JP2009513346A - 酸素を製造するための圧力振動吸着法 - Google Patents

酸素を製造するための圧力振動吸着法 Download PDF

Info

Publication number
JP2009513346A
JP2009513346A JP2008538937A JP2008538937A JP2009513346A JP 2009513346 A JP2009513346 A JP 2009513346A JP 2008538937 A JP2008538937 A JP 2008538937A JP 2008538937 A JP2008538937 A JP 2008538937A JP 2009513346 A JP2009513346 A JP 2009513346A
Authority
JP
Japan
Prior art keywords
bed
vacuum pressure
pressure vibration
feed
vpsa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008538937A
Other languages
English (en)
Inventor
バクシュ、モハメド、サフダール、アリー
ロジンスキー、アンドリュー
Original Assignee
プラクスエア・テクノロジー・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プラクスエア・テクノロジー・インコーポレイテッド filed Critical プラクスエア・テクノロジー・インコーポレイテッド
Publication of JP2009513346A publication Critical patent/JP2009513346A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40075More than ten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本発明は、一般に、四つの床(42、44、46、48)を含む一列の床、時間的に与えられたどの瞬間でも二つの床に同時に供給する少なくとも一つの供給コンプレッサー(36、38)、及び一つの真空ポンプ(52)を用いた大容量(例えば、O>350t/日)の真空圧力吸着(VPSA)装置及び方法に関する。コンプレッサー(単数又は複数)及び真空ポンプは、100%の時間利用できる。パージするため生成物品質のガスを使用しなくてもよく、O生産性に10〜20%の改良、資本コストに5〜10%の削減が期待される。

Description

(技術分野)
本発明は、一般に、4つの床を含む一列の床、二つの床に時間的にどのような与えられた瞬間でも同時に供給する少なくとも一つの供給コンプレッサー、及び一つの真空ポンプを用いた、大きな容量(例えば、350t/日より多いO)の真空圧力吸着(vacuum pressure adsorption)(VPSA)装置(system)及び方法に関する。コンプレッサー(単数又は複数)及び真空ポンプは100%の時間利用することができる。パージするために生成物品質のガスを用いなくてもよく、O生産性に約10〜20%の改良及び資本コストに5〜10%の削減を与えることが予想されている。
(発明の背景)
空気から酸素を製造するため、現在では真空圧力振動吸着(vacuum pressure swing adsorption)(VPSA)又は圧力振動吸着(pressure swing adsorption)(PSA)装置技術を用いている。これらの装置は、屡々O<200t/日の容量を有する。現在、空気から、そのような小規模(O<200t/日)から大規模(O≧約350t/日)に酸素を製造するようにVPSA又はPSA装置の容量を拡大することに新たに関心が払われている。
VPSA又はPSA法を適用する場合、供給混合物(例えば、空気)からOを分離するために必要なエネルギー入力は、供給コンプレッサー(単数又は複数)及び真空ポンプ(単数又は複数)による機械的仕事として与えられている。この仕事のコストは、VPSA又はPSA法の全操作コストのかなりの部分になっている。更に、VPSA又はPSA技術は、現在小規模用途のためだけの低温蒸留と経済的に競合している。PSA又はVPSA法が大規模用途に対し低温蒸留とコスト的に競合できるようになるためには、PSA又はVPSA法を操作するための改良されたサイクルが必要である。
空気から酸素を製造するための二床真空圧力振動吸着(VPSA)法が、バクシュ(Baksh)その他による米国特許第5,518,526号及びスモラーク(Smolarek)その他による米国特許第6,010,555号明細書に記載されている。米国特許第5,518,526号及び第6,010,555号は、同時平衡化及び排出工程と、続く同時供給物及び生成物加圧工程を行なうVPSA法を用いている。図1は、スモラークその他による米国特許第6,010,555号に記載されている空気から酸素を製造するVPSAサイクルを示している。米国特許第5,518,526号及び第6,010,555号は、両方共小規模〔<200t/日(TPD)〕酸素製造のためのものである。米国特許第5,518,526号及び第6,010,555号の吸着及び脱着法は、低い圧力比及び比較的高い脱着圧力値を特徴とする。米国特許第5,518,526号及び第6,010,555号の小規模(O<200TPD)VPSA法を用いて、設備及び操作コストにかなりの減少を実現することができる。
大規模酸素製造(例えば、350t/日のO)が望ましい用途では、四床VPSA法が用いられている。そのようなVPSA法の一つがスモラークその他により米国特許第5,656,068号明細書に記載されている。米国特許第5,656,068号明細書に記載されている四床VPSA法は、二対の二床装置として操作され、2×2サイクル/装置として言及されている。床の各対は、位相を180°ずらして操作され、二対の床は、半サイクルの1/2だけ位相をずらして操作される。二つのコンプレッサー(一つはルーツ型又は容積式、一つは遠心式)及び二つの真空ポンプ(一つはルーツ型又は容積式、一つは遠心式)が米国特許第5,656,068号のVPSA法で開示されている。二つのコンプレッサーの内の一つは、周期的に空転又は通気方式になる。約100t/日(TPD)の酸素を製造するための二対の吸着床として操作される四床VPSA装置が、ドーング(Doong)による米国特許第5,997,612号明細書にドーングにより記載されている。このVPSA法は、二対の床、中間貯蔵タンク〔並流(co−current)減圧ガスを収集するためのもの〕、一つのガス送風機、及び一対の真空ポンプを含む。ドーング(米国特許第5,997,612号明細書)に開示されている装置は、米国特許第5,656,068号明細書に開示されている四つのポンプと比較して、三つのポンプを含む。更に、ドーング(米国特許第5,997,612号明細書)に示されている装置は、スモラークその他(米国特許第5,656,068号)の複式供給物(dual feed)VPSA法を用いた大規模O製造よりもむしろ小規模酸素(<200t/日)製造のためのものである。
従って、大規模酸素製造容量(例えば、O>350t/日)を持ち、コスト効率が良く、生産性の高い四床VPSA法及び装置を与えることが望ましいであろう。
(発明の概要)
本発明は、一般に、大規模酸素製造(例えば、O>350t/日)のための複式供給導入部を有する四床VPSA装置及び方法に関する。本発明の装置は、米国特許第5,656,068号明細書に記載されているような四つのポンプ(例えば二つはコンプレッサーで、二つは真空ポンプ)ではなく、三つのポンプ(例えば、二つのコンプレッサーと一つの真空ポンプ)を配備することを含んでいる。更に、本発明は、コンプレッサー及び真空ポンプを100%利用しながら、同時に二つの床に供給物ガスを同時に受けさせることを含む独特の四床VPSAサイクルを使用することを意図している。更に、四床VPSAサイクル中のどの時間的瞬間でも、二つの床が同時に供給物を受けながら、他の二つの床が再生/還流方式になっている。
本発明に従って与えられる方法及び装置は、多くの利点を有する。例えば、限定するものと解釈すべきではないが、本発明の装置及び方法は次のことを含む:(1)連続的供給及び生成物生成工程;(2)最低限一つのコンプレッサー及び一つの真空ポンプ;(3)コンプレッサー及び真空ポンプの100%の利用;(4)連続的供給及び生成物生成工程により、従来法に比較して小さい生成物貯蔵/緩衝タンク;(5)VPSA法への導入供給物を圧搾するために同じか又は異なるコンプレッサー(例えば、遠心型か又はルーツ型)を用いる選択の自由;(6)並流減圧工程を受けつつある別の床から来るパージガス、及びこのパージガスが、付加的貯蔵タンクを全く用いることなく、パージ工程を受ける別の床へ直接送られること;(7)VPSAサイクルで排出工程の間に挟まれたパージ工程(即ち、VPSAサイクルは、パージ工程の前と後に排出工程を有し、別の床を直接パージするため空間(void space)ガスを使用できるようにする(付加的貯蔵タンクを不必要にする)か、或はパージするため生成物品質のガスを用いなくてもよいようにしていること;(8)大きな固有の吸着速度及び物質移動速度を増大するのに最適の粒径、大きなO生成物回収率、及びVPSA法で速いサイクルの浅い吸着器で低い床サイズ因子(bed size factor)(BSF)を有する吸着剤の使用;及び/又は(9)四床VPSA法の全ての工程が完全に統合され、そのため床の中で遊んでいる工程(単数又は複数)をもつものは一つも無いこと。
結局、本発明の装置は、このようにO生産性/回収性に約10〜20%の改良及び資本コストの5〜10%の削減を与えるものと予期されている。なぜなら、一列の床、一つ少ないポンプ、サイズ因子の小さい床を用いて大規模(>350t/日)基準で酸素を製造し、パージのために生成物品質のガスを用いなくてもよいからである。
本発明及びその利点を一層完全に理解するため、添付の図面に関連して行う次の詳細な説明を参照すべきである。
(詳細な説明)
上で論じたように、本発明は、大規模O(好ましくは、>350t/日)製造のための真空圧力振動吸着(VPSA)法及び装置に関する。本発明は、四つの吸着床、少なくとも一つの供給コンプレッサー(好ましくは二つ、例えば、一つは遠心型、一つはルーツ型のような容積式)、及び一つの真空ポンプを用いて12工程のVPSAサイクルを行う装置及び方法を含む。時間的にどの瞬間でも、床の二つは同時に供給方式になっているのに対し、他の二つの床は再生/還流方式になっている。これらの二つの床への供給物は、別々のコンプレッサー又は一つのコンプレッサーから供給することができる。並流減圧工程(co−current depressurization step)中に発生したガスは、付加的貯蔵タンクを用いることなく、別の床へのパージガスとして送ることができる。どの与えられた時間でも、唯一つの床が排出工程(evacuation step)になっており、それにより唯一つの真空ポンプを用いればよく、そのことが資本及び操作コストを節約する結果になる。排出工程は、パージ工程の前及び後で行われる。この操作方式は、別の床の並流減圧中に得られた空間ガスを、その床を直接パージするために用いることができるようにし(付加的貯蔵タンクを用いることなく)、或はパージのために生成物品質のガスを用いなくてもよいようにする融通性をVPSAサイクルに与える。
更に、本発明により与える四床VPSA法の工程は、床の中で遊んでいる工程(単数又は複数)をもつものは一つも無いように、全て完全に統合されており、即ち、コンプレッサー(単数又は複数)及び真空ポンプは、VPSAサイクル中100%利用されている。
限定するものとして解釈すべきではないが、本発明の装置は、次の有利な特徴の幾つか又は全てを含むことができる。例えば、本発明は、大規模O製造のために二列の二床VPSA法ではなく、一列の四床VPSA法を適用することを含む。その結果、二列の二床VPSA法に比較して、一層低い資本コスト及び向上した処理性能、例えば、一層大きなO回収率を期待することができる。更に、本発明の装置は、新規な四床VPSAサイクルの結果として、不純物(例えば、N)濃度前端(concentraion front)の広がりが少なくなるものと期待されている。このことは、従来法の技術に比較して、床再生中に必要になるパージガスが少なくてすむと言う期待によるものである。サイクル中の連続的生成物、供給物、及び排出工程は、コンプレッサー(単数又は複数)/真空ポンプの100%の利用を可能にする。本発明は、更に、VPSAサイクル中のどの時点でも複式供給物導入の適用に備えられている。更に、VPSAサイクルで向流送出(blow down)の組込みは、(床再生中に得られた)廃棄物の一部を、米国特許第5,656,068号及び第6,010,555号の場合のように、廃棄物を、真空ポンプを通過させる代わりに、真空ポンプを迂回させることができる。
本発明は、更に、還流するために用いられるクリーナーガスを含む、例えば、パージするためにはO純度の最も低いガスを用い、生成物加圧のためにはO純度の最も高いガスを用いる。即ち、本発明のVPSAサイクルでは、パージ、平衡上昇、及び生成物加圧のためには純度の増大した生成物ガスが用いられており、それにより床をO生成のために作動させる前にO濃度前端部を一層明確にするか、床再生を一層よくする結果を与える。
従来法の装置に比較して、床対床平衡化中の空間ガス回収のための一層高い圧力勾配の駆動力及びVPSAサイクル中の種々の工程の独特の構成により、本発明の更に別の利点が期待される。
更に、VPSAサイクルの平衡化と供給物加圧工程の重複中、吸着圧力で平衡化する床が始動するため、供給物加圧により又は加圧中の供給物の吹き出しを少なくすることができる。
本発明では、パージガスの全てが、並流減圧工程を受けつつある別の床から回収された空間ガスから来るようにすることができる。更に、このパージガスを(例えば、米国特許第5,997,612号の場合のように)更に別の貯蔵タンクを用いることなく、パージ工程を受けつつある別の床のために直接用いることができる。パージ工程は、VPSAサイクルで排出工程の間に挟まれている。特に、VPSAサイクルは、パージ工程の前と後に排出工程を有し、別の床を直接パージするため空間ガスを使用できるようにし、米国特許第5,656,068号及び米国特許第6,010,555号の場合のように、生成物品質のガスをパージに用いなくてもよいようにしている。
本発明の装置は、更に、VPSA過程への導入供給物を圧縮するために同じか又は異なるコンプレッサー(例えば、遠心型とルーツ型、即ち容積式)を用いる自由な選択を与え、100%の利用、即ち、VPSAサイクル全体を通してコンプレッサーの遊びは無い。
本発明の結果として、一列の床、一つ少ないポンプ、一層小さい床サイズ因子(BSF)を用いて大規模に酸素(>350t/日)を製造し、パージのために生成物品質のガスを用いなくてもよいようにしていることにより、O生産性又は回収率に約10〜20%の改良及び資本コストに約5〜10%の削減が期待されている。
次に、本発明を、図2に示した四床VPSA法、図3に示した四床VPSAサイクル、及び表1に示したようなバルブ切り替え論理を参照して説明する。
図2に示した四床VPSA装置(30)は:四つの吸着器床(42、44、46、48);24個のオン/オフバルブ(その幾つか又は全てが流動制御を持っていても、いなくてもよい);二つの供給コンプレッサー36、38;一つの真空コンプレッサー52;供給物32のための供給物導入サイレンサー/フィルター34;供給物排出サイレンサー/後冷却器(40);真空排出サイレンサー54;及び付随する配管及び備品を含む。図2及び3及び表1に関し、本発明の一つの態様を一つの完全なVPSAサイクルについて例示する。表1では、バルブが希望の流れを操作するためのオン/オフバルブであるか、又は流動制御バルブであるか否かにより、「C」は閉じた位置に在るバルブを表すのに対し、「O」は完全に開いた又は部分的に開いた位置に在るバルブを表すことが認められるであろう。当業者により、流動制御バルブは、生成物加圧中に用いられることは、認められるであろう(例えば、図3の工程3)。
Figure 2009513346
AD:吸着/生成物生成 PG:パージ受け入れ
ED:平衡化降下(equalization down) EU:平衡化上昇(equalization up)
PPG:パージガス供与 PP:生成物加圧
PPP:生成物加圧ガス供与 FP:供給物加圧
BD:放出(blowdown)
EV:排出
工程1
工程1の開始時に、床42(B1)の圧力は吸着圧力になっている。バルブ1を開き、供給物ガスを床42の底部へ送入し、バルブ21を開き床42の頂部から生成物50を出す。供給物ガスは、コンプレッサー38(C1)から床1へ供給する。バルブ11を開き、床44(B2)を排出し、コンプレッサー52(C3)を通り、真空排出サイレンサー54へ送り、廃棄物56とする。バルブ13を開き、床46(B3)を大気中へ放出(blowdown)する。バルブ8を開き、床48(B4)の底部へ供給物ガスを送入し、バルブ24を開き、生成物50を床48の頂部から出す。供給物ガスは、コンプレッサー36(C2)から床48へ供給する。
工程2
工程2の開始時に、バルブ1を閉じ、バルブ2を開き、供給物ガスをコンプレッサー36(C2)から床42の底部へ送入する。バルブ21は開いたままにし、床42からの生成物の生成を継続させる。バルブ11を閉じ、バルブ3を開き、床44からの排出を停止し、コンプレッサー38(C1)から供給物ガスを床44の底部へ送入する。また、バルブ18及び20を開き、床48から平衡化ガスを床44の頂部へ流入させる。バルブ13を閉じ、バルブ14を開き、床46(B3)を排出し始める。
工程3
工程3の開始時に、バルブ2及び21は開いたままにし、床42からの生成物50の生成を継続させる。バルブ3は開いたままにし、供給物ガスをコンプレッサー38から床44の底部へ送入し続ける。バルブ22を開き、生成物加圧ガスを床44の頂部へ送入する。バルブ20は開いたままにし、バルブ19を開き、パージガスを床48から床46へ流入させる。バルブ14を開いたままにし、床46の排出を継続する。バルブ18を閉じる。
工程4
工程4の開始時に、バルブ2及び21は開いたままにし、床42からの生成物の生成を継続させる。バルブ3及び22は開いたままにし、生成物の生成を床44で開始する。バルブ14を開いたままにし、床46の排出を継続する。バルブ16を開き、床48を大気中に放出する。
工程5
工程5の開始時に、バルブ17及び19を開き、平衡化ガスを床42から床46の頂部へ流入させる。バルブ3を閉じ、バルブ4を開き、供給物ガスをコンプレッサー36(C2)から床44の底部へ送入する。バルブ22は開いたままにし、床44からの生成物の生成を継続させる。バルブ13を閉じ、バルブ5を開き、床46の排出を停止し、供給物ガスをコンプレッサー38(C1)から床46の底部へ送入する。バルブ16を閉じ、バルブ15を開き、床48の排出を開始する。
工程6
工程6の開始時に、バルブ17は開いたままにし、バルブ20を開き、パージガスを床42から床48へ流入させる。バルブ4及び22を開いたままにし、床44からの生成物の生成を継続させる。バルブ5を開いたままにし、供給物ガスをコンプレッサー38(C1)から床46の底部へ送入し続ける。バルブ23を開き、生成物加圧ガスを床46の頂部へ入れる。バルブ15を開いたままにし、床48の排出を継続しながら、パージガスを受け入れる。バルブ19を閉じる。
工程7
工程7の開始時に、バルブ9を開き、床42を大気中に放出させる。バルブ4及び22を開いたままにし、床44からの生成物の生成を継続する。バルブ5及び23を開いたままにし、床46からの生成物の生成を開始する。バルブ15を開いたままにし、床48の排出を継続する。
工程8
工程8の開始時に、バルブ9を閉じ、バルブ10を開き、床42の排出を開始する。バルブ18及び20を開き、床44から平衡化ガスを床48の頂部へ流入させる。バルブ5を閉じ、バルブ6を開き、供給物ガスをコンプレッサー36(C2)から床46の底部へ送入する。バルブ23を開いたままにし、床46からの生成物の生成を継続させる。バルブ15を閉じ、バルブ7を開き、床48の排出を停止し、供給物ガスをコンプレッサー38(C1)から床48の底部へ送入する。
工程9
工程9の開始時に、バルブ10を開いたままにし、床42の排出を継続しながら、パージガスを受け入れる。バルブ18を開いたままにし、バルブ17を開き、パージガスを床44から床42へ流入させる。バルブ6及び23を開いたままにし、床46からの生成物の生成を継続させる。バルブ7を開いたままにし、供給物ガスをコンプレッサー38(C1)から床48の底部へ送入し続ける。バルブ24を開き、生成物加圧ガスを床48の頂部へ入れる。バルブ20は閉じる。
工程10
工程10の開始時に、バルブ10を開いたままにし、床42の排出を継続する。バルブ12を開き、床44を大気中に放出する。バルブ6及び23を開いたままにし、床46からの生成物の生成を継続させる。バルブ7及び24を開いたままにし、床48での生成物生成を開始する。
工程11
工程11の開始時に、バルブ10を閉じ、バルブ1を開き、床42の排出を停止し、供給物ガスをコンプレッサー38(C1)から床42の底部へ送入する。バルブ12を閉じ、バルブ11を開き、床44の排出を開始する。バルブ17及び19を開き、平衡化ガスを床46から床42の頂部へ流入させる。バルブ7を閉じ、バルブ8を開き、供給物ガスをコンプレッサー36(C2)から床48の底部へ送入する。バルブ24は開いたままにし、床48からの生成物の生成を継続する。
工程12
工程12の開始時に、バルブ1を開いたままにし、供給物ガスをコンプレッサー38(C1)から床42の底部へ送入する。バルブ21を開き、生成物加圧ガスを床42の頂部へ入れる。バルブ11を開いたままにし、床44の排出を継続しながら、パージガスを受け入れる。バルブ19を開いたままにし、バルブ18を開き、パージガスを床46から床44へ流入させる。バルブ8及び24を開いたままにし、床48からの生成物の生成を継続させる。バルブ17は閉じる。
上に記載した態様は、VPSA容器に供給物ガスを送るのに二つのコンプレッサーを用いている。好ましい態様では、一つのルーツ型コンプレッサー38(C1又はコンプレッサー1)及び一つの遠心型コンプレッサー36(C2又はコンプレッサー2)は、全供給物の流れを総合四床VPSA過程へ送るであろう。更に、大規模O製造のための好ましい操作方式では、ラジアル床(radial bed)をVPSA法で用いる。ラジアル床吸着器の更に詳細な点は、アクレイ(Ackley)その他による米国特許第6,506,234B1号明細書に与えられている。
図3の床42(B1)の工程に関し、もし二つの異なったコンプレッサー(例えば、ルーツ型及び遠心型)を用いるならば、好ましい操作方式として、ルーツ型コンプレッサーを工程1、11、及び12で用い、遠心型コンプレッサーを工程2、3、及び4で用いる。図2及び3に関し、VPSAサイクルの工程1中、全供給物の一部分(複式供給物導入VPSA法)を、ルーツ型コンプレッサーを経て床42(B1)へ送り、遠心型コンプレッサーにより全供給物の他方の部分を床48(B4)へ送る。どの瞬間でも、二つの床が供給物ガスを同時に受け、VPSAサイクル全体に亙って連続的に生成物の生成が存在することが認められる。
表2は、床に窒素選択的吸着剤を用いた操作条件及びVPSA処理性能の例を与えている。表中、記号は次の意味を有する:TPD=t(2000lb)/日単位の酸素;kPa=1000Pa=S.I,圧力単位(1.0atm=101.323kPa);s=時間単位、秒。
更に、表2の窒素平衡選択的吸着剤は、チャオ(Chao)その他による米国特許第5,413,625号及び第4,859,217号(それらの両方共此処で一致する範囲に対し、参考のためここに入れてある)に記載されているように、高度交換Li−X(Li>95%)である。高度交換LiX吸着剤はそれらの特許に記載されているが、本発明の範囲から離れることなく、複数の種類の吸着剤の層又は吸着剤混合物の層をVPSA法の各床で用いることができ、(例えば、空気中に湿分が存在する場合には)用いるのが好ましいことが予想される。本発明で用いられる種々の吸着剤の代表的例には、米国特許第6,027,548号及び第6,790,260B2号明細書(それらの両方共此処で一致する範囲に対し、参考のためここに入れてある)に記載されているものが含まれるが、それらに限定されるものではない。また、米国特許第6,743,745B2号、第6,506,234B1号、第6,500,234号、第6,471,748B1号、及び第6,780,806号明細書も参照されたい。吸着剤は、複数の種類の吸着剤の混合物、又は層状吸着剤(一種又は多種)にすることもできるであろう。吸着剤が、一種類の吸着剤であるか、又は複数の種類の吸着剤の混合物であるか、又は吸着剤(一種又は多種)の層であっても、同じ吸着剤が四つの床全てで用いられているのが好ましい。
Figure 2009513346
上で論じたVPSA法は、四床VPSA法及び装置を用いて空気からOを製造することに焦点を当てている。本発明の別の態様では、四床未満(例えば、三床)又は五床以上を用いることができるであろう。そのような態様では、本発明の前記特徴を組込むため、適当な三床VPSAサイクル又は五床以上VPSAサイクルを開発する必要があるであろう。更に、そのような別の態様では、本発明の特徴を組込むため、VPSAサイクルに三床を用いるか、又は五床以上を用いるかにより付加的貯蔵タンクが必要になることもあり、ならないこともある。
更に、別法として、各床は、複数種類の吸着剤、又は吸着剤混合物の一つ又は数個の層を含むことができるであろう。空気からOを製造するためVPSA法で種々の種類の吸着剤を用いることができるであろう。好ましい適当な吸着剤及び吸着剤の層形成の詳細は、米国特許第5,413,625号、第4,859,217号、第6,027,548号、及び第6,790,260B2号明細書に記載されている。操作の別の方式として、本発明の前記VPSA法に、他の吸着剤を用いることができるであろう。例えば、5A、13X、CaX、及び混合陽イオンゼオライトを、VPSA法でN選択的吸着剤として用いることができるであろう。
操作の別の好ましい方式として、水及び二酸化炭素を供給空気から除去するため各ゼオライト床の上流端部に前精製器領域を配備する。例えば、限定するものと解釈すべきではないが、アルミナ又はシリカの層を、各吸着剤床の上流に配置し、VPSA法でN選択的吸着剤に通す前に供給空気から水及び二酸化炭素を除去するのが好ましい。
選択された吸着器の形状(例えば、ラジアル型、軸型、組織化型、等)及び吸着剤の選択及び構成は、供給物流の大きさ、供給物源の種類、及びVPSA法操作条件に基づき決定されるであろう。例えば、別の操作方式として、VPSA法で軸型床を用いることができる。全ての床が同じ形態を持つのが好ましい。
更に別の選択される操作方式として、(二つのコンプレッサーではなく)一つのコンプレッサーを用いて、複式供給物導入VPSA法へ全ての供給物を送ることができるであろう(例えば、幾つかの図に例示したVPSA法)。
或る操作方式では、最高吸着圧力は100kPa〜約2000kPaの範囲にあり、最低吸着圧力は20kPa〜約100kPaの範囲にある。更に、VPSA法で高いO回収率を達成することと、低い電力消費との間の最適化により、与えられた吸着剤について最適吸着圧力及び脱着圧力が決定されるであろう。酸素生成物の平均純度は、約55〜75%の予想されるO回収率に対応して、酸素85%〜酸素約95%の範囲にあると期待される。最低O回収率は、最高O純度に対応すると考えられ、その逆も考えられる。
操作の別の方式として、他の方法及びサイクルを用いることができるであろう。例えば、図4は、複式供給物導入VPSA過程に全供給物32を送るために二つのコンプレッサー36、38を用い、VPSA過程から廃棄物56を排出するため二つのコンプレッサー52、53を用いた四床装置60及び方法の別の模式的図を示している。好ましい操作方式では、廃棄物を排出するため唯一つの真空送風機52(好ましくはルーツ型送風機)を用いる。この別方式では、廃棄物を排出するために第一真空送風機52(好ましくはルーツ型送風機)を用い、次に第二真空送風機53(好ましくは遠心型送風機)により排出する。図5は、図4の複式供給物導入四床VPSA法のためのカラムサイクルを示している。この別方式では、吸着工程で別の床〔例えば、図5でAD4を受けながら、同時にパージガスを別の床に供給している床42(B1)〕から得られた付加的パージガスを、VPSA法では用いる。更に、この別方式では、平衡化降下工程を、向流排出と重複させ、床減圧を促進する。またパージ工程を与えている間、床〔例えば、図5の工程6の床42(B1)〕は、同時に向流排出を受けている。
図4及び5及び表3に関し、一つの完全なVPSAサイクルについて本発明の別の態様が例示されている。表3では、記号が表すものは次の通りである。AD:吸着/生成物生成、ED:平衡化降下、PPG:パージガス供与、PPP:生成物加圧ガス供与、BD;放出、PG:パージガス受け、EU:平衡化上昇(EUはEQUPと同じ)、PP:生成物加圧、FP:供給物加圧、RC:ルーツ型コンプレッサー、CC:遠心型コンプレッサー、RV:ルーツ型真空、CV:遠心型真空、EV:排出。表1に関し上で論じたように、表3では、希望の流れを操作するためのオン/オフバルブ又は流動調節バルブであるかにより、「C」は閉じた位置にあるバルブを表し、「O」は開いた又は部分的に開いた位置にあるバルブを表すことが認められるであろう。当業者には、流動調節バルブは、生成物加圧中に用いられることも認められるであろう(例えば、図5の工程3)。
Figure 2009513346
適当な吸着剤、そのような吸着剤の混合物及び層状化は、上で論じてある。
図6は、複式供給物導入VPSA過程に全供給物を送るために二つのコンプレッサー36、38を用いた本発明による四床装置70及び方法の選択される別の模式的図を示している。図7は、図6の複式供給物導入四床VPSA法のためのカラムサイクルを示している。上に記載した好ましい操作方式(図2及び3)では、8つの廃棄物バルブを用いて送出工程を(真空送風機を迂回させて)行わせ、次に真空送風機を用いて排出工程を行う。図6及び7に示した別の操作方式では、必要な廃棄物バルブはわずか4つである。その結果、全ての廃棄物ガスが真空送風機により排出される。図2及び3に示した好ましい方式では、平衡化を、図6及び7に例示した別の方式の場合のように、排出と重複させることはしない。更に、パージは、図2及び3に示した態様では並流減圧ガスから与えるのに対し、図6及び7に示した態様では生成中の床からパージを与える。更に、図2及び3に示した好ましい態様ではパージ工程の後に排出工程があるのに対し、図6及び7に記載した別の態様ではパージに続く排出工程は無い。
図6の複式供給物導入四床VPSA法について更に別のカラムサイクルが図8及び9に示されている。特に図8に示したサイクルは、二つの生成物加圧工程及び一つの平衡化工程を用い、図9に示したサイクルは、12工程の代わりに8工程を用いている。図2、4、及び6に示した複式供給物導入四床VPSA法についての例示したカラムサイクル及び付随するカラムサイクルは、最も好ましいもの(図2〜3)から、好ましさの最も低いもの(図6及び9)の順に配列されている。更に、図6のVPSA法及び付随するカラムサイクル(図7〜9)について、カラムサイクルは、最も好ましいものから、好ましさの最も低いものの順に配列されている。即ち、図7のサイクルは、図8に示したサイクルよりも好ましく、図8のサイクルは、図9に示したサイクルよりも好ましい。このことは、VPSA O回収率及びO生産性が図8に示したサイクルを用いた方が、図7に例示したサイクルを用いた場合よりも低くなると予想され、O回収率が図9に描いたサイクルを用いた方が、図8に示したサイクルを用いた場合に比較して低いと予想されるからである。
図7〜9に例示した図6の複式供給物導入四床VPSA法についてのカラムサイクルは、床サイズ因子及び電力消費の点で変化すると予想され、図7に描いたサイクルは図8に示したものよりも効率的であり、図8のサイクルは図9に示したものよりも効率的である。このように、模式的図6の方法について、BSF及び電力消費は、図9の場合が最も高く、次に低いのが図8の場合であり、次に更に低いのが図7の場合であると予想される。なぜなら、示したサイクルについての効率は、図の番号が大きくなるに従って低下すると予想されるからである。
上で論じたVPSA法及び装置では、大規模基準で酸素を回収するための供給物ガスとして空気を用いることが意図されている。一列の床、一つ少ないポンプ(即ち、二つの供給ポンプ及び二つの真空ポンプを用いるよりも一つ少ない)、一層小さい床サイズ因子を用いて大規模に酸素(>350t/日)を製造し、パージのために生成物品質のガスを用いなくてもよいようにすることにより、O生産性/回収率に約10〜20%の改良及び資本コストに約5〜10%の削減が予期されている。
本発明の装置及び方法は、同様に、希ガス(例えば、He、Ar、Ne、Kr)含有供給物流、又はH含有供給物流、例えば、水蒸気メタン改質反応又は炭化水素部分酸化、等から得られたもののような、空気以外の供給物流に対しても有用であると予想される。例えば、限定するものと解釈すべきではないが、水蒸気メタン改質から発生した合成ガスからのH含有供給混合物は、本発明に従って用いるのに適していると考えられる。そのような態様では、水素を回収することができるであろう。希望の生成物又は同時生成物の生成に、この方法及び装置は全く容易に適合することができるであろうと予想される。例えば、O及びN、又はH及びCOの同時生成は、空気供給物及びH含有供給物から、夫々容易に達成できるであろう。吸着剤、前精製器、及び処理操作条件に対する適当な修正は、目的とする用途に基づいて選択されことを、当業者は認めるであろう。
上で論じた装置及び方法は、空気から酸素を生成させるためVPSA法を使用することを意図してきた。本発明の別の態様では、圧力振動吸着(PSA)を用いることができるであろう。この場合、操作圧力は周囲圧力より高く、従って真空ポンプは不必要であろう。更に別の態様として、二つ以上の真空ポンプが望ましいこともあるであろう。
上に開示した特定の態様は、本発明と同じ目的を遂行するための他の構造体を設計又は修正するための基礎として容易に利用できるであろうことは、当業者により認められるはずである。そのような同等の構成は、添付の特許請求の範囲に記載した本発明の範囲及び本質から離れることなく行えることも、当業者によって認められるべきである。
図1は、スモラークその他による米国特許第6,010,555号明細書に記載されている、空気から酸素を製造するためのVPSAサイクルを例示する図である。 図2は、本発明による複式供給物導入VPSA法へ全供給物を送るために二つのコンプレッサーを用いる四床法の模式的図である。 図3は、図2の複式供給物導入四床VPSA法のためのカラムサイクルを示す図である。 図4は、本発明の別の態様による複式供給物導入VPSA過程へ全供給物を送るために二つのコンプレッサーを用いた四床VPSA法を例示する図である。 図5は、図4の複式供給物導入四床VPSA法のためのカラムサイクルを示す図である。 図6は、本発明による複式供給物導入VPSA過程へ全供給物を送るために二つのコンプレッサーを用いた四床VPSA法の別の模式的図である。 図7は、図6の複式供給物導入四床VPSA法のためのカラムサイクルを示す図である。 図8は、図6の複式供給物導入四床VPSA法のための別のカラムサイクルを例示する図であり、この場合、そのサイクルは、二つの生成物加圧工程及び一つの平衡化工程を用いている。 図9は、図6の複式供給物導入四床VPSA法のための選択される別のカラムサイクルを示す図であり、この場合、そのサイクルは、12の工程の代わりに8つの工程を用いている。

Claims (19)

  1. 少なくとも一種類の一層強く吸着される成分及び少なくとも一種類の低い強さで吸着される生成物ガス成分を含む供給供給物ガスを分離するための真空圧力振動吸着(VPSA)法において、二つの吸着器床で、各床に前記一層強く吸着される成分を優先的に吸着する少なくとも一種類の吸着剤が入っている吸着器床の各々の供給物導入端部へ、連続的に供給供給物ガスを供給すること、及び二つの床が同時に供給方式になり、他の二つが再生/還流方式になる工程によるサイクルで生成する、少なくとも一種類の低い強さで吸着される生成物ガス成分を、前記吸着器床の出口端部から取り出すことを含み、然も、過程中のどの瞬間でも唯一つの床だけが排出工程になっていることを含む、真空圧力振動吸着法。
  2. VPSA法が一列になった四つの床を含む、請求項1に記載の真空圧力振動吸着法。
  3. 工程によるサイクルが、12工程サイクルを含む、請求項2に記載の真空圧力振動吸着法。
  4. 排出工程が、パージ工程の前及び後で行われる、請求項3に記載の真空圧力振動吸着法。
  5. 排出を受けている床以外の床の並流減圧中に得られた空間ガスが、パージガスとして使用するのに適している、請求項4に記載の真空圧力振動吸着法。
  6. 少なくとも一種類の一層強く吸着される成分が窒素である、請求項1に記載の真空圧力振動吸着法。
  7. 少なくとも一種類の低い強さで吸着される生成物ガス成分が酸素である、請求項1に記載の真空圧力振動吸着法。
  8. 酸素が、約85〜95%の酸素の平均純度を有する、請求項7に記載の真空圧力振動吸着法。
  9. 酸素が、約55〜75%の酸素回収率に相当する、請求項7に記載の真空圧力振動吸着法。
  10. 各吸着床がN選択性吸着剤を含む、請求項7に記載の真空圧力振動吸着法。
  11. 吸着剤が、Li−Xゼオライト、5A、13X、CAX、及び混合陽イオン性ゼオライトの中の少なくとも一種類を含む、請求項10に記載の真空圧力振動吸着法。
  12. 吸着剤が、LiX吸着剤を含む、請求項11に記載の真空圧力振動吸着法。
  13. 少なくとも一種類の低い強さで吸着される生成物ガス成分が水素を含む、請求項1に記載の真空圧力振動吸着法。
  14. 最高吸着圧力が約100kPa〜約2000kPaの範囲にあり、最低吸着圧力が20kPa〜約100kPaの範囲にある、請求項1に記載の真空圧力振動吸着法。
  15. を、少なくとも200t/日で生成することができる、請求項1に記載の真空圧力振動吸着法。
  16. を、少なくとも350t/日で生成することができる、請求項15に記載の真空圧力振動吸着法。
  17. 四床装置で12工程サイクルである、請求項1に記載の真空圧力振動吸着法。
  18. 四床装置で12工程サイクルである、請求項1に記載の真空圧力振動吸着法。
  19. 少なくとも一種類の一層強く吸着される成分及び少なくとも一種類の低い強さで吸着される生成物ガス成分を含む供給供給物ガスを分離するための真空圧力振動吸着(VPSA)装置において:
    供給供給物ガスを、二つの吸着床の供給物導入端部へ連続的に供給することができるように構成した一列になった四つの吸着床;
    前記吸着床に前記供給供給物ガスを供給するように構成した少なくとも一つの供給コンプレッサー;及び
    真空ポンプ;
    を含む、真空圧力振動吸着装置。
JP2008538937A 2005-11-01 2006-10-30 酸素を製造するための圧力振動吸着法 Abandoned JP2009513346A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/264,278 US7396387B2 (en) 2005-11-01 2005-11-01 Pressure swing adsorption process for large capacity oxygen production
PCT/US2006/042168 WO2007053494A1 (en) 2005-11-01 2006-10-30 Pressure swing adsorption process for oxygen production

Publications (1)

Publication Number Publication Date
JP2009513346A true JP2009513346A (ja) 2009-04-02

Family

ID=37780422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008538937A Abandoned JP2009513346A (ja) 2005-11-01 2006-10-30 酸素を製造するための圧力振動吸着法

Country Status (8)

Country Link
US (2) US7396387B2 (ja)
EP (1) EP1948348A1 (ja)
JP (1) JP2009513346A (ja)
KR (1) KR20080066973A (ja)
CN (1) CN101340969B (ja)
BR (1) BRPI0618155A2 (ja)
CA (1) CA2627888C (ja)
WO (1) WO2007053494A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7388731B2 (ja) 2021-03-09 2023-11-29 コフロック株式会社 圧力スイング吸着装置、および、ガス生成方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889459B1 (fr) * 2005-08-08 2007-09-14 Air Liquide Procede de separation dans une unite psa d'au moins un melange gazeux
US7686870B1 (en) * 2005-12-29 2010-03-30 Inogen, Inc. Expandable product rate portable gas fractionalization system
US7763100B2 (en) * 2006-07-06 2010-07-27 Praxair Technology, Inc. Vacuum pressure swing adsorption process and enhanced oxygen recovery
US20090065007A1 (en) 2007-09-06 2009-03-12 Wilkinson William R Oxygen concentrator apparatus and method
US20090205494A1 (en) * 2008-02-20 2009-08-20 Mcclain Michael S Single manifold assembly for oxygen-generating systems
US20090205493A1 (en) * 2008-02-20 2009-08-20 Thompson Loren M Method of removing water from an inlet region of an oxygen generating system
US7722698B2 (en) * 2008-02-21 2010-05-25 Delphi Technologies, Inc. Method of determining the purity of oxygen present in an oxygen-enriched gas produced from an oxygen delivery system
US20090214393A1 (en) * 2008-02-22 2009-08-27 Chekal Michael P Method of generating an oxygen-enriched gas for a user
US8075676B2 (en) 2008-02-22 2011-12-13 Oxus America, Inc. Damping apparatus for scroll compressors for oxygen-generating systems
US20090229460A1 (en) * 2008-03-13 2009-09-17 Mcclain Michael S System for generating an oxygen-enriched gas
US7785405B2 (en) * 2008-03-27 2010-08-31 Praxair Technology, Inc. Systems and methods for gas separation using high-speed permanent magnet motors with centrifugal compressors
US7867320B2 (en) * 2008-09-30 2011-01-11 Praxair Technology, Inc. Multi-port indexing drum valve for VPSA
AT507954B1 (de) * 2009-02-20 2010-12-15 Siemens Vai Metals Tech Gmbh Verfahren und vorrichtung zum abscheiden eines gasförmigen bestandteils
US8529665B2 (en) 2010-05-12 2013-09-10 Praxair Technology, Inc. Systems and methods for gas separation using high-speed induction motors with centrifugal compressors
US8496733B2 (en) 2011-01-11 2013-07-30 Praxair Technology, Inc. Large scale pressure swing adsorption systems having process cycles operating in normal and turndown modes
US8435328B2 (en) 2011-01-11 2013-05-07 Praxair Technology, Inc. Ten bed pressure swing adsorption process operating in normal and turndown modes
US8551217B2 (en) 2011-01-11 2013-10-08 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
US8491704B2 (en) 2011-01-11 2013-07-23 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
NL2006317C2 (nl) * 2011-02-28 2012-08-29 Storex B V Inrichting en werkwijze voor het verwijderen van ten minste ã©ã©n stof uit een stroom fluã¯dum.
US9138557B2 (en) 2012-10-12 2015-09-22 Inova Labs, Inc. Dual oxygen concentrator systems and methods
WO2015199227A1 (ja) * 2014-06-27 2015-12-30 大阪瓦斯株式会社 ガス濃縮方法
US9381460B2 (en) 2014-09-11 2016-07-05 Air Products And Chemicals, Inc. Pressure swing adsorption process
FR3034026B1 (fr) * 2015-03-26 2018-11-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de production d'oxygene par vpsa
FR3034027B1 (fr) * 2015-03-26 2018-11-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de production d'oxygene par vpsa comprenant 4 adsorbeurs
CN106390678B (zh) * 2016-10-24 2022-04-12 大连理工大学 附壁振荡脉动吸附装置与方法
US10799827B2 (en) * 2017-04-11 2020-10-13 Praxair Technology, Inc. Mid-range purity oxygen by adsorption
IT201700074132A1 (it) * 2017-07-03 2019-01-03 Ecospray Tech Srl Sistema e metodo di filtraggio per gas
CN107486146B (zh) * 2017-09-06 2020-10-23 洛阳建龙微纳新材料股份有限公司 一种混合阳离子LiCa-LSX分子筛制法及应用

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709117A (en) * 1986-04-07 1987-11-24 Union Carbide Corporation Total isomerization process and apparatus
US4869894A (en) * 1987-04-15 1989-09-26 Air Products And Chemicals, Inc. Hydrogen generation and recovery
US4859217A (en) * 1987-06-30 1989-08-22 Uop Process for separating nitrogen from mixtures thereof with less polar substances
US4892565A (en) * 1987-12-29 1990-01-09 Air Products And Chemicals, Inc. Adsorptive separation utilizing multiple adsorption beds
US4915711A (en) * 1989-05-18 1990-04-10 Air Products And Chemicals, Inc. Adsorptive process for producing two gas streams from a gas mixture
US5174979A (en) * 1989-10-06 1992-12-29 Uop Mixed ion-exchanged zeolites and processes for the use thereof in gas separations
US5203888A (en) * 1990-11-23 1993-04-20 Uop Pressure swing adsorption process with multiple desorption steps
CA2102774C (en) * 1992-11-16 1999-02-16 Ravi Kumar Adsorption process with mixed repressurization and purge/equalization
CA2102775C (en) 1992-11-16 1999-01-19 Ravi Kumar Extended vacuum swing adsorption process
US5328503A (en) * 1992-11-16 1994-07-12 Air Products And Chemicals, Inc. Adsorption process with mixed repressurization and purge/equalization
US5518526A (en) * 1994-10-07 1996-05-21 Praxair Technology, Inc. Pressure swing adsorption process
US5656068A (en) * 1996-02-29 1997-08-12 Praxair Technology, Inc. Large capacity vacuum pressure swing adsorption process and system
US6027548A (en) * 1996-12-12 2000-02-22 Praxair Technology, Inc. PSA apparatus and process using adsorbent mixtures
US6152991A (en) * 1997-04-17 2000-11-28 Praxair Technology, Inc. Multilayer adsorbent beds for PSA gas separation
US6010555A (en) * 1997-11-04 2000-01-04 Praxair Technology, Inc. Vacuum pressure swing adsorption system and method
US6007606A (en) * 1997-12-09 1999-12-28 Praxair Technology, Inc. PSA process and system
EP1085935B1 (en) * 1998-02-27 2012-09-12 Praxair Technology, Inc. Rate-enhanced gas separation
US6500234B1 (en) * 1998-02-27 2002-12-31 Praxair Technology, Inc. Rate-enhanced gas separation
US6017382A (en) * 1998-03-30 2000-01-25 The Boc Group, Inc. Method of processing semiconductor manufacturing exhaust gases
US5997612A (en) * 1998-07-24 1999-12-07 The Boc Group, Inc. Pressure swing adsorption process and apparatus
US6780806B1 (en) * 1998-12-30 2004-08-24 The Regents Of The University Of Michigan Lithium-based zeolites containing silver and copper and use thereof for selective absorption
US6210466B1 (en) * 1999-08-10 2001-04-03 Uop Llc Very large-scale pressure swing adsorption processes
US6340382B1 (en) * 1999-08-13 2002-01-22 Mohamed Safdar Allie Baksh Pressure swing adsorption process for the production of hydrogen
FR2804729B1 (fr) * 2000-02-07 2002-05-10 Air Liquide Procede de mise en oeuvre d'une machine de compression de fluide, installation de traitement de fluide comprenant une telle machine, et application d'une telle installation a la production d'un constituant de l'air
US6428607B1 (en) * 2000-06-26 2002-08-06 Air Products And Chemicals, Inc. Pressure swing adsorption process which provides product gas at decreasing bed pressure
US6790260B2 (en) * 2000-12-20 2004-09-14 Praxair Technology, Inc. Enhanced rate PSA process
US6500235B2 (en) 2000-12-29 2002-12-31 Praxair Technology, Inc. Pressure swing adsorption process for high recovery of high purity gas
US6527831B2 (en) * 2000-12-29 2003-03-04 Praxair Technology, Inc. Argon purification process
US6527830B1 (en) * 2001-10-03 2003-03-04 Praxair Technology, Inc. Pressure swing adsorption process for co-producing nitrogen and oxygen
US6585804B2 (en) * 2001-11-09 2003-07-01 Air Products And Chemicals, Inc. Pressure swing adsorption process operation at turndown conditions
US6743745B2 (en) * 2002-01-22 2004-06-01 Zeochem Process for production of molecular sieve adsorbent blends
CN1555905A (zh) * 2004-01-07 2004-12-22 扬子石油化工股份有限公司 变压吸附回收乙烯的方法
US7179324B2 (en) * 2004-05-19 2007-02-20 Praxair Technology, Inc. Continuous feed three-bed pressure swing adsorption system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7388731B2 (ja) 2021-03-09 2023-11-29 コフロック株式会社 圧力スイング吸着装置、および、ガス生成方法

Also Published As

Publication number Publication date
BRPI0618155A2 (pt) 2011-08-16
CN101340969B (zh) 2011-09-14
KR20080066973A (ko) 2008-07-17
CA2627888C (en) 2011-08-16
WO2007053494A1 (en) 2007-05-10
CN101340969A (zh) 2009-01-07
US20070095208A1 (en) 2007-05-03
US7396387B2 (en) 2008-07-08
EP1948348A1 (en) 2008-07-30
CA2627888A1 (en) 2007-05-10
US20080282891A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP2009513346A (ja) 酸素を製造するための圧力振動吸着法
US7763100B2 (en) Vacuum pressure swing adsorption process and enhanced oxygen recovery
JP3325167B2 (ja) 改良された圧力スイング吸着方法
JP2634138B2 (ja) 真空スイング吸着方法によるガス成分の分離法
JP3557323B2 (ja) 改良真空圧力スイング吸着プロセス
JP2744596B2 (ja) 供給ガス混合物の比較的吸着力の弱い成分から比較的吸着力の強い成分を選択的に分離する方法
JP3232003B2 (ja) 圧力スイング式吸着法における還流
US4892565A (en) Adsorptive separation utilizing multiple adsorption beds
JP2007537867A (ja) 連続フィード3床圧力スイング吸着システム
JP2000153124A (ja) 酸素が富化されたガスを製造する圧力スイング吸着方法
JP3073917B2 (ja) 同時段階圧力変化式吸着方法
JP2000354726A (ja) 圧力スゥイング吸着プロセス及び装置
JPH11197434A (ja) 真空圧力スイング吸着系及び方法
JP3464766B2 (ja) 吸着材床の頂部及び底部の同時排気を用いたpsa方法
JPH0257972B2 (ja)
TWI725506B (zh) 多床體快速循環動力學變壓吸附
TW200304849A (en) Pressure swing adsorption process with controlled internal depressurization flow
MX2008005637A (en) Pressure swing adsorption process for oxygen production
BRPI0618155B1 (pt) Process and adsortion system for vacuum pressure oscillation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091023

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20101214