JP2009541661A - Centrifugal impeller - Google Patents

Centrifugal impeller Download PDF

Info

Publication number
JP2009541661A
JP2009541661A JP2009517371A JP2009517371A JP2009541661A JP 2009541661 A JP2009541661 A JP 2009541661A JP 2009517371 A JP2009517371 A JP 2009517371A JP 2009517371 A JP2009517371 A JP 2009517371A JP 2009541661 A JP2009541661 A JP 2009541661A
Authority
JP
Japan
Prior art keywords
impeller
channel
channels
flow channels
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009517371A
Other languages
Japanese (ja)
Inventor
ジェイムズ ワット テイラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qinetiq Ltd
Original Assignee
Qinetiq Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinetiq Ltd filed Critical Qinetiq Ltd
Publication of JP2009541661A publication Critical patent/JP2009541661A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/167Operating by means of fibrous or porous elements, e.g. with sponge rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Abstract

低ノイズ遠心ファン羽根車は、回転軸線に関して円周の配列及び長手方向の配列に配置された多数の個々の半径方向流れチャンネル(5)を含む多蜂の巣構造形態を有する。これは在来の羽根車と比較して羽根の通過周波数を増大させ、高周波数が所定の流れ出力について低エネルギーを有するので、発生されたノイズの全体の大きさを減ずることができる。各チャンネル(5)は、それぞれのチャンネル入口から、それぞれの入口から羽根車の長手方向に片寄せられるそれぞれのチャンネル出口まで延び、且つ回転軸線と平行な方向にそれぞれのチャンネルの内寸法の増大を伴い、かくしてそれがチャンネルの中を流れるときに運ばれる空気又は他の媒質の減速及び圧縮を助ける。
【選択図】図2
The low noise centrifugal fan impeller has a multi-honeycomb configuration comprising a number of individual radial flow channels (5) arranged in a circumferential and longitudinal array with respect to the axis of rotation. This increases the passing frequency of the blades compared to conventional impellers, and since the high frequency has low energy for a given flow output, the overall magnitude of the generated noise can be reduced. Each channel (5) extends from a respective channel inlet to a respective channel outlet that is offset in the longitudinal direction of the impeller and increases the internal dimension of the respective channel in a direction parallel to the rotational axis. As such, it helps to slow down and compress air or other media that is carried as it flows through the channel.
[Selection] Figure 2

Description

本発明は、ファン、ブロア、プロペラ、ポンプ及びコンプレッサのような、ガス又は液体又は他の流動性材料を移動させる及び/又は圧縮するための流体力学装置に使用される回転羽根車に関し、特に本発明はそのような装置による低ノイズレベルの提供に関する。この種類の多くの装置は、2つの主な分類のうち1つ、即ち羽根車の中を通る流体の全部の流れ方向がその回転軸線とほぼ平行である軸流装置、及び羽根車の中を通る流体の全部の流れ方向がその回転軸線に対してほぼ半径方向である遠心装置のうちの1つに属する。本発明が関係するのは後者の分類である。   The present invention relates to rotary impellers used in hydrodynamic devices for moving and / or compressing gases or liquids or other flowable materials, such as fans, blowers, propellers, pumps and compressors. The invention relates to the provision of low noise levels by such a device. Many devices of this type are in one of two main categories: axial flow devices in which the total flow direction of fluid through the impeller is approximately parallel to its axis of rotation, and in the impeller. It belongs to one of the centrifugal devices in which the entire flow direction of the fluid passing therethrough is approximately radial with respect to its axis of rotation. The latter classification is relevant to the present invention.

羽根車はそのような装置ではかなりのノイズ源であり、羽根車からのノイズは、個々の羽根からの流体の繰返流出(音ノイズ)及び羽根の上の流体の乱流通過(広周波数帯域のノイズ)によって引き起こされる。現下の法律の要求を越える、低ノイズ装置用のクリアマーケットドライブが存在する。例えば低ノイズレベルは、ノイズが空気力学的源によって支配される真空クリーナ、ヘアドライヤ、調理器具フード、空気調整ユニット及び他の家庭用家電機器に関して積極的な販売ポイントとして使用される。同様に、コンパクト電子装置、特にコンピュータにはより静かな冷却ファンの要求があり、低ノイズレベル及びノイズ吸収キット付き取替えファンのマーケットがすでにある。他のマーケットが、航空機及び水上乗り物用の低ノイズ推進ユニットについて存在する。本発明による羽根車は、これらのマーケットの全てに又はより一般的には低ノイズ運転の要望がある遠心装置に適用を見出すことができる。   The impeller is a significant noise source in such devices, and the noise from the impeller can be caused by repeated outflow of fluid from individual blades (sound noise) and turbulent passage of fluid over the blades (wide frequency band). Noise). There are clear market drives for low noise devices that exceed the requirements of current legislation. For example, low noise levels are used as an aggressive selling point for vacuum cleaners, hair dryers, cookware hoods, air conditioning units and other household appliances where the noise is dominated by aerodynamic sources. Similarly, there is a need for quieter cooling fans in compact electronic devices, particularly computers, and there is already a market for replacement fans with low noise levels and noise absorption kits. Other markets exist for low noise propulsion units for aircraft and water vehicles. The impeller according to the invention can find application in all these markets or more generally in centrifugal devices where there is a desire for low noise operation.

伝統的な羽根付羽根車では、各個々の羽根は、装置の中を通る全体の流れに寄与する流体量を圧縮する。遠心形態のケーシング出口孔のような、羽根車の近くの静的部分の存在が、加圧作動流体に分裂を引き起し、出来た圧力波は、流体それ自身のか、装置の本体から発するかのいずれかのノイズとしてはっきりわかる。このように引き起こされるノイズの周波数は、羽根の通過周波数として知られ且つ羽根車の羽根の数及び羽根車からの出口の著しい静的機能部の数に依存する。   In traditional bladed impellers, each individual blade compresses the amount of fluid that contributes to the overall flow through the device. The presence of a static part near the impeller, such as a centrifugal casing outlet hole, causes a split in the pressurized working fluid and whether the resulting pressure wave originates from the fluid itself or from the body of the device It can be clearly seen as one of the noises. The frequency of the noise thus caused is known as the blade passing frequency and depends on the number of impeller blades and the number of significant static features at the exit from the impeller.

本発明は、在来の羽根付羽根車を、羽根車が羽根車の回転軸線に関して円周の配列及び長手方向の配列に配置される多数の個々の半径方向流れチャンネルを含む多蜂の巣構造形態で置き換えることに基づいている。このことは、静的機能部を通る羽根の相当数を劇的に増大させ且つ、それに相応して発生される音ノイズの周波数を上げる。所定の流れ出力のために、より高い周波数は低エネルギーを有し、それ故に発生されるノイズの全体の大きさを減少させる。   The present invention relates to a conventional vaned impeller in the form of a multi-honeycomb structure comprising a number of individual radial flow channels in which the impeller is arranged in a circumferential arrangement and a longitudinal arrangement with respect to the rotation axis of the impeller. Based on replacing. This dramatically increases the number of blades that pass through the static function and raises the frequency of the sound noise generated accordingly. For a given flow output, higher frequencies have lower energy and therefore reduce the overall magnitude of the generated noise.

上述(言及した種類の羽根車として下記に参照される)のような構造を有する遠心羽根車は、米国特許出願公開第2004/0184914号明細書に概略的な方法で開示され且つ例示される。しかしながら、本発明は、高い流体力学性能をもつ上記種類の羽根車を提供しようと努める。これに関しては、回転する羽根車での流体への運動量の能率的な移動は、流れチャンネルの長さ方向に沿う有効な流れ面積の増大を要求する。米国特許出願公開第2004/0184914号明細書の遠心羽根車では、各チャンネルの有効流れ面積のいくらかの増大は、回転軸線から半径方向距離の増大に伴って増大するチャンネルの円周の幅の効力によって固有的に達成される。しかしながら、本発明の1側面では、有効流れ面積のさらなる増大は、円周方向に直交する寸法の増大を提供するように流れチャンネルを構成することによって達成することがある。   A centrifugal impeller having a structure as described above (referred to below as an impeller of the type mentioned) is disclosed and exemplified in a schematic manner in US 2004/0184914. However, the present invention seeks to provide an impeller of the above type with high hydrodynamic performance. In this regard, the efficient transfer of momentum to fluid on a rotating impeller requires an increase in effective flow area along the length of the flow channel. In the centrifugal impeller of US 2004/0184914, some increase in the effective flow area of each channel is due to the effect of the circumferential width of the channel increasing with increasing radial distance from the axis of rotation. Inherently achieved by: However, in one aspect of the invention, a further increase in the effective flow area may be achieved by configuring the flow channel to provide an increase in dimension orthogonal to the circumferential direction.

したがって、1側面では、本発明は上記の種類の羽根車であり、少なくとも複数のチャンネルが、それぞれのチャンネル入口から羽根車の長手方向にそれぞれの入口から片寄せられるそれぞれのチャンネル出口まで延び、且つ羽根車の回転軸線と平行な方向にそれぞれのチャンネルの内寸法の増大を伴うように構成される。また、流れチャンネルは、該流れチャンネルの入口が回転軸線を取り囲む皿型形態の入口配列を集合的に画成するように構成され、該配列の半径は、主入口から羽根車の1端での羽根車まで長手方向に距離が増すとともに減少する。   Thus, in one aspect, the invention is an impeller of the type described above, wherein at least a plurality of channels extend from each channel inlet to a respective channel outlet that is offset from each inlet in the longitudinal direction of the impeller, and It is comprised so that the internal dimension of each channel may increase in the direction parallel to the rotational axis of the impeller. The flow channel is also configured to collectively define a dish-shaped inlet array in which the inlet of the flow channel surrounds the axis of rotation, the radius of the array from the main inlet to one end of the impeller It decreases with increasing distance in the longitudinal direction to the impeller.

本発明による羽根車の流れチャンネルの配列は、好ましくは、羽根車に沿って配置されるそのようなチャンネルの一連の円周の列の形態であり、そのような各列のチャンネルは、隣の列のチャンネルから円周方向に片寄せられる。この円周方向の片寄りは、いかなる瞬間でも同じ静的機能部を通るチャンネルの数を減少させ且つ個別的の音の発生を減少させ且つ広範囲の周波数にわたってノイズを分配する流体流をさらにばらばらにする。本発明の好ましい実施形態では、流れチャンネルは、六角形(又は羽根車の各端でのチャンネルの列の場合には切頭六角形)を基にした断面形状をもつ連続するモザイクである。この流れチャンネルは流体流のための高い面積効率をもつ固有的に強い構造形態を提供し、隣りの列のチャンネルのために自然の片寄りを可能にし、流体に作用するための平らな半径面を提供し、構造の重さ及び流れ面積に関して円形のチャンネル又は楕円形のチャンネルよりもより能率的である。この流れチャンネルは、本発明の不可欠な特徴ではないが、他の断面形態をもし所望されるならば採用してもよい。例えば四角形に基づくチャンネル形態は、わずかに高い面積能率を、所定の肉厚のためにいくらか構造強度の犠牲の上に提供し、したがって低荷重適用により適している。   The arrangement of the flow channels of the impeller according to the invention is preferably in the form of a series of circumferential rows of such channels arranged along the impeller, each such channel being adjacent to one another. It is offset in the circumferential direction from the channel of the row. This circumferential offset reduces the number of channels passing through the same static function at any moment and reduces the generation of individual sounds and further breaks up the fluid flow that distributes noise over a wide range of frequencies. To do. In a preferred embodiment of the invention, the flow channel is a continuous mosaic with a cross-sectional shape based on a hexagon (or a truncated hexagon in the case of a row of channels at each end of the impeller). This flow channel provides an inherently strong structural form with high area efficiency for fluid flow, allows a natural offset for the adjacent row of channels, and a flat radial surface for acting on the fluid And is more efficient in terms of structure weight and flow area than circular or elliptical channels. This flow channel is not an essential feature of the present invention, but other cross-sectional configurations may be employed if desired. For example, a square-based channel configuration provides slightly higher area efficiency at the expense of some structural strength for a given wall thickness and is therefore more suitable for low load applications.

各円周の列の流れチャンネルの数は同じであるのが好ましく、ノイズスペクトルの羽根の通過周波数の調和形成を減少させる素数であるのが好ましい。   The number of flow channels in each circumferential row is preferably the same, and is preferably a prime number that reduces the harmonic formation of the pass frequencies of the noise spectrum vanes.

本発明のこれら及び他の特色は、添付図面を参照して、例示として、特に記載される。   These and other features of the present invention will be specifically described by way of example with reference to the accompanying drawings.

図1及び図2を参照すると、そこに示す羽根車は、真空クリーナ、ヘアドライヤ又は同様の器具に組み入れられるような遠心空気ファン又は送風機用である。羽根車は、長手方向一端が装置に対する主空気入口を構成する中心開口部2をもつディスク1によって境界付けされ、他端がディスク3によって閉鎖されたほぼ環状構造体からなり、ディスクは使用中羽根車を回転させるための、関連したモータ(図示せず)のスピンドルに嵌められるようになっている流線形本体4の形態をなして内方に延びる。多数の空気半径流チャンネル5は、羽根車を貫いて延び、そして回転されるとき、開口部2の中を通り、チャンネル5に沿って、要求されるとき差し向けられる関連した従来のうず室(図示せず)の中へ通る空気流を誘導する。   With reference to FIGS. 1 and 2, the impeller shown therein is for a centrifugal air fan or blower as incorporated into a vacuum cleaner, hair dryer or similar device. The impeller consists of a substantially annular structure with one end in the longitudinal direction bounded by a disk 1 having a central opening 2 which constitutes the main air inlet to the device and the other end closed by a disk 3, the disk being in use blades Extending inwardly in the form of a streamlined body 4 adapted to fit on the spindle of an associated motor (not shown) for rotating the car. A number of air radial flow channels 5 extend through the impeller and, when rotated, pass through the opening 2 and along the channel 5 are directed to associated conventional vortex chambers (when required) ( Induces an air flow into (not shown).

特に、例示した実施形態では、並んだ4つの円周列の配列に配置された総計44個のチャンネル5があり、各列は羽根車に沿って配列された11個のチャンネルからなる。個々のチャンネルは、ほぼ六角形断面のものであり、ディスク2及びディスク3によって境界付けされた端列については5つの辺に切頭され、且つ各列のチャンネルの中心が隣りの列のチャンネルから円周方向にチャンネルの半幅だけ片寄せられるように図示された如くモザイクにされる。   In particular, in the illustrated embodiment, there are a total of 44 channels 5 arranged in an array of four circumferential rows side by side, each row comprising 11 channels arranged along the impeller. The individual channels have a substantially hexagonal cross section, the end rows bounded by the discs 2 and 3 are truncated on five sides, and the center of each row channel is from the next row channel. As shown in the figure, a mosaic is formed so that the half width of the channel is shifted in the circumferential direction.

さらに、チャンネル5の中心線は、各々、単一半径方向平面にないが、特に図2に示すように、チャンネルは、該チャンネルの個々の出口の中心がチャンネルのそれぞれの入口の中心からその方向に片寄せられるように入口端から羽根車の長手方向に広げられる。この手段によって、各チャンネルの中の流れに有効な断面積の有用な増大をチャンネルの長さ方向に沿って達成されることができ、それに加えてそのことは、チャンネルが羽根車の軸線から外向きに延びるにつれてチャンネルの円周方向拡大によって自然に起り、かくして空気がチャンネルの中を流れるとき空気の減速及び圧縮を助ける。チャンネル形状のこの特徴は図3の簡略表現によってより容易に理解され、羽根車の回転軸線と平行な方向の各チャンネル5の寸法、すなわち図3における典型的なチャンネルの入口及び出口に寸法a及びbによって例示される「軸線方向厚さ」が各チャンネルの長さ方向に沿って増大することがわかる。   In addition, the centerlines of channel 5 are not each in a single radial plane, but in particular, as shown in FIG. It is spread from the inlet end in the longitudinal direction of the impeller so that it can be moved to the center. By this means, a useful increase in the effective cross-sectional area for the flow in each channel can be achieved along the length of the channel, in addition that the channel is out of the impeller axis. Naturally occurs by the circumferential expansion of the channel as it extends in the direction, thus assisting in the deceleration and compression of the air as it flows through the channel. This feature of the channel shape is more easily understood by the simplified representation of FIG. 3, where the dimensions of each channel 5 in a direction parallel to the axis of rotation of the impeller, ie the dimensions a and at the typical channel inlet and outlet in FIG. It can be seen that the “axial thickness” illustrated by b increases along the length of each channel.

また図1及び図2に示すように、チャンネル5の入口端は主入口2に向かって広げられ、各円周列のチャンネル入口のリングの半径は、主入口2から連続する列について減少し、その結果、チャンネル入口は本体4を取り囲む皿型形態の配列を集合的に画成する。輪郭付き中心本体4との組合せで、この形状は、所望の流れ面積比を維持しながら、空気流が入口2に入る軸線方向から、空気流がチャンネル5の中を通る半径方向まで空気流の移行を滑らかにすることを助ける。境界では、各チャンネルは、これらの個々の入口が開口部2の平面に位置する程度まで広げられ、チャンネルの入口端及びさらにチャンネルに沿う遠心羽根車への移行部に軸流羽根車として作用する装置のハイブリッド形態となる。   Also, as shown in FIGS. 1 and 2, the inlet end of the channel 5 is widened toward the main inlet 2, and the radius of the channel inlet ring of each circumferential row is reduced for successive rows from the main inlet 2, As a result, the channel inlet collectively defines a dish-shaped array surrounding the body 4. In combination with the contoured central body 4, this shape allows the air flow from the axial direction into which the air flow enters the inlet 2 to the radial direction through which the air flow passes through the channel 5 while maintaining the desired flow area ratio. Help smooth the transition. At the boundary, each channel is widened to the extent that these individual inlets lie in the plane of the opening 2 and acts as an axial impeller at the inlet end of the channel and further at the transition to the centrifugal impeller along the channel. It becomes a hybrid form of the device.

チャンネル5は、また、円周方向に、空気の圧縮を改善する湾曲構成要素を有する。   The channel 5 also has a curved component that improves the compression of air in the circumferential direction.

図4は、もともとの遠心羽根車(羽根7枚直径90mmの従来設計のもの)を備えたときの在来の真空クリーナから得られたノイズスペクトルを実線で示し、羽根車が図1及び図2に示す設計に従って同じ直径のものと取り替えられるときの同じ電気器具から得られたノイズスペクトルを破線で示すグラフである。各ケースにおいて、真空クリーナを床の上に置いて運転し、電気器具より上1メートル及び電気器具の前1メートルに配置したサウンドレベルメータによって測定を行った。結果を比較することによって、本発明による羽根車は、在来のスペクトルの多数の個別のピークを除去し且つ人間の耳が最も敏感である周波数範囲の実際的に全てにわたって振幅の減少を達成したことがわかる。   FIG. 4 shows the noise spectrum obtained from a conventional vacuum cleaner with the original centrifugal impeller (conventional design with seven blades having a diameter of 90 mm) as a solid line, and the impeller is shown in FIGS. FIG. 6 is a graph showing a noise spectrum obtained from the same electric appliance when it is replaced with one of the same diameter according to the design shown in FIG. In each case, the vacuum cleaner was placed on the floor and operated, and measurements were taken with a sound level meter located 1 meter above the appliance and 1 meter in front of the appliance. By comparing the results, the impeller according to the present invention eliminated a number of individual peaks in the conventional spectrum and achieved a reduction in amplitude over virtually all of the frequency range to which the human ear is most sensitive. I understand that.

回転羽根車の好ましい実施形態を上述し且つ添付図面に例示したが、たくさんの変形例が、本発明の範囲から逸脱することなく特定の要求及び適用を満たすように、例示の設計、例えば流れチャンネルの数、寸法及び流体力学形態に関して行われてもよいことが当業者に理解される。   Although a preferred embodiment of a rotating impeller has been described above and illustrated in the accompanying drawings, many design variations, such as flow channels, are possible so that many variations can meet specific needs and applications without departing from the scope of the present invention. It will be appreciated by those skilled in the art that this may be done with respect to the number, size, and hydrodynamic form.

本発明による遠心ファン羽根車の好ましい実施形態の斜視図である。1 is a perspective view of a preferred embodiment of a centrifugal fan impeller according to the present invention. FIG. 図1の羽根車を通る軸線方向断面図である。It is an axial direction sectional view which passes along the impeller of FIG. 図1及び図2の羽根車の流れチャンネルの”軸方向厚さ”の増大を示す単純化した概略図である。FIG. 3 is a simplified schematic diagram illustrating an increase in “axial thickness” of the flow channel of the impeller of FIGS. 1 and 2. もともとの羽根車を備えたときの及び本発明による羽根車を備えたときの在来の真空クリーナについて測定された比較ノイズスペクトルを示す。Figure 3 shows a comparative noise spectrum measured for a conventional vacuum cleaner with the original impeller and with the impeller according to the present invention.

Claims (11)

羽根車の回転軸線に関して円周方向の配列及び長手方向の配列に配置された多数の個々の半径方向流れチャンネルを含み、
少なくとも複数の前記チャンネルが、それぞれのチャンネル入口から、前記羽根車の長手方向に前記それぞれの入口から片寄せられるそれぞれのチャンネル出口まで延び、且つ前記羽根車の回転軸線と平行な方向に前記それぞれのチャンネルの内寸法の増大を伴うよう構成される、
ことを特徴とする、遠心羽根車。
Comprising a number of individual radial flow channels arranged in a circumferential arrangement and a longitudinal arrangement with respect to the rotational axis of the impeller;
At least a plurality of the channels extend from the respective channel inlets to respective channel outlets that are offset from the respective inlets in the longitudinal direction of the impeller and in parallel to the rotational axis of the impeller. Configured to increase the internal dimensions of the channel,
A centrifugal impeller characterized by that.
前記流れチャンネルはこれらの入口が回転軸線を取り囲む皿型形態の入口配列を集合的に画成するよう構成され、該配列の前記半径は主入口から前記羽根車の1端での前記羽根車まで長手方向に距離が増すとともに減少する、請求項1に記載の羽根車。   The flow channel is configured to collectively define a dish-shaped inlet array in which these inlets surround a rotational axis, the radius of the array from the main inlet to the impeller at one end of the impeller The impeller according to claim 1, wherein the impeller decreases with increasing distance in the longitudinal direction. さらに前記皿型の入口配列内に回転軸線の周りに設置される輪郭付き本体を備え、該本体の半径は、前記主入口から前記羽根車の長手方向に距離が増すとともに増大する、請求項2に記載の羽根車。   3. A contoured body disposed about an axis of rotation within the dish-shaped inlet array, wherein the radius of the body increases with increasing distance from the main inlet in the longitudinal direction of the impeller. The impeller described in 1. 前記流れチャンネルはそれらの入口は回転軸線に関してほぼ半径方向平面に位置する入口配列を集合的に画成するように構成される、請求項1に記載の羽根車。   The impeller of claim 1, wherein the flow channels are configured to collectively define an inlet array whose inlets are located in a substantially radial plane with respect to an axis of rotation. 少なくとも複数の前記流れチャンネルはほぼ六角形断面のものである、請求項1ないし請求項4のいずれかに記載の羽根車。   The impeller according to any of claims 1 to 4, wherein at least the plurality of flow channels have a substantially hexagonal cross section. 少なくとも複数の前記流れチャンネルはほぼ四角形断面のものである、請求項1ないし請求項4のいずれかに記載の羽根車。   The impeller according to any one of claims 1 to 4, wherein at least the plurality of flow channels have a substantially rectangular cross section. 流れチャンネルの前記配列は前記羽根車に沿って配置されるそのようなチャンネルの一連の円周列の形態であり、そのような各列の前記チャンネルは、前記隣りのそのような列の前記チャンネルから円周方向に片寄せられる、請求項1ないし請求項6のいずれかに記載の羽根車。   The array of flow channels is in the form of a series of circumferential rows of such channels arranged along the impeller, wherein each such row of the channels is the channel of the adjacent such row. The impeller according to any one of claims 1 to 6, wherein the impeller is biased in the circumferential direction from the center. 少なくとも3つのそのような列があり及び前記配列の前記長手方向端ではない少なくともそれら又はこれらの列の前記流れチャンネルがほぼ六角形断面のものである、請求項5に付加されるときの請求項7に記載の羽根車。   6. The claim as added to claim 5, wherein there are at least three such rows and at least those flow channels of these rows that are not the longitudinal ends of the array are of approximately hexagonal cross section. 7. The impeller according to 7. 流れチャンネルの前記配列は前記羽根車に沿って配置されるそのようなチャンネルの一連の円周の列の形態であり、そのような各列のチャンネルは同じ数である、請求項1ないし請求項8のいずれかに記載の羽根車。   The arrangement of flow channels is in the form of a series of circumferential rows of such channels arranged along the impeller, wherein the number of channels in each such row is the same number. The impeller according to any one of 8. 前記数は素数である、請求項9に記載の羽根車。   The impeller according to claim 9, wherein the number is a prime number. 請求項1ないし請求項10に記載の羽根車に組み入れる流体力学装置。   A hydrodynamic device incorporated in the impeller according to claim 1.
JP2009517371A 2006-06-30 2007-04-26 Centrifugal impeller Pending JP2009541661A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0612993.6A GB0612993D0 (en) 2006-06-30 2006-06-30 Centrifugal impeller
PCT/GB2007/001538 WO2008001033A1 (en) 2006-06-30 2007-04-26 Centrifugal impeller

Publications (1)

Publication Number Publication Date
JP2009541661A true JP2009541661A (en) 2009-11-26

Family

ID=36888371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009517371A Pending JP2009541661A (en) 2006-06-30 2007-04-26 Centrifugal impeller

Country Status (6)

Country Link
US (1) US20090185906A1 (en)
EP (1) EP2035712A1 (en)
JP (1) JP2009541661A (en)
CN (1) CN101484707A (en)
GB (1) GB0612993D0 (en)
WO (1) WO2008001033A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028763B4 (en) * 2010-05-07 2015-04-02 Man Diesel & Turbo Se Silencer for a turbocompressor and method for laying a silencer
CN103867486B (en) * 2014-04-03 2016-08-17 干平 Impeller
US11713769B2 (en) 2020-04-20 2023-08-01 Hamilton Sundstrand Corporation Impeller
FR3111676B1 (en) * 2020-06-19 2022-12-16 Seb Sa Propeller for a blower comprising radial air passage channels
US11441572B2 (en) 2020-08-24 2022-09-13 Hamilton Sundstrand Corporation Impeller design and manufacturing method with pentagonal channel geometry
CN114483604B (en) * 2021-12-06 2023-10-27 鑫磊压缩机股份有限公司 Bidirectional flow dividing impeller capable of axially and radially guiding flow
CN114857053B (en) * 2022-05-30 2024-02-27 杭州老板电器股份有限公司 Volute, multi-wing centrifugal fan and range hood

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE414359A (en) *
GB191012768A (en) * 1909-04-07 1911-05-25 Bernhard Bomborn Improvements in Centrifugal Blowers or Pumps.
GB305800A (en) * 1928-01-25 1929-02-14 Horace Stanley Pochin Improvements in or relating to centrifugal fans
DE548474C (en) * 1930-08-30 1932-04-13 Siemens Schuckertwerke Akt Ges Blower wheel
GB655830A (en) * 1947-12-13 1951-08-01 Packard Motor Car Co Centrifugal impeller structure
GB1046272A (en) * 1962-04-27 1966-10-19 Zenkner Kurt Radial flow blower
FR2647511B1 (en) * 1989-05-25 1993-11-26 Velecta Ventilation Elect Appliq CENTRIFUGAL FAN WITH REDUCED NOISE LEVEL
DE10302773B3 (en) * 2003-01-17 2004-03-11 Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH Impeller and idler wheels for flow machines, especially compressors and fans, are made from solid matrix with flow channels in which deflection of flow and associated pressure increase take place
US20070177349A1 (en) * 2005-11-23 2007-08-02 Himanshu Pokharna High efficiency fluid mover

Also Published As

Publication number Publication date
US20090185906A1 (en) 2009-07-23
WO2008001033A1 (en) 2008-01-03
EP2035712A1 (en) 2009-03-18
GB0612993D0 (en) 2006-08-09
CN101484707A (en) 2009-07-15

Similar Documents

Publication Publication Date Title
US8100645B2 (en) Axial flow impeller
JP2009541661A (en) Centrifugal impeller
CN100458178C (en) Radial fan wheel, fan unit, and radial fan arrangement
CN100438799C (en) Hair dryer
US8025477B2 (en) Plenum/plug fan assembly
US8007241B2 (en) Bi-directional cooling fan
US11116367B2 (en) Electric fan and vacuum cleaner having same
EP0897479A1 (en) An impeller and fan incorporating same
TWI256441B (en) Axial flow fan
AU2018364963A1 (en) A blower impeller for a handheld blower
Engeda The unsteady performance of a centrifugal compressor with different diffusers
RU2287091C1 (en) Channel ventilator (variants)
CN113309714A (en) Multi-wing centrifugal fan and household appliance
JP2019019759A (en) Centrifugal fan impeller and centrifugal fan with centrifugal fan impeller
CN215293002U (en) Impeller assembly, multi-wing centrifugal fan and household appliance
CN110762050A (en) Centrifugal fan impeller
CN219827251U (en) Centrifugal pipeline fan
CN219220822U (en) Centrifugal fan and range hood
RU106684U1 (en) CHANNEL FAN
JP5892640B2 (en) Chamber structure attached to the inlet of a multiblade fan
RU2225536C2 (en) Centrifugal fan
KR100450584B1 (en) structure of blower fan
KR100469259B1 (en) Blade of turbo fan
KR100393563B1 (en) The turbofan
SU844828A1 (en) Centrifugal ventilator impeller