JP2009509046A - A method for producing a high-strength bake-hardening cold-rolled steel sheet, hot-dip plated steel sheet, and cold-rolled steel sheet having excellent aging resistance. - Google Patents

A method for producing a high-strength bake-hardening cold-rolled steel sheet, hot-dip plated steel sheet, and cold-rolled steel sheet having excellent aging resistance. Download PDF

Info

Publication number
JP2009509046A
JP2009509046A JP2008532164A JP2008532164A JP2009509046A JP 2009509046 A JP2009509046 A JP 2009509046A JP 2008532164 A JP2008532164 A JP 2008532164A JP 2008532164 A JP2008532164 A JP 2008532164A JP 2009509046 A JP2009509046 A JP 2009509046A
Authority
JP
Japan
Prior art keywords
amount
steel
steel sheet
solid solution
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008532164A
Other languages
Japanese (ja)
Other versions
JP4834733B2 (en
Inventor
セオン−ホ ハン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2009509046A publication Critical patent/JP2009509046A/en
Application granted granted Critical
Publication of JP4834733B2 publication Critical patent/JP4834733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Abstract

【課題】本発明は自動車の外板材等に使用されている冷間圧延鋼板及び溶融メッキ鋼板及びその製造方法に関する。
【解決手段】本発明は、焼付硬化性及び常温耐時効性に優れている上、耐2次加工脆性に優れた高強度焼付硬化型冷間圧延鋼板及び溶融メッキ鋼板を提供することに、その目的がある。
本発明は重量%で、C:0.0016−0.0025%、Si:0.02%以下、Mn:0.2−1.2%、P:0.05−0.11%、S:0.01%以下、可溶(Soluble)Al:0.08−0.12%、N:0.0025%以下、Ti:0−0.003%、Nb:0.003−0.011%、Mo:0.01−0.1%及びB:0.0005−0.0015%を含み、残りのFe及びその他不可避な不純物からなる焼付硬化性及び常温耐時効性に優れている上、耐2次加工脆性が優れている高強度焼付硬化型冷間圧延鋼板及び溶融メッキ鋼板及びその製造方法をその旨とする。
【選択図】図3
The present invention relates to a cold-rolled steel sheet, a hot-dip plated steel sheet, and a method for producing the same, which are used for an outer sheet material of an automobile.
The present invention provides a high-strength bake-hardened cold-rolled steel sheet and a hot-dip steel sheet that are excellent in bake hardenability and room temperature aging resistance, as well as in secondary work brittleness resistance. There is a purpose.
The present invention is by weight%, C: 0.0016-0.0025%, Si: 0.02% or less, Mn: 0.2-1.2%, P: 0.05-0.11%, S: 0.01% or less, Soluble Al: 0.08-0.12%, N: 0.0025% or less, Ti: 0-0.003%, Nb: 0.003-0.011%, It contains Mo: 0.01-0.1% and B: 0.0005-0.0015%, and is excellent in bake hardenability and room temperature aging resistance composed of the remaining Fe and other inevitable impurities. A high-strength bake-hardening type cold-rolled steel sheet and hot-dip plated steel sheet, and a method for producing the same, which are excellent in secondary work brittleness, are described.
[Selection] Figure 3

Description

本発明は、自動車の外板材等に使用されている冷間圧延鋼板及び溶融メッキ鋼板及びその製造方法に関するもので、より詳細には優れた焼付硬化性、常温耐時効性及び耐2次加工脆性を有する冷間圧延鋼板及びこれを利用した溶融メッキ鋼板及び冷間圧延鋼板の製造方法に関するものである。   The present invention relates to a cold-rolled steel plate and a hot-dipped steel plate used for automobile outer plate materials and the like, and more particularly to an excellent bake hardenability, room temperature aging resistance and secondary work brittleness resistance. The present invention relates to a cold-rolled steel sheet having the above, a hot-dip steel sheet using the same, and a method for producing a cold-rolled steel sheet.

最近、自動車の燃費向上及び車体の軽量化を目的に車体に高強度鋼板を使用することにより、板の厚さの減少と共に耐デント性を向上させようとする要求が一層高まっている。   Recently, by using a high-strength steel plate for a vehicle body for the purpose of improving the fuel consumption of an automobile and reducing the weight of the vehicle body, there has been an increasing demand for reducing the thickness of the plate and improving the dent resistance.

自動車用冷間圧延鋼板に要求される特性としては降伏強度、引張強度、良好なプレス成形性、スポット(spot)溶接性、疲労特性及び耐食性等がある。   Properties required for cold rolled steel sheets for automobiles include yield strength, tensile strength, good press formability, spot weldability, fatigue properties, and corrosion resistance.

このうち、耐食性は、最近自動車部品の寿命延長のために要求される特性である。   Among these, corrosion resistance is a characteristic recently required for extending the life of automobile parts.

このような耐食性向上用鋼板は大きく電気メッキ型と溶融メッキ型の二つに分類することができる。   Such corrosion resistance improving steel sheets can be roughly classified into two types, electroplating type and hot dipping type.

電気メッキ用鋼板は、溶融メッキ材に比べメッキ特性が良好で、耐食性が優れているが溶融メッキ材に比べ鋼板価格が非常に高いため、最近では使用を渋り、溶融メッキ用素材が大部分利用されており、溶融メッキ用素材に対する耐食性の向上を要求している傾向である。   Steel plates for electroplating have better plating characteristics and better corrosion resistance than hot-dip plating materials, but the price of steel plates is very high compared to hot-dip plating materials. Therefore, there is a tendency to demand improvement in corrosion resistance of the material for hot dipping.

最近各国の製鉄所を中心に自動車用素材は、大部分溶融メッキ用素材を生産し自動車会社に供給中にあり、これにより溶融メッキ材でも過去の水準より遥かに優れた耐食性を確保することができる技術が続けて開発されることにより使用が増加する傾向にある。   Recently, most automotive materials, mainly steelworks in various countries, are producing hot-dip plating materials and supplying them to automobile companies. This ensures that even hot-dip plating materials have much better corrosion resistance than the previous level. There is a tendency for the use to increase as technology that can be developed continues.

一般的に鋼板は、強度と加工性が相反する特徴を示すことが普通である。このような二つの特性を満たすことができる鋼として大きく複合組織型冷間圧延鋼板と焼付硬化型冷間圧延鋼板がある。   In general, steel sheets usually exhibit characteristics in which strength and workability are contradictory. As steels that can satisfy these two characteristics, there are two types of steels: cold-rolled steel sheets with complex structure and bake-hardened cold-rolled steel sheets.

上記複合組織鋼は、一般的に容易に製造することができるもので、引張強度が390MPa級以上で自動車に使用される素材としては、高い引張強度に比べストレッチング性(stretchability)を示す因子である伸び率は高いが、自動車のプレス成形性を示す平均r値が低く、マンガン、クロム等高価の合金元素が過多に添加され製造原価の上昇をもたらす。   The above-mentioned composite steel can be easily manufactured in general, and as a material used for automobiles with a tensile strength of 390 MPa or higher, it is a factor that exhibits stretchability compared to high tensile strength. Although some elongation is high, the average r value indicating the press formability of automobiles is low, and an excessive amount of expensive alloy elements such as manganese and chromium are added, resulting in an increase in manufacturing cost.

一方、焼付硬化型冷間圧延鋼は、引張強度が390MPa以下の鋼でプレス成形時軟質鋼板に近い降伏強度を有するため、延性が優れており、プレス成形後、塗装焼付処理時、自ら降伏強度が上昇する鋼で強度が増加すると成形性が悪化する従来の冷延鋼板に比べ非常に理想的な鋼として注目を浴びている。   On the other hand, bake-hardening cold-rolled steel is a steel with a tensile strength of 390 MPa or less and has a yield strength close to that of a soft steel plate during press forming. Therefore, it has excellent ductility. It is attracting attention as a very ideal steel compared to conventional cold-rolled steel sheets, whose formability deteriorates as the strength increases.

焼付硬化は、鋼中に固溶された侵入型元素である炭素や窒素が変形する過程で生成された転位を固着して発生される一種の変形時効を利用したもので固溶炭素及び窒素が増加すると焼付硬化量は増加するが、固溶元素の過多により常温時効を伴い成形性の悪化をもたらすため、適切な固溶元素の制御が非常に重要である。   Bake hardening uses a kind of deformation aging generated by fixing dislocations generated in the process of deformation of carbon and nitrogen, which are interstitial elements dissolved in steel. When the amount is increased, the bake hardening amount is increased. However, due to the excessive amount of the solid solution elements, aging is caused at normal temperature and the formability is deteriorated. Therefore, it is very important to appropriately control the solid solution elements.

焼付硬化性を有する冷間圧延鋼板の製造方法としてはバッチ(箱)焼鈍法を利用する方法と連続焼鈍方法を利用する方法がある。   As a method for producing a cold-rolled steel sheet having bake hardenability, there are a method using a batch (box) annealing method and a method using a continuous annealing method.

一般的に、低炭素P添加アルミニウム−キルド(Al−Killed)鋼を単純に低温で巻取、即ち熱延巻取温度が400−500℃温度範囲の低温巻取を利用してバッチ(箱)焼鈍により焼付硬化量が約40−50MPa程度の鋼が主に使用された。   Generally, a low carbon P-added aluminum-killed (Al-Killed) steel is simply wound at a low temperature, that is, a batch (box) using a low-temperature winding at a hot rolling coiling temperature range of 400-500 ° C. Steel having a bake hardening amount of about 40-50 MPa by annealing was mainly used.

これはバッチ(箱)焼鈍法により成形性と焼付硬化性の両立がより容易なためであった。   This is because it is easier to achieve both formability and bake hardenability by the batch (box) annealing method.

一方、連続焼鈍法によるP添加Al−Killed鋼の場合、比較的早い冷却速度を利用するため、焼付硬化性の確保が容易な反面、急速加熱、短時間焼鈍により成形性が悪化する問題点があり加工性が要求されない自動車外板にのみ、その使用が制限されている。   On the other hand, in the case of P-added Al-Killed steel by the continuous annealing method, since a relatively fast cooling rate is used, bake hardenability is easy to secure, but on the other hand, there is a problem that formability deteriorates due to rapid heating and short-time annealing. Its use is limited only to automotive skins where workability is not required.

最近、製鋼技術の飛躍的な発達に乗り、鋼中に適正な固溶元素量の制御が可能で、TiまたはNb等の強力な炭窒化物の形成元素を添加したAl−Killed鋼板の使用で成形性に優れた焼付硬化型冷間圧延鋼板が製造され耐デント性が必要な自動車外板材用として使用が増加する傾向にある。   Recently, with the rapid development of steelmaking technology, it is possible to control the proper amount of solid solution elements in steel, and by using Al-Killed steel plate to which strong carbonitride forming elements such as Ti or Nb are added. Bake-hardening cold-rolled steel sheets with excellent formability are manufactured, and their use tends to increase for automotive outer plate materials that require dent resistance.

特許文献1にはC:0.0005−0.015%、S+N含量≦0.05%のTi及びTi、Nb複合添加極低炭素冷間圧延鋼板に関して、また特許文献2にはC:0.010%以下のTi添加鋼を使用して焼付硬化量が約40MPa以上の鋼を製造する製造方法が提示されている。   Patent Document 1 relates to Ti, Ti, and Nb composite-added ultra-low carbon cold-rolled steel sheets having C: 0.0005-0.015% and S + N content ≦ 0.05%, and Patent Document 2 includes C: 0. A production method for producing a steel having a bake hardening amount of about 40 MPa or more by using 010% or less of Ti-added steel is proposed.

上記の特許文献に提示された方法はTi、Nbの添加量、或いは焼鈍時の冷却速度を制御することにより、鋼中固溶元素量を適切にし材質の劣化を防ぎながら焼付硬化性を与えることである。しかし、TiまたはTi、Nb複合添加鋼の場合、適正な焼付硬化量の確保のためには製鋼工程でTi及び窒素、硫黄の厳しい制御が必要になるため、原価上昇の問題が発生する。   The method presented in the above-mentioned patent document provides bake hardenability while controlling the amount of Ti and Nb added or the cooling rate during annealing to appropriately control the amount of solute elements in steel and prevent deterioration of the material. It is. However, in the case of Ti or Ti, Nb composite added steel, in order to secure an appropriate bake hardening amount, strict control of Ti, nitrogen, and sulfur is required in the steel making process, which causes a problem of cost increase.

また、上記Nb添加鋼の場合には、高温焼鈍による作業性悪化及び特殊元素添加による製造原価の上昇をもたらす。   In the case of the Nb-added steel, the workability deteriorates due to high-temperature annealing and the manufacturing cost increases due to the addition of special elements.

一方、特許文献3及び特許文献4[ベツレヘムスチール(Bethlehem Steel)]にはC:0.0005−0.1%、Mn:0−2.5%、Al:0−0.5%、N:0−0.04%でありながらTi含量を0−0.5%、V含量を0.005−0.6%の範囲に制御したTi−V系極低炭素鋼を利用して焼付硬化型冷間圧延鋼板を製造する方法が開示されている。   On the other hand, Patent Document 3 and Patent Document 4 [Bethlehem Steel] have C: 0.0005-0.1%, Mn: 0-2.5%, Al: 0-0.5%, N: Bake hardening type using Ti-V ultra-low carbon steel with 0-0.04% Ti content controlled to 0-0.5% and V content 0.005-0.6% A method for producing a cold rolled steel sheet is disclosed.

一般的にVはTiやNbのような炭窒化物形成元素よりさらに安定して焼鈍温度を低めることができる。従って、熱間圧延中にVにより生成した炭化物であるVC等はNb系より焼鈍温度を低く管理しても再溶解による焼付硬化性を与えることができる。   In general, V can lower the annealing temperature more stably than carbonitride-forming elements such as Ti and Nb. Therefore, VC, which is a carbide generated by V during hot rolling, can give bake hardenability by remelting even if the annealing temperature is controlled lower than that of Nb.

しかし、VはVCのような炭化物を形成はするが、再溶解温度が非常に低く実質的に成形性向上には大して役に立たないため、上記特許文献ではTiを約0.02%以上添加して成形性を図っている。   However, although V forms a carbide such as VC, the remelting temperature is very low and it is not very useful for improving the moldability. Therefore, in the above patent document, Ti is added in an amount of about 0.02% or more. Formability is achieved.

従って、上記特許文献は多量のTi添加による製造原価上昇のみではなく、結晶粒のサイズが大きいため、耐時効性側面でも多少不利であるという問題点がある。   Therefore, the above-mentioned patent document has a problem that it is not only disadvantageous in terms of aging resistance, but also due to the large crystal grain size as well as an increase in manufacturing cost due to the addition of a large amount of Ti.

一方、新たな合金元素を添加する方法が特許文献5、特許文献6、特許文献7及び特許文献8等に提示されている。   On the other hand, methods for adding new alloy elements are presented in Patent Document 5, Patent Document 6, Patent Document 7, Patent Document 8, and the like.

上記特許文献5ではSnを添加することにより、BH性を上昇させる方法が提示されており、また、特許文献6ではVをNbと複合添加することにより結晶粒界の応力集中を緩和させ延性を改善させる方法が提示されている。   In the above-mentioned patent document 5, a method of increasing the BH property by adding Sn is proposed, and in patent document 6, by adding V in combination with Nb, stress concentration at the grain boundary is reduced and ductility is improved. A way to improve is presented.

また、特許文献7にはZrにより成形性を改善させる方法が提示されており、特許文献8にはCrを添加して高強度化及び加工硬化指数(N値)の劣化を最小化させることにより成形性を確保する方法が提示されている。   Patent Document 7 proposes a method for improving formability with Zr. Patent Document 8 adds Cr to minimize strength and work hardening index (N value) deterioration by adding Cr. A method for ensuring moldability is presented.

しかし、上記の技術は単に焼付硬化性の改善または成形性を改善することにのみ注目しており、焼付硬化性の上昇による耐時効性の劣化問題、そして焼付硬化鋼の高強度化により必然的に添加されるP含量の増加による2次加工脆性等の問題に対しては言及していない。   However, the above technology only focuses on improving the bake hardenability or moldability, and is inevitably caused by the problem of deterioration of aging resistance due to the increase of bake hardenability and the high strength of bake hardened steel. No mention is made of problems such as secondary work embrittlement due to an increase in the P content added to.

一般的に焼付硬化性が増加すると、常温耐時効性は劣化し、特に本発明者の研究結果によると高強度化のために添加されるP含量が増加するほど鋼中固溶炭素が存在する焼付硬化鋼でも2次加工脆性が劣化し、これはP含量の増加によりその劣化程度がさらに深刻になることが分かった。   Generally, when bake hardenability increases, the normal temperature aging resistance deteriorates. In particular, according to the research results of the present inventor, solid solution carbon in steel exists as the P content added for increasing strength increases. It has been found that the secondary work brittleness deteriorates even in the bake hardened steel, and the deterioration degree becomes more serious as the P content increases.

例えば、引張強度340MPa級の焼付硬化鋼を製造するために添加されるP含量が0.07%である場合、2次加工脆性を判断する基準であるDBTT(Ductile Brittle Transition Temperature)が伸び比(Drawing Ratio)1.9で−20℃、390MPa級の高強度鋼を製造するためにP含量を約0.09%程度添加する場合、DBTTは0〜10℃で非常に劣化したことが分かる。   For example, when the P content added to produce a bake-hardened steel having a tensile strength of 340 MPa class is 0.07%, the DBTT (Ductile Brittle Transition Temperature), which is a criterion for judging secondary work brittleness, is an elongation ratio ( When a P content of about 0.09% is added in order to produce a high strength steel of −20 ° C. and 390 MPa class at 1.9 (Drawing Ratio), it can be seen that DBTT is very deteriorated at 0 to 10 ° C.

このような鋼材は、全てBを約5ppm程度添加した鋼材で、一般的にBを添加する場合、耐2次加工脆性が改善されると知られているが、P含量が過度に多いためBによるDBTT改善に限界があったと判断される。   Such steel materials are all steel materials to which about 5 ppm of B is added. Generally, when B is added, it is known that the secondary work brittleness resistance is improved, but since the P content is excessively large, B It is judged that there was a limit to the DBTT improvement.

一方、耐2次加工脆性改善のために、現水準より過度にBを添加すると耐2次加工脆性の劣化をもたらすため、その添加量にも限界がある。   On the other hand, in order to improve the secondary work brittleness resistance, if B is added excessively from the current level, the secondary work brittleness resistance is deteriorated, so the addition amount is limited.

従って、2次加工脆性を防ぐDBTTが少なくとも−20℃以上にならなければならないため焼付硬化鋼でもB以外の新たな成分または製造条件の検討が必要な実情である。   Accordingly, since DBTT for preventing secondary work brittleness must be at least −20 ° C. or higher, it is necessary to examine new components or production conditions other than B even in bake hardened steel.

日本特許公報昭61−026757号Japanese Patent Publication No. Sho 61-026757 日本特許公報昭57−089437号Japanese Patent Publication No. 57-089437 米国特許第5,556,485号US Pat. No. 5,556,485 米国特許第5,656,102号US Pat. No. 5,656,102 日本公開特許公報平5−93502号Japanese Published Patent Publication No. 5-93502 日本公開特許公報平9−249936号Japanese Published Patent Publication No. 9-249936 日本公開特許公報平8−49038号Japanese Published Patent Publication No. 8-49038 日本公開特許公報平7−278654号Japanese Published Patent Publication No. 7-278654

本発明は焼付硬化性及び常温耐時効性に優れている上、耐2次加工脆性に優れた高強度焼付硬化型冷間圧延鋼板及びこれを利用した溶融メッキ鋼板を提供することに、その目的がある。   It is an object of the present invention to provide a high-strength bake-hardening type cold-rolled steel sheet excellent in bake hardenability and room temperature aging resistance and excellent in secondary work brittleness resistance and a hot dipped galvanized steel sheet using the same. There is.

本発明の他の目的は、焼付硬化性及び常温耐時効性に優れている上、耐2次加工脆性に優れた高強度焼付硬化型冷間圧延鋼板の製造方法を提供することにある。   Another object of the present invention is to provide a method for producing a high-strength bake-hardening type cold-rolled steel sheet that is excellent in bake hardenability and normal temperature aging resistance and has excellent secondary work brittleness resistance.

本発明は重量%で、C:0.0016−0.0025%、Si:0.02%以下、Mn:0.2−1.2%、P:0.05−0.11%、S:0.01%以下、可溶(Soluble)Al:0.08−0.12%、N:0.0025%以下、Ti:0−0.003%、Nb:0.003−0.011%、Mo:0.01−0.1%及びB:0.0005−0.0015%を含み、残りのFe及びその他不可避な不純物からなり、
鋼中固溶炭素量(C)が下記の関係式(1)を満たし、
[関係式1]
[結晶粒界に存在する固溶炭素量(GB−Cと称する)+結晶粒内に存在する固溶炭素量(G−Cと称する)]=Total C(ppm)−C in NbC=8〜15ppm
[上記式(1)において、GB−C量(結晶粒界内の固溶炭素量)は5〜10ppmで、G−C量(結晶粒内の固溶炭素量)は3〜7ppmである]
焼鈍後、結晶粒のサイズがASTM Number(以下、No.と称する)で9以上で、
焼付硬化量(BH)値と時効指数(AI)値が夫々下記の関係式(2)及び(3)の条件を満たし、
[関係式2]
焼付硬化量(BH)=50−(885×Ti)−(1589×Nb)+(62×Al)
[関係式3]
時効指数(AI)=44−(423×Ti)−(2119×Nb)−(125×Mo)
焼付硬化量(BH)が30MPa以上で、時効指数(AI)値が30MPa以下で、DBTTが伸び比2.0で−30℃以下であることを特徴とする耐時効性に優れた高強度焼付硬化型冷間圧延鋼板及びこれを利用した溶融メッキ鋼板に関するものである。
The present invention is by weight%, C: 0.0016-0.0025%, Si: 0.02% or less, Mn: 0.2-1.2%, P: 0.05-0.11%, S: 0.01% or less, Soluble Al: 0.08-0.12%, N: 0.0025% or less, Ti: 0-0.003%, Nb: 0.003-0.011%, Mo: 0.01-0.1% and B: 0.0005-0.0015%, consisting of the remaining Fe and other inevitable impurities,
The amount of solute carbon in steel (C * ) satisfies the following relational expression (1),
[Relational expression 1]
C * [Amount of solid solution carbon present in grain boundaries (referred to as GB-C) + Amount of solid solution carbon present in crystal grains (referred to as GC)] = Total C (ppm) −C in NbC = 8-15ppm
[In the above formula (1), the amount of GB-C (the amount of solid solution carbon in the crystal grain boundary) is 5 to 10 ppm, and the amount of GC (the amount of solid solution carbon in the crystal grain) is 3 to 7 ppm]
After annealing, the crystal grain size is 9 or more in ASTM Number (hereinafter referred to as No.),
The bake hardening amount (BH) value and the aging index (AI) value satisfy the conditions of the following relational expressions (2) and (3), respectively.
[Relationship 2]
Bake hardening amount (BH) = 50− (885 × Ti) − (1589 × Nb) + (62 × Al)
[Relationship 3]
Aging index (AI) = 44− (423 × Ti) − (2119 × Nb) − (125 × Mo)
High strength seizure with excellent aging resistance, characterized in that the bake hardening amount (BH) is 30 MPa or more, the aging index (AI) value is 30 MPa or less, and the DBTT has an elongation ratio of 2.0 and −30 ° C. The present invention relates to a hardened cold rolled steel sheet and a hot dipped steel sheet using the same.

また、本発明は重量%で、C:0.0016−0.0025%、Si:0.02%以下、Mn:0.2−1.2%、P:0.05−0.11%、S:0.01%以下、可溶(Soluble)Al:0.08−0.12%、N:0.0025%以下、Ti:0−0.003%、Nb:0.003−0.011%、Mo:0.01−0.1%及びB:0.0005−0.0015%を含み、残りのFe及びその他不可避な不純物からなるアルミニウム−キルド(Al−Killed)鋼を1200℃以上で均質化熱処理した後、900−950℃の温度範囲で仕上げ熱間圧延した後、580−630℃の温度範囲で巻取し、75−80%の圧下率で冷間圧延した後、770−830℃の温度範囲で連続焼鈍し、そして1.2−1.5%の圧下率で調質圧延することを特徴とする耐時効性に優れた高強度焼付硬化型冷間圧延鋼板の製造方法に関するものである。   Further, the present invention is by weight%, C: 0.0016-0.0025%, Si: 0.02% or less, Mn: 0.2-1.2%, P: 0.05-0.11%, S: 0.01% or less, Soluble Al: 0.08-0.12%, N: 0.0025% or less, Ti: 0-0.003%, Nb: 0.003-0.011 %, Mo: 0.01-0.1% and B: 0.0005-0.0015%, the remaining Fe and other inevitable impurities made of aluminum-killed (Al-Killed) steel at 1200 ° C. or more After homogenization heat treatment, finish hot rolling in a temperature range of 900-950 ° C, winding in a temperature range of 580-630 ° C, cold rolling at a reduction rate of 75-80%, then 770-830 Continuous annealing in the temperature range of ℃, and reduction ratio of 1.2-1.5% It relates to a method for manufacturing a high-strength bake hardening cold-rolled steel sheet excellent in aging resistance, characterized in that temper rolling.

本発明によると、焼付硬化性及び常温耐時効性に優れている上、耐2次加工脆性に優れた高強度焼付硬化型冷間圧延鋼板及び溶融メッキ鋼板を提供することができる。   According to the present invention, it is possible to provide a high-strength bake-hardening cold-rolled steel sheet and a hot-dip steel sheet that are excellent in bake hardenability and room temperature aging resistance and also excellent in secondary work brittleness resistance.

以下、本発明に対して詳細に説明する。   Hereinafter, the present invention will be described in detail.

一般的に、鋼中に炭素や窒素を添加すると、熱間圧延段階でAl、TiまたはNb等の析出物の形成元素と結合してTiN、AlN、TiC、Ti及びNbC等の炭窒化物を形成するようになり、このような炭窒化物形成元素と結合できなかった炭素や窒素(以下、固溶炭素、固溶窒素という)は鋼中に固溶状態で存在するようになり焼付硬化性または耐時効性に影響を与える。 In general, when carbon or nitrogen is added to steel, TiN, AlN, TiC, Ti 4 C 2 S 2, NbC, and the like are combined with precipitate forming elements such as Al, Ti, or Nb in the hot rolling stage. Carbon and nitrogen that could not be combined with such carbonitride-forming elements (hereinafter referred to as solute carbon or solute nitrogen) appear to exist in a solid solution state in the steel. Affects the bake hardenability or aging resistance.

特に窒素は、炭素に比べ拡散速度が非常に大きいためBH性の上昇に比べ耐時効性の劣化が非常に致命的である。従って、一般的に窒素は鋼中で可能な限り除去しようとし、特にAlまたはTiが高温で炭素より窒素と優先的に析出されるため鋼中の窒素によるBH性や耐時効性への影響は殆どないと判断しても大きな問題はない。   Nitrogen in particular has a very high diffusion rate compared to carbon, so that the deterioration of aging resistance is very fatal compared to the increase in BH property. Therefore, in general, nitrogen is tried to be removed as much as possible in the steel. In particular, Al or Ti is preferentially precipitated with nitrogen over carbon at a high temperature, so the influence of nitrogen in the steel on the BH property and aging resistance is Even if it is judged that there is little, there is no big problem.

しかし、炭素は鋼に必須不可欠に入る元素で、その含量により鋼の特性が決まる。本発明で提案しようとする焼付硬化鋼はこのような炭素の役割が非常に重要で鋼中に少量の固溶炭素を残存させることにより焼付硬化性と耐時効性を同時に図る。   However, carbon is an essential element in steel, and its content determines the properties of steel. In the bake hardened steel to be proposed in the present invention, such a role of carbon is very important, and a small amount of solute carbon remains in the steel, thereby achieving bake hardenability and aging resistance at the same time.

しかし、鋼中に存在する固溶炭素も存在する位置、即ち、結晶粒界に存在するか、または結晶粒内に存在するかにより焼付硬化性及び耐時効性に及ぼす影響は異なる。   However, the influence on the bake hardenability and the aging resistance differs depending on the position where the solid solution carbon exists in the steel, that is, whether it exists in the grain boundary or in the crystal grain.

即ち、内部摩擦試験を通じて測定することができる固溶炭素は主に結晶粒内に存在する固溶炭素で、移動が比較的に自由なので可働転位と結合して時効特性に影響を及ぼす。   That is, solute carbon that can be measured through an internal friction test is mainly solute carbon present in crystal grains, and since it is relatively free to move, it combines with mobile dislocations and affects aging characteristics.

このような時効特性を評価する項目が時効指数、即ちAI(Aging Index)である。   An item for evaluating such aging characteristics is an aging index, that is, AI (Aging Index).

一般的に、AI値が30MPa以上になる場合、常温で6ヶ月維持前に時効が発生しプレス加工時に深刻な欠陥を生じうる。   In general, when the AI value is 30 MPa or more, aging occurs before maintaining for 6 months at room temperature, and serious defects may occur during press working.

しかし、結晶粒界内に存在する固溶炭素は比較的に安定な領域である結晶粒界に存在することにより内部摩擦のような振動の試験法によっては検出しにくい。   However, the solid solution carbon existing in the crystal grain boundary is difficult to detect by a vibration testing method such as internal friction because it exists in the crystal grain boundary which is a relatively stable region.

結晶粒界内に存在する固溶炭素は比較的に安定した位置に存在するためにAI試験のような低温では時効に影響を殆ど与えないが、高温の焼付(baking)条件では活性化され、焼付硬化性に影響を与えるようになる。   The solute carbon existing in the grain boundary is present at a relatively stable position, so that it hardly affects aging at low temperatures such as the AI test, but is activated under high temperature baking conditions. It affects the bake hardenability.

従って、結晶粒内の固溶炭素は時効性と焼付硬化性に同時に影響を与えるが、結晶粒界内に存在する固溶炭素は焼付硬化性にのみ影響を与えるようになる。   Therefore, solid solution carbon in the crystal grains simultaneously affects aging and bake hardenability, but solid solution carbon existing in the crystal grain boundary only affects bake hardenability.

しかし、結晶粒界が比較的安定した領域であるため、結晶粒界内に存在する全ての固溶炭素が焼付硬化性には影響を与えず、通常結晶粒界内に存在する固溶炭素量の50%程度が焼付硬化性に影響を与えると報告されている。   However, since the grain boundary is a relatively stable region, all the solid solution carbon existing in the grain boundary does not affect the bake hardenability, and the amount of solid solution carbon normally existing in the grain boundary. It is reported that about 50% of this affects bake hardenability.

従って、このような固溶炭素の存在状態を適切に制御する場合、即ち、添加された固溶炭素を可能な限り結晶粒内よりは結晶粒界に存在させることができるように制御する場合、耐時効性と焼付硬化性を同時に確保することができる。   Therefore, when appropriately controlling the existence state of such solid solution carbon, that is, when controlling so that the added solid solution carbon can be present in the grain boundary as much as possible in the crystal grain, Aging resistance and bake hardenability can be secured at the same time.

このために、先ず鋼中に添加する炭素量の適切な管理と共に結晶粒のサイズを制御することが重要である。これは添加される炭素量が非常に多いか、少ない場合、固溶炭素の存在位置を制御しても適切な焼付硬化性と耐時効性を確保しにくいためである。   For this reason, it is important to control the size of the crystal grains together with appropriate management of the amount of carbon added to the steel. This is because when the amount of added carbon is very large or small, it is difficult to ensure appropriate bake hardenability and aging resistance even if the position of the solid solution carbon is controlled.

図1は、本発明者が行った研究結果の結晶粒のサイズの変化による焼付硬化量(BH)値と時効指数(AI値)の関係を示したものである。   FIG. 1 shows the relationship between the bake hardening amount (BH) value and the aging index (AI value) according to the change in the crystal grain size as a result of research conducted by the present inventors.

図1に示したように結晶粒のASTM No.が増加するほど、即ち、結晶粒が微細になるほどBH値対比AI値の低下が著しく、これによりBH−AI値(BH値からAI値を減じた値)が次第に増加し耐時効性に優れることが分かる。   As shown in FIG. As the crystal grain size increases, that is, as the crystal grains become finer, the AI value relative to the BH value decreases significantly, and as a result, the BH-AI value (the value obtained by subtracting the AI value from the BH value) gradually increases and the aging resistance is excellent I understand.

図1の結果に基づいて本発明者は鋼中に存在する固溶炭素を可能な限り多く結晶粒界内に分布させるために焼鈍板結晶粒のサイズを適切水準以下に微細化させようとした。   Based on the results shown in FIG. 1, the present inventor tried to reduce the size of the annealed plate crystal grains to an appropriate level or less in order to distribute as much solute carbon present in the steel as possible within the grain boundaries. .

本発明者の研究結果、焼付硬化性の劣化を最小化しながら耐時効性を極大化させるためには結晶粒のサイズをASTM No.9以上に制御することが好ましいということが分かった。   As a result of the inventor's research, in order to maximize the aging resistance while minimizing the deterioration of the bake hardenability, the crystal grain size is set to ASTM No. It turned out that it is preferable to control to 9 or more.

一方、結晶粒界内に多量の固溶炭素を分布させるとしても鋼中の総(Total)炭素量を厳しく制御する必要がある。これは鋼中の炭素含量が過度に増加すると、結晶粒のサイズが微細になっても結晶粒内に存在する固溶炭素量が添加される総炭素量に比例して増加され鋼中固溶炭素量の増加により常温耐時効性が劣化するためである。   On the other hand, even if a large amount of solute carbon is distributed in the grain boundary, it is necessary to strictly control the total carbon amount in the steel. This is because when the carbon content in the steel increases excessively, the amount of solid solution carbon present in the crystal grains increases in proportion to the total amount of carbon added even if the grain size becomes finer. This is because normal temperature aging resistance deteriorates due to an increase in the carbon content.

本発明ではこのような条件を満たすために総炭素量を16−25ppmに設定した。   In the present invention, in order to satisfy such a condition, the total carbon content is set to 16-25 ppm.

しかし、本発明のようにNbを添加する場合は、Nb添加によりNbCのような炭化物が析出して鋼中固溶炭素量を減少させることができる。   However, when Nb is added as in the present invention, carbides such as NbC are precipitated by adding Nb, and the amount of solute carbon in the steel can be reduced.

従って、Nb添加鋼の場合は、鋼中のNb及び炭素含量によりNb/Cの析出比が決まり、また鋼中固溶炭素はNbC析出物を形成して残った炭素が固溶形態で存在し焼付硬化性と耐時効性に影響を与える。   Therefore, in the case of Nb-added steel, the Nb / C precipitation ratio is determined by the Nb and carbon content in the steel, and the solid solution carbon in the steel has NbC precipitates and the remaining carbon exists in solid solution form. Affects bake hardenability and aging resistance.

従って、添加されるNbまたは炭素含量の制御よりさらに重要なことは鋼中固溶炭素をどの程度の水準に管理するかがより重要であることが分かる。   Therefore, it is understood that what is more important than the control of the added Nb or carbon content is more important to what level of solute carbon in the steel is managed.

一方、上述のように耐時効性を確保するためには固溶炭素を結晶粒内より結晶粒界に存在させることが重要である。   On the other hand, in order to ensure the aging resistance as described above, it is important that solute carbon is present in the crystal grain boundary from within the crystal grain.

本発明者は、上記の条件で耐時効性と焼付硬化性を両立させることができる鋼中固溶炭素の影響を調査した結果、本発明のように結晶粒がASTM9以上で非常に微細な場合に対して図2のような結果を得ることができた。   As a result of investigating the influence of solute carbon in steel capable of achieving both aging resistance and bake hardenability under the above conditions, the present inventors have found that the crystal grains are very fine with ASTM 9 or more as in the present invention. In contrast, the results shown in FIG. 2 were obtained.

即ち、図2に示したように微細な結晶粒を有するNb添加極低炭素鋼の固溶炭素変化による焼付硬化性を調査した結果、耐時効性を考慮して設定された焼付硬化量30〜50MPaを満たす結晶粒界内固溶炭素量は約3〜7ppmであることが分かった。   That is, as a result of investigating the bake hardenability of the Nb-added ultra-low carbon steel having fine crystal grains as shown in FIG. 2 due to the change in solute carbon, the bake hardening amount set in consideration of aging resistance is 30 to 30%. It was found that the amount of solid solution carbon within the grain boundaries satisfying 50 MPa was about 3 to 7 ppm.

また、本発明で添加されるNb、炭素含量を考慮して析出されたNbC析出物を除いた総(Total)固溶炭素量が約8〜15ppmであることが分かった。   Moreover, it turned out that the total (Total) solid solution carbon amount except the NbC deposit deposited considering the Nb and carbon content added by this invention is about 8-15 ppm.

このような結果を通じ、焼付硬化性と耐時効性を両立させることができる条件、即ち、関係式(1)を得た。   Through such a result, a condition that can achieve both bake hardenability and aging resistance, that is, a relational expression (1) was obtained.

[関係式1]
[結晶粒界に存在する固溶炭素量(GB−Cと称する)+結晶粒内に存在する固溶炭素量(G−Cと称する)]=Total C(ppm)−C in NbC=8〜15ppm
[Relational expression 1]
C * [Amount of solid solution carbon present in grain boundaries (referred to as GB-C) + Amount of solid solution carbon present in crystal grains (referred to as GC)] = Total C (ppm) −C in NbC = 8-15ppm

[上記式(1)で、GB−C量(結晶粒界内の固溶炭素量)は5〜10ppmで、G−C量(結晶粒内の固溶炭素量)は3−7ppmである] [In the above formula (1), the amount of GB-C (the amount of solid solution carbon in the crystal grain boundary) is 5 to 10 ppm, and the amount of GC (the amount of solid solution carbon in the crystal grain) is 3-7 ppm]

そして、上記式(1)で“C in NbC”はNbC析出物形態で析出される炭素の量を示したものである。   In the above formula (1), “C in NbC” indicates the amount of carbon deposited in the form of NbC precipitates.

即ち、上記関係式(1)のように総(Total)固溶炭素量は約8〜15ppmで、総(Total)固溶炭素量中、GB−C量(結晶粒界内の固溶炭素量)は5〜10ppmで、そしてG−C量(結晶粒内の固溶炭素量)は3〜7ppmに制御することにより本発明で要求する焼付硬化性と耐時効性を確保することができた。   That is, as shown in the relational expression (1), the total (total) dissolved carbon amount is about 8 to 15 ppm, and in the total (total) dissolved carbon amount, the GB-C amount (the dissolved carbon amount in the grain boundary). ) Was 5 to 10 ppm, and by controlling the GC content (the amount of solid solution carbon in the crystal grains) to 3 to 7 ppm, the bake hardenability and aging resistance required in the present invention could be secured. .

一方、本発明ではNb添加の他にも焼付硬化性と耐時効性をより安定に確保するためにAl添加を通じたAlN析出物の効果を考慮した。   On the other hand, in the present invention, in addition to Nb addition, the effect of AlN precipitates through Al addition was considered in order to ensure more stable bake hardenability and aging resistance.

一般的に、Ti添加鋼で窒素は1300℃以上の高温でTiNで大部分粗大に析出することにより固溶効果または結晶粒の微細化に大きな影響を与えることができない。   In general, in Ti-added steel, nitrogen precipitates mostly coarsely as TiN at a high temperature of 1300 ° C. or higher, so that the solid solution effect or the refinement of crystal grains cannot be greatly affected.

しかし、本発明のようにTiが30ppm以下で非常に少量で添加される場合はSol.AlによるAlN析出が発生する。   However, when Ti is added at a very small amount of 30 ppm or less as in the present invention, Sol. AlN precipitation occurs due to Al.

このようなAlN析出物は鋼中の固溶窒素を除去する効果がある。   Such an AlN precipitate has an effect of removing solid solution nitrogen in the steel.

本発明鋼を利用して多様な実験を行った結果、炭素の含量が16〜25ppmに非常に狭く限定されているため、狭い範囲内でBH性と耐時効性を有する焼付硬化鋼を製造するようになる。   As a result of various experiments using the steel of the present invention, the carbon content is very narrowly limited to 16 to 25 ppm, so that a bake hardened steel having BH properties and aging resistance is produced within a narrow range. It becomes like this.

顧客の場合、焼付硬化鋼により高いBH値と共に6ヶ月以上の耐時効性を要求しているため、可能な限り耐時効性を阻害しない範囲で焼付硬化性を高める技術が必要である。   In the case of a customer, the bake hardened steel requires a high BH value and a aging resistance of 6 months or more, and therefore a technique for increasing the bake hardenability as much as possible without impairing the aging resistance is necessary.

このような側面でAlは非常に有効である。   In this aspect, Al is very effective.

即ち、Sol.Alを通常の水準である0.02−0.06%の範囲で添加する場合は、単純に固溶窒素を固定させる役割を行うようになるが、0.08%以上添加するとAlNの析出物が非常に微細になり、焼鈍再結晶時に結晶粒の成長を妨害する一種の障壁(barrier)の役割をするようになるため、Sol.Alを添加しないNb添加鋼より結晶粒がより微細になり、これによりAI値の変化なく焼付硬化性が増加する効果を発揮するようになる。下記の関係式(2)は、本発明者が提示したSol.Alの範囲内で焼付硬化性の向上に及ぼすSol.Al添加効果を統計的な方法で示したもので、このようなAlの効果を示すための成分の範囲は、Sol.Al0.08−0.12%であった。   That is, Sol. When Al is added in the range of 0.02 to 0.06%, which is a normal level, it simply serves to fix solute nitrogen, but when added in an amount of 0.08% or more, AlN precipitates are added. Becomes very fine and acts as a kind of barrier that hinders the growth of crystal grains during annealing recrystallization. The crystal grains become finer than Nb-added steel not containing Al, thereby exhibiting the effect of increasing the bake hardenability without changing the AI value. The following relational expression (2) is obtained from Sol. Sol. Affects the improvement of bake hardenability within the range of Al. The effect of Al addition is shown by a statistical method, and the range of components for showing the effect of such Al is Sol. Al was 0.08 to 0.12%.

[関係式2]
焼付硬化量(BH)=50−(885×Ti)−(1589×Nb)+(62×Al)
[Relationship 2]
Bake hardening amount (BH) = 50− (885 × Ti) − (1589 × Nb) + (62 × Al)

しかし、このように炭素含量、Sol.Al及びNb含量を制御してもNb添加極低炭素鋼で熱延巻取温度の役割が非常に重要である。   However, the carbon content, Sol. Even if the Al and Nb contents are controlled, the role of hot rolling coiling temperature is very important in Nb-added ultra-low carbon steel.

即ち、本発明のようにNbを利用して結晶粒の微細化効果によるBH性向上及び耐時効性改善を図っても巻取温度が非常に増加すると熱間圧延段階で結晶粒が粗大になるため、後の再結晶焼鈍時に結晶粒のサイズがASTM No.で9以下になり、AI値が本発明で要求する上限値である30MPaを超えるようになる。   That is, even if the BH property is improved and the aging resistance is improved by the refinement effect of the crystal grains using Nb as in the present invention, the crystal grains become coarse at the hot rolling stage if the coiling temperature is greatly increased. Therefore, the grain size is ASTM No. And the AI value exceeds 30 MPa, which is the upper limit required in the present invention.

一方、2次加工脆性側面では、一般的に自動車会社で行われる部品の成形は複数の反復プレス(press)加工により所望の形状を得ることができる。即ち、2次加工脆性は1次プレス加工後、その後に行われる加工で加工クラック(crack)が発生することを意味する。   On the other hand, in the secondary work brittleness side, the molding of parts generally performed in an automobile company can obtain a desired shape by a plurality of repetitive press processes. That is, the secondary processing brittleness means that a processing crack is generated in the processing performed after the primary press processing.

このようなクラックは鋼中に存在するリン(P)が結晶粒界に存在し結晶粒の結合力を弱化させるため、粒界を中心に破壊が起こるようになる。   In such a crack, phosphorus (P) existing in the steel exists in the grain boundary and weakens the bonding force of the crystal grain, so that the fracture occurs around the grain boundary.

2次加工脆性を除去するためには、基本的にリン(P)元素を添加しないことが好ましいが、通常、強度の増加に比べ伸び率の低下が小さい固溶元素がリンであり、何よりもコスト(cost)が低いという利点がある。   In order to remove the secondary processing brittleness, it is preferable that basically no phosphorus (P) element is added. Usually, however, a solid solution element whose decrease in elongation is small compared to an increase in strength is phosphorus. There is an advantage that the cost is low.

従って、鋼材において高強度化を図るためには、基本的に添加されなければならないが、最近では製造原価が多少上がってもこのような2次加工脆性を除去するためにリンの代わりに他の固溶元素を通じた強化効果を図る研究も進められている。   Therefore, in order to increase the strength of steel materials, it must basically be added. However, recently, in order to remove such secondary work brittleness, other materials can be used instead of phosphorus in order to remove such secondary processing brittleness. Research is also underway to increase the strengthening effect through solid solution elements.

しかし、現在までの研究結果から考えると当分はリンが鋼の強化元素として続けて使用されることと思われる。   However, considering the results of research to date, it seems that phosphorus will continue to be used as a steel strengthening element for the time being.

このようなP添加鋼において、耐2次加工脆性を改善するための方法に焼付硬化鋼のように鋼中固溶元素を残存させるか、B等を添加させリンとの位置競争効果(site competition effect)または結晶粒界の結合力を増加させるか、熱間圧延段階で巻取温度を一定温度以下に低めてリンの粒界拡散を最小化させることにより2次加工脆性を防ぐ研究も進められているが、完全な解決策にはならないことが実情である。   In such P-added steel, a solid solution element remains in the steel as in the case of bake-hardened steel in a method for improving the secondary work brittleness resistance, or B or the like is added to improve the position competition with phosphorus (site competition). studies to prevent secondary work brittleness by increasing the bonding force of the effect) or grain boundaries, or by lowering the coiling temperature below a certain temperature in the hot rolling stage to minimize phosphorus grain boundary diffusion. However, the reality is that this is not a complete solution.

従って、本発明では、より安定的な耐2次加工脆性の改善のためにMoを考慮した。本発明者の研究結果によると、Moは粒界の結合力を向上させるため、耐2次加工脆性改善に非常に有利であった。   Therefore, in the present invention, Mo is considered in order to improve the secondary work brittleness resistance more stably. According to the research result of the present inventor, Mo is very advantageous in improving secondary work embrittlement resistance because it improves the bonding force of grain boundaries.

また、Moは、鋼中で固溶炭素と親和力があるため、常温で長時間維持時、固溶炭素の転位への拡散を抑えるため耐時効性にも有利である。   In addition, Mo has an affinity for solute carbon in steel, so it is advantageous in aging resistance because it suppresses diffusion of solute carbon into dislocations when maintained at room temperature for a long time.

下記の関係式(3)は、このようなMoの耐時効性改善効果を統計的な方法で示したものである。
[関係式3]
時効指数(AI)=44−(423×Ti)−(2119×Nb)−(125×Mo)
The following relational expression (3) shows such an effect of improving the aging resistance of Mo by a statistical method.
[Relationship 3]
Aging index (AI) = 44− (423 × Ti) − (2119 × Nb) − (125 × Mo)

本発明者は、Moのこのような特性を適切に利用し、また過度なMo添加による材質の劣化を防ぐために最適の成分範囲を導出した。   The present inventor has derived an optimum component range in order to appropriately utilize such characteristics of Mo and prevent deterioration of the material due to excessive addition of Mo.

一方、耐2次加工脆性をより向上させるため、今まで適用してきた様々な方法、即ち、Bの適正添加及び巻取温度の適正化を同時に適用することにより2次加工脆性の向上を極大化しようとした。   On the other hand, in order to further improve the secondary work brittleness resistance, the improvement of the secondary work brittleness is maximized by simultaneously applying the various methods that have been applied so far, namely, the appropriate addition of B and the optimization of the coiling temperature. Tried.

以下、本発明についてより詳細に説明する。   Hereinafter, the present invention will be described in more detail.

炭素(C)は、固溶強化と焼付硬化性を表す元素である。   Carbon (C) is an element representing solid solution strengthening and bake hardenability.

炭素含量が0.0016%未満の場合、非常に低い炭素含量により引張強度が低く、Nb添加による結晶粒の微細化効果を図っても鋼中に存在する絶対炭素含量が低いため、充分な焼付硬化性が得られない。   When the carbon content is less than 0.0016%, the tensile strength is low due to the very low carbon content, and the absolute carbon content present in the steel is low even if the effect of refining the crystal grains by adding Nb is achieved. Curability cannot be obtained.

また、固溶炭素−P間の位置競争効果(site competition effect)が無くなり、耐2次加工脆性側面でも非常に劣化する。   In addition, the position competition effect between the solute carbon and P is lost, and the secondary work brittleness resistance side is extremely deteriorated.

一方、0.0025%を越えると、鋼中の粒内固溶炭素量が本発明で提示した3−7ppmを超え焼付硬化性が非常に高くなるが、常温耐時効性が確保されず、プレス成形時にストレッチャーストレインが発生するため成形性と延性が低下する。   On the other hand, if it exceeds 0.0025%, the amount of solid solution carbon in the grain exceeds 3-7 ppm proposed in the present invention, and the bake hardenability becomes very high, but the room temperature aging resistance is not ensured, and the press Formability and ductility are reduced because stretcher strain occurs during molding.

シリコン(Si)は、強度を増加させる元素で、添加量が増加するほど強度は増加するが、延性の劣化が著しく、特に溶融メッキ性を劣化させる元素であるため、可能な限り低く添加することが有利である。   Silicon (Si) is an element that increases the strength. The strength increases as the amount added increases, but the ductility deteriorates significantly. Especially, it is an element that deteriorates the hot dipping property. Is advantageous.

本発明ではSiによるメッキ特性劣化を含む材質劣化を防ぐために、その添加量を0.02%以下に制限する。   In the present invention, the addition amount is limited to 0.02% or less in order to prevent material deterioration including plating characteristic deterioration due to Si.

マンガン(Mn)は、延性の損傷なく粒子を微細化させて鋼中の硫黄を完全にMnSで析出させFeSの生成による熱間脆性を防ぐと共に鋼を強化させる元素である。本発明でMn含量が0.2%未満の場合には適切な引張強度を確保することができず、また1.2%を超えて添加される場合は、固溶強化により強度の急激な増加と共に成形性が劣化し、特に溶融メッキ鋼板製造時に焼鈍工程でMnOのような酸化物が表面に多量に生成されメッキ密着性を劣化させ、また縞模様等のようなメッキ欠陥が多量発生し製品品質が劣化されるため、その添加量を0.2−1.2%に制限することが好ましい。   Manganese (Mn) is an element that refines the particles without damaging ductility, completely precipitates sulfur in steel with MnS, prevents hot brittleness due to the formation of FeS, and strengthens the steel. In the present invention, when the Mn content is less than 0.2%, an appropriate tensile strength cannot be ensured, and when added over 1.2%, the strength increases rapidly due to solid solution strengthening. At the same time, the formability deteriorates, especially during the manufacturing process of hot-dip galvanized steel sheets, a large amount of oxides such as MnO are formed on the surface, which deteriorates the adhesion of the plating, and a lot of plating defects such as stripes occur. Since the quality is deteriorated, the amount added is preferably limited to 0.2 to 1.2%.

リン(P)は、固溶強化効果が最も大きい置換型合金元素で、面内異方性を改善して強度を向上させる役割をする。   Phosphorus (P) is a substitutional alloy element having the largest solid solution strengthening effect, and plays a role in improving the in-plane anisotropy and improving the strength.

また、本発明者の研究の結果Pは、熱間圧延板の結晶粒を微細化させ、後の焼鈍段階で平均r値の向上に有利な(111)集合組織の発達を助長する役割をし、特に焼付硬化性の影響側面で炭素との位置競争効果によりリンの含量が増加するほど焼付硬化性は増加する傾向を示すことを確認することができた。しかしリン含量の増加時、結晶粒界の結合力弱化により耐2次加工脆性が劣化する問題がある。   In addition, the result P of the inventor's research plays a role of promoting the development of a (111) texture that is advantageous for improving the average r value in the subsequent annealing stage by refining the crystal grains of the hot rolled sheet. In particular, it was confirmed that the bake hardenability tended to increase as the phosphorus content increased due to the position competition effect with carbon in the influence side of bake hardenability. However, when the phosphorus content is increased, there is a problem that the secondary work brittleness resistance deteriorates due to the weakening of the bonding strength of the grain boundaries.

しかし、リンの含量が0.05%未満の場合、結晶粒界に存在するリンの含量が少ないため、耐2次加工脆性は改善されるが結晶粒の微細化効果による材質改善効果が微弱で、0.11%を超えて添加する場合、成形性の向上に比べ急激な強度上昇が発生し、またP量の過多添加によりPが粒界に偏析して材料を脆化させる2次加工脆性が発生する恐れが大きくなる。従って、Pの含量は0.05-0.11%に制限する。   However, when the phosphorus content is less than 0.05%, the phosphorus content present at the grain boundaries is small, so the secondary work embrittlement resistance is improved, but the material improvement effect due to the grain refinement effect is weak. When the content exceeds 0.11%, the strength increases sharply compared to the improvement of moldability, and secondary processing brittleness causes P to segregate at grain boundaries and embrittle the material due to excessive addition of P amount. The risk of occurrence increases. Therefore, the P content is limited to 0.05-0.11%.

硫黄(S)は、高温でMnSのような硫化物で析出させFeSによる熱間脆性を防がなければならない元素である。しかし、Sの含量が過多な場合、MnSで析出して残ったSが粒界を脆化させ熱間脆性を引き起こす可能性がある。   Sulfur (S) is an element that must be precipitated with sulfides such as MnS at high temperatures to prevent hot brittleness due to FeS. However, when the content of S is excessive, the S remaining after precipitation with MnS may embrittle the grain boundary and cause hot embrittlement.

また、Sの添加量がMnS析出物を完全に析出させる量でもS含量が多い場合、過度な析出物による材質劣化が発生するため、その添加量を0.01%以下に制限することが好ましい。   Further, when the amount of S added is sufficient to completely precipitate MnS precipitates, if the S content is large, material deterioration due to excessive precipitates occurs, so it is preferable to limit the amount added to 0.01% or less. .

アルミニウム(Al)は通常鋼の脱酸のために添加するが、本発明ではAlN析出による結晶粒の微細化効果及び焼付硬化性を向上させる効果を発揮する。   Aluminum (Al) is usually added for deoxidation of steel, but in the present invention, the effect of refinement of crystal grains by AlN precipitation and the effect of improving bake hardenability are exhibited.

即ち、本発明で結晶粒の微細化効果は主にNb添加によるNbC析出物を利用するようになるが、AlN析出物により結晶粒の微細化をさらに図ることにより耐時効性の劣化なくBH性を向上させる役割をする。   That is, in the present invention, the grain refinement effect mainly uses NbC precipitates due to the addition of Nb. However, by further refinement of crystal grains by AlN precipitates, BH properties can be obtained without deterioration of aging resistance. It plays a role to improve.

上記関係式(2)によると、Alは添加されるほどBH性に有利である。   According to the relational expression (2), the more Al is added, the more advantageous the BH property.

しかし、他の材質等を考慮すると、適正添加量の制御が必要である。   However, when other materials are taken into account, it is necessary to control the appropriate addition amount.

即ち、本発明の効果を示すためにはAlは少なくとも0.08%以上添加されなければならない。   That is, in order to show the effect of the present invention, Al must be added at least 0.08% or more.

しかし、Alの含量が0.12%を超える場合には成形性の劣化と共に製鋼時に酸化介在物の増加により表面品質が低下し、また過多なAl添加による製造費用の上昇をもたらすようになるため、その添加量は0.08−0.12%に制限することが好ましい。   However, if the Al content exceeds 0.12%, the surface quality deteriorates due to the increase in oxidation inclusions during steelmaking along with the deterioration of formability, and the production cost increases due to excessive Al addition. The addition amount is preferably limited to 0.08-0.12%.

窒素(N)は、焼鈍前または焼鈍後に固溶状態で存在することにより鋼の成形性を劣化させ、時効劣化が他の侵入型元素に比べ非常に大きいので、TiまたはAlにより固定する必要がある。   Nitrogen (N) deteriorates the formability of steel by existing in a solid solution state before or after annealing, and aging deterioration is much larger than other interstitial elements, so it is necessary to fix it with Ti or Al. is there.

本発明のように少量のTi添加と共にNbを適切に添加する場合は、過度な窒素の添加は鋼中固溶窒素の発生をもたらすようになる。   When Nb is appropriately added together with a small amount of Ti as in the present invention, excessive addition of nitrogen leads to generation of solute nitrogen in the steel.

一般的に窒素は、炭素に比べ拡散速度が非常に速いため、固溶窒素で存在する場合、固溶炭素に比べ常温耐時効性の劣化が非常に深刻である。   Nitrogen generally has a much faster diffusion rate than carbon, and therefore when it is present in solid solution nitrogen, the deterioration in aging resistance at room temperature is very serious compared to solid solution carbon.

また、このような固溶窒素の残存により降伏強度が増加し、伸び率及びr値が劣化するため、本発明のようにその含量を0.0025%以下に制限する必要がある。   In addition, since the yield strength is increased by the remaining solute nitrogen and the elongation and the r-value are deteriorated, it is necessary to limit the content to 0.0025% or less as in the present invention.

Tiは、炭窒化物形成元素で、鋼中にTiNのような窒化物、TiSまたはTiのような硫化物及びTiCのような炭化物を形成させる。 Ti is a carbonitride-forming element and forms nitrides such as TiN, sulfides such as TiS or Ti 4 C 2 S 2 and carbides such as TiC in the steel.

しかし、本発明でTiは0.003%以下で、少量の窒素を固定する水準にのみ添加する。   However, in the present invention, Ti is 0.003% or less and is added only to a level that fixes a small amount of nitrogen.

本発明で微量のTi含量条件を提示する理由は、実際の生産時に製鋼の操業上、材質特性を満足させるために添加される様々な成分中に極微量のTiが含まれており、また製鋼の連続鋳造特性上、同時に何回かの出鋼を実施する場合、前の出鋼材に存在するTiが本発明の出鋼材で含まれうるためである。   The reason for presenting a minute amount of Ti content in the present invention is that the amount of Ti contained in various components added in order to satisfy the material properties in the operation of steelmaking during actual production, This is because Ti present in the previous steel output material can be included in the steel output material of the present invention when the steel output is performed several times at the same time.

しかし、本発明のような耐時効性の改善のためにNbを主な元素で制御する場合は、Ti添加が必要なく、またTi添加時にBH性の低下が発生するが実際の生産条件を考慮し、本発明ではTiの含量を極微量水準である0.003%以下に制限する。   However, when Nb is controlled by a main element for improving the aging resistance as in the present invention, Ti addition is not necessary, and BH property is reduced when Ti is added, but the actual production conditions are considered. In the present invention, the Ti content is limited to a very small level of 0.003% or less.

Nbは本発明で主な成分として提示したAl及びMoと共に非常に重要な元素として扱われる。   Nb is treated as a very important element together with Al and Mo presented as main components in the present invention.

一般的にNbは強力な炭窒化物形成元素で、鋼中に存在する炭素をNbC析出物で固定させるようになり、鋼中固溶炭素量を制御する役割をする。特に、生成されたNbC析出物は他の鋼中析出物に比べ非常に微細で再結晶焼鈍時に結晶粒成長を防ぐ強力な障壁の役割をするようになる。   In general, Nb is a strong carbonitride-forming element, which fixes carbon present in steel with NbC precipitates and plays a role in controlling the amount of solute carbon in steel. In particular, the produced NbC precipitate is very fine compared to other precipitates in steel, and serves as a strong barrier to prevent grain growth during recrystallization annealing.

即ち、本発明でNbによる結晶粒の微細化効果は、このようなNbC析出物の効果を利用するものである。しかし、本発明は鋼中固溶炭素を残存させることによりこのような固溶炭素による焼付硬化性を図る技術である。   That is, the effect of refinement of crystal grains by Nb in the present invention utilizes the effect of such NbC precipitates. However, the present invention is a technique for achieving bake hardenability with such solute carbon by leaving the solute carbon in steel.

このために、鋼中NbC析出物の量を適切に制御し、また材質の劣化を最小化する範囲で固溶炭素を残存させることが必要である。   For this reason, it is necessary to appropriately control the amount of NbC precipitates in the steel and to leave the solid solution carbon within a range that minimizes the deterioration of the material.

従って、本発明ではNbC析出物による結晶粒の微細化効果を図ること、及び約3−7ppmの粒内鋼中固溶炭素を残存させ焼付硬化性と耐時効性を同時に確保するためにはNb含量を本発明で提示した炭素含量16−25ppmを考慮しNb含量を0.003−0.011%に制限することが好ましい。   Therefore, in the present invention, in order to achieve the effect of refinement of crystal grains by NbC precipitates and to keep the solute carbon in the intragranular steel of about 3-7 ppm and to ensure bake hardenability and aging resistance at the same time, Nb The Nb content is preferably limited to 0.003-0.011% in consideration of the carbon content of 16-25 ppm proposed in the present invention.

Moは、本発明で考慮される非常に重要な元素のうち一つである。   Mo is one of the very important elements considered in the present invention.

Moは、鋼中に固溶され強度を向上させるか、Mo系炭化物を形成させる役割をする。   Mo is dissolved in the steel and improves the strength or plays the role of forming a Mo-based carbide.

特に、何よりもMoの重要な役割は、固溶状態で存在時、結晶粒界の結合力を増加させてリンによる結晶粒界の破壊を防止、即ち、耐2次加工脆性を改善し、また固溶炭素との親和力により炭素の拡散を抑えさせることにより耐時効性を向上させることである。上記関係式(3)はMoによる耐時効効果を定量的な方法で示したものである。このためには適切な範囲のMo添加が必要である。   In particular, the most important role of Mo, when present in a solid solution state, is to increase the bond strength of the grain boundary to prevent the grain boundary from being broken by phosphorus, that is, to improve the secondary work brittleness resistance, It is to improve the aging resistance by suppressing the diffusion of carbon by affinity with solute carbon. The relational expression (3) shows the aging resistance effect of Mo by a quantitative method. For this purpose, an appropriate range of Mo addition is necessary.

即ち、Moが0.01%未満であれば上記の効果は得られない。   That is, if Mo is less than 0.01%, the above effect cannot be obtained.

従って、製造費用及び添加量対比効果等を考慮すると、Mo含量を0.01−0.1%の範囲に制限することが好ましい。   Therefore, considering the production cost and the effect of contrasting the addition amount, it is preferable to limit the Mo content to a range of 0.01 to 0.1%.

Bは、侵入型元素で、鋼中に存在するようになり粒界に固溶されるか、または窒素と結合してBNのような窒化物を形成する。   B is an interstitial element that is present in the steel and is dissolved in the grain boundary, or is combined with nitrogen to form a nitride such as BN.

Bは、添加量対比材質への影響が非常に大きい元素で、その添加量を厳しく制限する必要がある。即ち、少量のBでも鋼中に添加すると、粒界に偏析して耐2次加工脆性を改善させる。   B is an element that has a very large influence on the material compared to the amount added, and it is necessary to strictly limit the amount added. That is, when a small amount of B is added to the steel, it segregates at the grain boundaries and improves the secondary work brittleness resistance.

しかし、一定量以上に添加する場合、強度の増加及び延性の著しい減少が引き起こる材質劣化が発生するため、適正範囲の添加が必要である。   However, when it is added in a certain amount or more, material deterioration occurs that causes an increase in strength and a significant decrease in ductility, so an appropriate range of addition is necessary.

本発明では、このような特性及び現在のB添加に対する製鋼の能力を考慮しBの含量を0.0005−0.0015%に設定する。   In the present invention, the content of B is set to 0.0005 to 0.0015% in consideration of such characteristics and the ability of steel making for the current addition of B.

以下、本発明の鋼の製造方法について説明する。
上記のように組成される鋼スラブ(Slab)を熱間圧延前のオーステナイト組織が充分に均質化されることができる1200℃以上で再加熱し、Ar温度直上である900−950℃の温度範囲で熱間圧延を仕上げる。
Hereinafter, the manufacturing method of the steel of this invention is demonstrated.
A steel slab (Slab) composed as described above is reheated at 1200 ° C. or higher at which the austenite structure before hot rolling can be sufficiently homogenized, and a temperature of 900-950 ° C. just above the Ar 3 temperature. Finish hot rolling in range.

スラブ温度が1200℃未満である場合、鋼の組織が均一なオーステナイト結晶粒になれず、混粒が発生するようになるため、材質の劣化をもたらす。   When the slab temperature is less than 1200 ° C., the steel structure cannot be uniform austenite crystal grains, and mixed grains are generated, resulting in deterioration of the material.

熱間圧延仕上げ温度が900℃未満である場合、熱間圧延コイルの上(top)、下(tail)部及び縁が単相領域になり面内異方性の増加及び成形性が劣化する。また950℃を超えている場合、著しく粗大粒が発生し、加工後、表面にオレンジピール(orange peel)等の欠陥が生じやすい。   When the hot rolling finish temperature is less than 900 ° C., the upper (top) and lower (tail) portions and edges of the hot rolled coil become single phase regions, and the in-plane anisotropy increases and the formability deteriorates. Further, when the temperature exceeds 950 ° C., extremely coarse particles are generated, and defects such as orange peel are likely to occur on the surface after processing.

本発明の製造方法では、巻取温度を適切に制御することが重要である。   In the production method of the present invention, it is important to appropriately control the winding temperature.

本発明で巻取温度が580℃未満である場合には、結晶粒のサイズが微細化され、耐時効性と共に耐2次加工脆性は改善されるが、結晶粒の微細化程度が深刻すぎて過度な降伏強度の上昇及び成形性の劣化をもたらす。   When the coiling temperature is less than 580 ° C. in the present invention, the size of the crystal grains is refined and the secondary work embrittlement resistance is improved together with the aging resistance, but the degree of refinement of the crystal grains is too serious. This leads to an excessive increase in yield strength and deterioration of formability.

一方、巻取温度が高すぎる場合には、鋼中の固溶炭素の総含量、結晶粒内及び粒界に存在する固溶炭素の含量が上記関係式(1)を満たさなくなるため、巻取温度は630℃以下に制御することが好ましい。   On the other hand, when the coiling temperature is too high, the total content of solute carbon in the steel and the content of solute carbon present in the crystal grains and at the grain boundaries do not satisfy the above relational expression (1). The temperature is preferably controlled to 630 ° C. or lower.

このように、本発明では、鋼中の固溶炭素の総含量、結晶粒内及び粒界に存在する固溶炭素の含量が上記関係式(1)を満たすようにするための手段の一例として巻取温度を580〜630℃に制御したものである。   Thus, in the present invention, as an example of means for ensuring that the total content of solute carbon in the steel, the content of solute carbon present in the crystal grains and at the grain boundaries satisfies the above relational expression (1). The coiling temperature is controlled at 580 to 630 ° C.

熱間圧延が完了した鋼は、通常の方法で酸洗いを行った後、75−80%の冷間圧延率で冷間圧延を行う。   The steel that has been hot-rolled is pickled by a normal method and then cold-rolled at a cold rolling rate of 75-80%.

冷間圧延率が75%以上に高い理由は、本発明で求める結晶粒の微細化効果による耐時効性の改善と共に成形性、特にr値を改善するためである。   The reason why the cold rolling rate is as high as 75% or more is to improve the formability, particularly the r value, together with the improvement of the aging resistance due to the crystal grain refinement effect required in the present invention.

一方、冷間圧延率が80%を超える場合、結晶粒の微細化効果は大きいが、過度な圧延率により結晶粒のサイズの微細程度が非常に大きくなり、返って材質の硬化をもたらし、また過度な冷間圧延率の増加によりr値が次第に減少する。   On the other hand, when the cold rolling rate exceeds 80%, the effect of refining the crystal grains is great, but due to the excessive rolling rate, the fineness of the size of the crystal grains becomes very large, resulting in the hardening of the material. The r value gradually decreases due to an excessive increase in the cold rolling rate.

冷間圧延が完了した鋼は770−830℃の温度範囲で通常の方法により連続焼鈍作業を行う。   The steel that has been cold-rolled is subjected to continuous annealing in the normal temperature range of 770-830 ° C.

Nb添加鋼は、Ti添加鋼対比再結晶温度が高いため、770℃以上の焼鈍温度の作業が必要である。即ち、焼鈍温度が770℃未満である場合には、未再結晶の結晶粒の存在により降伏強度が増加し、伸び率及びr値が劣化する。   Since Nb-added steel has a high recrystallization temperature compared to Ti-added steel, an operation at an annealing temperature of 770 ° C. or higher is required. That is, when the annealing temperature is less than 770 ° C., the yield strength increases due to the presence of unrecrystallized crystal grains, and the elongation and r value deteriorate.

焼鈍温度が830℃を超える場合には成形性は改善されるが、結晶粒のサイズが本発明で求める結晶粒のサイズであるASTM No.9より小さいため、AI値が30MPa以下で耐時効性が劣化する。   When the annealing temperature exceeds 830 ° C., the formability is improved, but ASTM No. which is the crystal grain size required in the present invention is the crystal grain size. Since it is smaller than 9, when the AI value is 30 MPa or less, the aging resistance deteriorates.

上記の製造方法により製造された焼付硬化型冷間圧延鋼板を利用して適正焼付硬化性と共に常温耐時効性を確保する目的で、通常の調質圧延率より多少高い1.2〜1.5%の調質圧延を行う。   For the purpose of ensuring normal bake hardenability and aging resistance at room temperature using the bake hardening type cold rolled steel plate produced by the above production method, it is slightly higher than the normal temper rolling ratio, 1.2 to 1.5. % Temper rolling.

調質圧延率を1.2%以上に多少高く設定した理由は鋼中固溶炭素による常温耐時効劣化を防ぐためである。   The reason why the temper rolling ratio is set to be slightly higher than 1.2% is to prevent normal temperature aging deterioration due to solute carbon in steel.

しかし、調質圧延率を1.5%を超えて過度に増加させる場合は、常温耐時効性は向上されても調質圧延率が高くて加工硬化が発生し材質が劣化し、特に本発明の焼付硬化型冷間圧延鋼板を用いて溶融メッキ鋼板を生産する場合、過多な調質圧延によりメッキ密着性が劣化し、メッキ層の剥離が発生するため、このような問題点を解決するための適切な条件である1.2〜1.5%の調質圧延率で調質圧延を行うことが好ましい。   However, when the temper rolling ratio is excessively increased to exceed 1.5%, even if the normal temperature aging resistance is improved, the temper rolling ratio is high, work hardening occurs, and the material deteriorates. In order to solve such problems, when producing hot dipped steel sheets using bake-hardening type cold rolled steel sheets, the plating adhesion deteriorates due to excessive temper rolling and peeling of the plating layer occurs. It is preferable to perform temper rolling at a temper rolling rate of 1.2 to 1.5%, which is an appropriate condition.

以下、実施例を通じて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail through examples.

(実施例)
下記の表1のように組成される鋼を900−910℃の仕上げ圧延温度条件で熱間仕上げ圧延を行った後、610−630℃の巻取温度で巻取を行い、75−78%の冷間圧延率で冷間圧延した後、800−820℃の焼鈍温度で連続焼鈍し450−470℃の温度で溶融メッキした後、500−530℃の温度範囲で合金化処理した溶融メッキ鋼板を1.5%の調質圧下率で調質圧延し、最終鋼板のBH値、AI値、結晶粒のサイズ及び2次加工脆性を評価する項目である伸び比2.0でDBTTを測定し、その結果を下記表2に示した。また、下記表1の発明鋼(6)に対して粒内固溶炭素量を測定し、その結果を図3に示した。
(Example)
The steel having the composition shown in Table 1 below was hot finish-rolled at a finish rolling temperature condition of 900-910 ° C. and then wound at a winding temperature of 610-630 ° C. After cold rolling at a cold rolling rate, continuously annealed at an annealing temperature of 800-820 ° C., hot-dip plated at a temperature of 450-470 ° C., and then alloyed in a temperature range of 500-530 ° C. Conditioned and rolled at a temper reduction ratio of 1.5%, measured DBTT at an elongation ratio of 2.0, which is an item for evaluating the BH value, AI value, crystal grain size, and secondary work brittleness of the final steel sheet, The results are shown in Table 2 below. Further, the amount of intragranular solid solution carbon was measured for the invention steel (6) shown in Table 1 below, and the results are shown in FIG.

図3における固溶炭素量は、内部摩擦試験機(Horizontal type、10K Hz)を利用して測定した値である。   The amount of solute carbon in FIG. 3 is a value measured using an internal friction tester (Horizontal type, 10 KHz).

Figure 2009509046
Figure 2009509046

Figure 2009509046
Figure 2009509046

上記表2に示したように、発明鋼(1−6)の粒内固溶炭素量は3.1−6.6ppmで本発明が提示する粒内固溶炭素含量の範囲である3−7ppmの範囲を満たしていることが分かる。   As shown in Table 2, the intragranular solute carbon content of the invention steel (1-6) is 3.1-6.6 ppm, which is the range of the intragranular solute carbon content proposed by the present invention, 3-7 ppm. It can be seen that the above range is satisfied.

図3に示したように、発明鋼では鋼中固溶窒素は全く表れておらず、固溶炭素量が3.1ppm以上存在することが分かる。   As shown in FIG. 3, in the inventive steel, no solute nitrogen in the steel appears, and it can be seen that the amount of solute carbon is 3.1 ppm or more.

これは添加された窒素が多量に添加されたAlによりAlN析出物で析出し、結晶粒を微細化させることに寄与したためで、固溶炭素はNbC析出物を形成して残った固溶炭素の一部が粒内に存在して測定されたためである。   This is because the added nitrogen precipitates as AlN precipitates due to Al added in a large amount and contributes to refinement of the crystal grains. Therefore, the solid solution carbon forms the NbC precipitate and remains of the solid solution carbon. This is because a part was present in the grains and measured.

このような粒内固溶炭素が焼付硬化性に影響を及ぼしたと考えられる。   Such intragranular solid solution carbon is thought to have affected the bake hardenability.

一方、上記表2に示したように、発明鋼(1−6)の結晶粒のサイズは、ASTM No.で9.8−11.5(平均結晶粒のサイズ6.7−12.0μm)で本発明が提示したASTM No.9以上である条件全てを満たしたことが分かる。   On the other hand, as shown in Table 2 above, the crystal grain size of the inventive steel (1-6) is ASTM No. The ASTM No. proposed by the present invention at 9.8-11.5 (average grain size 6.7-12.0 μm). It can be seen that all the conditions of 9 or more were satisfied.

発明鋼(1−6)の結晶粒が上記表2のように微細なのは、通常の水準より高いAl含量の添加により鋼中に微細なAlN析出物が形成されNbC析出物と共に焼鈍再結晶時、結晶粒の成長を妨害したためである。   The crystal grains of the inventive steel (1-6) are fine as shown in Table 2 above, because fine AlN precipitates are formed in the steel by addition of Al content higher than the normal level, and during annealing recrystallization with NbC precipitates, This is because the growth of crystal grains was hindered.

従って、このような結晶粒の微細化効果と鋼中固溶炭素の適切な制御により焼付硬化量が38.1−47.9MPaの範囲を有し、常温耐時効性を示す指数であるAI値が9.3−28.3MPaで、BH性と常温耐時効性のバランス(balance)が非常に優れていることが分かる。   Therefore, the AI value which is an index indicating that the bake hardening amount is in the range of 38.1 to 47.9 MPa and shows normal temperature aging resistance by the refinement effect of the crystal grains and appropriate control of the solute carbon in the steel. Is 9.3-28.3 MPa, and it can be seen that the balance between BH property and normal temperature aging resistance is very excellent.

一方、発明鋼(1−6)で高い焼付硬化量に比べAI値が低いことは、AlN析出物による結晶粒の微細化効果と共にMoの添加による鋼中固溶炭素の遅延効果が作用したものと考えられる。   On the other hand, the low AI value compared to the high bake hardening amount in the invention steel (1-6) is that the effect of delaying the solid solution carbon in the steel by the addition of Mo acted together with the effect of grain refinement by the AlN precipitates. it is conceivable that.

また、2次加工脆性側面でも伸び比2.0におけるDBTTが−40℃〜−60℃を示した。   Moreover, DBTT in elongation ratio 2.0 was -40 degreeC--60 degreeC also in the secondary process brittle side.

一方、比較鋼(7)の場合は炭素含量が本発明で提示した0.0016−0.0025%より高い0.0054%が添加され、熱延巻取温度及び焼鈍温度は本発明で提示した条件を満たすもので、再結晶粒のサイズがASTM No.で11.7で非常に微細で本発明で調査した結晶粒のサイズ条件を満たし、DBTT特性及びBH値は優れているが、添加された炭素含量が非常に高いため、AI値が30MPa以上で耐時効性が非常に劣化することが分かる。   On the other hand, in the case of the comparative steel (7), 0.0054% higher in carbon content than 0.0016-0.0025% presented in the present invention is added, and the hot rolling coiling temperature and the annealing temperature are presented in the present invention. It satisfies the condition, and the recrystallized grain size is ASTM No. 11.7 is very fine and satisfies the crystal grain size condition investigated in the present invention, and the DBTT characteristics and BH value are excellent, but the added carbon content is so high that the AI value is 30 MPa or more. It can be seen that the aging resistance is very deteriorated.

比較鋼(8)は、比較鋼(7)とは異なり、添加された炭素含量が0.0011%に非常に低く、NbC析出物を形成して残った固溶炭素が全くないため、焼付硬化性が全く表れず、絶対炭素量の低下により結晶粒が粗大し、DBTT特性も劣化することが分かる。   The comparative steel (8), unlike the comparative steel (7), has a very low added carbon content of 0.0011%, and there is no solid solution carbon left after forming NbC precipitates. It can be seen that the crystallinity becomes coarse due to the decrease in the absolute carbon content, and the DBTT characteristics deteriorate.

比較鋼(9)はSol.Al含量が0.023%で、本発明で提示した条件である0.08−0.12%より低く、Nb含量が本発明で提示した条件より高い0.035%に添加された鋼である。   Comparative steel (9) is Sol. Steel with an Al content of 0.023%, lower than 0.08-0.12%, which is the condition proposed in the present invention, and 0.035% higher in Nb content than the condition proposed in the present invention. .

従って、AlN析出物による結晶粒の微細化効果及びBH値の上昇効果はなく、また高いNb含量の添加により鋼中添加された全ての炭素がNbCで析出され焼付硬化性が殆ど表れず、鋼中固溶炭素減少によりリン(P)との位置競争効果が低くなり、DBTT特性も劣化することが分かる。   Therefore, there is no crystal grain refinement effect and BH value increase effect due to AlN precipitates, and all the carbon added in the steel is precipitated by NbC due to the addition of a high Nb content and hardly shows bake hardenability. It can be seen that the effect of positional competition with phosphorus (P) is reduced due to the decrease in medium-solution carbon, and the DBTT characteristics are also deteriorated.

比較鋼(10)は本発明で提示した条件と比べると、Moが全く添加されておらずMoによる耐2次加工脆性の改善が期待できない。   Compared with the conditions presented in the present invention, the comparative steel (10) contains no Mo and cannot be expected to improve the secondary work brittleness resistance due to Mo.

また、製造条件の側面でも巻取温度が720℃で、本発明で提示する温度より高く、リン(P)の移動が活性化される可能性が非常に高かった。   Further, in terms of manufacturing conditions, the coiling temperature was 720 ° C., which was higher than the temperature presented in the present invention, and the possibility that the movement of phosphorus (P) was activated was very high.

従って、比較鋼(10)は、Moの未添加のみではなく、巻取温度の上昇によりBH性及びAI性は優れているが、DBTT特性が非常に劣化することが分かる。   Therefore, it can be seen that the comparative steel (10) is excellent not only in the absence of Mo but also in BH and AI properties due to an increase in the coiling temperature, but the DBTT property is very deteriorated.

比較鋼(11)は、Ti含量が0.035%で、非常に高く添加され鋼中固溶炭素が全く存在せず、BH値とAI値が0であった。   The comparative steel (11) had a Ti content of 0.035%, was added very high, had no solute carbon in the steel, and had a BH value and an AI value of 0.

また、Bを全く添加せず、0.071%添加されたリンによる2次加工脆性を防ぐことが出来なかった。   Further, B was not added at all, and secondary processing embrittlement due to phosphorus added by 0.071% could not be prevented.

これはMoを本発明の成分範囲に適合するように添加しても耐2次加工脆性改善に有利な固溶炭素が全くなく、またBによる結晶粒界の結合力の増加を期待することができないため、DBTT特性が劣化したと判断される。   This is because even if Mo is added so as to conform to the component range of the present invention, there is no solid solution carbon advantageous for improving secondary work brittleness resistance, and an increase in the bonding strength of the grain boundaries due to B can be expected. Therefore, it is determined that the DBTT characteristic has deteriorated.

比較鋼(12)は、他の成分は本発明の成分範囲を充分に満たしているが、窒素含量が非常に高かった。   The comparative steel (12) had a very high nitrogen content, although the other components sufficiently fulfilled the component range of the present invention.

窒素は炭素と異なり焼付硬化性のみではなく、耐時効性の側面でも致命的な問題を引き起こす元素である。   Nitrogen, unlike carbon, is an element that causes fatal problems not only in bake hardenability but also in terms of aging resistance.

比較鋼(12)の場合でも過度な窒素添加により粒内固溶窒素量も11.3ppmで非常に高いため、BH値のみではなくAI値も非常に高く耐時効性に非常に致命的であることが分かる。   Even in the case of the comparative steel (12), since the amount of dissolved nitrogen in the grains is very high at 11.3 ppm due to excessive nitrogen addition, not only the BH value but also the AI value is very high, which is very fatal to aging resistance. I understand that.

焼付硬化性及び時効指数に及ぼす結晶粒のサイズの影響を表すグラフである。It is a graph showing the influence of the size of a crystal grain on bake hardenability and an aging index. 焼付硬化性に及ぼす鋼中固溶炭素の影響を表すグラフである。It is a graph showing the influence of the solute carbon in steel on bake hardenability. 発明鋼(6)の内部摩擦の試験結果を表すグラフである。It is a graph showing the test result of the internal friction of invention steel (6).

Claims (3)

重量%で、C:0.0016−0.0025%、Si:0.02%以下、Mn:0.2−1.2%、P:0.05−0.11%、S:0.01%以下、可溶(Soluble)Al:0.08−0.12%、N:0.0025%以下、Ti:0−0.003%、Nb:0.003−0.011%、Mo:0.01−0.1%及びB:0.0005−0.0015%を含み、残りのFe及びその他不可避な不純物からなり、
鋼中固溶炭素量(C)が下記の関係式(1)を満たし、
[関係式1]
[結晶粒界に存在する固溶炭素量(GB−Cと称する)+結晶粒内に存在する固溶炭素量(G−Cと称する)]=Total C(ppm)− C in NbC=8〜15ppm
[前記式(1)で、GB−C量(結晶粒界内の固溶炭素量)は5〜10ppmで、G−C量(結晶粒内の固溶炭素量)は3〜7ppmである]
焼鈍後、結晶粒のサイズがASTM No.で9以上で、
焼付硬化量(BH)値と時効指数(AI)値が夫々下記の関係式(2)及び(3)の条件を満たし、
[関係式2]
焼付硬化量(BH)=50−(885×Ti)−(1589×Nb)+(62×Al)
[関係式3]
時効指数(AI)=44−(423×Ti)−(2119×Nb)−(125×Mo)
焼付硬化量(BH)が30MPa以上で、時効指数(AI)値が30MPa以下で、DBTTが伸び比2.0で−30℃以下であることを特徴とする耐時効性に優れた高強度焼付硬化型冷間圧延鋼板。
By weight%, C: 0.0016-0.0025%, Si: 0.02% or less, Mn: 0.2-1.2%, P: 0.05-0.11%, S: 0.01 %, Soluble Al: 0.08-0.12%, N: 0.0025% or less, Ti: 0-0.003%, Nb: 0.003-0.011%, Mo: 0 .01-0.1% and B: 0.0005-0.0015%, consisting of the remaining Fe and other inevitable impurities,
The amount of solute carbon in steel (C * ) satisfies the following relational expression (1),
[Relational expression 1]
C * [Amount of solid solution carbon present in crystal grain boundaries (referred to as GB-C) + Amount of solid solution carbon present in crystal grains (referred to as GC)] = Total C (ppm) −C in NbC = 8-15ppm
[In the above formula (1), the GB-C amount (the amount of solid solution carbon within the crystal grain boundary) is 5 to 10 ppm, and the GC amount (the amount of solid solution carbon within the crystal grain) is 3 to 7 ppm]
After annealing, the grain size is ASTM No. 9 or more,
The bake hardening amount (BH) value and the aging index (AI) value satisfy the conditions of the following relational expressions (2) and (3), respectively.
[Relationship 2]
Bake hardening amount (BH) = 50− (885 × Ti) − (1589 × Nb) + (62 × Al)
[Relationship 3]
Aging index (AI) = 44− (423 × Ti) − (2119 × Nb) − (125 × Mo)
High strength seizure with excellent aging resistance, characterized in that the bake hardening amount (BH) is 30 MPa or more, the aging index (AI) value is 30 MPa or less, and the DBTT has an elongation ratio of 2.0 and −30 ° C. Hardened cold rolled steel sheet.
重量%で、C:0.0016−0.0025%、Si:0.02%以下、Mn:0.2−1.2%、P:0.05−0.11%、S:0.01%以下、可溶(Soluble)Al:0.08−0.12%、N:0.0025%以下、Ti:0−0.003%、Nb:0.003−0.011%、Mo:0.01−0.1%及びB:0.0005−0.0015%を含み、残りのFe及びその他不可避な不純物からなり、
鋼中固溶炭素量(C)が下記の関係式(1)を満たし、
[関係式1]
[結晶粒界に存在する固溶炭素量(GB−Cと称する)+結晶粒内に存在する固溶炭素量(G−Cと称する)]=Total C(ppm)−C in NbC=8〜15ppm
[前記式(1)で、GB−C量(結晶粒界内の固溶炭素量)は5〜10ppmで、G−C量(結晶粒内の固溶炭素量)は3〜7ppmである]
焼鈍後、結晶粒のサイズがASTM No.で9以上で、
焼付硬化量(BH)値と時効指数(AI)値が夫々下記の関係式(2)及び(3)の条件を満たし、
[関係式2]
焼付硬化量(BH)=50−(885×Ti)−(1589×Nb)+(62×Al)
[関係式3]
時効指数(AI)=44−(423×Ti)−(2119×Nb)−(125×Mo)
焼付硬化量(BH)が30MPa以上で、時効指数(AI)値が30MPa以下で、DBTTが伸び比2.0で−30℃以下であることを特徴とする耐時効性に優れた高強度焼付硬化型溶融メッキ鋼板。
By weight%, C: 0.0016-0.0025%, Si: 0.02% or less, Mn: 0.2-1.2%, P: 0.05-0.11%, S: 0.01 %, Soluble Al: 0.08-0.12%, N: 0.0025% or less, Ti: 0-0.003%, Nb: 0.003-0.011%, Mo: 0 .01-0.1% and B: 0.0005-0.0015%, consisting of the remaining Fe and other inevitable impurities,
The amount of solute carbon in steel (C * ) satisfies the following relational expression (1),
[Relational expression 1]
C * [Amount of solid solution carbon present in grain boundaries (referred to as GB-C) + Amount of solid solution carbon present in crystal grains (referred to as GC)] = Total C (ppm) −C in NbC = 8-15ppm
[In the above formula (1), the GB-C amount (the amount of solid solution carbon within the crystal grain boundary) is 5 to 10 ppm, and the GC amount (the amount of solid solution carbon within the crystal grain) is 3 to 7 ppm]
After annealing, the grain size is ASTM No. 9 or more,
The bake hardening amount (BH) value and the aging index (AI) value satisfy the conditions of the following relational expressions (2) and (3), respectively.
[Relationship 2]
Bake hardening amount (BH) = 50− (885 × Ti) − (1589 × Nb) + (62 × Al)
[Relationship 3]
Aging index (AI) = 44− (423 × Ti) − (2119 × Nb) − (125 × Mo)
High strength seizure with excellent aging resistance, characterized in that the bake hardening amount (BH) is 30 MPa or more, the aging index (AI) value is 30 MPa or less, and the DBTT has an elongation ratio of 2.0 and −30 ° C. Hardened hot-dip galvanized steel sheet.
重量%で、C:0.0016−0.0025%、Si:0.02%以下、Mn:0.2−1.2%、P:0.05−0.11%、S:0.01%以下、可溶(Soluble)Al:0.08−0.12%、N:0.0025%以下、Ti:0−0.003%、Nb:0.003−0.011%、Mo:0.01−0.1%及びB:0.0005−0.0015%を含み、残りのFe及びその他不可避な不純物からなるアルミニウム−キルド(Al−Killed)鋼を1200℃以上で均質化熱処理した後、900−950℃の温度範囲で仕上げの熱間圧延した後、580−630℃の温度範囲で巻取し、75−80%の圧下率で冷間圧延した後、770−830℃の温度範囲で連続焼鈍し、そして1.2−1.5%の圧下率で調質圧延することを特徴とする耐時効性に優れた高強度焼付硬化型冷間圧延鋼板の製造方法。   By weight%, C: 0.0016-0.0025%, Si: 0.02% or less, Mn: 0.2-1.2%, P: 0.05-0.11%, S: 0.01 %, Soluble Al: 0.08-0.12%, N: 0.0025% or less, Ti: 0-0.003%, Nb: 0.003-0.011%, Mo: 0 After homogenization heat treatment at 1200 ° C. or higher for aluminum-killed (Al-Killed) steel containing 0.01-0.1% and B: 0.0005-0.0015% and comprising the remaining Fe and other inevitable impurities , After hot rolling in a temperature range of 900-950 ° C., after winding in a temperature range of 580-630 ° C., cold rolling at a reduction rate of 75-80%, and then in a temperature range of 770-830 ° C. And temper rolling at a rolling reduction of 1.2-1.5% Method of producing a high strength bake hardening cold-rolled steel sheet excellent in aging resistance, characterized in that.
JP2008532164A 2005-09-23 2006-09-22 A method for producing a high-strength bake-hardening cold-rolled steel sheet, hot-dip plated steel sheet, and cold-rolled steel sheet having excellent aging resistance. Active JP4834733B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2005-0088518 2005-09-23
KR1020050088518A KR100685037B1 (en) 2005-09-23 2005-09-23 Bake-hardenable cold rolled steel sheet with superior strength and aging resistance, galvannealed steel sheet using the cold rolled steel sheet and method for manufacturing the cold rolled steel sheet
PCT/KR2006/003777 WO2007035059A1 (en) 2005-09-23 2006-09-22 Bake-hardenable cold rolled steel sheet with superior strength and aging resistance, gal- vannealed steel sheet using the cold rolled steel sheet and method for manufacturing the cold rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2009509046A true JP2009509046A (en) 2009-03-05
JP4834733B2 JP4834733B2 (en) 2011-12-14

Family

ID=37889065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008532164A Active JP4834733B2 (en) 2005-09-23 2006-09-22 A method for producing a high-strength bake-hardening cold-rolled steel sheet, hot-dip plated steel sheet, and cold-rolled steel sheet having excellent aging resistance.

Country Status (6)

Country Link
US (1) US20080251168A1 (en)
EP (1) EP1937853B1 (en)
JP (1) JP4834733B2 (en)
KR (1) KR100685037B1 (en)
CN (1) CN101310031B (en)
WO (1) WO2007035059A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084478A1 (en) * 2011-12-08 2013-06-13 Jfeスチール株式会社 Method for manufacturing high-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
KR20160071541A (en) * 2014-12-11 2016-06-22 주식회사 포스코 Bake hardening steel sheet having excellent drawability and method for manufacturing thereof
US9702031B2 (en) 2010-11-29 2017-07-11 Nippon Steel & Sumitomo Metal Corporation Bake-hardenable high-strength cold-rolled steel sheet and method of manufacturing the same
KR20230072728A (en) 2021-11-18 2023-05-25 주식회사 포스코 Bake hardening cold rolled steel sheet, hot dip galvannealed steel sheet having less anisotropy and excellent coated surface quality and method for manufacturing thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105040B1 (en) 2008-06-23 2012-01-16 주식회사 포스코 Bake Hardened Steel with Excellent Surface Properties and Secondary Working Embrittlement Resistance and Manufacturing Method Thereof
WO2009157661A2 (en) * 2008-06-23 2009-12-30 주식회사 포스코 Bake hardening steel with excellent surface properties and resistance to secondary work embrittlement, and preparation method thereof
TWI507538B (en) 2011-09-30 2015-11-11 Nippon Steel & Sumitomo Metal Corp With excellent burn the attachment strength of the hardenable galvannealed steel sheet, a high strength galvannealed steel sheet and manufacturing method, etc.
CN103014613B (en) * 2012-12-31 2015-07-29 上海大学 The method of thermodiffusion continuous production stalloy and stalloy tandem rolling device thereof
CN103667649B (en) * 2013-10-08 2015-10-21 首钢京唐钢铁联合有限责任公司 A kind of Nb process pot galvanize ultra-low carbon baking hardening steel plate and manufacture method thereof
KR101676194B1 (en) * 2015-11-13 2016-11-15 주식회사 포스코 High Strength Blackplate Having Excellent Flangeability And Method For Manufacturing The Same
JP7066698B2 (en) * 2016-10-17 2022-05-13 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ Steel base material for painted parts
US11174530B2 (en) 2016-10-17 2021-11-16 Tata Steel Ijmuiden B.V. Steel for painted parts
CN109321839B (en) * 2018-10-24 2021-01-26 首钢京唐钢铁联合有限责任公司 240 MPa-grade bake-hardening steel and manufacturing method thereof
JP7376593B2 (en) * 2018-12-31 2023-11-08 インテル・コーポレーション Security system using artificial intelligence
CN114959427A (en) * 2022-05-18 2022-08-30 包头钢铁(集团)有限责任公司 Manufacturing method of 180 MPa-grade ultra-low carbon baking hardened steel for automobile

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681121A (en) * 1992-09-02 1994-03-22 Kawasaki Steel Corp Baking hardening type hot-dip galvanized steel sheet having delayed aging characteristic at ordinary temperature
US5556485A (en) * 1994-11-07 1996-09-17 Bethlehem Steel Corporation Bake hardenable vanadium containing steel and method of making thereof
US5656102A (en) * 1996-02-27 1997-08-12 Bethlehem Steel Corporation Bake hardenable vanadium containing steel and method thereof
JPH10130733A (en) * 1996-10-22 1998-05-19 Kawasaki Steel Corp Production of steel sheet high in baking hardenability and small in aging deterioration
JP3769914B2 (en) * 1998-01-06 2006-04-26 Jfeスチール株式会社 Steel plate for cans with excellent aging resistance and bake hardenability
JP2000256786A (en) 1999-03-11 2000-09-19 Nippon Steel Corp Cold rolled steel sheet minimal in inplane anisotropy and excellent in baking hardenability and aging resistance
JP3596398B2 (en) * 2000-01-18 2004-12-02 Jfeスチール株式会社 Manufacturing method of cold rolled steel sheet with excellent bake hardenability and normal temperature aging resistance
JP3855678B2 (en) * 2000-04-28 2006-12-13 住友金属工業株式会社 Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability
KR100753244B1 (en) * 2001-06-06 2007-08-30 신닛뽄세이테쯔 카부시키카이샤 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
US6586117B2 (en) * 2001-10-19 2003-07-01 Sumitomo Metal Industries, Ltd. Steel sheet having excellent workability and shape accuracy and a method for its manufacture
JP3921100B2 (en) * 2002-02-27 2007-05-30 新日本製鐵株式会社 Thin steel sheet with excellent room temperature slow aging and bake hardenability
JP2003268490A (en) 2002-03-14 2003-09-25 Jfe Steel Kk Thin steel sheet for working excellent in bake hardenability and aging resistance and its production method
CN1273632C (en) * 2002-06-28 2006-09-06 Posco公司 Super formable high strength steel sheet and method of manufacturing thereof
JP4176403B2 (en) * 2002-07-11 2008-11-05 Jfeスチール株式会社 Thin steel sheet for processing with excellent low-temperature bake hardenability and aging resistance
KR100946064B1 (en) * 2002-12-18 2010-03-10 주식회사 포스코 Method for manufacturing high strength cold rolled steel sheets with baking hardening property having excellent strain aging resistance at room temperature
KR100946067B1 (en) * 2002-12-27 2010-03-10 주식회사 포스코 Preparing method of baked hardening cold rolled steel sheet for hot dipping having good anti-aging property
KR100564884B1 (en) * 2003-12-30 2006-03-30 주식회사 포스코 Bake Hardenable Cold Rolled Steel Sheet With Improved Aging Property And Secondary Working Embrittlement, And Manufacturing Method Thereof
KR100564885B1 (en) * 2003-12-30 2006-03-30 주식회사 포스코 Bake Hardenable Cold Rolled Steel Sheet With Improved Aging Property And Bake Hardenability, And Manufacturing Method Thereof
KR20050095537A (en) * 2004-03-25 2005-09-29 주식회사 포스코 Cold rolled steel sheet and hot dipped steel sheet with superior strength and bake hardenability and method for manufacturing the steel sheets
EP1735474B1 (en) * 2004-03-25 2015-10-21 Posco Cold rolled steel sheet and hot dipped steel sheet with superior strength and bake hardenability and method for manufacturing the steel sheets

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702031B2 (en) 2010-11-29 2017-07-11 Nippon Steel & Sumitomo Metal Corporation Bake-hardenable high-strength cold-rolled steel sheet and method of manufacturing the same
WO2013084478A1 (en) * 2011-12-08 2013-06-13 Jfeスチール株式会社 Method for manufacturing high-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
JP2013139624A (en) * 2011-12-08 2013-07-18 Jfe Steel Corp Method for manufacturing high-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
KR20160071541A (en) * 2014-12-11 2016-06-22 주식회사 포스코 Bake hardening steel sheet having excellent drawability and method for manufacturing thereof
KR101657793B1 (en) 2014-12-11 2016-09-20 주식회사 포스코 Bake hardening steel sheet having excellent drawability and method for manufacturing thereof
KR20230072728A (en) 2021-11-18 2023-05-25 주식회사 포스코 Bake hardening cold rolled steel sheet, hot dip galvannealed steel sheet having less anisotropy and excellent coated surface quality and method for manufacturing thereof

Also Published As

Publication number Publication date
CN101310031A (en) 2008-11-19
US20080251168A1 (en) 2008-10-16
JP4834733B2 (en) 2011-12-14
KR100685037B1 (en) 2007-02-20
EP1937853A4 (en) 2011-10-19
EP1937853A1 (en) 2008-07-02
WO2007035059A1 (en) 2007-03-29
CN101310031B (en) 2010-12-29
EP1937853B1 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP4834733B2 (en) A method for producing a high-strength bake-hardening cold-rolled steel sheet, hot-dip plated steel sheet, and cold-rolled steel sheet having excellent aging resistance.
JP6443593B1 (en) High strength steel sheet
JP6443592B1 (en) High strength steel sheet
KR101615463B1 (en) Hot-dip galvanized steel sheet and method for producing same
JP5127444B2 (en) High-strength bake-hardening cold-rolled steel sheet, hot-dipped steel sheet and manufacturing method thereof
KR101445465B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
JP2004225132A (en) High strength cold rolled steel sheet and plated steel sheet having excellent deep drawability, steel tube having excellent workability, and production method therefor
JP5993570B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, hot-dip cold-rolled steel sheet, and cold-rolled steel sheet with excellent bake hardenability
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
KR100685036B1 (en) Bake-hardenable cold rolled steel sheet with superior strength and aging resistance, galvannealed steel sheet using the cold rolled steel sheet and method for manufacturing the cold rolled steel sheet
KR100564884B1 (en) Bake Hardenable Cold Rolled Steel Sheet With Improved Aging Property And Secondary Working Embrittlement, And Manufacturing Method Thereof
JP7252499B2 (en) Steel plate and its manufacturing method
JP5076480B2 (en) High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same
JP4301045B2 (en) High-strength steel plate, plated steel plate, and production method thereof
JP2004052103A (en) Steel sheet superior in deep drawability, steel pipe superior in workability, and manufacturing method therefor
JP5450618B2 (en) Bake hardened steel with excellent surface characteristics and secondary work brittleness resistance and method for producing the same
US20230295759A1 (en) Steel sheet having excellent formability and strain hardening rate
KR100920598B1 (en) Bake-Hardenable Cold Rolled Steel Sheet with Superior Strength, Galvannealed Steel Sheet Using the Cold Rolled Steel Sheet and Method for Manufacturing the Cold Rolled Steel Sheet
KR20090127806A (en) Bake hardened steel with excellent surface properties and secondary working embrittlement resistance and manufacturing method thereof
KR20090070505A (en) High tension multiphase cold-rolled steel sheet, hot-dip coated steel sheet having excellent deep-drawability and elongation property and manufacturing method thereof
JP2009221556A (en) Method for producing high-strength cold-rolled steel sheet excellent in deep-drawability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

R150 Certificate of patent or registration of utility model

Ref document number: 4834733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250