ダウンサンプリング・平均演算を原画像に適用し、それに続いて、再帰的なダウンサンプリング・平均演算を各結果の画像に適用することにより行うことができる。
或いは、画像は、ウェーブレット変換技法やウェーブレットパケット技法等のマルチスケール変換に基づいていくつかの解像度で作成することもできるし、他の任意の技法に基づいて作成することもできる。
各結果の画像は、次に、上述したようなモジュール14、17、及び19で処理される。
上述した異なるスケールでの処理と同様に、異なる欠陥マップΛ'が、各解像度iで生成される。
処理モジュール88では、異なる欠陥マップΛ'は、まず、同じ解像度(たとえば、原画像12の解像度)に変換される。
この場合も、このような変換は、ピクセル値を反復すること、補間すること、又は変換ベースの技法(たとえば、ゼロ詰め)を使用すること等による任意の既知の技法を使用して行うことができる。
その結果、たとえば、ピクセル単位で、平均化するか、最大値を取るか、又はブール「OR」演算子を使用するといった、上述した技法のいずれかを使用して結合できる一組の欠陥マップΛが得られる。
欠陥マップが、処理モジュール88で結合されて単一の最終マップ(実際には、暗い欠陥及び明るい欠陥のそれぞれについて1つ)にされると、再構成モジュール24でそのマップを使用して原画像12が再構成され、その結果、最終の再構成画像27が得られる。
本発明によるシステム90のさらなる実施形態が図7に示されている。
この実施形態では、この場合も、それぞれが異なる解像度を有する、原画像12の複数のバージョン86が、マルチグリッド変換処理モジュール85で生成される。
しかしながら、直前の実施形態と異なり、この実施形態では、各結果画像は、(図1に示す)システム10で原画像12が処理された方法と同一に処理され、その結果、複数の再構成画像が、再構成処理モジュール24によって出力される。
それらの個々の再構成画像は、次に、画像結合モジュール92で結合される。それらの再構成画像は、異なる解像度であるので、それぞれが、好ましくは、(たとえば、上述した技法のいずれかを使用して)共通の解像度に変換される。
次に、解像度が変換された画像は、たとえば、ピクセルごとの算術演算(平均化等)を使用して、又は、ピクセル単位で、以下の優先順位に従って異なる画像から画像データを選択して、結合される。
この優先順位とは、(i)ピクセルデータが、画像のいずれにおいても置換されていない場合、最も高い解像度の画像からピクセルデータを選択すること、又は、(ii)そうでない場合には、ピクセルデータが置換されたすべての画像にわたって、置換された画像データに対して算術演算を行うか、若しくは、置換された画像データの関数を別の方法で計算すること(たとえば、単純な平均若しくは画像の解像度に基づく加重平均)である。
後者の技法の目標は、欠陥がみつかったので画像データが置換されたという前提のもとで、可能な限り、置換された画像データを使用することである。
いずれにしても、最終結合画像27が出力される。
上述した実施形態は、異なるサイズの欠陥を検出するためのさまざまな技法を含む。
これらの手法のいずれも採用されず、且つ、構造要素の最小の対しか利用されない場合、多くの場合、より大きな欠陥の周辺しか検出されないことになる。
このような場合、一般に、欠陥のエッジが特定された後に、あらゆる内部ピクセルを特定するための追加の処理を含めることが望ましい。
また、上述した実施形態では、欠陥マップが生成され、入力画像を補正するのに使用される。
本発明の欠陥マップは、他の目的にも同様に利用できることに留意されたい。
たとえば、本発明による処理を含むスキャナドライバソフトウェアを、複数のスキャンにわたって特定された欠陥のロケーションの経過を追跡するように構成することができる。
次に、欠陥が、同じロケーションで繰り返し再発する場合、スキャンプラテンをクリーニングすべきであることをユーザに自動的に通知することができる。
より特定的な実施形態では、汚染粒子が存在すると思われる場所のマップがユーザに提供される。
上述したように、本発明は、かなりの量の自動的な画像欠陥の検出を提供する。
しかしながら、同様に上述したように、本発明の一定の実施形態では、ユーザには、たとえば、欠陥サイズ、欠陥コントラスト、欠陥検出レベル、又は再構成品質を指定することによって、技法のいくつかのパラメータを変更する能力が提供される。
その上、半自動モードでは、ユーザには、欠陥が目に見える画像領域におおまかにマーキングする能力も提供することができる。
システム環境
一般的に言えば、本明細書で説明した方法及び技法のほぼすべては、汎用コンピュータシステムを使用することで実施することができる。
このようなコンピュータは、通常、たとえば、共通バスを介して互いに相互接続された以下のコンポーネントの少なくともいくつかを含む。
そのコンポーネントは、1つ又は複数の中央処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、他のデバイスとインターフェースすると共に1つ又は複数のネットワークに接続するための入出力ソフトウェア及び回路部(本発明の多くの実施形態では、1つ又は複数のネットワークは、インターネット又は他の任意のネットワークに接続する)、ディスプレイ(陰極線管ディスプレイ、液晶ディスプレイ、有機発光ディスプレイ、高分子発光ディスプレイ、又は他の任意の薄膜ディスプレイ等)、他の出力デバイス(1つ又は複数のスピーカ、ヘッドホンセット、及びプリンタ等)、1つ又は複数の入力デバイス(マウス、タッチパッド、タブレット、タッチ検知式ディスプレイ、又は他のポインティングデバイス;キーボード、マイクロホン、及びスキャナ等)、マスストレージユニット(ハードディスクドライブ等)、リアルタイムクロック、着脱可能ストレージ読み出し/書き込みデバイス(RAM、磁気ディスク、磁気テープ、光磁気ディスク、光ディスク等からの読み出し用及びそれらへの書き込み用等)、並びにモデム(これも、好ましくは、ダイヤルアップ接続を介してインターネット又は他の任意のコンピュータネットワークに接続する)である。
動作時に、上記方法をこのような汎用コンピュータによって遂行される範囲で実施するためのプロセスステップは、通常、最初は、マスストレージ(たとえば、ハードディスク)に記憶され、RAMにダウンロードされ、次いで、RAMからCPUによって実行されることになる。
本発明を実施する際の使用に適したコンピュータは、さまざまな製造供給元から取得することができる。
一方、タスクのサイズ及び複雑度に応じて、さまざまなタイプのコンピュータを使用することができる。
適したコンピュータには、スタンドアロンであるか、ネットワークに配線接続されているか、又はネットワークに無線接続されているかにかかわらず、メインフレームコンピュータ、マルチプロセッサコンピュータ、ワークステーション、パーソナルコンピュータ、及び、PDA、無線電話、又は他の任意の電気機器若しくはデバイス等のさらに小さなコンピュータが含まれる。
加えて、汎用コンピュータシステムを上述したが、代替的な実施形態では、専用コンピュータが代わりに(又は追加して)使用される。
詳細には、上述した機能のいずれも、ソフトウェア、ハードウェア、ファームウェア、又はこれらの任意の組み合わせで実施することができ、特定の実施態様は、既知のエンジニアリングトレードオフに基づいて選択される。
この点について、当該技術分野で既知のように、上述した機能は、主として、固定論理ステップを通じて実施され、したがって、プログラミング(たとえば、ソフトウェア若しくはファームウェア)、論理コンポーネント(ハードウェア)の適切な配列、又はそれらの2つの任意の組み合わせを通じて達成できることに留意されたい。
本発明は、本発明の方法を遂行するためのプログラム命令が記憶されたマシン可読媒体にも関係していることが理解されるべきである。
このような媒体には、例として、磁気ディスク、磁気テープ、CD ROM及びDVD ROM等の光学的可読媒体、PCMCIAカード等の半導体メモリ等が含まれる。
各場合において、媒体は、小型ディスク、ディスケット、カセット等のポータブルアイテムの形態を取る場合もあるし、コンピュータに設けられたハードディスクドライブ、ROM、又はRAM等の比較的大きなアイテム又は固定アイテムの形態を取る場合もある。
上記説明は、主として、電子コンピュータに重点を置いている。
しかしながら、電子処理、光処理、生物学的処理、及び化学処理の任意の組み合わせを利用するコンピュータ等、他の任意のタイプのコンピュータを代わりに使用できることが理解されるべきである。
追加の考慮すべき事項
本発明のいくつかの異なる実施形態が上述され、このような各実施形態は、一定の特徴を含むものとして説明されている。
しかしながら、当業者には理解されるように、任意の単一の実施形態の論述に関連して説明された特徴は、その実施形態に限定されるものではなく、他の実施形態のいずれにも同様に含めることができ、さまざまな組み合わせで構成できることが意図されている。
同様に、上記論述では、機能は、時に、特定のモジュール又はコンポーネントのものとされている。
しかしながら、いくつかの場合には、特定のコンポーネント若しくはモジュールを完全に不要にするか、新しいコンポーネント若しくはモジュールの追加を必要とするか、又は、その双方を行い、一般に、所望に応じて、機能を任意の異なるモジュール又はコンポーネント間に分散し直すことができる。機能の正確な分散は、当業者に理解されるように、好ましくは、本発明の具体的な実施形態に関する既知のエンジニアリングトレードオフに従って行われる。
上記のように、本発明の例示の実施形態及び添付図面に関して、本発明を詳細に説明してきたが、本発明の精神及び範囲から逸脱することなく本発明のさまざまな適合及び変更を行えることが当業者には明らかなはずである。
したがって、本発明は、図面に示し上記で説明した正確な実施形態に限定されるものではない。そうではなく、本発明の精神から逸脱しないこのようなすべての変形は、本明細書に添付した特許請求の範囲によってのみ限定される本発明の範囲内にあるものとみなされることが意図されている。
10・・・システム
12・・・スキャン画像
14・・・欠陥検出
15・・・潜在的欠陥及び強度のマップ
17・・・局所的画像解析−しきい値マッピング
19・・・局所的特徴を意識した処理
22・・・最終検出マップ
24・・・画像再構成
27・・・再構成画像
80・・・システム
85・・・マルチグリッド変換
86・・・複数の解像度
88・・・検出マップ結合
90・・・システム
92・・・画像結合

Claims (10)

  1. 画像から欠陥を除去する方法であって、
    画像を取得すること、
    エッジ鮮明度に基づき、前記画像内の潜在的欠陥を特定すること、
    異なる前記潜在的欠陥の強度の測定値を求めること、
    前記画像内の異なる位置の局所的特性を計算すること、
    前記潜在的欠陥のすぐ近くの前記画像の前記局所的特性を考慮して前記潜在的欠陥の前記強度の測定値を評価することにより、画像欠陥を特定すること、及び
    前記画像欠陥に対応する画像データを、前記画像欠陥の周囲の画像データに基づいて置換すること、
    を含む方法。
  2. 前記局所的特性は、局所的なピクセル値の変化の測定値を含む、請求項1に記載の方法。
  3. 前記局所的特性は、局所的な近傍のエッジの広がりの測定値を含む、請求項1に記載の方法。
  4. 前記潜在的欠陥及び前記強度の測定値は、第1の構造要素でトップハット変換を行うこと、第2の構造要素でトップハット変換を行うこと、及び、それらの結果を比較することによって特定される、請求項1に記載の方法。
  5. 前記第1の構造要素及び前記第2の構造要素は、ピラミッド形状である、請求項4に記載の方法。
  6. 異なる解像度の前記画像のコピーを取得するステップと、
    前記異なる解像度について、(i)潜在的欠陥を特定するステップ、(ii)強度の測定値を求めるステップ、及び(iii)画像欠陥を特定するステップを遂行するステップと、
    をさらに含む、請求項1に記載の方法。
  7. 前記画像データを置換するステップは、複数の再構成画像を取得するように前記異なる解像度のそれぞれについて遂行され、前記方法は、前記再構成画像を単一の補正された画像に結合するステップをさらに含む、請求項6に記載の方法。
  8. 前記局所的特性は、前記潜在的欠陥のエッジを特定するのに使用されるものよりも大きな局所的領域に基づいて計算される、請求項1に記載の方法。
  9. 前記画像データの前記置換は、前記画像欠陥の周囲の前記画像データの方向的なパターンに基づく、請求項1に記載の方法。
  10. 前記潜在的欠陥を特定するステップは、エッジの鮮明度に基づいて異なる結果を生成する複数の異なるマスクで前記画像を処理することを含む、請求項1に記載の方法。
JP2009518368A 2006-07-04 2007-07-03 画像特徴を意識した画像欠陥除去 Expired - Fee Related JP4792109B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/481,285 2006-07-04
US11/481,285 US7826675B2 (en) 2006-07-04 2006-07-04 Feature-aware image defect removal
PCT/US2007/015481 WO2008005497A1 (en) 2006-07-04 2007-07-03 Image- feature- aware image defect removal

Publications (2)

Publication Number Publication Date
JP2009543214A true JP2009543214A (ja) 2009-12-03
JP4792109B2 JP4792109B2 (ja) 2011-10-12

Family

ID=38654947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009518368A Expired - Fee Related JP4792109B2 (ja) 2006-07-04 2007-07-03 画像特徴を意識した画像欠陥除去

Country Status (4)

Country Link
US (1) US7826675B2 (ja)
EP (1) EP2036327A1 (ja)
JP (1) JP4792109B2 (ja)
WO (1) WO2008005497A1 (ja)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512718B2 (en) 2000-07-03 2013-08-20 Foamix Ltd. Pharmaceutical composition for topical application
IL152486A0 (en) 2002-10-25 2003-05-29 Meir Eini Alcohol-free cosmetic and pharmaceutical foam carrier
US20080317679A1 (en) * 2002-10-25 2008-12-25 Foamix Ltd. Foamable compositions and kits comprising one or more of a channel agent, a cholinergic agent, a nitric oxide donor, and related agents and their uses
US20050186142A1 (en) * 2002-10-25 2005-08-25 Foamix Ltd. Kit and composition of imidazole with enhanced bioavailability
US7704518B2 (en) * 2003-08-04 2010-04-27 Foamix, Ltd. Foamable vehicle and pharmaceutical compositions thereof
US7700076B2 (en) 2002-10-25 2010-04-20 Foamix, Ltd. Penetrating pharmaceutical foam
US20060193789A1 (en) * 2002-10-25 2006-08-31 Foamix Ltd. Film forming foamable composition
US20080138296A1 (en) 2002-10-25 2008-06-12 Foamix Ltd. Foam prepared from nanoemulsions and uses
US9211259B2 (en) * 2002-11-29 2015-12-15 Foamix Pharmaceuticals Ltd. Antibiotic kit and composition and uses thereof
US7820145B2 (en) 2003-08-04 2010-10-26 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
US8486376B2 (en) * 2002-10-25 2013-07-16 Foamix Ltd. Moisturizing foam containing lanolin
US20070292359A1 (en) * 2002-10-25 2007-12-20 Foamix Ltd. Polypropylene glycol foamable vehicle and pharmaceutical compositions thereof
US9668972B2 (en) 2002-10-25 2017-06-06 Foamix Pharmaceuticals Ltd. Nonsteroidal immunomodulating kit and composition and uses thereof
US20080206161A1 (en) * 2002-10-25 2008-08-28 Dov Tamarkin Quiescent foamable compositions, steroids, kits and uses thereof
US20070292461A1 (en) * 2003-08-04 2007-12-20 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
AU2003279493B2 (en) 2002-10-25 2009-08-20 Foamix Pharmaceuticals Ltd. Cosmetic and pharmaceutical foam
US20050205086A1 (en) * 2002-10-25 2005-09-22 Foamix Ltd. Retinoid immunomodulating kit and composition and uses thereof
US20050271596A1 (en) * 2002-10-25 2005-12-08 Foamix Ltd. Vasoactive kit and composition and uses thereof
US20060018937A1 (en) * 2002-10-25 2006-01-26 Foamix Ltd. Steroid kit and foamable composition and uses thereof
US9265725B2 (en) * 2002-10-25 2016-02-23 Foamix Pharmaceuticals Ltd. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US8900554B2 (en) 2002-10-25 2014-12-02 Foamix Pharmaceuticals Ltd. Foamable composition and uses thereof
US20060233721A1 (en) * 2002-10-25 2006-10-19 Foamix Ltd. Foam containing unique oil globules
US20070292355A1 (en) * 2002-10-25 2007-12-20 Foamix Ltd. Anti-infection augmentation foamable compositions and kit and uses thereof
US10117812B2 (en) 2002-10-25 2018-11-06 Foamix Pharmaceuticals Ltd. Foamable composition combining a polar solvent and a hydrophobic carrier
US7575739B2 (en) 2003-04-28 2009-08-18 Foamix Ltd. Foamable iodine composition
US8486374B2 (en) * 2003-08-04 2013-07-16 Foamix Ltd. Hydrophilic, non-aqueous pharmaceutical carriers and compositions and uses
US20080069779A1 (en) * 2003-08-04 2008-03-20 Foamix Ltd. Foamable vehicle and vitamin and flavonoid pharmaceutical compositions thereof
MXPA06001381A (es) * 2003-08-04 2006-05-19 Foamix Ltd Vehiculo de espuma que contiene un gelificante copolimerico anfifilico.
US8795693B2 (en) 2003-08-04 2014-08-05 Foamix Ltd. Compositions with modulating agents
MXPA06002163A (es) * 2003-08-25 2006-05-22 Foamix Ltd Espuma farmaceutica de penetracion.
JP2005310310A (ja) * 2004-04-23 2005-11-04 Sanyo Electric Co Ltd トラッキングバランス調整装置
JP2010502690A (ja) * 2006-09-08 2010-01-28 フォーミックス エルティーディー. 有色または着色可能発泡性組成物
US20080260655A1 (en) * 2006-11-14 2008-10-23 Dov Tamarkin Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses
US20080206155A1 (en) * 2006-11-14 2008-08-28 Foamix Ltd. Stable non-alcoholic foamable pharmaceutical emulsion compositions with an unctuous emollient and their uses
US20080292560A1 (en) * 2007-01-12 2008-11-27 Dov Tamarkin Silicone in glycol pharmaceutical and cosmetic compositions with accommodating agent
EP1986473B1 (en) * 2007-04-03 2017-01-25 Tsinghua University Organic electroluminescent device
US8636982B2 (en) 2007-08-07 2014-01-28 Foamix Ltd. Wax foamable vehicle and pharmaceutical compositions thereof
US20090130029A1 (en) * 2007-11-21 2009-05-21 Foamix Ltd. Glycerol ethers vehicle and pharmaceutical compositions thereof
WO2009069006A2 (en) * 2007-11-30 2009-06-04 Foamix Ltd. Foam containing benzoyl peroxide
WO2010041141A2 (en) 2008-10-07 2010-04-15 Foamix Ltd. Oil-based foamable carriers and formulations
WO2009072007A2 (en) 2007-12-07 2009-06-11 Foamix Ltd. Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
WO2009090558A2 (en) 2008-01-14 2009-07-23 Foamix Ltd. Poloxamer foamable pharmaceutical compositions with active agents and/or therapeutic cells and uses
GB0814297D0 (en) * 2008-08-05 2008-09-10 Ge Healthcare Uk Ltd Microscopy
US20120087872A1 (en) 2009-04-28 2012-04-12 Foamix Ltd. Foamable Vehicles and Pharmaceutical Compositions Comprising Aprotic Polar Solvents and Uses Thereof
CA2769625C (en) 2009-07-29 2017-04-11 Foamix Ltd. Non surfactant hydro-alcoholic foamable compositions, breakable foams and their uses
WO2011013008A2 (en) 2009-07-29 2011-02-03 Foamix Ltd. Non surface active agent non polymeric agent hydro-alcoholic foamable compositions, breakable foams and their uses
US9849142B2 (en) 2009-10-02 2017-12-26 Foamix Pharmaceuticals Ltd. Methods for accelerated return of skin integrity and for the treatment of impetigo
CN102686205A (zh) 2009-10-02 2012-09-19 弗艾米克斯有限公司 局部四环素组合物
TWI456982B (zh) * 2010-03-30 2014-10-11 Realtek Semiconductor Corp 影像處理裝置與空間影像雜訊消除方法
US8971651B2 (en) 2010-11-08 2015-03-03 Sony Corporation Videolens media engine
FR2976386B1 (fr) * 2011-06-09 2018-11-09 Mbda France Procede et dispositif pour determiner automatiquement les contours de hauteurs du relief d'une zone geographique.
US8938393B2 (en) 2011-06-28 2015-01-20 Sony Corporation Extended videolens media engine for audio recognition
US9235882B2 (en) 2011-08-16 2016-01-12 Nikon Corporation Method for detecting existence of dust spots in digital images based on locally adaptive thresholding
JP6052657B2 (ja) * 2012-03-13 2016-12-27 パナソニックIpマネジメント株式会社 対象物検証装置、対象物検証プログラム、及び対象物検証方法
US8804201B1 (en) 2012-04-04 2014-08-12 Banctec, Inc. System and method for characterizing a scanned image artifact and modifying a scanned image based thereon
KR101665977B1 (ko) * 2014-09-23 2016-10-24 주식회사 신도리코 이미지 보정 장치 및 방법
US10003758B2 (en) 2016-05-02 2018-06-19 Microsoft Technology Licensing, Llc Defective pixel value correction for digital raw image frames
MX2017011630A (es) 2016-09-08 2018-09-25 Foamix Pharmaceuticals Ltd Composiciones y metodos para tratar rosacea y acne.
US10726540B2 (en) * 2017-10-17 2020-07-28 International Business Machines Corporation Self-similarity analysis for defect detection on patterned industrial objects
CN109872304B (zh) * 2019-01-17 2022-12-02 京东方科技集团股份有限公司 图像缺陷检测方法及装置、电子设备、存储介质
TWI698124B (zh) * 2019-06-13 2020-07-01 瑞昱半導體股份有限公司 影像調整方法以及相關的影像處理電路
US11900581B2 (en) 2020-09-22 2024-02-13 Future Dial, Inc. Cosmetic inspection system
US11836912B2 (en) * 2020-09-22 2023-12-05 Future Dial, Inc. Grading cosmetic appearance of a test object based on multi-region determination of cosmetic defects
CN115082429B (zh) * 2022-07-20 2022-11-04 山东马勒铝业科技有限公司 一种基于图像处理的铝棒缺陷检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061500A (ja) * 2002-06-03 2004-02-26 Fuji Photo Film Co Ltd 画像欠陥検出方法
JP2004193956A (ja) * 2002-12-11 2004-07-08 Konica Minolta Holdings Inc 画像処理装置、画像処理方法、画像処理プログラムおよび画像記録装置
JP2004318696A (ja) * 2003-04-18 2004-11-11 Konica Minolta Photo Imaging Inc 画像処理方法、画像処理装置及び画像処理プログラム
JP2006033797A (ja) * 2004-06-17 2006-02-02 Ricoh Co Ltd 画像処理装置及び画像処理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095204A (en) * 1990-08-30 1992-03-10 Ball Corporation Machine vision inspection system and method for transparent containers
US5825909A (en) * 1996-02-29 1998-10-20 Eastman Kodak Company Automated method and system for image segmentation in digital radiographic images
US5774177A (en) * 1996-09-11 1998-06-30 Milliken Research Corporation Textile fabric inspection system
US6167150A (en) * 1998-07-24 2000-12-26 Cognex Corporation Method and apparatus for detecting extended defects in an object
FR2790851B1 (fr) * 1999-03-12 2001-06-08 Ge Medical Syst Sa Procede d'amelioration de la detection d'elements d'interet dans une image radiographique numerique
US6198529B1 (en) * 1999-04-30 2001-03-06 International Business Machines Corporation Automated inspection system for metallic surfaces
JP4005277B2 (ja) * 1999-09-06 2007-11-07 富士フイルム株式会社 画像処理装置、方法及び記録媒体
US7218795B2 (en) * 2001-07-06 2007-05-15 Corel Corporation Assisted scratch removal
US20040027618A1 (en) * 2002-06-03 2004-02-12 Fuji Photo Film Co., Ltd. Image defect detecting method
US7236619B2 (en) * 2002-10-31 2007-06-26 University Of Chicago System and method for computer-aided detection and characterization of diffuse lung disease
US7620241B2 (en) 2004-11-30 2009-11-17 Hewlett-Packard Development Company, L.P. Artifact reduction in a digital video
US7774036B2 (en) * 2005-06-07 2010-08-10 Oxymap Ehf Automatic registration of images

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061500A (ja) * 2002-06-03 2004-02-26 Fuji Photo Film Co Ltd 画像欠陥検出方法
JP2004193956A (ja) * 2002-12-11 2004-07-08 Konica Minolta Holdings Inc 画像処理装置、画像処理方法、画像処理プログラムおよび画像記録装置
JP2004318696A (ja) * 2003-04-18 2004-11-11 Konica Minolta Photo Imaging Inc 画像処理方法、画像処理装置及び画像処理プログラム
JP2006033797A (ja) * 2004-06-17 2006-02-02 Ricoh Co Ltd 画像処理装置及び画像処理方法

Also Published As

Publication number Publication date
JP4792109B2 (ja) 2011-10-12
US7826675B2 (en) 2010-11-02
US20080008397A1 (en) 2008-01-10
WO2008005497A1 (en) 2008-01-10
EP2036327A1 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4792109B2 (ja) 画像特徴を意識した画像欠陥除去
JP4160258B2 (ja) 勾配ベースの局部輪郭線検出のための新しい知覚的しきい値決定
JP6100744B2 (ja) 自動修復を用いたカラー文書画像セグメンテーション及び二値化
US6285799B1 (en) Apparatus and method for measuring a two-dimensional point spread function of a digital image acquisition system
JP5395053B2 (ja) パンクロマティック画素を使用するエッジマッピング
TWI430184B (zh) 結合全色像素之邊緣映射
Herzog et al. NoRM: No‐reference image quality metric for realistic image synthesis
JP4489120B2 (ja) デジタル映像のアーティファクト削減
US20060165311A1 (en) Spatial standard observer
JP2001005960A (ja) 画像処理方法および装置
JP2005331929A (ja) 画像解析方法、画像解析プログラム、及びそれらを有する画素評価システム
JP2012178152A (ja) 画像処理装置、画像処理方法、プログラムおよびその記録媒体
KR20140109801A (ko) 3d이미지 품질을 향상시키는 방법과 장치
CN105913427B (zh) 一种基于机器学习的噪声图像显著性检测方法
JP2013200298A (ja) 樹脂組成物中の島部の分散性評価方法および樹脂組成物中の島部の分散性評価装置
JP3604910B2 (ja) 画像縮小装置及び画像縮小プログラムを記録した記録媒体
Narasimharao et al. Advanced Techniques for Color Image Blind Deconvolution to Restore Blurred Images
JP4247993B2 (ja) 画像検査装置、画像検査方法、制御プログラムおよび可読記憶媒体
CN113674144A (zh) 一种图像处理方法、终端设备及可读存储介质
JPH0624014B2 (ja) 濃淡画像の処理方法
Ahalya et al. Deep Learning for Single Image Deblurring
Kim et al. Automatic film line scratch removal system based on spatial information
Samadani et al. Honest image thumbnails: Algorithm and subjective evaluation
Rui et al. Total variation regularized back‐projection method for spatial resolution enhancement
PRAKASH for the award of the degree of

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4792109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees