JP4616568B2 - Thin steel plate excellent in slow aging at room temperature and bake hardenability and method for producing the same - Google Patents

Thin steel plate excellent in slow aging at room temperature and bake hardenability and method for producing the same Download PDF

Info

Publication number
JP4616568B2
JP4616568B2 JP2004071469A JP2004071469A JP4616568B2 JP 4616568 B2 JP4616568 B2 JP 4616568B2 JP 2004071469 A JP2004071469 A JP 2004071469A JP 2004071469 A JP2004071469 A JP 2004071469A JP 4616568 B2 JP4616568 B2 JP 4616568B2
Authority
JP
Japan
Prior art keywords
aging
thin steel
less
amount
bake hardenability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004071469A
Other languages
Japanese (ja)
Other versions
JP2004300573A (en
Inventor
淳 高橋
和人 川上
昌章 杉山
英明 澤田
直樹 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004071469A priority Critical patent/JP4616568B2/en
Publication of JP2004300573A publication Critical patent/JP2004300573A/en
Application granted granted Critical
Publication of JP4616568B2 publication Critical patent/JP4616568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、常温遅時効性と焼付硬化性に優れた薄鋼板に関する。   The present invention relates to a thin steel plate excellent in normal temperature slow aging and bake hardenability.

自動車の車体軽量化のため、使用する鋼板板厚の減少が要望され、自動車用鋼板の高強度化が検討されてきた。しかし、鋼板の高強度化は、鋼板のプレス成形性を劣化させる傾向があり、プレス成形性に優れた高張力鋼板が要望されていた。   In order to reduce the weight of automobile bodies, it is desired to reduce the thickness of the steel sheet used, and the strengthening of automobile steel sheets has been studied. However, increasing the strength of the steel sheet tends to deteriorate the press formability of the steel sheet, and a high-tensile steel sheet having excellent press formability has been desired.

このようなプレス成形性と高強度化を両立させた鋼板として、塗装焼付硬化型自動車用鋼板が開発されている。この鋼板は、プレス成形後に、通常150〜200℃の高温保持を含む塗装焼付処理を施すことにより、降伏応力が上昇する鋼板である。   As a steel sheet that achieves both press formability and high strength, a paint bake-hardening type automobile steel sheet has been developed. This steel plate is a steel plate in which the yield stress is increased by performing a coating baking process including holding at a high temperature of usually 150 to 200 ° C. after press forming.

鋼中に、固溶Cまたは固溶Nを存在させることによって、塗装焼付処理時の高温加熱で、CまたはNがプレス成形時に導入された転位に固着して転位の移動を妨げ、降伏応力が上昇する。この降伏応力の上昇分が、焼付硬化量(BH量)であり、BH量は一般に、固溶C量または固溶N量を増やすことによって増加する。   By having solute C or solute N present in the steel, the high temperature heating during the coating baking process causes C or N to adhere to the dislocations introduced during press forming, thereby preventing the movement of dislocations, resulting in yield stress. To rise. The increase in yield stress is the bake hardening amount (BH amount), and the BH amount is generally increased by increasing the solute C amount or the solute N amount.

このような硬化機構の問題点は次の点にある。   The problem of such a curing mechanism is as follows.

BH量を増加するために固溶C量または固溶N量を増加させると、成形前に既に一部の転位がCまたはNにより固着され(常温時効)、プレス成形時に降伏点伸びによるストレッチャーストレインと呼ばれる波状の表面欠陥を生じ、製品特性を著しく劣化させる。   If the amount of solute C or solute N is increased to increase the amount of BH, some dislocations are already fixed by C or N before forming (normal temperature aging), and a stretcher due to yield point elongation during press forming. Wavy surface defects called strains are produced, and the product characteristics are significantly deteriorated.

この常温時効の問題を解決し、耐時効性に優れた高い塗装焼付硬化性を有する薄鋼板を実現することは長年の課題であった。   It has been a long-standing problem to solve the problem of normal temperature aging and to realize a thin steel sheet having high bake hardenability and excellent aging resistance.

この課題に対し、特許文献1および特許文献2には、NbおよびAl添加量を制御し、焼付硬化性および耐時効性を実現する方法が開示されている。   In response to this problem, Patent Document 1 and Patent Document 2 disclose methods for controlling the addition amount of Nb and Al to achieve bake hardenability and aging resistance.

この方法は、固溶N量、固溶C量を適量にして耐時効性を得ようとする方法であるが、BH量を増加するために固溶C量を増やすと時効劣化が生じることになり、高い焼付硬化特性を有する鋼を製造することはできない。   This method is a method for obtaining aging resistance by appropriately adjusting the amount of solute N and the amount of solute C, but aging deterioration occurs when the amount of solute C is increased in order to increase the amount of BH. Therefore, it is not possible to produce steel having high bake hardening characteristics.

また、特許文献3には、Mo、Cr、W等を規定量添加することで、常温時効性と焼付硬化性を同時に得る方法が開示されている。しかし、この方法では、その機構が不明であるため、十分な材料設計指針がなく、更なる高い焼付硬化性や遅時効性の課題に十分対応できないのが現状である。また、このような特定の元素を添加する方法では、コスト面で問題がある。   Further, Patent Document 3 discloses a method for simultaneously obtaining normal temperature aging and bake hardenability by adding specified amounts of Mo, Cr, W, and the like. However, in this method, since the mechanism is unknown, there is no sufficient material design guideline, and it is not possible to sufficiently cope with the problems of higher bake hardenability and delayed aging. In addition, such a method of adding a specific element has a problem in terms of cost.

また、さらに、特許文献4には、成分および製造条件を規定し、粒界偏析C量を増加させることで、耐時効性に優れた塗装焼付硬化型鋼板を製造する方法が開示されている。   Furthermore, Patent Document 4 discloses a method for producing a paint bake hardened steel sheet having excellent aging resistance by specifying components and production conditions and increasing the amount of grain boundary segregation C.

しかし、実際に粒界に偏析するC量は、粒内のC量に比べればわずかであり、粒界からの拡散距離も粒サイズに比べ小さいため、粒内のすべての転位を固着することはできず、高いBH量は得られない。   However, the amount of C that segregates at the grain boundary is actually small compared to the amount of C in the grain, and the diffusion distance from the grain boundary is also smaller than the grain size, so that all the dislocations in the grain are fixed. It is not possible to obtain a high BH amount.

特開平5−331553号公報Japanese Patent Laid-Open No. 5-331553 特開平7−300623号公報JP-A-7-300623 特開平5−25549号公報JP-A-5-25549 特開平11−229085号公報Japanese Patent Laid-Open No. 11-229085

本発明は、このような現状に鑑み、常温遅時効性と焼付硬化性に優れた薄鋼板を提供することを課題とする。   This invention makes it a subject to provide the thin steel plate excellent in normal temperature slow aging property and bake hardenability in view of such the present condition.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、次の新しい知見を得た。   As a result of intensive studies to solve the above problems, the present inventors have obtained the following new knowledge.

薄鋼板に転位を導入し時効させると、格子間原子のCまたはNが拡散し、導入した転位周囲にコットレル雰囲気を形成し転位を固着し鋼が硬くなる。   When dislocations are introduced and aged in a thin steel sheet, interstitial C or N diffuses, forms a Cottrell atmosphere around the introduced dislocations, fixes the dislocations, and hardens the steel.

この鋼にさらに、調質圧延によって新たな転位を導入すると、コットレル雰囲気を形成したCまたはNは新たな転位に拡散しにくくなるため、常温での時効劣化が抑制されることを見出した。   Furthermore, when new dislocations were introduced into this steel by temper rolling, it was found that C or N forming a Cottrell atmosphere hardly diffused into the new dislocations, so that aging deterioration at room temperature was suppressed.

そして、本発明者らは、また、さらに加工を行うことにより、鋼中にさらに多量の転位を導入し、塗装焼付処理によって鋼板の温度を上昇させると、弱い転位歪場にトラップされた一部のCまたはNは、歪場から脱離し、加工により導入された転位に拡散することを見出した。   And the present inventors also introduced a larger amount of dislocations in the steel by further processing, and when the temperature of the steel sheet was increased by paint baking, a part trapped in the weak dislocation strain field It has been found that C or N of ## STR2 ## desorbs from the strain field and diffuses into dislocations introduced by processing.

拡散したCまたはNは、新たな転位にコットレル雰囲気を形成し転位を固着し、さらに、古い転位も固着されているため、鋼は強化されることになる。   The diffused C or N forms a Cottrell atmosphere at new dislocations and fixes the dislocations. Furthermore, old dislocations are also fixed, and the steel is strengthened.

従って、鋼中の転位は、常温ではCまたはNの拡散を抑制するトラップサイトとして利用でき、この機構を活用することによって、常温での耐時効性と高温での焼付硬化性が同時に実現することができる。   Therefore, dislocations in steel can be used as trap sites that suppress C or N diffusion at room temperature, and by using this mechanism, aging resistance at room temperature and bake hardenability at high temperature can be realized at the same time. Can do.

すなわち、本発明は、上述のように、従来法とは全く異なる新しい発想に基づき、鋼中の転位をCまたはNのトラップサイトとして利用するものであり、その要旨は以下の通りである。   That is, as described above, the present invention utilizes dislocations in steel as C or N trap sites based on a new idea completely different from the conventional method, and the gist thereof is as follows.

(1)質量%で、C:0.0001〜0.2%、N:0.0001〜0.2%、C+N:0.002〜0.3%、Mn:0.01〜3%、Si:0.001〜2%、P:0.001〜0.1%、S:0.05%以下、Al:0.0001〜0.1%、を含有し、さらに、Nb、Tiのいずれか1種または2種を合計で0.001〜0.02%含有し、残部がFeおよび不可避的不純物からなる薄鋼板に、1×109〜2×1010cm−2の密度の転位を導入した後、該薄鋼板を100℃以上300℃未満、1分以上2時間以下の条件で時効し、続いて、該薄鋼板に、新たに1×109〜2×1010cm−2の密度の転位を導入し、固溶C量と固溶N量の合計量を0.001〜0.005%とすることを特徴とする常温遅時効性と焼付硬化性に優れた薄鋼板の製造方法。 (1) By mass%, C: 0.0001 to 0.2%, N: 0.0001 to 0.2%, C + N: 0.002 to 0.3%, Mn: 0.01 to 3%, Si : 0.001-2%, P: 0.001-0.1%, S: 0.05% or less, Al: 0.0001-0.1%, and either Nb or Ti A dislocation having a density of 1 × 10 9 to 2 × 10 10 cm −2 is introduced into a thin steel plate containing 0.001 to 0.02% in total of 1 type or 2 types and the balance being Fe and inevitable impurities. After that, the thin steel sheet was aged at 100 ° C. or more and less than 300 ° C. for 1 minute or more and 2 hours or less. Subsequently, the thin steel sheet was newly added with a density of 1 × 10 9 to 2 × 10 10 cm −2 . dislocations introduced, the total amount of solid solution C amount and amount of dissolved N to room temperature slow aging property and bake hardenability, characterized in that a 0.001 to 0.005 percent Thin steel sheet manufacturing method of that was.

(2)質量%で、C:0.0001〜0.2%、N:0.0001〜0.2%、C+N:0.002〜0.3%、Mn:0.01〜3%、Si:0.001〜2%、P:0.001〜0.1%、S:0.05%以下、Al:0.0001〜0.1%、を含有し、さらに、Nb、Tiのいずれか1種または2種を合計で0.001〜0.02%含有し、残部がFeおよび不可避的不純物からなる薄鋼板に、歪量0.2〜2.0%の調質圧延を行った後、該薄鋼板を100℃以上300℃未満、1分以上2時間以下の条件で時効し、続いて、該薄鋼板に歪量0.2〜2.0%の調質圧延を行い、固溶C量と固溶N量の合計量を0.001〜0.005%とすることを特徴とする常温遅時効性と焼付硬化性に優れた薄鋼板の製造方法。 (2) By mass%, C: 0.0001 to 0.2%, N: 0.0001 to 0.2%, C + N: 0.002 to 0.3%, Mn: 0.01 to 3%, Si : 0.001-2%, P: 0.001-0.1%, S: 0.05% or less, Al: 0.0001-0.1%, and either Nb or Ti After temper rolling with a strain amount of 0.2-2.0% on a thin steel plate containing 0.001% to 0.02% in total of 1 type or 2 types, the balance being Fe and inevitable impurities , less than 300 ° C. 100 ° C. or more thin steel sheet, and aging under conditions of less than 2 hours or more for 1 minute, followed by have rows temper rolling strain amount 0.2 to 2.0% to the thin steel sheet, solid A method for producing a thin steel sheet excellent in room temperature slow aging and bake hardenability, characterized in that the total amount of dissolved C and dissolved N is 0.001 to 0.005% .

)前記100℃以上300℃未満、1分以上2時間以下の条件で行う時効に代えて、50℃以上100℃未満、1時間以上10日以下の条件で時効を行うことを特徴とする前記(1)または(2)に記載の常温遅時効性と焼付硬化性に優れた薄鋼板の製造方法。 (3) the 100 ° C. to 300 below ° C., instead of the aging performed at 1 minute or more 2 hours following conditions, and characterized by performing the aging at 50 ° C. or higher 100 ° C. less than the following conditions 10 days or more 1 hour The manufacturing method of the thin steel plate excellent in normal temperature slow aging property and bake hardenability as described in said (1) or (2).

)前記100℃以上300℃未満、1分以上2時間以下の条件で行う時効に代えて、10℃以上50℃未満、10日以上180日以下の条件で時効を行うことを特徴とする前記(1)または(2)に記載の常温遅時効性と焼付硬化性に優れた薄鋼板の製造方法。 (4) the 100 ° C. to 300 below ° C., instead of the aging performed at 1 minute or more 2 hours following conditions, 10 ° C. or higher 50 ° C. less than, and characterized by performing the aging under the following conditions over 10 days 180 days The manufacturing method of the thin steel plate excellent in normal temperature slow aging property and bake hardenability as described in said (1) or (2).

(5)質量%で、C:0.0001〜0.2%、N:0.0001〜0.2%、C+N:0.002〜0.3%、Mn:0.01〜3%、Si:0.001〜2%、P:0.001〜0.1%、S:0.05%以下、Al:0.0001〜0.1%、を含有し、さらに、Nb、Tiのいずれか1種または2種を合計で0.001〜0.02%含有し、残部がFeおよび不可避的不純物からなる薄鋼板で、CまたはNによって固着された1×109〜2×1010cm−2の密度の転位と、固着されていない1×109〜2×1010cm−2の密度の転位を有し、固溶C量と固溶N量の合計量が0.001〜0.005%であることを特徴とする常温遅時効性と焼付硬化性に優れた薄鋼板。 (5) By mass%, C: 0.0001 to 0.2%, N: 0.0001 to 0.2%, C + N: 0.002 to 0.3%, Mn: 0.01 to 3%, Si : 0.001-2%, P: 0.001-0.1%, S: 0.05% or less, Al: 0.0001-0.1%, and either Nb or Ti 1 × 10 9 to 2 × 10 10 cm −, which is a thin steel plate containing 0.001 to 0.02% in total of 1 type or 2 types, the balance being Fe and inevitable impurities, and fixed by C or N and dislocations of the second density, have a density dislocations of the fixed which do not 1 × 10 9 ~2 × 10 10 cm -2, the total amount of solid solution C amount and solute N amount is 0.001 to 0. excellent steel sheet to room temperature slow aging property and bake hardenability, wherein 005% der Rukoto.

本発明により、常温遅時効性と焼付硬化性に優れた薄鋼板を提供することができる。   According to the present invention, it is possible to provide a thin steel plate excellent in normal temperature slow aging and bake hardenability.

本発明に係る薄鋼板は、熱延鋼板、冷延鋼板のどちらでもかまわない。さらに、熱間圧延工程、冷間圧延工程は特に限定されるものではない。JISの定義では、厚さ3mm未満の鋼板を薄鋼板と称する。   The thin steel plate according to the present invention may be either a hot rolled steel plate or a cold rolled steel plate. Furthermore, the hot rolling process and the cold rolling process are not particularly limited. In the JIS definition, a steel plate having a thickness of less than 3 mm is referred to as a thin steel plate.

本発明に係る薄鋼板の含有成分の限定理由を以下に示す。なお、含有量の%は、質量%を表す。   The reasons for limiting the components contained in the thin steel sheet according to the present invention are shown below. In addition,% of content represents the mass%.

CおよびNは、焼付硬化性を発現させる上で重要な元素であり、塗装焼付硬化性を発現させるためには、C+N量として0.002%以上含有することが必須である。しかし、C+N量が多すぎると、固溶量が増し、常温時効性を確保することが困難になるため、上限を0.3%とした。   C and N are elements that are important in developing bake hardenability, and in order to express paint bake hardenability, it is essential to contain 0.002% or more as the amount of C + N. However, if the amount of C + N is too large, the amount of solid solution increases and it becomes difficult to ensure normal temperature aging, so the upper limit was made 0.3%.

CおよびNの下限値を、それぞれ0.0001%とした理由は、これら下限値未満への低減は、製鋼での多大なコストアップになるばかりでなく、高い焼付硬化性を得られないためであり、さらに、炭素物、窒化物からなる超微細析出物を高密度で作ることができなくなるためである。   The reason why the lower limit values of C and N are set to 0.0001%, respectively, is that reduction to less than these lower limit values not only greatly increases the cost in steelmaking, but also cannot provide high bake hardenability. Furthermore, it is because it becomes impossible to make ultrafine precipitates made of carbon and nitride at high density.

一方、CおよびNの上限値を、それぞれ0.2%とした理由は、これら上限値を超えると、強度が高くなり過ぎ加工性を損なうためである。   On the other hand, the reason why the upper limit values of C and N are each 0.2% is that when these upper limit values are exceeded, the strength becomes too high and the workability is impaired.

本発明に係る薄鋼板は、上記元素に加えて、Mn、Si、P、S、Alを含有する。   The thin steel sheet according to the present invention contains Mn, Si, P, S, and Al in addition to the above elements.

Mn、Si、Pは、薄鋼板として必要とされる強度を得るために必須の成分である。Mn、Si、Pの下限値は、Mnが0.01%、Siが0.001%、Pが0.001%であり、これら下限値未満であると薄鋼板の強度が不足する。   Mn, Si, and P are essential components for obtaining the strength required for a thin steel plate. The lower limit values of Mn, Si, and P are 0.01% for Mn, 0.001% for Si, and 0.001% for P. If the lower limit values are less than these lower limit values, the strength of the thin steel sheet is insufficient.

Mn、Si、Pの上限値は、Mnが3%、Siが2%、Pが0.1%であり、これら上限値を超えると、薄鋼板の強度が高くなりすぎ加工性を損なう。   The upper limit values of Mn, Si, and P are 3% for Mn, 2% for Si, and 0.1% for P. When these upper limit values are exceeded, the strength of the thin steel sheet becomes too high and the workability is impaired.

Sは、0.05%を超えて含有すると、熱間圧延時に赤熱脆化を起こし表面で割れる、いわゆる熱間脆化を起こすことがあるため、0.05%以下とする必要がある。   If S is contained in excess of 0.05%, it may cause red-hot embrittlement during hot rolling and crack at the surface, so-called hot embrittlement. Therefore, S needs to be 0.05% or less.

Alは、脱酸剤として有効な元素であり、脱酸剤として機能するためには0.0001%以上が必要である。上限値を0.1%とした理由は、それを超えて添加すると、薄鋼板の強度が高くなり加工性を損なうためである。   Al is an element effective as a deoxidizer, and 0.0001% or more is necessary to function as a deoxidizer. The reason why the upper limit value is set to 0.1% is that if the content exceeds the upper limit, the strength of the thin steel sheet increases and the workability is impaired.

また、さらに、本発明に係る薄鋼板は、上記元素に加えて必要に応じて、Ti、Nbを含有する。   Furthermore, the thin steel plate according to the present invention contains Ti and Nb as necessary in addition to the above elements.

NbとTiは、加工性の向上や高強度化、さらには組織の微細化と均一化に有効な元素であるので、必要に応じていずれか1種または2種を合計で0.001〜0.1%の範囲で添加してもよい。   Nb and Ti are elements that are effective for improving workability, increasing strength, and further miniaturizing and homogenizing the structure. Therefore, any one or two of them may be added in a total amount of 0.001 to 0 as necessary. It may be added in the range of 1%.

しかし、その添加量が0.001%未満では、添加効果が発現せず、一方、0.1%を超えて添加すると、炭窒化物として析出し固溶Cおよび固溶Nの確保が困難になったり、再結晶温度が上昇し材質劣化の原因となったりする。より好ましい範囲は、0.005〜0.02%である。   However, when the addition amount is less than 0.001%, the effect of addition does not appear. On the other hand, when the addition amount exceeds 0.1%, it precipitates as carbonitride and makes it difficult to secure solute C and solute N. Or the recrystallization temperature rises and causes deterioration of the material. A more preferable range is 0.005 to 0.02%.

次に、本発明の薄鋼板の転位密度について述べる。   Next, the dislocation density of the thin steel sheet of the present invention will be described.

本発明の薄鋼板は、上述のように、鋼中の転位をCまたはNのトラップサイトとして利用することにより、優れた常温遅時効性と焼付硬化性を発現させたものである。本発明の薄鋼板は、鋼中の転位をCまたはNのトラップサイトとして利用するため、転位密度が重要となる。   As described above, the thin steel sheet of the present invention exhibits excellent room temperature slow aging and bake hardenability by utilizing dislocations in steel as C or N trap sites. In the thin steel sheet of the present invention, the dislocation density is important because the dislocations in the steel are used as C or N trap sites.

本発明の薄鋼板は、焼鈍後に一度調質圧延を行い転位を導入した後に鋼を時効させ、その後、再度、二度目の調質圧延を行って転位を導入するものである。   The thin steel sheet of the present invention is one in which temper rolling is performed once after annealing and dislocation is introduced, then the steel is aged, and then the second temper rolling is performed again to introduce dislocation.

一般に、焼鈍後に調質圧延によって転位を導入する理由は、鋼中に可動転位を分散させることで加工性を向上するためであり、通常は調質圧延を一度行うだけである。   In general, the reason why dislocations are introduced by temper rolling after annealing is to improve workability by dispersing movable dislocations in steel, and usually temper rolling is performed only once.

また、調質圧延の方法としては、一般にはスキンパス圧延を用いるが、ショット投射、レーザー照射等の方法でもかまわない。   Moreover, as a method of temper rolling, skin pass rolling is generally used, but methods such as shot projection and laser irradiation may be used.

本発明の薄鋼板の時効前の転位(CまたはNをトラップさせる転位)の密度は、1×109〜2×1010cm-2が好ましい。時効前の転位密度が1×109cm-2未満の場合は、CまたはNのトラップサイトが不足することになり、鋼中に固溶したトラップされていないCおよびNによって、時効劣化が引き起こされることになる。 The density of dislocations before the aging of the thin steel sheet of the present invention (dislocations that trap C or N) is preferably 1 × 10 9 to 2 × 10 10 cm −2 . When the dislocation density before aging is less than 1 × 10 9 cm −2 , C or N trap sites are insufficient, and aging deterioration is caused by untrapped C and N dissolved in the steel. Will be.

時効前の転位密度が2×1010cm-2超の場合は、鋼中のすべてのCまたはNが転位に強くトラップし、転位から離脱することができなくなり、薄鋼板は耐時効性に優れるものの焼付硬化性が確保できなくなる。さらに、延性減少やr値の低下が顕著になり、加工性劣化の原因となる。 When the dislocation density before aging exceeds 2 × 10 10 cm −2 , all C or N in the steel is strongly trapped in the dislocations and cannot be disengaged from the dislocations, and the thin steel sheet has excellent aging resistance. Bake hardenability cannot be ensured. Furthermore, the reduction in ductility and the decrease in the r value become prominent, causing deterioration of workability.

本発明の薄鋼板に時効後に導入する転位は加工性を上げるための可動転位であり、転位密度は1×109〜2×1010cm-2とすることが好ましい。 The dislocations introduced into the thin steel sheet of the present invention after aging are movable dislocations for improving workability, and the dislocation density is preferably 1 × 10 9 to 2 × 10 10 cm −2 .

時効後の転位密度が1×109cm-2未満では、可動転位密度としては不十分であり加工時にストレッチャーストレインが発生する場合もある。 If the dislocation density after aging is less than 1 × 10 9 cm −2 , the movable dislocation density is insufficient, and stretcher strain may occur during processing.

時効後の転位密度が2×1010cm-2超の場合は、加工硬化によって十分な加工性が得られなくなったり、延性が減少する場合がある。 When the dislocation density after aging exceeds 2 × 10 10 cm −2 , sufficient workability may not be obtained due to work hardening, or ductility may be reduced.

図1に、スキンパス圧延による歪量と転位密度との関係を示す。なお、転位密度の算出方法については後述する。歪量と転位密度はほぼ一様に増加しており、4%程度までは鋼中にほぼ均一に分布していた。それ以上の歪量では転位セルの形成が観察された。   FIG. 1 shows the relationship between the amount of strain and dislocation density due to skin pass rolling. A method for calculating the dislocation density will be described later. The amount of strain and dislocation density increased almost uniformly, and up to about 4% were distributed almost uniformly in the steel. At higher strains, the formation of dislocation cells was observed.

この図から示されるように、転位密度1×109cm-2の転位を導入するためには0.2%の調質圧延量が必要であり、転位密度2×1010cm-2の転位を導入するためには2%の調質圧延量が必要であることがわかる。 As shown in this figure, in order to introduce a dislocation with a dislocation density of 1 × 10 9 cm −2, a temper rolling amount of 0.2% is necessary, and a dislocation with a dislocation density of 2 × 10 10 cm −2 is required. It can be seen that a temper rolling amount of 2% is necessary to introduce slag.

従って、転位密度1×109〜2×1010cm-2の転位を導入するためには、0.2〜2%の調質圧延量が必要である。 Therefore, in order to introduce dislocations having a dislocation density of 1 × 10 9 to 2 × 10 10 cm −2 , a temper rolling amount of 0.2 to 2% is required.

次に、本発明の薄鋼板の製造方法について述べる。   Next, the manufacturing method of the thin steel plate of this invention is described.

本発明の薄鋼板は、上述のように、一度調質圧延を行い転位を導入した後に鋼を時効させ、その後、再度、二度目の調質圧延を行って転位を導入する。   As described above, the thin steel sheet of the present invention is subjected to temper rolling once to introduce dislocations, then aged steel, and then to temper rolling for the second time to introduce dislocations.

本発明では、薄鋼板に一度転位を導入した後に鋼を時効させ、CおよびNを転位にトラップさせる必要がある。   In the present invention, it is necessary to introduce the dislocation once into the thin steel sheet and then age the steel to trap C and N in the dislocation.

一般に、時効温度が高いほどCおよびNの拡散速度が大きいため、時効時間は短くしてもよい。しかし、300℃を超える温度で時効させると、不要な炭化物または窒化物が鋼中に生成し、焼付硬化性に寄与しなくなる。   In general, the higher the aging temperature, the greater the diffusion rate of C and N, so the aging time may be shortened. However, when aging is performed at a temperature exceeding 300 ° C., unnecessary carbides or nitrides are generated in the steel and do not contribute to bake hardenability.

また、時効温度が10℃未満と低い場合はCおよびNの拡散速度が著しく低下するため、十分時効させるためには非常に長い時間を必要とし、生産性の妨げとなる。   Further, when the aging temperature is as low as less than 10 ° C., the diffusion rate of C and N is remarkably lowered, so that a very long time is required for sufficient aging, which hinders productivity.

時効時間が足りない場合は、転位に十分な量のCおよびNがトラップされないため、耐時効性に劣ることになる。   When the aging time is insufficient, a sufficient amount of C and N for dislocation is not trapped, resulting in poor aging resistance.

従って、時効条件としては、生産性の観点から100℃以上300℃未満で1分以上2時間以下が最も好ましく、50℃以上100℃未満で60分以上10日以下が、次に好ましく、10℃以上50℃未満で10日以上180日以下が、その次に好ましい。   Therefore, the aging conditions are most preferably from 100 ° C. to less than 300 ° C. for 1 minute to 2 hours from the viewpoint of productivity, and from 50 ° C. to less than 100 ° C. for 60 minutes to 10 days, and then preferably 10 ° C. Next, it is preferably 10 days or more and 180 days or less at less than 50 ° C.

100℃以上300℃未満で2時間を超える時効、50℃以上100℃未満で10日を超える時効、および、10℃以上50℃未満で180日を超える時効は、転位に炭窒化物等の析出が生じ、焼付硬化性や常温遅時効性の低下が大きくなるので好ましくない。   Aging of 100 ° C. or more and less than 300 ° C. for more than 2 hours, aging of 50 ° C. or more and less than 100 ° C. for more than 10 days, and aging of 10 ° C. or more and less than 50 ° C. for more than 180 days may result in precipitation of carbonitride, etc. This is not preferable because the decrease in bake curability and room temperature slow aging increases.

前記時効時間は、薄板鋼の成分や時効温度によって最適値が異なるが、一般には、完全時効する前の時効時間とするのが好ましい。また、薄鋼板の時効の方法は限定しないが、例えば、箱型焼鈍(BAF)を用いてもよい。   Although the optimum value of the aging time varies depending on the composition of the steel sheet and the aging temperature, it is generally preferable to use the aging time before complete aging. Moreover, although the aging method of a thin steel plate is not limited, for example, box-type annealing (BAF) may be used.

本発明の薄鋼板の製造方法は、薄鋼板中の転位密度とCおよびNの存在状態を限定するものであり、熱間圧延、巻き取り、冷間圧延条件等を限定するものではないが、固溶C量または固溶N量は焼付硬化性に寄与するため、時効前の調質圧延前の鋼板に適量残す必要がある。   The method for producing a thin steel sheet of the present invention limits the dislocation density and the presence of C and N in the thin steel sheet, and does not limit hot rolling, winding, cold rolling conditions, etc. Since the amount of solute C or the amount of solute N contributes to bake hardenability, it is necessary to leave an appropriate amount on the steel sheet before temper rolling before aging.

固溶C量と固溶N量の合計量としては、0.001〜0.005%とすることが好ましい。この合計量が0.001%未満では、十分な焼付硬化性が得られず、0.005%超では十分な耐時効性が得られなくなる。より好ましくは、0.0015〜0.0035%である。   The total amount of the solute C amount and the solute N amount is preferably 0.001 to 0.005%. If the total amount is less than 0.001%, sufficient bake hardenability cannot be obtained, and if it exceeds 0.005%, sufficient aging resistance cannot be obtained. More preferably, it is 0.0015 to 0.0035%.

このような製造条件として、例えば、好ましい熱間圧延の加熱温度は1100〜1200℃、仕上温度は850〜950℃、巻き取り温度は400〜700℃である。また、冷間圧延率は30〜90%である。   As such production conditions, for example, the preferred hot rolling heating temperature is 1100 to 1200 ° C, the finishing temperature is 850 to 950 ° C, and the winding temperature is 400 to 700 ° C. Moreover, the cold rolling rate is 30 to 90%.

また、焼鈍条件は鋼中の成分等によって異なるが、780℃以上Ac3温度以下で0.2〜3分保持した後、10〜100℃/sの冷却速度で冷却する。必要に応じて、200〜400℃で1〜10分の過時効処理を施してもよい。また、溶融亜鉛めっきやそれ以外のめっきを施してもよい。 Further, the annealing conditions vary with the components in the steel, such as, after holding 0.2-3 minutes at 780 ° C. or higher Ac 3 temperatures below at a cooling rate of 10 to 100 ° C. / s. If necessary, an overaging treatment may be performed at 200 to 400 ° C. for 1 to 10 minutes. Further, hot dip galvanizing or other plating may be applied.

次に、本発明の薄鋼板の耐時効性と焼付硬化性の評価方法、および、鋼中の転位密度の計測方法について述べる。   Next, a method for evaluating the aging resistance and bake hardenability of the thin steel sheet of the present invention and a method for measuring the dislocation density in the steel will be described.

常温時効性は、薄鋼板を40℃の雰囲気に70日保持し引張試験を行い、この時の降伏点伸び(YP−El)を測定することによって調べることができる。   Normal temperature aging can be examined by holding a thin steel sheet in an atmosphere of 40 ° C. for 70 days, conducting a tensile test, and measuring the yield point elongation (YP-El) at this time.

本発明法では、代わりに100℃×1時間の人工加速試験によって耐時効性を評価し、YP−El値が0.4%以下を良好とする。   In the method of the present invention, aging resistance is evaluated instead by an artificial acceleration test at 100 ° C. × 1 hour, and a YP-El value of 0.4% or less is considered good.

また、焼付硬化性の測定は、薄鋼板を2%引張り170℃にて20分保持した後の上降伏応力(YP)を測定し、先に2%引張試験を行った時の強度の差をBH量として評価する。BH量が70MPa以上を良好とする。   In addition, the bake hardenability is measured by measuring the upper yield stress (YP) after holding a thin steel plate at 2% tension and holding at 170 ° C. for 20 minutes, and measuring the difference in strength when the 2% tensile test is performed first. Evaluated as BH amount. A BH amount of 70 MPa or more is considered good.

鋼中の転位密度の計測には電子顕微鏡を用いる。転位密度の見積りにはいくつかの方法があるが、本発明においては次のように行う。   An electron microscope is used to measure the dislocation density in steel. There are several methods for estimating the dislocation density. In the present invention, the following method is used.

予め試料の厚みを測定し、特定の回折条件において観察できる転位数を計測することにより実際に存在する転位数を導出し、転位の平均長さを見積る。これらの値を用いて、下式(1)に基づいて転位密度を求める。   The thickness of the sample is measured in advance, and the number of dislocations actually present is derived by measuring the number of dislocations that can be observed under specific diffraction conditions, and the average length of dislocations is estimated. Using these values, the dislocation density is obtained based on the following equation (1).

なお、観察場所によるデータのばらつきを抑えるため、複数の結晶粒において10点の測定を行い、平均値を取った。
(転位密度)=(転位数)×(転位平均長さ)/(観察領域の体積) …式(1)
CまたはNによって固着されている転位と、固着されていない転位を電子顕微鏡等の直接観察から判断することは困難である。
In order to suppress variation in data depending on the observation location, 10 points were measured for a plurality of crystal grains, and an average value was obtained.
(Dislocation density) = (Dislocation number) × (Dislocation average length) / (Volume of observation region) Formula (1)
It is difficult to judge dislocations fixed by C or N and dislocations not fixed from direct observation with an electron microscope or the like.

したがって、固着された転位の密度は完全時効させる以前に鋼中に含まれていた転位の密度として計測し、完全時効後に行う調質圧延後、総転位密度を新たに計測し、この値から時効前の転位密度を差し引いた値を、固着されていない転位密度とした。   Therefore, the density of fixed dislocations is measured as the density of dislocations contained in the steel before complete aging.After temper rolling performed after complete aging, the total dislocation density is newly measured, and the aging is determined from this value. The value obtained by subtracting the previous dislocation density was defined as the dislocation density not fixed.

次に、実施例によって本発明の作用効果をさらに具体的に説明するが、それらは、単に例示のためであって、それによって本発明は不当に制限されることはない。   Next, the working effects of the present invention will be described more specifically by way of examples. However, they are merely illustrative and the present invention is not unduly limited thereby.

(実施例1)
表1に記載した化学組成a〜dを有する供試材を溶製した。なお、化学成分の%は質量%を表す。aは本発明の化学組成であるが、b〜dは本発明の範囲外の化学組成である。
Example 1
Test materials having chemical compositions a to d described in Table 1 were melted. In addition,% of a chemical component represents the mass%. a is the chemical composition of the present invention, but b to d are chemical compositions outside the scope of the present invention.

熱間圧延の加熱温度は1100℃、仕上温度は900℃、巻き取り温度は650℃とした。また、冷間圧延率は80%とし、0.8mm薄板とした。焼鈍は800℃で1分間保持した後、50℃/sの冷却速度で冷却した。350℃において3分の過時効処理を施した薄板を用いた。   The heating temperature for hot rolling was 1100 ° C., the finishing temperature was 900 ° C., and the winding temperature was 650 ° C. The cold rolling rate was 80%, and a 0.8 mm thin plate was used. Annealing was held at 800 ° C. for 1 minute and then cooled at a cooling rate of 50 ° C./s. A thin plate subjected to an overaging treatment at 350 ° C. for 3 minutes was used.

Figure 0004616568
Figure 0004616568

続いて、表2に記載した条件A〜Iで、時効前スキンパス圧延、時効処理、時効後スキンパス圧延を行って塗装焼付硬化型鋼板を製造し試料とした。A〜Dは本発明の製造条件であるが、E〜Iは本発明の範囲外の製造条件である。   Subsequently, under conditions A to I described in Table 2, pre-aging skin pass rolling, aging treatment, and post-aging skin pass rolling were performed to produce a paint bake-hardening type steel sheet, which was used as a sample. A to D are production conditions of the present invention, while E to I are production conditions outside the scope of the present invention.

Eは従来の製造条件同様、時効処理を行わずスキンパス圧延を1回行う条件であり、Fはスキンパス圧延後時効処理をせず、さらに、もう一度スキンパス圧延を行う条件である。   E is a condition for performing skin pass rolling once without performing an aging treatment, and F is a condition for performing skin pass rolling again without performing an aging treatment after skin pass rolling, as in the conventional manufacturing conditions.

また、G、Hは時効前後のスキンパス量を本発明範囲外とした条件である。   G and H are conditions that make the amount of skin pass before and after aging out of the scope of the present invention.

また、Iは時効時間を本発明範囲外とした条件である。   I is a condition in which the aging time is outside the scope of the present invention.

次に、各試験片について上述の方法で引張試験を実施し、BH特性の評価、降伏点伸びの評価を行った。   Next, each test piece was subjected to a tensile test by the above-described method to evaluate the BH characteristics and the yield point elongation.

Figure 0004616568
Figure 0004616568

表3には、機械的試験の結果を示す。BH量は、70MPa以上を良好とし表中に〇で示し、70MPa未満を不良とし表中に×で示した。100℃×1時間の人工加速試験後の降伏点伸び(YP−El)値は、0.4%以下を良好とし表中に〇で示し、0.4%超を不良とし表中に×で示した。   Table 3 shows the results of the mechanical test. The amount of BH was 70 in the table as good and indicated by ◯ in the table, and the value of less than 70 MPa was indicated by x in the table. The yield point elongation (YP-El) value after an artificial acceleration test at 100 ° C. for 1 hour is shown as ◯ in the table as good when 0.4% or less, and as poor as more than 0.4% as x in the table. Indicated.

化学組成aの鋼板では、A、B、C、Dの製造条件において、焼付硬化性および耐時効性の両方において良好な結果が得られた。 In the steel sheet having the chemical composition a , good results were obtained in both bake hardenability and aging resistance under the production conditions of A, B, C, and D.

一方、E、Fの製造条件では、焼付硬化性と耐時効性の両方が劣っていた。これらの製造条件では、本発明で示された固溶Cおよび固溶Nのトラップサイトがないため、100℃×1時間の間に多くの可動転位を固着したためと考えられる。   On the other hand, both the bake hardenability and the aging resistance were inferior under the production conditions of E and F. Under these manufacturing conditions, it is considered that a large number of movable dislocations were fixed within 100 ° C. × 1 hour because there was no solute C or solute N trap site shown in the present invention.

G、Hの製造条件においては、耐時効性は良好であったが、焼付硬化性が劣っていた。Gの条件では時効前スキンパス歪量が大きすぎ、Hの条件では時効後スキンパス歪量が大きすぎるために、BH量が小さくなったものと考えられる。   Under the production conditions of G and H, the aging resistance was good, but the bake hardenability was inferior. It is considered that the amount of BH was small because the pre-aging skin pass strain amount was too large under the G condition and the post-aging skin pass strain amount was too large under the H condition.

Iの製造条件においては、耐時効性と焼付硬化性が劣っていた。Iの条件では時効時間が長すぎるために、転位に炭窒化物等の析出が生じ、焼付硬化性や耐時効性が小さくなったものと考えられる。   Under the production conditions of I, aging resistance and bake hardenability were inferior. Since the aging time is too long under the condition of I, it is considered that precipitation of carbonitrides or the like occurs in the dislocation, and the bake hardenability and aging resistance are reduced.

化学組成dの鋼板を使用して、条件A〜Cでスキンパス圧延および時効を施したが、耐時効性は良好であったものの、焼付硬化性は劣っていた。   A steel plate having a chemical composition d was used and subjected to skin pass rolling and aging under conditions A to C. Although the aging resistance was good, the bake hardenability was inferior.

dの鋼板は、C+Nの添加量が本発明の規定量よりも少ないため、これらは時効前に導入した転位に深くトラップし、時効を経ても拡散できず、時効後に導入した転位を固着できなかったためと考えられる。   In the steel sheet d, since the amount of C + N added is less than the specified amount of the present invention, these trap deeply in the dislocations introduced before aging, cannot diffuse even after aging, and cannot fix the dislocations introduced after aging. It is thought that it was because of.

なお、ここでは記載していないが、化学組成a〜cの鋼板を製造条件A〜Dでスキンパス圧延および時効を施した試験材は、時効前に行ったスキンパス圧延による転位密度が1×109〜2×1010cm-2であり、さらに、時効後に行ったスキンパス圧延後の転位密度は2×109〜4×1010cm-2となっていた。 Although not described here, a test material obtained by subjecting steel sheets having chemical compositions a to c to skin pass rolling and aging under production conditions A to D has a dislocation density of 1 × 10 9 by skin pass rolling performed before aging. a ~2 × 10 10 cm -2, further dislocation density after skin pass rolling was performed after aging had become 2 × 10 9 ~4 × 10 10 cm -2.

この増加分が、時効後に行ったスキンパス圧延によって導入された転位である。   This increase is the dislocation introduced by skin pass rolling performed after aging.

従って、CまたはNによって固着された転位の密度が1×109〜2×1010cm-2であり、固着されていない転位の密度が1×109〜2×1010cm-2であった。 Therefore, the density of dislocations fixed by C or N is 1 × 10 9 to 2 × 10 10 cm −2 , and the density of dislocations not fixed is 1 × 10 9 to 2 × 10 10 cm −2. It was.

Figure 0004616568
Figure 0004616568

(実施例2)
実施例1の鋼種aと同様の化学成分および製造条件で製造した0.8mm薄板を用い、時効前後のスキンパス圧延量を変化させ、焼付硬化性および耐時効性を調べた。なお、時効条件は、120℃において2時間とした。
(Example 2)
Using a 0.8 mm thin plate manufactured under the same chemical composition and manufacturing conditions as steel type a in Example 1, the bake hardenability and aging resistance were examined by changing the amount of skin pass rolling before and after aging. The aging conditions were 2 hours at 120 ° C.

図2に結果を示す。図中○は、焼付硬化性および耐時効性が共に良好であった条件を示し、黒三角は、両方またはどちらかの特性が悪かった条件を示す。スキンパス量が時効前および時効後が、それぞれ、共に0.2〜2.0%の範囲において、焼付硬化性および耐時効性が共に良好な結果が得られた。   The results are shown in FIG. In the figure, ◯ indicates a condition in which both the bake hardenability and the aging resistance are good, and a black triangle indicates a condition in which both or one of the characteristics is bad. When the skin pass amount was within the range of 0.2 to 2.0% both before and after aging, both the bake hardenability and aging resistance were good.

0.2%歪の鋼では1×109cm-2の転位密度を有し、2.0%歪印加の鋼では約2×1010cm-2の転位密度を有しており、0.2〜2.0%歪を印加した鋼の転位密度は1×109〜2×1010cm-2であった。 A 0.2% strain steel has a dislocation density of 1 × 10 9 cm −2 , and a 2.0% strain applied steel has a dislocation density of about 2 × 10 10 cm −2 . The dislocation density of the steel to which 2 to 2.0% strain was applied was 1 × 10 9 to 2 × 10 10 cm −2 .

前述したように、本発明により、常温遅時効性と焼付硬化性に優れた薄鋼板を提供することができる。したがって、本発明の産業上の価値は、極めて高いといえる。   As described above, according to the present invention, it is possible to provide a thin steel plate excellent in normal temperature slow aging and bake hardenability. Therefore, it can be said that the industrial value of the present invention is extremely high.

調質圧延による歪量と鋼中の転位密度の相関を示す図である。It is a figure which shows the correlation of the distortion amount by temper rolling, and the dislocation density in steel. 時効前後の歪量と焼付硬化性および耐時効性の関係を示す図である。It is a figure which shows the relationship between the amount of distortion before and behind aging, bake hardenability, and aging resistance.

Claims (5)

質量%で、
C :0.0001〜0.2%、
N :0.0001〜0.2%、
C+N:0.002〜0.3%、
Mn:0.01〜3%、
Si:0.001〜2%、
P :0.001〜0.1%、
S :0.05%以下、
Al:0.0001〜0.1%、
を含有し、さらに、Nb、Tiのいずれか1種または2種を合計で0.001〜0.02%含有し、残部がFeおよび不可避的不純物からなる薄鋼板に、1×109〜2×1010cm−2の密度の転位を導入した後、該薄鋼板を100℃以上300℃未満、1分以上2時間以下の条件で時効し、続いて、該薄鋼板に、新たに1×109〜2×1010cm−2の密度の転位を導入し、固溶C量と固溶N量の合計量を0.001〜0.005%とすることを特徴とする常温遅時効性と焼付硬化性に優れた薄鋼板の製造方法。
% By mass
C: 0.0001 to 0.2%,
N: 0.0001 to 0.2%
C + N: 0.002 to 0.3%,
Mn: 0.01 to 3%
Si: 0.001-2%,
P: 0.001 to 0.1%,
S: 0.05% or less,
Al: 0.0001 to 0.1%,
1 × 10 9 to 2 in a thin steel sheet containing 0.001 to 0.02% in total of any one or two of Nb and Ti, with the balance being Fe and unavoidable impurities. After introducing dislocations with a density of × 10 10 cm −2 , the thin steel plate was aged at 100 ° C. or higher and lower than 300 ° C. for 1 minute or longer and 2 hours or shorter. Room temperature slow aging, characterized by introducing dislocations with a density of 10 9 to 2 × 10 10 cm −2 and making the total amount of solute C and solute N 0.001 to 0.005% And manufacturing method of thin steel plate with excellent bake hardenability
質量%で、
C :0.0001〜0.2%、
N :0.0001〜0.2%、
C+N:0.002〜0.3%、
Mn:0.01〜3%、
Si:0.001〜2%、
P :0.001〜0.1%、
S :0.05%以下、
Al:0.0001〜0.1%、
を含有し、さらに、Nb、Tiのいずれか1種または2種を合計で0.001〜0.02%含有し、残部がFeおよび不可避的不純物からなる薄鋼板に、歪量0.2〜2.0%の調質圧延を行った後、該薄鋼板を100℃以上300℃未満、1分以上2時間以下の条件で時効し、続いて、該薄鋼板に歪量0.2〜2.0%の調質圧延を行い、固溶C量と固溶N量の合計量を0.001〜0.005%とすることを特徴とする常温遅時効性と焼付硬化性に優れた薄鋼板の製造方法。
% By mass
C: 0.0001 to 0.2%,
N: 0.0001 to 0.2%
C + N: 0.002 to 0.3%,
Mn: 0.01 to 3%
Si: 0.001-2%,
P: 0.001 to 0.1%,
S: 0.05% or less,
Al: 0.0001 to 0.1%,
Further, any one or two of Nb and Ti are contained in a total amount of 0.001 to 0.02%, and the balance is Fe and inevitable impurities. After temper rolling at 2.0%, the thin steel plate is aged at 100 ° C. or higher and lower than 300 ° C. for 1 minute or longer and 2 hours or shorter, and subsequently the strain amount of 0.2 to 2 is applied to the thin steel plate. There .0% rows temper rolling was excellent on the total amount of solid solution C amount and amount of dissolved N to room temperature slow aging property and bake hardenability, characterized in that a 0.001 to 0.005% Manufacturing method of thin steel sheet.
前記100℃以上300℃未満、1分以上2時間以下の条件で行う時効に代えて、50℃以上100℃未満、1時間以上10日以下の条件で時効を行うことを特徴とする請求項1または2に記載の常温遅時効性と焼付硬化性に優れた薄鋼板の製造方法。   2. The aging is performed under the conditions of 50 ° C. or more and less than 100 ° C. for 1 hour or more and 10 days or less, instead of aging performed under the conditions of 100 ° C. or more and less than 300 ° C. for 1 minute or more and 2 hours or less. Or 2. A method for producing a thin steel sheet having excellent room temperature slow aging and bake hardenability according to 2. 前記100℃以上300℃未満、1分以上2時間以下の条件で行う時効に代えて、10℃以上50℃未満、10日以上180日以下の条件で時効を行うことを特徴とする請求項1または2に記載の常温遅時効性と焼付硬化性に優れた薄鋼板の製造方法。   The aging is performed under the conditions of 10 ° C or more and less than 50 ° C, 10 days or more and 180 days or less, instead of aging performed under the conditions of 100 ° C or more and less than 300 ° C and 1 minute or more and 2 hours or less. Or 2. A method for producing a thin steel sheet having excellent room temperature slow aging and bake hardenability according to 2. 質量%で、
C :0.0001〜0.2%、
N :0.0001〜0.2%、
C+N:0.002〜0.3%、
Mn:0.01〜3%、
Si:0.001〜2%、
P :0.001〜0.1%、
S :0.05%以下、
Al:0.0001〜0.1%、
を含有し、さらに、Nb、Tiのいずれか1種または2種を合計で0.001〜0.02%含有し、残部がFeおよび不可避的不純物からなる薄鋼板で、CまたはNによって固着された1×109〜2×1010cm−2の密度の転位と、固着されていない1×109〜2×1010cm−2の密度の転位を有し、固溶C量と固溶N量の合計量が0.001〜0.005%であることを特徴とする常温遅時効性と焼付硬化性に優れた薄鋼板。
% By mass
C: 0.0001 to 0.2%,
N: 0.0001 to 0.2%
C + N: 0.002 to 0.3%,
Mn: 0.01 to 3%
Si: 0.001-2%,
P: 0.001 to 0.1%,
S: 0.05% or less,
Al: 0.0001 to 0.1%,
In addition, it is a thin steel plate containing 0.001 to 0.02% in total of any one or two of Nb and Ti, with the balance being Fe and inevitable impurities, and is fixed by C or N. was 1 × 10 9 possess a dislocation density of ~2 × 10 10 cm -2, the dislocation density of 1 × 10 9 ~2 × 10 10 cm -2 that are not fixed, solid solution and amount of solute C thin steel sheet excellent in cold slow aging property and bake hardenability of the total amount of N content and wherein from 0.001 to 0.005% der Rukoto.
JP2004071469A 2003-03-20 2004-03-12 Thin steel plate excellent in slow aging at room temperature and bake hardenability and method for producing the same Expired - Fee Related JP4616568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071469A JP4616568B2 (en) 2003-03-20 2004-03-12 Thin steel plate excellent in slow aging at room temperature and bake hardenability and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003078108 2003-03-20
JP2004071469A JP4616568B2 (en) 2003-03-20 2004-03-12 Thin steel plate excellent in slow aging at room temperature and bake hardenability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004300573A JP2004300573A (en) 2004-10-28
JP4616568B2 true JP4616568B2 (en) 2011-01-19

Family

ID=33421948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071469A Expired - Fee Related JP4616568B2 (en) 2003-03-20 2004-03-12 Thin steel plate excellent in slow aging at room temperature and bake hardenability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4616568B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890492B2 (en) * 2008-04-09 2012-03-07 新日本製鐵株式会社 Method for producing alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
WO2014132968A1 (en) * 2013-02-26 2014-09-04 新日鐵住金株式会社 HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING MAXIMUM TENSILE STRENGTH OF 980 MPa OR ABOVE, AND HAVING EXCELLENT AND BAKING HARDENABILITY AND LOW-TEMPERATURE TOUGHNESS
MX2018002142A (en) * 2015-08-21 2018-06-18 Nippon Steel & Sumitomo Metal Corp Steel sheet.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550425A (en) * 1978-10-02 1980-04-12 Kobe Steel Ltd Manufacture of cold rolled steel plate with superior baking hardenability
JPH03150318A (en) * 1989-11-03 1991-06-26 Kobe Steel Ltd Manufacture of cold rolled steel sheet for deep drawing having excellent baking hardenability in paint

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550425A (en) * 1978-10-02 1980-04-12 Kobe Steel Ltd Manufacture of cold rolled steel plate with superior baking hardenability
JPH03150318A (en) * 1989-11-03 1991-06-26 Kobe Steel Ltd Manufacture of cold rolled steel sheet for deep drawing having excellent baking hardenability in paint

Also Published As

Publication number Publication date
JP2004300573A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
US7879160B2 (en) Cold rolled dual-phase steel sheet
KR102004077B1 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, method for manufacturing high-strength cold-rolled steel sheet, and method for manufacturing high-strength coated steel sheet
CN110709183B (en) Steel sheet for hot press-formed member having excellent hydrogen-induced delayed fracture resistance and method for producing same
EP2184374A1 (en) High-strength hot-dip galvanized steel sheet and process for producing the same
JP2008179877A (en) Cold rolled steel sheet with excellent non-earing property, and its manufacturing method
RU2530212C2 (en) High-strength cold-rolled steel sheet and steel sheet with coating that features excellent thermal hardenability and mouldability and method of their production
JP2009068057A (en) Steel sheet for nitrocarburizing treatment and manufacturing method therefor
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4102115B2 (en) Steel plate for enamel excellent in workability, aging property and enamel characteristics and method for producing the same
JP5407591B2 (en) Cold-rolled steel sheet, manufacturing method thereof, and backlight chassis
US20040159373A1 (en) Steel sheet with excellent bendability
JP4616568B2 (en) Thin steel plate excellent in slow aging at room temperature and bake hardenability and method for producing the same
JP4265582B2 (en) Hot-rolled steel sheet with excellent impact properties after quenching and method for producing the same
JP3603726B2 (en) Austenitic stainless steel sheet for electronic components
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP5029500B2 (en) Steel sheet for dehydrogenation treatment, electroplated steel sheet member, and method for producing electroplated steel sheet member
JP3307715B2 (en) Surface treated original plate for DI can with excellent necked-in properties
JP4870844B1 (en) Precipitation hardening type martensitic stainless steel
WO2021193829A1 (en) Steel sheet and heat-treated member, and method for manufacturing same
JP3774644B2 (en) Steel plate for enamel excellent in workability, aging property and enamel characteristics and method for producing the same
JP4042897B2 (en) Steel plate for CRT frame
JP2689684B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing having bake hardenability
JPH05179357A (en) Production of cold rolled ferritic stainless steel sheet
JP2009019231A (en) High-strength cold-rolled steel sheet and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101022

R151 Written notification of patent or utility model registration

Ref document number: 4616568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees