JP2009531862A - 半導体ウエハ研磨中にウエハ特性を測定するデバイスおよび方法 - Google Patents

半導体ウエハ研磨中にウエハ特性を測定するデバイスおよび方法 Download PDF

Info

Publication number
JP2009531862A
JP2009531862A JP2009503023A JP2009503023A JP2009531862A JP 2009531862 A JP2009531862 A JP 2009531862A JP 2009503023 A JP2009503023 A JP 2009503023A JP 2009503023 A JP2009503023 A JP 2009503023A JP 2009531862 A JP2009531862 A JP 2009531862A
Authority
JP
Japan
Prior art keywords
sensor assembly
control system
sensor
housing
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009503023A
Other languages
English (en)
Inventor
ディー. ベナッシ ロバート
Original Assignee
ストラスボー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ストラスボー filed Critical ストラスボー
Publication of JP2009531862A publication Critical patent/JP2009531862A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/0056Control means for lapping machines or devices taking regard of the pH-value of lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/205Lapping pads for working plane surfaces provided with a window for inspecting the surface of the work being lapped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/14Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the temperature during grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

ウエハ4上に配置された材料層を研磨しながらその層の厚みの変化を測定するシステムおよび方法。光が、研磨パッド3内に配置された、内在の光学センサからウエハ4の表面に向けられ、データ信号が無線で制御システムへ送信される。
【選択図】図1

Description

本発明は、半導体ウエハ処理の分野に関し、より具体的には、化学的機械的研磨で使用される使い捨て研磨パッド内に配置されるセンサアセンブリに関する。この研磨パッドは、研磨動作中にウエハ特性を監視するためのセンサアセンブリを含み、それによってその処理の調整が可能になる。
Birang等に対する1999年4月13日に発行された米国特許第5,893,796号(特許文献1)および2000年4月4日に発行された米国特許第6,045,439号(特許文献2)において、研磨パッドに設けられる窓のための多くのデザインが開示されている。研磨されるウエハは、研磨パッドの頂部に置かれ、研磨パッドは、剛性プラテン上に載っており、それによって、研磨はウエハの下表面に生じる。その表面は、剛性プラテンの下方に配置される干渉計によって研磨処理中監視される。干渉計は、レーザビームを上方へ向け、レーザビームがウエハの下表面に達するために、レーザビームは、プラテンの孔を通過し、次に研磨パッドを上方へ通過し続けなければならない。プラテンの孔上にスラリーが溜まるのを防止するために、研磨パッドに窓が設けられる。窓がどのように形成されようと、干渉計センサは、プラテンの下方に常に配置されかつ研磨パッド内に位置されていないことが明らかである。
Tangに対して1999年9月7日に発行された米国特許第5,949,927号(特許文献3)において、研磨処理中に研磨された表面を監視するための多くの技術が述べられている。一実施の形態では、Tangは、研磨パッドに埋め込まれた光ファイバーのリボンに言及している。このリボンは、単に光の伝導体である。感知を行う光源と検出器はパッドの外側に配置されている。Tangは、研磨パッドの内側に光源と検出器を含むことは提案していない。Tangの実施の形態の幾つかでは、光ファイバーのデカプラーが光ファイバー中の光を回転コンポーネントから静止コンポーネントへ転送するために使用される。他の実施の形態では、光信号は、内蔵回転コンポーネントに向けられ、得られる電気信号は電気スリップリングを介して静止コンポーネントへ転送される。Tangの特許には電波、音響波、変調光ビームによって或いは磁気誘導によって電気信号を静止コンポーネントへ転送することは提案されていない。
Schultzに対して1992年1月21日に発行された米国特許第5,081,796号(特許文献4)に記述された、他の光終点感知システムにおいて、部分的な研磨後に、ウエハは、ウエハの一部がプラテンのエッジに張り出す位置に移動される方法が記述されている。この張り出し部上の磨耗が干渉計によって測定されて研磨処理が続けられるべきか否かが決定される。
米国特許第5,893,796号 米国特許第6,045,439号 米国特許第5,949,927号 米国特許第5,081,796号
センサを研磨パッドに取り付ける初期の試みでは、孔が研磨パッドに形成されかつ光学センサが接着剤によってその孔内の位置に接合されていた。しかしながら、その後のテストでは、反応性化学物質を含む研磨スラリーが光学センサに入ることおよび支持テーブルまで研磨パッドを通過することを防止するためには接着剤の使用が頼りにできないことが明らかになった。
結論として、幾つかの技術が研磨プロセス中研磨された表面を監視するための技術において公知となっているが、これらの技術のいずれもが完全には満足のいくものではない。Tangによって述べられる光ファイバーの束は、高価かつ潜在的に壊れやすく、Birang等によって使用されているように、プラテンの下方に配置される干渉計を用いるには、研磨パッドを支持するプラテンを貫通する孔を作ることが必要である。従って、本発明は、経済的で頑強で、幾つかのコンポーネントの小型化における最近の進歩を利用する監視システムを提供する。研磨パッド内に配置される内蔵式のセンサアセンブリが開示される。このセンサアセンブリは、制御センターと無線通信状態に置かれ、CMPツール上への設置を単純化する。センサアセンブリは、パッドと共に廃棄されることができ、或いは除去されて次のパッドに再設置されることができる。
上記課題は、以下の各発明によって解決される。
請求項1記載の発明は、ウエハが研磨されると共に前記ウエハの特性の変化を測定するためのシステムであって、前記システムは、前記ウエハを研磨するのに適する研磨パッド、前記パッド内に配置される光源、前記パッド内に配置される光検出器、前記パッド内に配置される無線送信機および前記パッド内に配置されるセンサ制御システムを備え、前記センサ制御システムは、前記光源、前記光検出器および前記無線送信機に動作上接続されることを特徴とするシステムである。
請求項2記載の発明は、前記センサ制御システムに動作上接続される、前記パッド内に配置される無線受信機を更に備えることを特徴とする請求項1記載のシステムである。
請求項3記載の発明は、前記センサ制御システムに動作上接続される電源を更に備えることを特徴とする請求項1記載のシステムである。
請求項4記載の発明は、前記センサ制御システムに動作上接続される、前記パッド内に配置される力変換器を更に備えることを特徴とする請求項1記載のシステムである。
請求項5記載の発明は、前記センサ制御システムに動作上接続される、前記パッド内に配置される加速度計を更に備えることを特徴とする請求項1記載のシステムである。
請求項6記載の発明は、前記センサ制御システムに動作上接続される、前記パッド内に配置されるpHセンサを更に備えることを特徴とする請求項1記載のシステムである。
請求項7記載の発明は、前記センサ制御システムに動作上接続される、前記パッド内に配置される熱電対を更に備えることを特徴とする請求項1記載のシステムである。
請求項8記載の発明は、前記センサ制御システムと無線通信するCMP制御システムを更に備え、前記CMP制御システムは、CMPツールに動作上接続されると共に光の所定の波長が測定されると、CMPツールの研磨率を制御できることを特徴とする請求項1記載のシステムである。
請求項9記載の発明は、ウエハが研磨されると共に前記ウエハの特性の変化を測定するためのシステムであって、前記システムは、前記層を研磨するのに適する研磨パッドおよび前記研磨パッド内に配置されるセンサアセンブリを備え、前記センサアセンブリは、ハウジング、前記ハウジング内に配置されるセンサ制御システム、前記ハウジング内に配置されかつ前記制御システムに動作上接続される光源、前記ハウジング内に配置されかつ前記センサ制御システムに動作上接続される光検出器および前記ハウジング内に配置されかつ前記センサ制御システムに動作上接続される無線送信機を備えることを特徴とするシステムである。
請求項10記載の発明は、前記センサアセンブリは、前記パッドに取り外し可能に連結されることを特徴とする請求項9記載のシステムである。
請求項11記載の発明は、前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続される無線受信機を更に備えることを特徴とする請求項9記載のシステムである。
請求項12記載の発明は、前記センサアセンブリに動作上接続される電源を更に備えることを特徴とする請求項9記載のシステムである。
請求項13記載の発明は、前記ハウジングはディスクの形状であることを特徴とする請求項9記載のシステムである。
請求項14記載の発明は、前記ハウジングはスプールの形状であることを特徴とする請求項9記載のシステムである。
請求項15記載の発明は、前記センサアセンブリは、更に前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続される力変換器を備えることを特徴とする請求項9記載のシステムである。
請求項16記載の発明は、前記センサアセンブリは、更に前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続される加速度計を備えることを特徴とする請求項9記載のシステムである。
請求項17記載の発明は、前記センサアセンブリは、更に前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続されるpHセンサを備えることを特徴とする請求項9記載のシステムである。
請求項18記載の発明は、前記センサアセンブリは、更に前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続される熱電対を備えることを特徴とする請求項9記載のシステムである。
請求項19記載の発明は、前記センサアセンブリと無線通信しかつCMPツールに動作上接続されるCMP制御システムを更に備え、前記CMP制御システムは、光の所定の波長が測定される時、前記CMPツールの研磨率を制御できることを特徴とする請求項9記載のシステムである。
請求項20記載の発明は、前記センサアセンブリは、前記パッドから外側に向く外表面によって特徴付けられ、前記外表面は、前記研磨パッドの外表面と実質的に面一であることを特徴とする請求項9記載のシステムである。
請求項21記載の発明は、CMP研磨パッドで使用されるセンサアセンブリであって、光学的に透明なハウジング、前記ハウジング内に配置されるセンサ制御システム、前記ハウジング内に配置されかつ前記制御システムに動作上接続される光源、前記ハウジング内に配置されかつ前記制御システムに動作上接続される光検出器および前記ハウジング内に配置されかつ前記制御システムに動作上接続される無線送信機を備え、前記ハウジングはCMP研磨パッドに解放可能に連結されることができることを特徴とするセンサアセンブリである。
請求項22記載の発明は、前記ハウジング内に配置されかつ前記センサ制御システムに動作上接続される無線受信機を更に備えることを特徴とする請求項21記載のセンサアセンブリである。
請求項23記載の発明は、前記センサアセンブリに動作上接続される電源を更に備えることを特徴とする請求項21記載のセンサアセンブリである。
請求項24記載の発明は、前記ハウジングはディスクの形状であることを特徴とする請求項21記載のセンサアセンブリである。
請求項25記載の発明は、前記ハウジングはスプールの形状であることを特徴とする請求項21記載のセンサアセンブリである。
請求項26記載の発明は、前記ハウジング内に配置されると共に前記制御システムに動作上接続される力変換器を更に備えることを特徴とする請求項21記載のセンサアセンブリである。
請求項27記載の発明は、前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続される加速度計を更に備えることを特徴とする請求項21記載のセンサアセンブリである。
請求項28記載の発明は、前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続されるpHセンサを更に備えることを特徴とする請求項21記載のセンサアセンブリである。
請求項29記載の発明は、前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続される熱電対を更に備えることを特徴とする請求項21記載のセンサアセンブリである。
請求項30記載の発明は、前記電源はバッテリよりなることを特徴とする請求項21記載のセンサアセンブリである。
請求項31記載の発明は、CMPプロセスを使用してウエハを研磨するための方法であって、CMPツール制御システム、前記CMPツール制御システムに動作上接続される無線受信機および研磨パッドを有するCMPシステムを提供すること、前記研磨パッド内にセンサアセンブリを配置することであって、前記センサアセンブリが光学センサと無線送信機を備えること、前記センサアセンブリから前記CMPツール制御システムへデータ信号を無線送信すること、および前記データ信号に基づいて前記CMPプロセスを調整すること、を備えることを特徴とする方法である。
請求項32記載の発明は、前記センサアセンブリは、更にディスクの形状のハウジングを備えることを特徴とする請求項31記載の方法である。
請求項33記載の発明は、前記センサアセンブリは、更にスプールの形状のハウジングを備えることを特徴とする請求項31記載の方法である。
請求項34記載の発明は、前記センサアセンブリは、更に力変換器を備えることを特徴とする請求項31記載の方法である。
請求項35記載の発明は、前記センサアセンブリは、更に加速度計を備えることを特徴とする請求項31記載の方法である。
請求項36記載の発明は、前記センサアセンブリは、更にpHセンサを備えることを特徴とする請求項31記載の方法である。
請求項37記載の発明は、前記センサアセンブリは、更に熱電対を備えることを特徴とする請求項31記載の方法である。
請求項38記載の発明は、前記センサアセンブリは、更に電源を備えることを特徴とする請求項31記載の方法である。
請求項39記載の発明は、前記データ信号は、前記ウエハの光学特性を示すデータよりなることを特徴とする請求項31記載の方法である。
センサアセンブリを有する使い捨て研磨パッドは、以下に記述される。研磨パッドは、研磨されているウエハ表面の光学特性を現場で監視するためのセンサアセンブリを含む。力、加速度、スラリーのpHおよび温度等の他の特性もまた監視されることができる。光学センサから得られるリアルタイムデータによって、とりわけ、オフラインテストをするためにウエハを解放することなくプロセスの終点が決定されることができる。これによって、研磨プロセスの効率が大きく高められる。
研磨されるべきウエハは、異なる材料の層を含む複合構造である。典型的には、最外層は、下層との接触面に達するまで研磨除去される。この時点で、研磨操作の終点に達したと言われる。研磨パッドおよび付随のオプティクスおよびエレクトロニクスは、酸化物層からシリコン層への遷移および金属から酸化物、或いは他の材料への遷移を検出することができる。
記述される研磨パッドは、従来の研磨パッド内にセンサアセンブリと他のコンポーネントを埋め込むことによってこの従来の研磨パッドを変更することを含む。変更されていない研磨パッドは、広く市販されておりRodel Company(Newark、New Jersey)が製造するModel IC 1000が典型的な変更されていないパッドである。Tomas West Companyが製造するパッドもまた使用されることができる。
センサアセンブリは、研磨中の表面の光学特性を感知する。典型的には、表面の光学特性は、その反射率である。しかしながら、その偏光、その吸収率、およびそのフォトルミネッセンス(もしあるならば)を含む表面の他の光学特性もまた感知されることができる。これらの種々の特性を感知する技術は、光学技術では周知であり、典型的には、それらは、光学系に対して偏光子やスペクトルフィルタを追加することを含むに過ぎない。従って、以下の議論において、より一般的な用語「光学特性」が使用される。
光源と検出器を含むセンサアセンブリは、研磨中の表面に面するように研磨パッド内の止まり穴内に配置される。光源からの光は、研磨されている表面からまたはその表面近くのフィルムから反射され、検出器がその反射光を検出する。検出器は、この検出器に反射バックされる光の強度や他の特性に関連する電気信号を生成する。
検出器によって生成される電気信号は、センサアセンブリ内の制御システムに送信される。次に、センサアセンブリは、センサ制御システムから無線受信機へセンサアセンブリの外部に配置されるCMPツール制御システムと無線通信において無線でウエハデータを送信する。
センサアセンブリを動作するための電力は、幾つかの技術によって提供されることができる。センサアセンブリの一実施の形態では、電力は、センサアセンブリ内に配置されるバッテリから得られる。他の実施の形態では、ソーラーセルや太陽電池アレイがセンサアセンブリ内に取り付けられ、機械の一部に取り付けられた光源によって光が当てられる。更に他の実施の形態において、永久磁石の磁界を貫通する回転研磨パッド内の電気導体は、研磨機の隣接する非回転部分に取り付けられてマグネト発電機を構成する。
研磨中の表面の光学特性を含むウエハデータを表す電気信号は、センサアセンブリから研磨機の隣接する静止部分へ幾つかの技術のいずれかによって送信される。一実施の形態では、送信されるべきウエハデータは、無線で無線周波数によってまたは音響リンクによって送信される。他の実施の形態では、そのデータは、隣接する非回転構造体に配置される検出器によって受信される赤外線のような光ビームを周波数変調するために使用される。
センサの頂部とウエハの下側との間に光路があるべきである。信号送信は、センサアセンブリからでもよいしまたはパッド内に配置されかつセンサアセンブリに動作上接続される隣接する別個の送信機によって行われてもよい。
本発明によると、経済的で頑強で、幾つかのコンポーネントの小型化における最近の進歩を利用する監視システムを提供することができる。
研磨パッド内に配置される内蔵式のセンサアセンブリが開示される。このセンサアセンブリは、制御センターと無線通信状態に置かれ、CMPツール上への設置を単純化する。センサアセンブリは、パッドと共に廃棄されることができ、或いは除去されて次のパッドに再設置されることができる。
以下、本発明の実施の形態について図面に基づいて説明する。
図1は、研磨パッド3に切り込まれたセンサポート2を有する化学的機械的平坦化システム1の全体図である。ウエハ4(または平坦化や研磨を必要とする他のワークピース)は、研磨ヘッド5によって保持され、変換アーム6から研磨パッド3上に垂下される。他のシステムでは、幾つかのウエハを保持する幾つかの研磨ヘッドと研磨パッドの反対側(左または右)の別個の変換アームが使用されてもよい。
研磨プロセスで使用されるスラリーが、スラリー注入チューブ7を介して研磨パッドの表面に注入される。CMPシステム1用のCMPデータ収集および制御システム10と電気通信する無線送受信機9を有するサスペンションアーム8はパッド3上に垂下する。
センサポートは、研磨パッドと共に回転し、研磨パッド自体は、矢印12の方向へプロセス駆動テーブルやプラテン18上を回転する。研磨ヘッドは、矢印14の方向へそれらの夫々のスピンドル13の回りを回転する。研磨ヘッド自体は、矢印16によって指示されるように、変換機構15によって研磨パッドの表面上を前後に平行移動させられる。このように、センサポート2は、研磨ヘッドの下方へ通過すると共に、研磨ヘッドは、回転かつ平行移動し、研磨ヘッド/プラテンアセンブリの各回転に関してウエハ表面を横切るように複雑な経路を通る。センサポート2は、パッドが回転するのと同じ放射状の直線17上のままである。しかしながら、放射状の直線は、パッド3が回転すると、円形経路上を平行移動する。
図2に示されるように、研磨パッド3は、円形状であり、中心円形孔23を備えることができる。止まり孔や貫通孔24は、センサポート2を形成するために研磨パッドに形成され、この孔は、研磨中の表面に面するように上方へ開口して、センサポートを作り出す。センサアセンブリ25は、止まり孔24内に置かれて研磨パッド3内に配置される。センサアセンブリは、パッドに解放可能に取り付けられることができる。解放可能な取り付けは、ツールを使用することなく連結および連結解除されるように構成されると定義することができる。研磨プロセス中、研磨パッド3は、中心の垂直軸27の回りを回転する。
図3は、内蔵式センサアセンブリ25をより詳細に示し、図4は、センサアセンブリのブロック図を示す。センサアセンブリ25のコンポーネントは、光源28、検出器29、反射表面30(これは、プリズム、鏡、または他の反射光学コンポーネントでありうる)、データ捕獲チップと信号プロセッサを有するセンサ制御システム31、電源32、無線送信機33および無線受信機34を含む。電源は、電力を光源28と制御システムに供給し、この電源は、バッテリからなることが好ましい。しかしながら、電源32は、コンデンサ、磁気誘導システム、圧力発電システム、または光発電システムを備えていてもよい。幾つかの代わりの電源においては、エネルギーがテーブルまたはテーブル表面近くに埋め込まれた電源からセンサアセンブリへ転送されることができる。センサアセンブリは、pH測定を行うpHセンサ、温度測定を行う熱電対、力測定を行う圧力変換器、加速度測定を行う加速度計、および渦電流測定を行う渦電流プローブを含む種々の他のセンサ35を備えていてもよい。これらのセンサは、マイクロ電気機械システム(MEMS)テクノロジー、マイクロ光学電気システム(MOEMS)および電極ベースのテクノロジーを使用して製造されることができる。
センサアセンブリは、光源28、検出器29、反射表面30のようなコンポーネント無しに設けられてもよく、むしろ単一の専用センサ35のみを備えていてもよい。専用センサは、pH測定を行うpHセンサ、温度測定を行う熱電対、力測定を行う圧力変換器、加速度測定を行う加速度計、または渦電流測定を行う渦電流プローブを備えることができる。
無線送信機と受信機は、任意の適切な無線プロトコルを使用できるが、センサ制御システムとCMPデータ収集と制御システムとの間でデータ信号36を送受信するための無線周波数を使用することが好ましい。無線周波数に変わるものとして、センサアセンブリには、赤外線(IR)範囲でデータを送信しかつ受信するためのIR送信機と受信機が提供される。センサアセンブリは、受動システム、半受動システムまたは能動システムである。受動センサアセンブリでは、入力高周波信号によってセンサアセンブリ内のアンテナに誘導される微小電流は、センサアセンブリの制御システム内の集積回路(IC)に電源を入れかつ応答を送信するのに十分な電力を提供する。CMPツール制御システムからのRF信号を後方散乱することによって受動システムは信号を送る。これは、センサアセンブリ内のアンテナが入力信号からの電力を集めかつアウトバウンド(出力)データ信号を送信するように設計されることを意味する。受動システムの応答は、ウエハ特性を反映するデータ信号を含む。
半受動センサアセンブリ25は、バッテリが追加されることを除いて受動センサアセンブリと非常に類似している。このバッテリによって、センサアセンブリが絶えず電力供給されることができる。これは、アンテナが入力信号から電力を集めるように設計される必要性を排除する。従って、アンテナは、データ信号を送信するのに最適化されることができる。
図3に描かれるものと同様に、能動センサアセンブリ25は、センサ制御システム31、センサ35に電力を供給しかつ出力データ信号を発生するために使用されるそれら自体の内部電源32を有する。能動センサアセンブリ25は、それ自体の電源を含むので、受動センサアセンブリ25よりも長い範囲とより大きなメモリを有すると共にCMPツール制御システムによって送信される追加の情報を格納する能力を有する。電力消費を節約するために、能動センサアセンブリは、一定周期で動作するようにプログラムされることができる。
センサアセンブリによって送信されるデータ信号は、研磨動作の進展を監視することまたは研磨プロセスの終点に達したか否かを決定するといったような目的のために無線送信機と受信機に動作上接続されたCMPツールデータ収集と制御システムの外部回路によって使用されることができる。データ信号は、デジタルバイトのワード値を含むことができ、CMPツール制御システムによって解釈されることができる周波数出力の単純な変化であってもよい。センサアセンブリのセンサ制御システムによってデータ信号を介して送信されるデータは、ウエハ表面からの光と色の反射、表面仕上げや滑らかさ、加速度、振動、力や圧力、温度、スラリーpH、テーブル速度、テーブルの振れ、金属フィルム厚を指す渦電流、抵抗、パッド磨耗、パッド状態、パッド内/上の湿度、残留平均フィルム厚、残留フィルム特徴高さの均一性の検出、保持リング磨耗、調節ディスク圧、ウエハ位置(単数または複数)およびスラリー中の粒子に対応するデータを含むことができる。センサ制御システムは、適切な回数測定し、データの感知中にウエハの位置を識別および格納し、そのデータをパッド外の受信機に送信する。データ転送は、連続的、受動的またはCMPツール制御システムによる要求で行われることができる。データ転送は、センサアセンブリが単に送信機を備える場合は、センサアセンブリからCMPツール制御システムへ一方向に実行されることができる。また、データ転送は、センサアセンブリが送信機と受信機を備える場合、センサアセンブリとCMPツール制御システムとの間で双方向に実行されてもよい。データは、CMPデータ収集と制御システムによって使用されリアルタイムで研磨中の研磨パラメータを調節し或いは研磨が完了したか否かを決定する。薄いウエハ均一性制御は、収集されたデータに応答して背圧を調節することによって容易にされる。ランツーラン(run−to−run)制御もまたウエハ同士間の研磨パラメータの調節によって容易にされる。
光源28と検出器29は、整合対である。一般的に、光源28は、発光ダイオードであり、検出器29は、フォトダイオードである。光源28によって発される光ビームの中心軸は最初に水平方向へ向けられるが、反射表面30に到達すると、それから反射するように上方へ向けられ、研磨中の表面に当たり反射する。また、反射光は、反射表面30によって再度方向付けられ、それによって、ウエハから反射された光は、検出器29に入り、検出器29は、それに入る光の強度に関連する電気信号を生成する。図3に示される構成は、センサの高さを最小限に抑えるように選択された。反射表面30は、省略されてもよく、代わりに、図5の側面図に示される構成が用いられてもよい。検出器は、ウエハ表面からの反射光の強度と色を決定するために使用されることができる。
図6に示されるように、センサアセンブリのセンサコンポーネントは、図2の止まり孔24内にぴったり嵌るサイズとされる薄いディスク40やパックの形態のハウジング内に封入される。図7に描かれているように、センサコンポーネントは、スプール形状41のハウジングや、図4に示されるように、センサアセンブリをパッドに固定し、センサアセンブリが研磨中に移動するのを防止し、かつセンサアセンブリがウエハデータを得ることができるようなサイズおよび寸法の他の種々な形状のハウジングに封入されることができる。仕切り板(Baffles)が、検出器29に到達する散乱または周辺光の量を減少するために使用されることができる。ハウジングは、成型ガラスやウレタンのようなポリマーからなることができる。ハウジングは、図7に示されるように、パッド全体を貫通するように延びることができる。また、ハウジングは、図6に示されるように、パッド全体を貫通するように延び止まり孔に埋め込まれてもよい。ハウジングは、赤外光、可視光、または紫外光を含む、センサアセンブリによって使用される光波長を透過するのに適する材料から製造される。
センサアセンブリは、我々の米国特許第6,986,701号に開示された技術を使用して製造されることができ、この開示内容全体が参考として本明細書で援用される。例えば、孔や穴が研磨パッドに生成されることができる。孔は、センサアセンブリのコンポーネントやハウジングに封入されるセンサアセンブリを収容するのに十分な大きさでなければならない。コンポーネントは、ディスクやパック内に置かれ、それによって、センサアセンブリは容易に孔内に配置されることができる。研磨パッドの上表面と下表面に隣接する孔の部分は、貫通孔から半径方向外向きに短い距離だけ延びることができる。これによって、パッドの境界を有するスプール形状の空所を作り出す。他の製造方法では、センサアセンブリコンポーネントは、パッド内の孔に配置されてポリマーで外側被覆されることができる。
孔が研磨パッド内に形成された後、センサアセンブリやそのコンポーネントは、それぞれの場所に挿入され、そこで、それらのコンポーネントは、所定の位置にウレタンからなるスペーサによってまたは上層および下層の部分によって支持および保持される。その後、アセンブリは、平らで非粘着表面を含む固定具内に配される。非粘着表面は、上パッド表面と下パッド表面に接触させられて一緒に押圧される。次に、液状ウレタンが注入されてハウジングを形成する。製造とアセンブリの他の技術は、研磨パッドに穴や孔を作り出すこと、内蔵型センサアセンブリを穴内に配置すること、および接着剤で内蔵型センサアセンブリを穴に連結することを含む。また、パッドは、研磨パッドに穴や孔を作り出し穴内に内蔵型センサアセンブリを収容するサイズと寸法のスナップリングを配置し、接着剤でパッドに合うサイズとされたスナップリングを連結することによって組付けられる。
センサアセンブリが使用される場合、検出器によって生成されかつ光学特性に関連する電気信号は、導体56によって検出器から制御システムのデータ捕獲と信号処理回路に搬送され、この回路は、電気信号に応答して、光学特性を表す処理済データ信号を生成する。処理済信号は、導体57によって送信機に送られる。次に、送信機は、データ信号をCMPデータ収集と制御システムに動作上結合された受信機に無線で送出する。このように、センサアセンブリとCMPデータ収集と制御システムは、互いに無線通信状態にある。
CMPデータ収集と制御システムは、データ信号からのデータを使用してCMPプロセスを調節できる。CMPシステムによってウエハに印加される力(単数または複数)、スラリーの量、スラリーの温度、スラリーが適用される圧力、および回転速度は、データ信号に基づいて調節されることができる。例えば、データ信号が、スラリーの温度が高すぎること、ウエハが許容閾値外の速度で研磨されていること、或いは研磨によって除去された材料の量が目標の除去厚みに到達したことを指す場合、変換アームによってウエハへ印加されている圧力がCMPデータ収集と制御システムによって減少されることができる。
図8乃至図10は、センサアセンブリ25から研磨機へデータ信号を転送し、研磨機からセンサアセンブリへ電力を転送するために使用されることができる他の種々の技術を示している。
図8は、光学特性を表す処理済信号を表す周波数変調電流を発光ダイオードやレーザダイオード59に印加する変調器58を含む送信機55を有するセンサアセンブリを示す。発光ダイオードは、センサアセンブリ25の下方のプラテン18に配置されるフォトダイオード検出器62上にレンズ61によって集光される光波60を発する。検出器62は、光波60を受信機63で復調される電気信号に変換し、CMP制御システム10で光学特性を表す電気信号を生成する。電力源は、バッテリ64または電力分配回路65に電力を供給する他のエネルギー源であり、この回路65は、電力を信号処理回路へおよび送信機回路へ分配する。図9において、センサアセンブリ25は、電波71を送信するアンテナ70を有する無線送信機である送信機を有する。電波71は、アンテナ72によって傍受され、受信機73によって復調されて光学特性を表す電気信号を端子に生成する。
電力は、CMPシステム1の非回転部分に配置される永久磁石74とインダクタ75よりなるマグネト発電機によって発生され、そこでは、永久磁石74の磁界は、インダクタ75が永久磁石74を通過するように回転すると、電流を誘導する。誘導された電流は、電力回路76によって整流されかつフィルタ処理され、次に、電力分配回路77によって分配される。
図10において、センサアセンブリ25は、音波85を生成するラウドスピーカ84を駆動する電力増幅器83を含む送信機を有する。音波85は、研磨機のプラテンに配置されるマイクロフォン86によって取り出される。マイクロフォン86は、受信機87に印加される電気信号を生成し、この受信機87は、光学特性を表す電気信号をCMP制御システム10で生成する。
電力は、プラテンに配置される光源90によってソーラーパネル88へ印加される光89に応答してソーラーセルやソーラーパネル88によってセンサアセンブリにおいて発生される。ソーラーパネル88の電気出力は、必要であれば、変換器91によって適切な電圧に変換され、電力分配回路77へ印加される。
図11は、センサアセンブリ25を使用する、CMPシステムに設置される一般的な研磨パッド3の詳細図を示す。図示の研磨パッドは、Rodel Co.製のモデルIC1000のような本工業で入手可能な典型的な研磨パッドである。このモデルは、接着剤の0.007インチ厚層によって面同士が接合された発泡ウレタンの0.45インチ厚層二つよりなる。パッドは、先の図面で述べられた上パッド層102、下パッド層103、接着剤層104、およびセンサアセンブリ25よりなる。パッドは、プラテン18上に置かれてそれに取り付けられる。センサアセンブリは、例えば、スナップリング105内に挿入される。長期の使用の後、パッドは、消耗され、除去され、廃棄される。新たなパッドがプラテン上に置かれ、センサアセンブリがこの新たなパッドのスナップリング内に挿入されることができる。
図11に図示されるように、センサアセンブリは、CMPツール制御システムと無線通信するように配される。ウエハ表面からの光と色の反射、プラテンの加速度、プラテンの振動、CMPツールによってウエハへ印加される力や圧力、スラリーの温度、スラリーのpH、テーブル速度、テーブルの振れ、金属フィルム厚を指す渦電流、抵抗、パッド磨耗、パッド状態、パッド内/上の湿度、残留平均フィルム厚、残留フィルム特徴高さの均一性の検出、保持リング磨耗、調節ディスク圧、ウエハ位置(単数または複数)とスラリー中の粒子のようなデータを含むデータ信号がセンサアセンブリとCMPツール制御システムとの間で送信される。
図12は、中心回転ハブと電気通信するように配されるセンサアセンブリを示し、図13は、その中心ハブを有するセンサアセンブリのブロック図を示す。この実施の形態では、中心ハブ109は、電源32、センサ制御システム31および無線送信機33と受信機34を含む。センサ35を有するセンサアセンブリは、センターやパッド3内に配置されるリボンケーブル111によって中心ハブと電気通信するように配される。
図14は、ウエハの正面に配置される薄層の材料に光が入射する時の選択された波長の光114の振る舞いを示している。ウエハ4は、ウエハの正面115に構成される二つの最外層を示すために大きく拡大されている。第1の最外層116は、第2の層117を覆っている。各層は、約30マイクロメートル以下、通常は約10マイクロメートルから約1,000オングストローム(約1マイクロメートルの1/10)の厚みを有することができ、複数の追加層が第1と第2の層の下に配置されてもよい。研磨プロセス中に、第1の層は、研磨されてその層を部分的にまたは完全に除去する。第1の層がどれだけ除去されるかを決定するために、選択された波長の光114は、光源28から発され、センサアセンブリの軸に対して固定された角度でウエハの正面に向けられる。反射光は、検出器29によって検出される。光源と光検出器の両方は、センサアセンブリ内に配置され、センサアセンブリは、完全に研磨パッド内に配置されることができる。ウエハから反射された光の強度は、研磨中に除去された材料の量に関する情報を搬送する。(光の波長は、光の一部が材料の薄い層を透過するように選択される。シリコン、二酸化ケイ素、銅および他の材料のような多くの層材料に対して、選択される波長は、約300ナノメートル(青色光)以下から約1500ナノメートル以上(赤外光)の範囲である。入射と反射の角度は、約0度と70度の間、好ましくは、パックの軸と光源との間で測定されるように、約5度に固定される。)
光114がウエハの正面に向けられるとき、光の一部118がウエハの表面から反射し、光の一部119が表面を通過しかつ材料の第1の層116を通過する。光の一部119は、第2の層117から反射し、第1の層116を通って逃げる。一部118と一部119は、検出器に達する前に一緒になる。一部119が一部118よりも大きな距離を移動するため、第1の層116の表面から反射される光(部分118)と第2の層117の表面から反射される光(部分119)は、位相がずれる。部分118と119の相対位相に依存して、二つの部分は、建設的に(強め合うように)または破壊的に(弱め合うように)互いに干渉して、検出された光がより強くまたは弱くされる。
第1の層116が除去されると、部分119が部分118に相対して移動される距離が変化し、それらの位相関係が変化する。その結果、検出された光の強度は、第1の層の除去に従って変化する。層の除去に従って、二つの光線同士間の位相シフトが0度から90度の間で繰り返し変化するため、検出された光の強度は、略正弦的に変化する。
図15は、第1の層の材料がウエハから除去される時間に亘っての検出光の強度のグラフである。(反射光の強度は、層の厚みの関数であり、層の厚みに従って正弦的に変化する。層の厚みは、研磨の時間に亘って変化する。)光の部分118と光の部分119が互いに完全に建設的に干渉し合う時、検出光の強度は、ピーク124である。光の部分118と光の部分119が完全に破壊的に干渉し合う時、検出光の強度は、谷125である。
研磨中に除去された材料の量を測定するために、曲線が較正されなければならない。正弦波曲線を較正するために、外層の絶対厚がスペクトル反射、偏光解析法、或いは絶対厚を測定するための他の技術によって最初に測定される。(これらの技術は、さまざまなベンダーによって提供される器具を使用して実行されることができる。その器具は、比較的大きく、高価或いは精巧で、研磨プロセスのスラリーおよび他の態様は、屈折率および層の厚みの正確な測定の妨げとなる。このように、層の厚みを測定するこうした他の技術は、研磨中研磨パッド内での使用や大量生産のための使用には実用的でない。)次に、反射光信号の強度がセンサアセンブリ25で測定される。次に、テストウエハの外層は、正弦波曲線の一つまたはそれより多くの波長が測定または観察されるまで研磨される。このように、反射光の初期の強度がピークまたは谷であったならば、次に、ウエハは、第二または次のピークまたは谷が測定される迄、研磨される。反射光信号の初期の強度が正弦波曲線上の他の点であったならば、次に、ウエハは、同じ強度が2回またはそれ以上測定される迄、研磨される。次に、研磨プロセスは停止され、外層の絶対厚が再び測定される。
層の厚みの2回の測定の差は、層の厚みの初期の変化である。層の厚みの初期の変化は、正弦波曲線に沿う一つの波長によって表されるが、それは、同じ種類のウエハ(または外ウエハ層)に対して同じ研磨プロセスを使用しかつ同じ波長の入射光を使用する場合に限る。その曲線に沿う複数の波長がカウントされてもよく、その場合、層の厚みの合計の変化は、波長測定回数×層の厚みの初期変化である。
便宜上、正弦波曲線に沿う波長は、研磨プロセス中に測定されるピークの数または谷の数をカウントすることによって容易にカウントされることができる。ピークまたは谷は、正弦波曲線上のノードと考えられるので、層の厚みを測定するプロセスは、ノードカウンティングと呼ばれる。(用語「ノードカウンティング」は、正弦反射曲線に沿う波長をカウントするプロセスを指し、ピークと谷のみをカウントすることに制限されない。)
例えば、ウエハの外層は、偏光解析法を使用して測定されると、10,000オングストローム(1マイクロメートル)の厚みである。その層は、正弦波曲線上の一つの波長が測定される迄、特定のプロセスを使用して研磨される。研磨後、層の厚みは、偏光解析法を使用して測定されると、8,000オングストロームの厚みである。このように、正弦波曲線(一つの波長)上のピーク同士間距離は、2,000オングストロームに等しい層の厚みの変化に対応する。層の仕上げの望ましい厚みが4,000オングストロームである場合、その層は、合計3つの波長がカウントされる(除去された材料が6,000オングストロームであることを表す)迄研磨され、その時点で、研磨プロセスは、その終点に達する。
また、このプロセスは、層の厚みのより小さな変化を連続的に測定するために使用されてもよい。正弦波曲線に沿う波長の一部は、研磨された層の厚みの対応する部分的変化に等しい。上の例を続けると、波長(矢印「X」によって示されるピークツーピーク距離)の1/2は、1,000オングストロームに等しい層の厚みの変化を表す。このように、ウエハが再び研磨され、正弦波曲線に沿ってもう半分の波長が測定されると、仕上げ層厚が3,000オングストロームになる。波長部分をカウントすることができるため、ノードカウンティングは、層の厚みの非常に小さな変化の現場での測定を行うことができる。
曲線に沿う多くの点でまたは複数の波長に亘っての正弦波曲線の較正が必要である場合があり、その場合、曲線の波長は、研磨の時間に亘って変化し、かつ異なる波長は、除去された材料の異なる量を表す。このように、図15に示されるように、矢印「X」に沿う距離が矢印「Y」に沿う距離と等しくない場合、正弦波曲線の多くが較正される必要があるかもしれない。更に、層の絶対厚は、正弦波曲線に沿う任意数の点で測定され、較正曲線の精度を向上できる。これは、正弦波曲線が図15に示される正弦波曲線における変動によって表されるノイズを受ける場合に、必要である。
プロセッサおよびソフトウエアは、上述の方法に従って反射光の強度の変化を層の厚みの変化に関連付けるために設けられる。ディスプレイは、研磨プロセスの進展を表示するために設けられる。コンピュータハードウエアおよびソフトウエアのような制御システムは、研磨プロセスを変更したり、層の厚みの変化に応答して遅くしたり、停止したり或いは研磨速度を変更するために設けられる。このように、CMP制御システムは、処理の終点に近づくと、研磨を遅くし、終点に達すると、停止することができる。(制御システムは、時間と共に層の厚みの変化に応じて研磨プロセスの態様を制御できる。)
正弦波反射曲線のライブラリが製造中の時間を節約するために発生されてもよい。各曲線は、特定のウエハに対する特定のプロセスに対しては同じである。較正曲線がすでに確立されている公知のプロセスで公知のタイプのウエハを研磨する場合、較正ステップは、飛ばされてもよい。更に、各反射曲線は、全研磨プロセスに亘ってカウントされた波長毎に除去された各層の絶対厚を測定することによって更に精緻化されることができる。このように、較正曲線は、(屈折率、層材料或いは処理パラメータの変化に関係なく)研磨プロセスの全期間に亘って正確である。
このように、本装置および方法の好適な実施の形態はそれらが開発された環境を参照して記述されたが、それらは、本発明の原理の例示に過ぎない。他の実施の形態および構成が、本発明の精神および添付の請求の範囲から逸脱することなく考案されることができる。
複数の光学センサを有するセンサアセンブリが埋め込まれた研磨パッドを使用する、ウエハを研磨する化学的機械的平坦化機械の平面図。 研磨パッドに配置されるセンサアセンブリの要素の一般的な配置を示す分解斜視図。 センサアセンブリの正面上面斜視図 センサアセンブリのブロック図 プリズムのない、光学センサを有するセンサアセンブリを示す側面断面図 薄いディスクの形状のセンサアセンブリを示す図 スプールの形状のセンサアセンブリを示す図 光学特性を表わす処理済信号を表わす周波数変調電流を発光ダイオードやレーザダイオードに印加する変調器を含む送信機を備えるセンサアセンブリを示す図 無線送信機を有するセンサアセンブリ25を示す図 音波を生成する送信機を有するセンサアセンブリ25を示す図 センサアセンブリを使用する、CMPシステムに設けられる全面研磨パッドの詳細図を示す図 センサアセンブリと中心ハブを備えるCMPシステムに設けられる研磨パッドの詳細図を示す図 中心ハブを有するセンサアセンブリのブロック図を示す図 光がウエハの正面に配置された薄層の材料に入射する場合に、選択された波長の光の振る舞いを示す図 第1の層の材料がウエハから除去される間の検出光の強度のグラフ
符号の説明
1:化学的機械的平坦化システム
2:センサ部
3:研磨パッド
4:ウエハ
5:研磨ヘッド
6:変換アーム
7:スラリー注入チューブ
8:サスペンションアーム
9:無線送受信機
10:CMPデータ収集と制御システム
13:スピンドル
18:プラテン
24:止まり孔
25:センサアセンブリ
28、60:光源
29、62:検出器
30:反射表面
31:センサ制御システム
32:電源
33:無線送信機
34:無線受信機
35:他のセンサ
40:ディスク形状ハウジング
41:スプール形状ハウジング
56、57:導体
58:変調器
59:ダイオード
61:レンズ
63:受信機
64:バッテリ
65、77:電力分配回路
70、72:アンテナ
73:受信機
74:永久磁石
75:インダクタ
76:電力回路
83:電力増幅器
84:ラウドスピーカ
86:マイクロフォン
87:受信機
88:ソーラーパネル
90:光源
91:変換器
102:上部パッド層
103:下部パッド層
104:接着剤層
105:スナップリング
109:中心ハブ
111:リボンケーブル
116:第1の層
117:第2の層

Claims (39)

  1. ウエハが研磨されると共に前記ウエハの特性の変化を測定するためのシステムであって、前記システムは、
    前記ウエハを研磨するのに適する研磨パッド;
    前記パッド内に配置される光源;
    前記パッド内に配置される光検出器;
    前記パッド内に配置される無線送信機;および
    前記パッド内に配置されるセンサ制御システムを備え、前記センサ制御システムは、前記光源、前記光検出器および前記無線送信機に動作上接続されることを特徴とするシステム。
  2. 前記センサ制御システムに動作上接続される、前記パッド内に配置される無線受信機を更に備えることを特徴とする請求項1記載のシステム。
  3. 前記センサ制御システムに動作上接続される電源を更に備えることを特徴とする請求項1記載のシステム。
  4. 前記センサ制御システムに動作上接続される、前記パッド内に配置される力変換器を更に備えることを特徴とする請求項1記載のシステム。
  5. 前記センサ制御システムに動作上接続される、前記パッド内に配置される加速度計を更に備えることを特徴とする請求項1記載のシステム。
  6. 前記センサ制御システムに動作上接続される、前記パッド内に配置されるpHセンサを更に備えることを特徴とする請求項1記載のシステム。
  7. 前記センサ制御システムに動作上接続される、前記パッド内に配置される熱電対を更に備えることを特徴とする請求項1記載のシステム。
  8. 前記センサ制御システムと無線通信するCMP制御システムを更に備え、前記CMP制御システムは、CMPツールに動作上接続されると共に光の所定の波長が測定されると、CMPツールの研磨率を制御できることを特徴とする請求項1記載のシステム。
  9. ウエハが研磨されると共に前記ウエハの特性の変化を測定するためのシステムであって、前記システムは、
    前記層を研磨するのに適する研磨パッド;および
    前記研磨パッド内に配置されるセンサアセンブリを備え、前記センサアセンブリは、
    ハウジング;
    前記ハウジング内に配置されるセンサ制御システム;
    前記ハウジング内に配置されかつ前記制御システムに動作上接続される光源;
    前記ハウジング内に配置されかつ前記センサ制御システムに動作上接続される光検出器;および
    前記ハウジング内に配置されかつ前記センサ制御システムに動作上接続される無線送信機を備えることを特徴とするシステム。
  10. 前記センサアセンブリは、前記パッドに取り外し可能に連結されることを特徴とする請求項9記載のシステム。
  11. 前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続される無線受信機を更に備えることを特徴とする請求項9記載のシステム。
  12. 前記センサアセンブリに動作上接続される電源を更に備えることを特徴とする請求項9記載のシステム。
  13. 前記ハウジングはディスクの形状であることを特徴とする請求項9記載のシステム。
  14. 前記ハウジングはスプールの形状であることを特徴とする請求項9記載のシステム。
  15. 前記センサアセンブリは、更に前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続される力変換器を備えることを特徴とする請求項9記載のシステム。
  16. 前記センサアセンブリは、更に前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続される加速度計を備えることを特徴とする請求項9記載のシステム。
  17. 前記センサアセンブリは、更に前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続されるpHセンサを備えることを特徴とする請求項9記載のシステム。
  18. 前記センサアセンブリは、更に前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続される熱電対を備えることを特徴とする請求項9記載のシステム。
  19. 前記センサアセンブリと無線通信しかつCMPツールに動作上接続されるCMP制御システムを更に備え、前記CMP制御システムは、光の所定の波長が測定される時、前記CMPツールの研磨率を制御できることを特徴とする請求項9記載のシステム。
  20. 前記センサアセンブリは、前記パッドから外側に向く外表面によって特徴付けられ、前記外表面は、前記研磨パッドの外表面と実質的に面一であることを特徴とする請求項9記載のシステム。
  21. CMP研磨パッドで使用されるセンサアセンブリであって、
    光学的に透明なハウジング;
    前記ハウジング内に配置されるセンサ制御システム;
    前記ハウジング内に配置されかつ前記制御システムに動作上接続される光源;
    前記ハウジング内に配置されかつ前記制御システムに動作上接続される光検出器;および
    前記ハウジング内に配置されかつ前記制御システムに動作上接続される無線送信機を備え、
    前記ハウジングはCMP研磨パッドに解放可能に連結されることができることを特徴とするセンサアセンブリ。
  22. 前記ハウジング内に配置されかつ前記センサ制御システムに動作上接続される無線受信機を更に備えることを特徴とする請求項21記載のセンサアセンブリ。
  23. 前記センサアセンブリに動作上接続される電源を更に備えることを特徴とする請求項21記載のセンサアセンブリ。
  24. 前記ハウジングはディスクの形状であることを特徴とする請求項21記載のセンサアセンブリ。
  25. 前記ハウジングはスプールの形状であることを特徴とする請求項21記載のセンサアセンブリ。
  26. 前記ハウジング内に配置されると共に前記制御システムに動作上接続される力変換器を更に備えることを特徴とする請求項21記載のセンサアセンブリ。
  27. 前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続される加速度計を更に備えることを特徴とする請求項21記載のセンサアセンブリ。
  28. 前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続されるpHセンサを更に備えることを特徴とする請求項21記載のセンサアセンブリ。
  29. 前記ハウジング内に配置されると共に前記センサ制御システムに動作上接続される熱電対を更に備えることを特徴とする請求項21記載のセンサアセンブリ。
  30. 前記電源はバッテリよりなることを特徴とする請求項21記載のセンサアセンブリ。
  31. CMPプロセスを使用してウエハを研磨するための方法であって、
    CMPツール制御システム、前記CMPツール制御システムに動作上接続される無線受信機および研磨パッドを有するCMPシステムを提供すること;
    前記研磨パッド内にセンサアセンブリを配置することであって、前記センサアセンブリが光学センサと無線送信機を備えること;
    前記センサアセンブリから前記CMPツール制御システムへデータ信号を無線送信すること;および
    前記データ信号に基づいて前記CMPプロセスを調整すること、を備えることを特徴とする方法。
  32. 前記センサアセンブリは、更にディスクの形状のハウジングを備えることを特徴とする請求項31記載の方法。
  33. 前記センサアセンブリは、更にスプールの形状のハウジングを備えることを特徴とする請求項31記載の方法。
  34. 前記センサアセンブリは、更に力変換器を備えることを特徴とする請求項31記載の方法。
  35. 前記センサアセンブリは、更に加速度計を備えることを特徴とする請求項31記載の方法。
  36. 前記センサアセンブリは、更にpHセンサを備えることを特徴とする請求項31記載の方法。
  37. 前記センサアセンブリは、更に熱電対を備えることを特徴とする請求項31記載の方法。
  38. 前記センサアセンブリは、更に電源を備えることを特徴とする請求項31記載の方法。
  39. 前記データ信号は、前記ウエハの光学特性を示すデータよりなることを特徴とする請求項31記載の方法。
JP2009503023A 2006-03-29 2007-03-29 半導体ウエハ研磨中にウエハ特性を測定するデバイスおよび方法 Pending JP2009531862A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/393,041 US20070235133A1 (en) 2006-03-29 2006-03-29 Devices and methods for measuring wafer characteristics during semiconductor wafer polishing
PCT/US2007/007887 WO2007123663A2 (en) 2006-03-29 2007-03-29 Devices and methods for measuring wafer characteristics during semiconductor wafer polishing

Publications (1)

Publication Number Publication Date
JP2009531862A true JP2009531862A (ja) 2009-09-03

Family

ID=38573888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009503023A Pending JP2009531862A (ja) 2006-03-29 2007-03-29 半導体ウエハ研磨中にウエハ特性を測定するデバイスおよび方法

Country Status (7)

Country Link
US (1) US20070235133A1 (ja)
EP (1) EP2008299A2 (ja)
JP (1) JP2009531862A (ja)
KR (1) KR20080110650A (ja)
CN (1) CN101495325A (ja)
TW (1) TW200802577A (ja)
WO (1) WO2007123663A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114658A1 (ja) * 2010-03-19 2011-09-22 ニッタ・ハース株式会社 研磨装置、研磨パッドおよび研磨情報管理システム

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808453B2 (ja) * 2005-08-26 2011-11-02 株式会社荏原製作所 研磨方法及び研磨装置
US7998358B2 (en) * 2006-10-31 2011-08-16 Applied Materials, Inc. Peak-based endpointing for chemical mechanical polishing
US7821637B1 (en) 2007-02-22 2010-10-26 J.A. Woollam Co., Inc. System for controlling intensity of a beam of electromagnetic radiation and method for investigating materials with low specular reflectance and/or are depolarizing
US8182312B2 (en) * 2008-09-06 2012-05-22 Strasbaugh CMP system with wireless endpoint detection system
KR101956838B1 (ko) 2009-11-03 2019-03-11 어플라이드 머티어리얼스, 인코포레이티드 시간에 대한 스펙트럼들 등고선 플롯들의 피크 위치를 이용한 종료점 방법
EP2455186A1 (de) * 2010-11-17 2012-05-23 Schneider GmbH & Co. KG Vorrichtung und Verfahren zum Bearbeiten einer optischen Linse mit automatischer Identifizierung der optischen Linse
US20130017762A1 (en) * 2011-07-15 2013-01-17 Infineon Technologies Ag Method and Apparatus for Determining a Measure of a Thickness of a Polishing Pad of a Polishing Machine
CN105448817B (zh) * 2014-09-29 2020-05-19 盛美半导体设备(上海)股份有限公司 一种电化学抛光金属互连晶圆结构的方法
KR20170068534A (ko) * 2014-10-09 2017-06-19 어플라이드 머티어리얼스, 인코포레이티드 내부 채널들을 갖는 화학 기계적 폴리싱 패드
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
KR102295988B1 (ko) 2014-10-17 2021-09-01 어플라이드 머티어리얼스, 인코포레이티드 애디티브 제조 프로세스들을 이용한 복합 재료 특성들을 갖는 cmp 패드 구성
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US10618141B2 (en) 2015-10-30 2020-04-14 Applied Materials, Inc. Apparatus for forming a polishing article that has a desired zeta potential
US10593574B2 (en) 2015-11-06 2020-03-17 Applied Materials, Inc. Techniques for combining CMP process tracking data with 3D printed CMP consumables
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
SG11201901352XA (en) * 2016-09-15 2019-04-29 Applied Materials Inc Chemical mechanical polishing smart ring
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
WO2019032286A1 (en) 2017-08-07 2019-02-14 Applied Materials, Inc. ABRASIVE DISTRIBUTION POLISHING PADS AND METHODS OF MAKING SAME
WO2019071053A1 (en) * 2017-10-04 2019-04-11 Saint-Gobain Abrasives, Inc. ABRASIVE ARTICLE AND ITS TRAINING METHOD
US11565365B2 (en) * 2017-11-13 2023-01-31 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for monitoring chemical mechanical polishing
IT201800008045A1 (it) * 2018-08-10 2020-02-10 Mole Abrasivi Ermoli Srl Sistema di molatura comprendente una mola ed una molatrice con sistema di ricetrasmissione dati mobile
JP7299970B2 (ja) 2018-09-04 2023-06-28 アプライド マテリアルズ インコーポレイテッド 改良型研磨パッドのための配合物
EP3870395A2 (en) 2018-10-25 2021-09-01 3M Innovative Properties Company Robotic paint repair systems and methods
KR102262781B1 (ko) * 2019-07-10 2021-06-09 주식회사 에스피에스테크 Cmp 장비용 종점 검출 시스템
KR102262800B1 (ko) * 2019-07-10 2021-06-09 주식회사 에스피에스테크 Cmp 장비용 스핀 베이스 구조체
KR102262803B1 (ko) * 2019-07-10 2021-06-09 주식회사 에스피에스테크 웨이퍼용 cmp 시스템
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11662365B2 (en) * 2020-09-17 2023-05-30 Microchip Technology Incorporated Systems and methods for detecting forcer misalignment in a wafer prober
US20220115226A1 (en) * 2020-10-08 2022-04-14 Okmetic Oy Manufacture method of a high-resistivity silicon handle wafer for a hybrid substrate structure
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352466B1 (en) * 1998-08-31 2002-03-05 Micron Technology, Inc. Method and apparatus for wireless transfer of chemical-mechanical planarization measurements
WO2000071971A1 (en) * 1999-05-24 2000-11-30 Luxtron Corporation Optical techniques for measuring layer thicknesses
US6726528B2 (en) * 2002-05-14 2004-04-27 Strasbaugh Polishing pad with optical sensor
US6976901B1 (en) * 1999-10-27 2005-12-20 Strasbaugh In situ feature height measurement
JP3506114B2 (ja) * 2000-01-25 2004-03-15 株式会社ニコン モニタ装置及びこのモニタ装置を具えた研磨装置及び研磨方法
JP4131632B2 (ja) * 2001-06-15 2008-08-13 株式会社荏原製作所 ポリッシング装置及び研磨パッド
US7030018B2 (en) * 2002-02-04 2006-04-18 Kla-Tencor Technologies Corp. Methods and systems for monitoring a parameter of a measurement device during polishing, damage to a specimen during polishing, or a characteristic of a polishing pad or tool
KR100434189B1 (ko) * 2002-03-21 2004-06-04 삼성전자주식회사 화학 기계적 연마장치 및 그 제어방법
US7235154B2 (en) * 2004-01-08 2007-06-26 Strasbaugh Devices and methods for optical endpoint detection during semiconductor wafer polishing
US7163435B2 (en) * 2005-01-31 2007-01-16 Tech Semiconductor Singapore Pte. Ltd. Real time monitoring of CMP pad conditioning process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114658A1 (ja) * 2010-03-19 2011-09-22 ニッタ・ハース株式会社 研磨装置、研磨パッドおよび研磨情報管理システム
JP2011194509A (ja) * 2010-03-19 2011-10-06 Nitta Haas Inc 研磨装置、研磨パッドおよび研磨情報管理システム
US9254545B2 (en) 2010-03-19 2016-02-09 Nitta Haas Incorporated Polishing apparatus, polishing pad, and polishing information management system

Also Published As

Publication number Publication date
WO2007123663A3 (en) 2008-12-11
US20070235133A1 (en) 2007-10-11
KR20080110650A (ko) 2008-12-18
TW200802577A (en) 2008-01-01
CN101495325A (zh) 2009-07-29
EP2008299A2 (en) 2008-12-31
WO2007123663A2 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP2009531862A (ja) 半導体ウエハ研磨中にウエハ特性を測定するデバイスおよび方法
JP5031170B2 (ja) 内蔵光学センサを備えた研磨パッド
KR100795616B1 (ko) 상이한 파장을 갖는 광선으로 종료점을 검출하는 방법 및장치
US7549909B2 (en) Methods for optical endpoint detection during semiconductor wafer polishing
JP4202841B2 (ja) 表面研磨装置
US5872633A (en) Methods and apparatus for detecting removal of thin film layers during planarization
KR100821747B1 (ko) 광센서가 내장된 연마패드
EP1487611A1 (en) Apparatus and methods for detecting transitions of wafer surface properties in chemical mechanical polishing for process status and control
TWI569318B (zh) Grinding apparatus and grinding method
US5938502A (en) Polishing method of substrate and polishing device therefor
KR101187453B1 (ko) 광섬유케이블이 포함된 투과성시트, 이를 이용한 cmp공정에서의 연마종결점 검출방법 및 장치
US8182312B2 (en) CMP system with wireless endpoint detection system