JP3921100B2 - Thin steel sheet with excellent room temperature slow aging and bake hardenability - Google Patents

Thin steel sheet with excellent room temperature slow aging and bake hardenability Download PDF

Info

Publication number
JP3921100B2
JP3921100B2 JP2002050900A JP2002050900A JP3921100B2 JP 3921100 B2 JP3921100 B2 JP 3921100B2 JP 2002050900 A JP2002050900 A JP 2002050900A JP 2002050900 A JP2002050900 A JP 2002050900A JP 3921100 B2 JP3921100 B2 JP 3921100B2
Authority
JP
Japan
Prior art keywords
steel
precipitates
ultrafine
steel sheet
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002050900A
Other languages
Japanese (ja)
Other versions
JP2003253378A (en
Inventor
淳 高橋
昌章 杉山
裕一 谷口
政昭 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002050900A priority Critical patent/JP3921100B2/en
Publication of JP2003253378A publication Critical patent/JP2003253378A/en
Application granted granted Critical
Publication of JP3921100B2 publication Critical patent/JP3921100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、常温遅時効性と焼付硬化性に優れた薄鋼板に関する。
【0002】
【従来の技術】
自動車の車体軽量化のため、使用する鋼板板厚の減少が要望され、自動車用鋼板の高強度化が検討されてきた。しかし、鋼板の高強度化は鋼板のプレス成形性を劣化させる傾向があり、プレス成形性に優れた高張力鋼板が要望されていた。このようなプレス成形性と高強度化を両立させた鋼板として、塗装焼付硬化型自動車用鋼板が開発されている。この鋼板はプレス成形後に、通常150℃〜200℃の高温保持を含む塗装焼付処理を施すことにより、降伏応力が上昇する鋼板である。鋼中に固溶Cまたは固溶Nを存在させることによって、塗装焼付け処理時の高温加熱でCまたはNがプレス成形時に導入された転位に固着して転位の移動を妨げ、降伏応力が上昇する。この上昇分が焼付硬化量(BH量)である。
【0003】
BH量は一般に固溶C量または固溶N量を増やすことによって増加する。
このような硬化機構の問題点は次の点にある。BH量を上げるために、固溶C量または固溶N量を増加すると成形前に既に一部の転位が固溶Cまたは固溶Nにより固着され(常温時効)、プレス成形時に降伏点伸びによるストレッチャーストレインと呼ばれる波状の表面欠陥を生じる。これは製品特性を著しく劣化させることになる。
この常温時効の問題を解決し、耐時効性に優れた高い塗装焼付硬化性を有する薄鋼板を実現することは長年の課題であった。
【0004】
特開平5−331553号公報、特開平7−300623号公報はNbおよびAl添加量を制御し、焼付硬化性および耐時効性を実現する方法が開示されている。この方法では固溶N量、固溶C量を適量にして耐時効性を得ようとする方法であり、BH量を上げるために固溶C量を増やすと時効劣化が生じることになり、高い焼付硬化特性を有する鋼を製造することはできない。
特開2000−17386号公報にはMoを適量添加することで、鋼中に室温で安定なMo−Cダイポールを形成し、常温時効性と焼付硬化性を同時に得る方法が開示されている。しかし、これらの特性発現に寄与するCおよびNの挙動についてはモデルが提案されているに留まっており、十分な材料設計指針がなく、更なる高いBH特性の実現や、焼付温度の低下などの課題に十分に対応できていないのが現状である。
【0005】
また、特開平11−229085号公報にはNb/C比を最適にすることで、耐時効性に優れた冷延鋼板を製造する方法が開示されている。NbCを微細分散することで結晶粒を微細化し、粒界C量を増やすことを述べているが、この方法では焼付硬化量を上げた場合(BH量>60MPa)、降伏点伸びが現われ常温時効性が保たれなくなる。
【0006】
【発明が解決しようとする課題】
本発明は、このような現状に鑑み、常温遅時効性と焼付硬化性に優れた薄鋼板を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らはCまたはNを超微細析出物として鋼中に固定しておくことにより、常温遅時効性と焼付硬化性のいずれにおいても優れた薄鋼板とすることができることを見出し、この超微細析出物の満たすべき要件を特定することによって、本発明を完成させたもので、その要旨とするところは以下の通りである。
(1)質量%で、C:0.00〜0.2%、N:0.0001〜0.2%、C+N:0.002〜0.3%、Si:0.001〜0.1%、Mn:0.01〜1%、P:0.001〜0.1%、S:0.05%以下、Al:0.001〜0.1%、Ti:0.001〜0.1%、Nb:0.001〜0.1%、Mo:0.005〜0.25%を含有し、残部が鉄および不可避的不純物からなり、かつ、鋼中に直径1〜10nmのTiの炭化物、窒化物、および、炭窒化物のうちのいずれか1種または2種以上からなる超微細析出物を1×1017 個/cm3以上の密度で含み、BH量が60MPa以上であることを特徴とする常温遅時効性と焼付硬化性に優れた薄鋼板。
【0009】
【発明の実施の形態】
本発明が対象とする析出物は直径1〜10nmと非常に小さいため、通常の析出物と区別して超微細析出物と記載する。なお、超微細析出物は、炭化物、窒化物、炭窒化物またはこれらの集合体であると考えられ、炭化物、窒化物、炭窒化物として、結晶質であるか非晶質であるか、また、定比であるか不定比であるかは問わない。そのため、例えばTiの炭化物、窒化物、炭窒化物またはこれらの集合体としてTi(N,C)のように記載し、これはTiおよびCとNの組成比を示しているものではない。
【0010】
本発明の特徴は、高密度に分散したこのような超微細析出物に格子間原子であるCまたはNを固定(トラップ)させることで、室温での常温時効を防いで、焼付硬化型鋼板における常温遅時効性を向上させる一方、150〜200℃の塗装焼付温度においてトラップから脱離し拡散によって転位位置に移動し転位を固着させることで、高い焼付硬化性をも同時に実現させたことである。
フェライト鉄中のCおよびNは室温での固溶度が小さく、エネルギー的に安定な位置に偏析濃化する傾向がある。この偏析サイトとして、粒界部、転位部などの結晶欠陥部が挙げられる。本発明者は、アトムプローブ電界イオン顕微鏡(Atom Probe Field Ion Microscope、以下AP−FIMと表記する)を使用し、この偏析サイトの詳細な研究を行った。その結果、超微細析出物にC、Nが偏析濃化することを突き止めた。超微細析出物のどの部分に偏析濃化するかは明らかではないが、一つにはマトリックス鉄との界面近傍と考えられる。
【0011】
超微細析出物に偏析濃化するC量またはN量は、析出物サイズに依存する。この偏析CまたはNを転位固着に利用するためには、室温ではCまたはNが析出物にトラップされ、焼付硬化温度でトラップサイトからCまたはNを脱離させなければならない。そのために析出物サイズは最適なトラップエネルギーを有する超微細析出物が有効となる。さらに焼付中にプレス成形によって導入された多量の転位にトラップサイトからCまたはNを拡散供給するためには、これらのトラップサイトが鋼中に高密度に存在し、かつ、分散していることが必要となる。従ってトラップサイトとなる鋼中の超微細析出物の数密度としては、少なくとも1×1017個/cm3が必要であり、5×1017個/cm3以上の数密度が好ましく、さらに、1×1018個/cm3以上の数密度がより好ましい。1×1017個/cm3未満であると、焼付温度において偏析したCまたはNがプレス成形により導入された多量の転位にむらなく固着することができなくなるため、耐時効性または焼付硬化性は低下する。ここでは数密度の上限を定めていないが、一般に1×1020個/cm3を超える高密度の析出物の分散化は鋼強度を高めることになるため、成形性が問題となる場合がある。
【0012】
このような超微細析出物のサイズとしては直径1〜10nmが好ましい。ここで1nmより小さいと、CまたはNの有効なトラップサイトとはならない。一方で10nmより大きいと、CまたはNのトラップサイトとはなるが、1×1017個/cm3以上の数密度を実現するためにはそれだけ多くの成分を鋼に添加しなければならず、固溶強化、分散強化によって鋼の成形性を著しく低下させる要因となってしまう。
本発明では超微細析出物の種類を限定するものではないが、CまたはNのトラップサイトとして利用する超微細析出物としては炭化物、窒化物、炭窒化物またはこれらの混合物が好ましい。これはCとNは拡散係数が大きいためその炭化物、窒化物、炭窒化物は微細分散させやすく、CまたはNのトラップサイトとして有効に利用しやすいためである。
【0013】
また、炭化物、窒化物、炭窒化物は、Tiの炭化物、窒化物、炭窒化物が最も好ましい。その理由は、Tiは適当なトラップエネルギーを有する1〜10nmの超微細析出物を形成しやすくするためである。
本発明における成分限定理由は以下の通りである。なお、%は質量%を表す。CおよびNは焼付硬化性を発現させる上で重要な元素であり、C+N量0.002%以上含有することが必須である。しかしC+N量が多すぎると固溶量が増し、常温時効性を確保することが困難になるため上限を0.3%とした。
【0014】
C:0.001%以上、N:0.0001%以上としたのは、これ未満への低減は製鋼での多大なコストアップになるばかりでなく、高い焼付硬化性を得られないからである。さらに炭素物、窒化物からなる超微細析出物を高密度で作ることができなくなるためである。一方、C:0.2%以下、N:0.2%以下としたのは、これらの値を超えると強度が高くなり過ぎ加工性を損なうためである。Mn、Si、Pは薄鋼板として必要とされる強度を得るためにかかせない基本成分である。Mn:0.01%、Si:0.001%、P:0.001%を下回ると強度が不足する。Mn:1%、Si:0.1%、P:0.1%を超えると強度が高くなりすぎ加工性を損なうため、これらを上限値とする。
【0015】
Sは、0.05%を超えると熱間圧延時に赤熱脆化を起こし表面で割れる、いわゆる熱間脆化をおこすことがあるため、0.05%以下とする必要がある。
Alは脱酸剤として必要な元素であり0.001%以上必要であり、0.1%以下としたのはそれを超えて添加すると強度が高くなり加工性を損なうためである。
Tiは本発明の超微細析出物の形成に用いることのできる元素の一つであり、過剰なC、NやSを固定して時効性を確保するために0.001%以上必要である。上限を0.1%としたのは、それを超えて添加すると再結晶温度が上昇しまた加工性の劣化を招くためである。
【0016】
NbもTi同様、本発明の超微細析出物の形成に用いることのできる元素の一つである。その下限を0.001%としたのはそれ未満では時効性を確保することが困難になるためであり、上限を0.1%としたのはそれを超えて添加すると再結晶温度が上昇しまた加工性の劣化を招くためである。
Mo、Cr、Wは、そのメカニズムの詳細は明らかでないが、鋼中の析出物を微細分散させる効果がある。すなわち、これらの1種または2種以上を添加することによって本発明の超微細析出物を形成するための条件を緩和できる。各元素の添加量の下限を0.005%としたのはそれ未満ではこの効果が得られないからであり、上限をMoについては0.25%、CrとWについては1.0%としたのはそれを超えると強度が高くなって加工性を損なうばかりでなく、高価なため合金コストが上がるためである。
【0017】
鋼中に直径1〜10nmの超微細析出物を1×1017個/cm3以上の数密度に分散させるためには、例えば焼鈍を特定の条件で行うことにより実現できる。一般に焼鈍の冷却速度を遅くすると析出する炭化物または窒化物のサイズが大きくなり数密度は小さくなる。反対に冷却速度を大きくすると析出する炭化物または窒化物のサイズが小さくなり数密度は大きくなる。しかしこの場合CまたはNの固溶量が増加するため、適当な過時効処理(OA)が有効となる。超微細析出物を高密度に分散させるためには、鋼中の成分とその濃度によって焼鈍条件を選び出す必要がある。
【0018】
例えば、好ましい製造方法としては、鋳造圧延後、焼鈍条件を限定することによって可能である。焼鈍は800℃以上Ac3 温度以下で保持した後、10〜100℃/sの冷却速度で冷却する。800℃以上の温度に保持するのは、一旦C、Nを固溶させるためであり、この温度未満では、通常の析出物の形で残存してしまう。また、変態を避けるためAc3 温度以下とする。保持時間は、十分な効果を得るため1分以上が好ましい。冷却速度は10℃/sを下回ると析出物の大きさが10nmを上回り易くなり、一方100℃/sを超えると固溶したままとなり、析出物を生じにくくなる。
【0019】
以上、一般的な好ましい製造方法ついて説明したが、上記の通りMoにはこの条件を緩和する効果があるなど、鋼成分によって、本発明の鋼板を製造する条件は異なるため、AP−FIMで解析した結果に基づいて、製造方法を確定することが望ましい。AP−FIMを用いた原子存在状態の解析は以下のように行う。この装置は透過電子顕微鏡(TEM)では観察不可能な原子存在形態を結晶格子レベルの分解能で調べることができる。針状研磨加工した試料に高電圧を印加し電界蒸発したイオンの飛行時間を測定することにより質量電荷比を求め、構成原子を決定する。これにより鋼中の析出物の組成、偏析原子などを正確に調べることができる。さらに測定データの取り込み順から鋼中の存在位置も同時に決定することができる。
【0020】
図1に本発明によって製造した冷延鋼板における粒内マトリックス測定の結果の一例をラダーチャートによって示した。ラダーチャートでは、横軸は検出原子総数、縦軸は目的の原子の積算数を表わしている。従ってグラフの傾きは目的の原子の濃度に相当し、偏析濃化した部分では傾きが大きくなる(図中矢印)。
横軸は検出イオン取り込み順に相当するため、試料の深さ位置(空間座標)を表わすことになる。C原子はTiNおよびTiと共に超微細析出物を形成していることがわかる。優れた耐時効性が発現した鋼板において、粒内に1×1017個/cm3以上の分散した超微細析出物が観察された。
【0021】
超微細析出物の平均数密度は、任意方向のマトリックス測定を多数回行いその中に観察された超微細析出物数から求めた。AP−FIMでは一度の測定における測定領域が小さく、超微細析出物が観察されない場合はその数密度が小さいことを意味する。1回の測定で測定できる原子数は1×105個とすると、超微細析出物密度が1×1017個/cm3未満の場合、AP−FIM数回の測定では自然確率的に超微細析出物を観察することは困難になる。従って、AP−FIMによる任意方向のマトリックス測定によって超微細析出物が観察されない場合は、平均密度は1×1017個/cm3未満と判断する。またTEMでは観察領域が大きいため、もっと低密度の析出物を調べることはできるが、10nm以下の超微細析出物は分解能の点から観察困難になる場合が多い。
【0022】
析出部サイズは析出物を構成している原子数から見積もることができる。電界蒸発によって原子は原子層ごとに蒸発し、測定される1原子層はプローブホールサイズ、結晶面方位、針試料先端曲率半径等に依存するが、一般に50〜200原子に相当する(軽金属(1992)P236-247)。析出物が何原子層に及んでいるかを調べることによって、析出物サイズを見積もることができる。例えば図1においては、約10原子層に及んでおり、2nm程度の析出物とみなせる。
【0023】
時効性と焼付硬化性の評価は次のように行う。常温時効性は40℃の雰囲気に70日保持し引張試験を行い、この時の降伏点伸び(YP−El)を測定することによって調べることができるが、ここでは代わりに100℃×1時間の人工加速試験によって耐時効性を評価した。このYP−El値が0.4%以下を良好とした。また、焼付硬化性の測定は、薄鋼板を2%引張り170℃にて20分保持した後の降伏応力(YP)を測定し、先に2%引張試験を行った時の強度の差すなわちBH量として評価した。
本発明の薄鋼板は熱延鋼板、冷延鋼板のどちらでもかまわない。さらに熱間圧延工程、冷間圧延工程は特に限定されるものではない。次に実施例によって本発明の作用効果をさらに具体的に説明するが、それらは単に例示のためであって、それによって本発明は不当に制限されることはない。
【0024】
【実施例】
表1に記載した化学組成を有する供試材を溶製した。なお、化学成分の%は質量%を表す。
【0025】
【表1】

Figure 0003921100
【0026】
表2に記載した条件で、熱間圧延、冷間圧延を行い、その後焼鈍を行い冷延鋼板とした。
【0027】
【表2】
Figure 0003921100
【0028】
表3に機械的試験の結果を示す。ここでex.Cとは添加C量からTiとNbによって析出させた量を差し引いた値で、表に示した式によって見積もった。
【0029】
【表3】
Figure 0003921100
【0030】
(実施例1)表1の鋼種c、eを使用し、表2に記載した各製造条件で冷延鋼板を製造した。熱間圧延の仕上温度は900℃、巻き取り温度は600〜700℃とした。また冷間圧延率は70〜80%とし、0.8mm厚に冷間圧延した。冷間圧延後、800〜820℃で3分の焼鈍処理を行い、種々の冷却速度で冷却させた。さらにいくつかのものについては過時効処理(OA)を施した。焼鈍済みの鋼板に1%の調質圧延を行い冷延鋼板とした。表3に製造した鋼板(鋼板1〜)の機械的特性の結果と、AP−FIMによって調べた超微細析出物の平均数密度を示す。鋼種eにおいて、Eの製造条件において、超微細析出物が観察され良好な耐時効性を示した。それ以外の条件では、析出物密度が小さくまたはサイズが10nm超と大きくなっており、BH量は良好であったが耐時効性は良くなかった。(以下削除)
【0031】
これにより、高い数密度の超微細析出物を分散させた鋼を製造することによって、高いBH特性と優れた耐時効性を同時に実現できている。
(実施例2)表1のように成分調整された鋼(鋼種a〜g)を表2の製造条件Bによって冷延鋼板とする(鋼板9〜15)。熱間圧延の仕上温度は900℃、巻き取り温度は650℃とした。また冷間圧延率は70%とし、0.8mm厚に冷間圧延した。冷間圧延後、800℃で1分の焼鈍処理を行った。焼鈍済みの鋼板に1%の調質圧延を行い冷延鋼板とした。
【0032】
表3において耐時効性評価のためのYPEl値は100℃×1時間の促進時効によって調べた。
ex.C量が多い鋼ほど、BH値が高く現われており、ex.Cが0.003%以上の鋼では60MPa以上の高いBH値が得られている。これらの鋼の耐時効性を降伏点伸びにより評価すると、Moを十分な量添加した鋼板9、14については優れた耐時効性を示している。また、Moを微量添加した鋼板10、12においても、耐時効性を示している。一方、Moを無添加とした鋼板11、13、15では大きな降伏点伸びが現われており耐時効性が得られていない。遅時効性を示した鋼板には鋼中に超微細析出物がAP−FIMによって観察できたことから、これが遅時効性に影響したものと考えられる。
【0033】
またさらに、Moを0.134%、Cを0.0037%添加し、製造条件Bで製造した鋼板9と、同じC量を有しMo無添加の鋼板11について、詳細な比較を行った。鋼板の場合、超微細析出物数密度は1×1018 個/cm3 で、BH量は60MPaを超えているが、降伏点伸びは0.1%以下と極めて良好な常温遅時効性を示した。一方、鋼板11では、超微細析出物数密度は観察されず(1×1017 個/cm3 未満と判断される)、BH量は60MPaを超えているが、YP−El値は1.0%以上で、常温遅時効性はみられなかった。またこの鋼ではプレス加工時にストレッチャーストレインが現われた。
【0034】
表4には、良好な焼付硬化性および常温遅時効性を示した鋼板においてAP−FIMにより観察された超微細析出物の原子組成の例を示す。
【0035】
【表4】
Figure 0003921100
【0036】
超微細析出物は数原子から数十原子のCおよびTi、Nの複合体からなりそのサイズは数nm以下であった。その組成を調べると、C原子数が{(Ti原子数)−(N原子数)}より多くなり、余剰Cの存在を示した。すなわちこの超微細析出物はTiNまたはTiCの超微細析出物にCが偏析濃化したものである。偏析したC量はTi(N,C)のサイズに依存し、十数原子以上からなる超微細析出物においては余剰Cが数十原子以上余分に存在していることがわかった。AP−FIMではイオンの検出率が60%程度であるため、実際の原子数はこれよりも多くなる。さらにTiC析出物は一般にTiCx(x≦1)の組成をもつため、ここでは余剰C量を過小評価していることになる。
【0037】
一方、AP−FIM測定により固溶C量を調べたところ、平均濃度で0.0005質量%以下となり、鋼中に含まれるCの多くは超微細析出物に偏析濃化していることがわかった。次に、この鋼板に2%引張予歪を印加して170℃×20分焼付硬化させた試料について同じ観察を行った。しかし、超微細析出物に化学量論的に余分なCは測定されなかった。すなわち超微細析出物に偏析濃化したCは焼付硬化過程で、転位に拡散し、転位固着(コットレル雰囲気形成)の供給元となったと考えられる。
【0038】
一方で、Moを添加しない供試材(鋼板11)についても同様の観察を試みたが、AP−FIMによるマトリックス測定によって鋼中に超微細析出物が観察されなかった。これは析出物の数密度が1×1017 個/cm3 未満であることを意味する。TEM観察を行ったところ50nm以上の比較的大型のTi(N,C)析出物が観察されたが、平均数密度では1×1012 個/cm3以下であった。次に、Moを十分添加した鋼種aについて、製造条件Dで製造した鋼板16と、製造条件Gで製造した鋼板17について、詳細な比較を行った。条件Dにより製造した鋼板16においては、優れたBH特性を示したものの耐時効性は劣っており、超微細析出物は観察されなかった。一方で同じ鋼種の条件Gにより製造した鋼板17においてはBH特性、耐時効性共に良好であり、超微細析出物数密度は2×1017 個/cm3 であった。これらの結果は、Mo添加は優れたBH特性、優れた耐時効性を有する鋼板の製造条件の範囲を広げることを示すものである。
【0039】
以上の実験から、超微細析出物を鋼中に高密度に分散させ、それらにCまたはNを偏析濃化させることで、常温時効を防ぎ、焼付硬化温度でトラップから離脱したCまたはNにより転位を固着し鋼を強化したことが示された。
これにより、高い数密度の超微細析出物を分散させた鋼を製造することによって、高いBH特性と優れた耐時効性を同時に実現できている。
【0040】
【発明の効果】
本発明により常温遅時効と焼付硬化性に優れた薄鋼板が提供され、その産業上の価値は極めて高いといえる。
【図面の簡単な説明】
【図1】 本発明によって製造した冷延鋼板における粒内マトリックスのAP−FIM測定のラダーチャートを示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin steel plate excellent in normal temperature slow aging and bake hardenability.
[0002]
[Prior art]
In order to reduce the weight of automobile bodies, it is desired to reduce the thickness of the steel sheet used, and the strengthening of automobile steel sheets has been studied. However, increasing the strength of the steel sheet tends to deteriorate the press formability of the steel sheet, and there has been a demand for a high-tensile steel sheet having excellent press formability. As a steel sheet that achieves both press formability and high strength, a paint bake-hardening type automobile steel sheet has been developed. This steel plate is a steel plate in which the yield stress is increased by performing a coating baking process including holding at a high temperature of usually 150 ° C. to 200 ° C. after press forming. By making solid solution C or solid solution N exist in the steel, C or N adheres to the dislocations introduced at the time of press forming by high-temperature heating during the coating baking process, thereby preventing dislocation movement and increasing the yield stress. . This increase is the bake hardening amount (BH amount).
[0003]
The amount of BH is generally increased by increasing the amount of solute C or the amount of solute N.
The problem of such a curing mechanism is as follows. In order to increase the amount of BH, when the amount of solute C or solute N is increased, some dislocations are already fixed by solute C or solute N before forming (normal temperature aging), and due to yield point elongation during press forming. It produces wavy surface defects called stretcher strains. This significantly degrades the product characteristics.
It has been a long-standing problem to solve the problem of normal temperature aging and to realize a thin steel sheet having high bake hardenability and excellent aging resistance.
[0004]
Japanese Patent Application Laid-Open Nos. 5-331553 and 7-300623 disclose methods for controlling the addition amount of Nb and Al to achieve bake hardenability and aging resistance. In this method, the amount of solid solution N and the amount of solid solution C are set to appropriate amounts so as to obtain aging resistance. When the amount of solid solution C is increased in order to increase the amount of BH, aging deterioration occurs, which is high. Steel with bake hardening properties cannot be produced.
Japanese Patent Laid-Open No. 2000-17386 discloses a method in which an appropriate amount of Mo is added to form a Mo—C dipole that is stable at room temperature in steel, thereby simultaneously obtaining room temperature aging and bake hardenability. However, models for C and N behavior that contribute to the development of these characteristics are only proposed, and there are no sufficient material design guidelines, such as realizing higher BH characteristics and lowering the baking temperature. The current situation is not enough to meet the challenges.
[0005]
JP-A-11-229085 discloses a method for producing a cold-rolled steel sheet having excellent aging resistance by optimizing the Nb / C ratio. Although it is stated that crystal grains are refined by finely dispersing NbC and the amount of grain boundary C is increased, in this method, when the bake hardening amount is increased (BH amount> 60 MPa), yield point elongation appears and normal temperature aging occurs. Sex will not be maintained.
[0006]
[Problems to be solved by the invention]
In view of such a current situation, the present invention provides a thin steel sheet excellent in normal temperature slow aging and bake hardenability.
[0007]
[Means for Solving the Problems]
The present inventors have found that by fixing C or N in the steel as ultrafine precipitates, it is possible to obtain a thin steel sheet that is excellent in both room temperature slow aging and bake hardenability. The present invention has been completed by specifying the requirements to be satisfied by the fine precipitates, and the gist thereof is as follows.
(1) in mass%, C: 0.00 3 ~0.2% , N: 0.0001~0.2%, C + N: 0.002~0.3%, Si: 0.001~0.1 %, Mn: 0.01 to 1%, P: 0.001 to 0.1%, S: 0.05% or less, Al: 0.001 to 0.1%, Ti: 0.001 to 0.1 %, Nb: 0.001 to 0.1%, Mo: 0.005 to 0.25%, the balance being iron and inevitable impurities, and Ti carbide having a diameter of 1 to 10 nm in the steel And ultrafine precipitates composed of one or more of nitrides and carbonitrides at a density of 1 × 10 17 pieces / cm 3 or more and a BH amount of 60 MPa or more. A thin steel plate with excellent room temperature slow aging and bake hardenability.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Since the precipitates targeted by the present invention are as small as 1 to 10 nm in diameter, they are described as ultrafine precipitates in distinction from ordinary precipitates. The ultrafine precipitates are considered to be carbides, nitrides, carbonitrides, or aggregates thereof, and may be crystalline or amorphous as carbides, nitrides, carbonitrides, It does not matter whether it is a constant ratio or an indefinite ratio. Therefore, for example, Ti (N, C) is described as Ti carbide, nitride, carbonitride, or an aggregate of these, and this does not indicate the composition ratio of Ti and C and N.
[0010]
The feature of the present invention is that the interstitial atoms C or N are fixed (trapped) to such ultrafine precipitates dispersed at a high density, thereby preventing room temperature aging at room temperature. While improving the normal aging property at room temperature, high bake hardenability was realized at the same time by desorbing from the trap at a coating baking temperature of 150 to 200 ° C., moving to the dislocation position by diffusion, and fixing the dislocation.
C and N in ferritic iron have a low solid solubility at room temperature and tend to segregate and concentrate at energetically stable positions. Examples of the segregation sites include crystal defect parts such as grain boundary parts and dislocation parts. The present inventor used an atom probe field ion microscope (hereinafter abbreviated as AP-FIM) to conduct a detailed study of this segregation site. As a result, it was found that C and N were segregated and concentrated in the ultrafine precipitate. It is not clear which part of the ultrafine precipitates is segregated and concentrated, but it is considered to be near the interface with the matrix iron.
[0011]
The amount of C or N that segregates and concentrates in ultrafine precipitates depends on the precipitate size. In order to use the segregated C or N for dislocation fixing, C or N must be trapped by precipitates at room temperature, and C or N must be desorbed from the trap site at the bake hardening temperature. Therefore, an ultrafine precipitate having an optimum trap energy is effective for the precipitate size. Further, in order to diffusely supply C or N from trap sites to a large amount of dislocations introduced by press forming during baking, these trap sites must be present in a high density and dispersed in the steel. Necessary. Accordingly, the number density of ultrafine precipitates in the steel to be the trap site is required to be at least 1 × 10 17 pieces / cm 3, preferably a number density of 5 × 10 17 pieces / cm 3 or more, and further 1 × 10 A number density of 18 / cm 3 or more is more preferable. If it is less than 1 × 10 17 pieces / cm 3 , segregated C or N at the baking temperature cannot be fixed uniformly to a large amount of dislocations introduced by press molding, so aging resistance or bake hardenability is descend. Although the upper limit of the number density is not defined here, generally, the dispersion of high-density precipitates exceeding 1 × 10 20 pieces / cm 3 increases the steel strength, so that formability may be a problem. .
[0012]
The size of such ultrafine precipitates is preferably 1 to 10 nm in diameter. If it is smaller than 1 nm, it is not an effective trap site for C or N. On the other hand, if it is larger than 10 nm, it becomes a trap site for C or N, but in order to realize a number density of 1 × 10 17 atoms / cm 3 or more, so much component must be added to the steel, Solid solution strengthening and dispersion strengthening cause a significant decrease in steel formability.
In the present invention, the type of ultrafine precipitates is not limited, but as the ultrafine precipitates used as C or N trap sites, carbides, nitrides, carbonitrides or mixtures thereof are preferable. This is because C and N have a large diffusion coefficient, so that their carbides, nitrides, and carbonitrides can be easily finely dispersed and effectively used as C or N trap sites.
[0013]
The carbide, nitride, and carbonitride are most preferably Ti carbide, nitride, and carbonitride. The reason is that Ti makes it easy to form a 1-10 nm ultrafine precipitate having an appropriate trap energy.
The reasons for limiting the components in the present invention are as follows. In addition,% represents mass%. C and N are important elements for developing the bake hardenability, and it is essential to contain C + N amount of 0.002% or more. However, if the amount of C + N is too large, the amount of solid solution increases and it becomes difficult to ensure normal temperature aging, so the upper limit was made 0.3%.
[0014]
The reason why C: 0.001% or more and N: 0.0001% or more is that reduction to less than this not only increases the cost of steelmaking, but also cannot provide high bake hardenability. . Furthermore, it is because it becomes impossible to make ultrafine precipitates made of carbon and nitride at high density. On the other hand, the reason why C is 0.2% or less and N is 0.2% or less is that when these values are exceeded, the strength becomes too high and the workability is impaired. Mn, Si, and P are basic components that are indispensable for obtaining the strength required for a thin steel plate. When Mn is less than 0.01%, Si is 0.001%, and P is less than 0.001%, the strength is insufficient. If Mn: 1%, Si: 0.1%, and P: 0.1% are exceeded, the strength becomes too high and the workability is impaired.
[0015]
If S exceeds 0.05%, red hot embrittlement occurs during hot rolling and cracks at the surface, so-called hot embrittlement may occur, so 0.05% or less is necessary.
Al is an element necessary as a deoxidizer and needs to be 0.001% or more. The reason why it is made 0.1% or less is that if it is added beyond that, the strength increases and the workability is impaired.
Ti is one of the elements that can be used for the formation of ultrafine precipitates of the present invention, and is required to be 0.001% or more in order to fix excess C, N, and S to ensure aging. The upper limit is set to 0.1% because addition exceeding the upper limit raises the recrystallization temperature and causes deterioration of workability.
[0016]
Nb, like Ti, is one of the elements that can be used to form the ultrafine precipitate of the present invention. The lower limit is set to 0.001% because it is difficult to ensure aging when the content is less than 0.1%, and the upper limit is set to 0.1% to increase the recrystallization temperature. This is because it causes deterioration of workability.
The details of the mechanism of Mo, Cr, and W are not clear, but have the effect of finely dispersing precipitates in the steel. That is, the conditions for forming the ultrafine precipitate of the present invention can be relaxed by adding one or more of these. The reason why the lower limit of the addition amount of each element is set to 0.005% is that this effect cannot be obtained if it is less than that, and the upper limit is set to 0.25% for Mo and 1.0% for Cr and W. This is because, if it exceeds that, the strength becomes high and the workability is impaired, and the alloy cost increases due to the high cost.
[0017]
In order to disperse ultrafine precipitates having a diameter of 1 to 10 nm in steel to a number density of 1 × 10 17 pieces / cm 3 or more, for example, annealing can be performed under specific conditions. In general, when the cooling rate of annealing is slowed, the size of precipitated carbides or nitrides increases and the number density decreases. Conversely, when the cooling rate is increased, the size of the precipitated carbide or nitride is reduced and the number density is increased. However, in this case, since the amount of C or N dissolved increases, an appropriate overaging treatment (OA) becomes effective. In order to disperse ultrafine precipitates at high density, it is necessary to select annealing conditions depending on the components in steel and their concentrations.
[0018]
For example, a preferable production method is possible by limiting the annealing conditions after casting and rolling. The annealing is performed at a cooling rate of 10 to 100 ° C./s after being held at a temperature of 800 ° C. or more and an Ac 3 temperature or less. The reason why the temperature is kept at 800 ° C. or higher is to temporarily dissolve C and N, and below this temperature, they remain in the form of ordinary precipitates. In order to avoid transformation, the temperature is set to Ac3 temperature or lower. The holding time is preferably 1 minute or longer in order to obtain a sufficient effect. When the cooling rate is less than 10 ° C./s, the size of the precipitate easily exceeds 10 nm, while when it exceeds 100 ° C./s, the precipitate remains in a solid solution, and the precipitate is less likely to be generated.
[0019]
The general preferred production method has been described above. However, as described above, Mo has an effect of relaxing this condition, and the conditions for producing the steel sheet of the present invention differ depending on the steel components. It is desirable to determine the manufacturing method based on the result. The analysis of the atomic presence state using AP-FIM is performed as follows. This apparatus can examine the atomic form that cannot be observed with a transmission electron microscope (TEM) at a resolution of the crystal lattice level. The mass-to-charge ratio is determined by applying a high voltage to the needle-polished sample and measuring the time of flight of ions evaporated in the field to determine the constituent atoms. As a result, the composition of precipitates in the steel, segregated atoms, and the like can be accurately examined. In addition, the location in the steel can be determined simultaneously from the order in which the measurement data is taken.
[0020]
FIG. 1 is a ladder chart showing an example of the results of intragranular matrix measurement in a cold-rolled steel sheet manufactured according to the present invention. In the ladder chart, the horizontal axis represents the total number of detected atoms, and the vertical axis represents the cumulative number of target atoms. Therefore, the slope of the graph corresponds to the concentration of the target atom, and the slope becomes larger in the segregated and concentrated portion (arrow in the figure).
Since the horizontal axis corresponds to the order of detection ion incorporation, it represents the depth position (spatial coordinates) of the sample. It can be seen that C atoms form ultrafine precipitates together with TiN and Ti. In the steel sheet exhibiting excellent aging resistance, 1 × 10 17 particles / cm 3 or more dispersed ultrafine precipitates were observed in the grains.
[0021]
The average number density of ultrafine precipitates was determined from the number of ultrafine precipitates observed in a matrix measurement in an arbitrary direction many times. In AP-FIM, when the measurement area | region in one measurement is small and an ultrafine precipitate is not observed, it means that the number density is small. Assuming that the number of atoms that can be measured in one measurement is 1 × 10 5 , if the density of ultrafine precipitates is less than 1 × 10 17 / cm 3 , the number of AP-FIM measurements is ultrafine in a natural probability. It is difficult to observe the precipitate. Therefore, when no ultrafine precipitate is observed by matrix measurement in an arbitrary direction by AP-FIM, it is determined that the average density is less than 1 × 10 17 particles / cm 3 . In addition, since a TEM has a large observation area, it is possible to examine precipitates with a lower density, but ultrafine precipitates of 10 nm or less are often difficult to observe in terms of resolution.
[0022]
The size of the precipitate can be estimated from the number of atoms constituting the precipitate. Atoms are evaporated for each atomic layer by field evaporation, and the measured single atomic layer depends on the probe hole size, crystal plane orientation, radius of curvature of the tip of the needle sample, etc., but generally corresponds to 50 to 200 atoms (light metal (1992 ) P236-247). By examining how many atomic layers the precipitate extends, the size of the precipitate can be estimated. For example, in FIG. 1, it reaches about 10 atomic layers and can be regarded as a precipitate of about 2 nm.
[0023]
The aging and bake hardenability are evaluated as follows. Aging at normal temperature can be examined by holding a 70 ° C. atmosphere for 40 days, performing a tensile test, and measuring the elongation at yield (YP-El) at this time. Aging resistance was evaluated by an artificial acceleration test. The YP-El value of 0.4% or less was considered good. In addition, the bake hardenability is measured by measuring the yield stress (YP) after 2% tension and holding at 170 ° C. for 20 minutes, and the difference in strength when the 2% tensile test is performed first, that is, BH. Evaluated as a quantity.
The thin steel plate of the present invention may be either a hot rolled steel plate or a cold rolled steel plate. Further, the hot rolling process and the cold rolling process are not particularly limited. Next, the working effects of the present invention will be described more specifically by way of examples. However, they are merely illustrative, and the present invention is not unduly limited thereby.
[0024]
【Example】
A test material having the chemical composition described in Table 1 was melted. In addition,% of a chemical component represents the mass%.
[0025]
[Table 1]
Figure 0003921100
[0026]
Under the conditions described in Table 2, hot rolling and cold rolling were performed, followed by annealing to obtain a cold rolled steel sheet.
[0027]
[Table 2]
Figure 0003921100
[0028]
Table 3 shows the results of the mechanical test. Where ex. C is a value obtained by subtracting the amount precipitated by Ti and Nb from the amount of added C, and was estimated by the formula shown in the table.
[0029]
[Table 3]
Figure 0003921100
[0030]
(Example 1) Steel types c and e shown in Table 1 were used, and cold-rolled steel sheets were produced under the production conditions described in Table 2. The finishing temperature of hot rolling was 900 ° C., and the winding temperature was 600 to 700 ° C. The cold rolling rate was 70 to 80%, and cold rolling was performed to a thickness of 0.8 mm. After cold rolling, an annealing treatment was performed at 800 to 820 ° C. for 3 minutes and cooled at various cooling rates. Further, some were overaged (OA). The annealed steel sheet was temper rolled at 1% to obtain a cold-rolled steel sheet. Table 3 shows the results of the mechanical properties of the steel plates (steel plates 1 to 8 ) produced and the average number density of ultrafine precipitates examined by AP-FIM . Te steels e smell, the production conditions of E, showed good aging resistance ultra-fine precipitates were observed. Under other conditions, the precipitate density was small or the size was larger than 10 nm and the BH amount was good, but the aging resistance was not good. (Deleted below)
[0031]
Thereby, high BH characteristics and excellent aging resistance can be realized at the same time by manufacturing steel in which high number density ultrafine precipitates are dispersed.
(Example 2) Steels (steel types a to g) whose components were adjusted as shown in Table 1 were made into cold-rolled steel sheets according to production conditions B shown in Table 2 (steel sheets 9 to 15 ). The finishing temperature of hot rolling was 900 ° C., and the winding temperature was 650 ° C. The cold rolling rate was 70%, and cold rolling was performed to a thickness of 0.8 mm. After cold rolling, an annealing treatment was performed at 800 ° C. for 1 minute. The annealed steel sheet was temper rolled at 1% to obtain a cold-rolled steel sheet.
[0032]
In Table 3, the YPEL value for evaluating aging resistance was examined by accelerated aging at 100 ° C. × 1 hour.
ex. The higher the C content, the higher the BH value, ex. A steel with C of 0.003% or more has a high BH value of 60 MPa or more. When the aging resistance of these steels is evaluated by the yield point elongation, the steel sheets 9 and 14 to which a sufficient amount of Mo is added show excellent aging resistance. Also, Oite the steel plate 10, 12 slightly added to Mo, shows aging resistance. On the other hand, in steel plates 11, 13 , and 15 to which Mo is not added, large yield point elongation appears and aging resistance is not obtained. In the steel sheet exhibiting slow aging, ultrafine precipitates could be observed in the steel by AP-FIM, which is considered to have influenced the slow aging.
[0033]
Furthermore, 0.134% of Mo and 0.0037% of C were added, and the steel plate 9 manufactured under the manufacturing condition B was compared in detail with respect to the steel plate 11 having the same C amount and no addition of Mo. In the case of the steel plate 9, the number density of ultrafine precipitates is 1 × 10 18 pieces / cm 3 and the BH amount exceeds 60 MPa, but the elongation at yield point is 0.1% or less, which is very good room temperature slow aging. Indicated. On the other hand, in the steel plate 11 , the number density of ultrafine precipitates is not observed (it is judged to be less than 1 × 10 17 pieces / cm 3 ), and the BH amount exceeds 60 MPa, but the YP-El value is 1.0. %, Room temperature slow aging was not observed. In this steel, stretcher strains appeared during press working.
[0034]
Table 4 shows an example of the atomic composition of ultrafine precipitates observed by AP-FIM in the steel sheet 9 showing good bake hardenability and room temperature slow aging.
[0035]
[Table 4]
Figure 0003921100
[0036]
The ultrafine precipitate was composed of a composite of C, Ti, and N of several to tens of atoms, and the size was several nm or less. When the composition was examined, the number of C atoms was larger than {(number of Ti atoms) − (number of N atoms)}, indicating the presence of surplus C. That is, this ultrafine precipitate is a segregation-concentrated C of TiN or TiC ultrafine precipitate. The amount of segregated C depends on the size of Ti (N, C), and it was found that extra C is present in excess of several tens of atoms in ultrafine precipitates composed of more than ten atoms. In AP-FIM, since the detection rate of ions is about 60%, the actual number of atoms is larger than this. Furthermore, since TiC precipitates generally have a composition of TiC x (x ≦ 1), the amount of surplus C is underestimated here.
[0037]
On the other hand, when the amount of dissolved C was examined by AP-FIM measurement, the average concentration was 0.0005% by mass or less, and it was found that most of C contained in the steel was segregated and concentrated in ultrafine precipitates. . Next, the same observation was performed on a sample obtained by applying a 2% tensile pre-strain to the steel sheet 9 and baking and hardening at 170 ° C. for 20 minutes. However, no stoichiometric excess C was measured in the ultrafine precipitate. That is, it is considered that C segregated and concentrated in ultrafine precipitates diffused into dislocations during the bake hardening process and became a source of dislocation fixation (formation of Cottrell atmosphere).
[0038]
On the other hand, although the same observation was tried also about the test material (steel plate 11 ) which does not add Mo, the ultrafine precipitate was not observed in steel by the matrix measurement by AP-FIM. This means that the number density of precipitates is less than 1 × 10 17 pieces / cm 3 . When TEM observation was performed, relatively large Ti (N, C) precipitates of 50 nm or more were observed, but the average number density was 1 × 10 12 pieces / cm 3 or less. Next, with respect to the steel type a to which Mo was sufficiently added, the steel plate 16 manufactured under the manufacturing condition D and the steel plate 17 manufactured under the manufacturing condition G were compared in detail. In the steel plate 16 produced under the condition D, although excellent BH characteristics were exhibited, the aging resistance was inferior, and ultrafine precipitates were not observed. On the other hand, in the steel plate 17 manufactured on condition G of the same steel type, both BH characteristics and aging resistance were good, and the number density of ultrafine precipitates was 2 × 10 17 pieces / cm 3 . These results indicate that the addition of Mo broadens the range of manufacturing conditions for steel sheets having excellent BH characteristics and excellent aging resistance.
[0039]
From the above experiments, ultrafine precipitates are dispersed in steel at high density, and C or N is segregated and concentrated to prevent aging at room temperature, and dislocation is caused by C or N released from the trap at the bake hardening temperature. It was shown that the steel was strengthened by fixing.
Thereby, high BH characteristics and excellent aging resistance can be realized at the same time by manufacturing steel in which high number density ultrafine precipitates are dispersed.
[0040]
【The invention's effect】
According to the present invention, a thin steel sheet excellent in slow aging at room temperature and bake hardenability is provided, and it can be said that its industrial value is extremely high.
[Brief description of the drawings]
FIG. 1 is a diagram showing a ladder chart of AP-FIM measurement of an intragranular matrix in a cold rolled steel sheet manufactured according to the present invention.

Claims (1)

質量%で、
C: 0.00〜0.2%、
N: 0.0001〜0.2%、
C+N:0.002〜0.3%、
Si:0.001〜0.1%、
Mn:0.01〜1%、
P :0.001〜0.1%、
S :0.05%以下、
Al:0.001〜0.1%、
Ti:0.001〜0.1%、
Nb:0.001〜0.1%、
Mo:0.005〜0.25%を含有し、残部が鉄および不可避的不純物からなり、かつ、鋼中に直径1〜10nmのTiの炭化物、窒化物、および、炭窒化物のうちのいずれか1種または2種以上からなる超微細析出物を1×1017 個/cm3 以上の密度で含み、BH量が60MPa以上であることを特徴とする常温遅時効性と焼付硬化性に優れた薄鋼板。
% By mass
C: 0.00 3 ~0.2%,
N: 0.0001 to 0.2%,
C + N: 0.002 to 0.3%,
Si: 0.001 to 0.1%,
Mn: 0.01-1%,
P: 0.001 to 0.1%,
S: 0.05% or less,
Al: 0.001 to 0.1%,
Ti: 0.001 to 0.1%,
Nb: 0.001 to 0.1%,
Mo: 0.005 to 0.25% contained, the balance being iron and inevitable impurities, and any of Ti carbide, nitride, and carbonitride having a diameter of 1 to 10 nm in the steel It contains one or two or more ultrafine precipitates at a density of 1 × 10 17 particles / cm 3 or more and has a BH amount of 60 MPa or more, which is excellent in normal temperature slow aging and bake hardenability. Thin steel plate.
JP2002050900A 2002-02-27 2002-02-27 Thin steel sheet with excellent room temperature slow aging and bake hardenability Expired - Fee Related JP3921100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002050900A JP3921100B2 (en) 2002-02-27 2002-02-27 Thin steel sheet with excellent room temperature slow aging and bake hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002050900A JP3921100B2 (en) 2002-02-27 2002-02-27 Thin steel sheet with excellent room temperature slow aging and bake hardenability

Publications (2)

Publication Number Publication Date
JP2003253378A JP2003253378A (en) 2003-09-10
JP3921100B2 true JP3921100B2 (en) 2007-05-30

Family

ID=28663012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002050900A Expired - Fee Related JP3921100B2 (en) 2002-02-27 2002-02-27 Thin steel sheet with excellent room temperature slow aging and bake hardenability

Country Status (1)

Country Link
JP (1) JP3921100B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070181232A1 (en) * 2004-03-25 2007-08-09 Posco Cold rolled steel sheet and hot dipped steel sheet with superior strength and bake hardenability and method for manufacturing the steel sheets
KR100685037B1 (en) * 2005-09-23 2007-02-20 주식회사 포스코 Bake-hardenable cold rolled steel sheet with superior strength and aging resistance, galvannealed steel sheet using the cold rolled steel sheet and method for manufacturing the cold rolled steel sheet
KR101758557B1 (en) 2015-06-05 2017-07-18 주식회사 포스코 High-strength thin steel sheet having excellent drawability and bake hardenability and method for manufacturing the same
WO2016195456A1 (en) * 2015-06-05 2016-12-08 주식회사 포스코 High-strength thin steel sheet with excellent drawability and bake hardenability, and method for manufacturing same

Also Published As

Publication number Publication date
JP2003253378A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
KR101230728B1 (en) Cold-rolled steel sheets
RU2496904C1 (en) Plate steel characterised by low ratio between yield point and limit strength, high strength and high impact strength, and method for its manufacture
JP4575893B2 (en) High strength steel plate with excellent balance of strength and ductility
JP5042914B2 (en) High strength steel and manufacturing method thereof
US20090277547A1 (en) High-strength steel sheets and processes for production of the same
JP6252710B2 (en) High-strength steel sheet for warm working and manufacturing method thereof
EP2765211B1 (en) High-tensile-strength hot-rolled steel sheet and method for producing same
JP6292022B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP5466552B2 (en) High-strength cold-rolled steel sheet that combines elongation, stretch flangeability and weldability
KR20170086099A (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP7115628B2 (en) Hot-rolled steel sheet and its manufacturing method
JP6683297B1 (en) High-strength steel sheet and method for manufacturing the same
WO2021230149A1 (en) Hot stamped molded body
JP2004043908A (en) High-strength steel sheet with excellent workability and its manufacturing process
JP5900710B2 (en) High carbon steel wire rod excellent in wire drawing workability and its manufacturing method
JP2005240176A (en) Method for manufacturing steel material having uniform strength in sheet thickness direction and superior fatigue-crack propagation resistance
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
JP2007321201A (en) High-strength hot-rolled steel plate superior in strength-elongation balance and fatigue characteristics
JP3921100B2 (en) Thin steel sheet with excellent room temperature slow aging and bake hardenability
JP6809648B1 (en) High-strength steel sheet and its manufacturing method
JP2018162495A (en) High-strength high-ductility steel sheet and method for manufacturing the same
JP6042265B2 (en) High-strength cold-rolled steel sheet excellent in yield strength and formability and method for producing the same
JP4616568B2 (en) Thin steel plate excellent in slow aging at room temperature and bake hardenability and method for producing the same
JP7444096B2 (en) Hot rolled steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070216

R151 Written notification of patent or utility model registration

Ref document number: 3921100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees