JP2009504913A - 表面活性化剤および選択されたルテニウム錯体を用いるルテニウム含有フィルムの原子層蒸着 - Google Patents

表面活性化剤および選択されたルテニウム錯体を用いるルテニウム含有フィルムの原子層蒸着 Download PDF

Info

Publication number
JP2009504913A
JP2009504913A JP2008526108A JP2008526108A JP2009504913A JP 2009504913 A JP2009504913 A JP 2009504913A JP 2008526108 A JP2008526108 A JP 2008526108A JP 2008526108 A JP2008526108 A JP 2008526108A JP 2009504913 A JP2009504913 A JP 2009504913A
Authority
JP
Japan
Prior art keywords
ruthenium
represented
independently selected
substrate
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008526108A
Other languages
English (en)
Japanese (ja)
Other versions
JP2009504913A5 (enExample
Inventor
トンプソン,ジエフリー・スコツト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of JP2009504913A publication Critical patent/JP2009504913A/ja
Publication of JP2009504913A5 publication Critical patent/JP2009504913A5/ja
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76873Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
JP2008526108A 2005-08-08 2006-08-07 表面活性化剤および選択されたルテニウム錯体を用いるルテニウム含有フィルムの原子層蒸着 Abandoned JP2009504913A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70649305P 2005-08-08 2005-08-08
PCT/US2006/030712 WO2007019437A1 (en) 2005-08-08 2006-08-07 Atomic layer deposition of ruthenium-containing films using surface-activating agents and selected ruthenium complexes

Publications (2)

Publication Number Publication Date
JP2009504913A true JP2009504913A (ja) 2009-02-05
JP2009504913A5 JP2009504913A5 (enExample) 2009-09-24

Family

ID=37113511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008526108A Abandoned JP2009504913A (ja) 2005-08-08 2006-08-07 表面活性化剤および選択されたルテニウム錯体を用いるルテニウム含有フィルムの原子層蒸着

Country Status (6)

Country Link
US (1) US7632351B2 (enExample)
EP (1) EP1913174A1 (enExample)
JP (1) JP2009504913A (enExample)
KR (1) KR20080038209A (enExample)
TW (1) TW200720467A (enExample)
WO (1) WO2007019437A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244017A (ja) * 2007-03-26 2008-10-09 Ulvac Japan Ltd 半導体装置の製造方法
KR20150013082A (ko) * 2013-07-26 2015-02-04 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 휘발성 디하이드로피라지닐 및 디하이드로피라진 금속 착화합물
WO2018088079A1 (ja) * 2016-11-08 2018-05-17 株式会社Adeka 化合物、薄膜形成用原料、薄膜の製造方法及びアミジン化合物

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090087339A1 (en) * 2007-09-28 2009-04-02 Asm Japan K.K. METHOD FOR FORMING RUTHENIUM COMPLEX FILM USING Beta-DIKETONE-COORDINATED RUTHENIUM PRECURSOR
US8124528B2 (en) 2008-04-10 2012-02-28 Micron Technology, Inc. Method for forming a ruthenium film
US8163341B2 (en) 2008-11-19 2012-04-24 Micron Technology, Inc. Methods of forming metal-containing structures, and methods of forming germanium-containing structures
US8962876B2 (en) 2009-05-15 2015-02-24 Wayne State University Thermally stable volatile film precursors
US9822446B2 (en) 2010-08-24 2017-11-21 Wayne State University Thermally stable volatile precursors
WO2012027357A2 (en) 2010-08-24 2012-03-01 Wayne State University Thermally stable volatile precursors
WO2013006242A1 (en) * 2011-07-06 2013-01-10 Wayne State University Atomic layer deposition of transition metal thin films
TWI551708B (zh) * 2011-07-22 2016-10-01 應用材料股份有限公司 使用金屬前驅物之原子層沉積法
US8747947B2 (en) * 2011-09-16 2014-06-10 Empire Technology Development, Llc Graphene defect alteration
WO2013039508A1 (en) 2011-09-16 2013-03-21 Empire Technology Development Llc Alteration of graphene defects
US20130146468A1 (en) * 2011-12-08 2013-06-13 Applied Materials, Inc. Chemical vapor deposition (cvd) of ruthenium films and applications for same
US8907115B2 (en) 2012-12-10 2014-12-09 Wayne State University Synthesis and characterization of first row transition metal complexes containing α-keto hydrazonate ligands as potential precursors for use in metal film deposition
US9758866B2 (en) 2013-02-13 2017-09-12 Wayne State University Synthesis and characterization of first row transition metal complexes containing α-imino alkoxides as precursors for deposition of metal films
US9157149B2 (en) 2013-06-28 2015-10-13 Wayne State University Bis(trimethylsilyl) six-membered ring systems and related compounds as reducing agents for forming layers on a substrate
US9249505B2 (en) 2013-06-28 2016-02-02 Wayne State University Bis(trimethylsilyl) six-membered ring systems and related compounds as reducing agents for forming layers on a substrate
TWI871083B (zh) 2018-06-27 2025-01-21 荷蘭商Asm Ip私人控股有限公司 用於形成含金屬材料之循環沉積製程
US10615037B2 (en) * 2018-08-17 2020-04-07 International Business Machines Corporation Tone reversal during EUV pattern transfer using surface active layer assisted selective deposition
US11821070B2 (en) 2019-11-11 2023-11-21 Applied Materials, Inc. Ruthenium film deposition using low valent metal precursors

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA752093B (en) * 1975-04-03 1976-03-31 Swarsab Mining The separation and/or purification of precious metals
US6208003B1 (en) * 1997-09-26 2001-03-27 Nippon Steel Corporation Semiconductor structure provided with a polycide interconnection layer having a silicide film formed on a polycrystal silicon film
US6458183B1 (en) * 1999-09-07 2002-10-01 Colonial Metals, Inc. Method for purifying ruthenium and related processes
US7094690B1 (en) * 2000-08-31 2006-08-22 Micron Technology, Inc. Deposition methods and apparatuses providing surface activation
US6875518B2 (en) * 2000-10-18 2005-04-05 Jsr Corporation Ruthenium film, ruthenium oxide film and process for forming the same
KR20040077733A (ko) * 2002-01-18 2004-09-06 이 아이 듀폰 디 네모아 앤드 캄파니 원자층 증착에 의한 구리막 증착용 휘발성 구리(ⅱ) 착물
US6824816B2 (en) * 2002-01-29 2004-11-30 Asm International N.V. Process for producing metal thin films by ALD
US7264846B2 (en) * 2002-06-04 2007-09-04 Applied Materials, Inc. Ruthenium layer formation for copper film deposition
AU2003282836A1 (en) 2002-10-15 2004-05-04 Rensselaer Polytechnic Institute Atomic layer deposition of noble metals
US20050085031A1 (en) * 2003-10-15 2005-04-21 Applied Materials, Inc. Heterogeneous activation layers formed by ionic and electroless reactions used for IC interconnect capping layers
US7309658B2 (en) * 2004-11-22 2007-12-18 Intermolecular, Inc. Molecular self-assembly in substrate processing
EP1877592A2 (en) * 2005-04-21 2008-01-16 Honeywell International Inc. Novel ruthenium-based materials and ruthenium alloys, their use in vapor deposition or atomic layer deposition and films produced therefrom
US20070077750A1 (en) * 2005-09-06 2007-04-05 Paul Ma Atomic layer deposition processes for ruthenium materials
US20070054487A1 (en) * 2005-09-06 2007-03-08 Applied Materials, Inc. Atomic layer deposition processes for ruthenium materials
US7625814B2 (en) * 2006-03-29 2009-12-01 Asm Nutool, Inc. Filling deep features with conductors in semiconductor manufacturing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244017A (ja) * 2007-03-26 2008-10-09 Ulvac Japan Ltd 半導体装置の製造方法
KR20150013082A (ko) * 2013-07-26 2015-02-04 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 휘발성 디하이드로피라지닐 및 디하이드로피라진 금속 착화합물
KR101659725B1 (ko) 2013-07-26 2016-09-26 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 휘발성 디하이드로피라지닐 및 디하이드로피라진 금속 착화합물
WO2018088079A1 (ja) * 2016-11-08 2018-05-17 株式会社Adeka 化合物、薄膜形成用原料、薄膜の製造方法及びアミジン化合物
US11161867B2 (en) 2016-11-08 2021-11-02 Adeka Corporation Compound, raw material for forming thin film, method for manufacturing thin film, and amidine compound
US11618762B2 (en) 2016-11-08 2023-04-04 Adeka Corporation Compound, raw material for forming thin film, method for manufacturing thin film, and amidine compound

Also Published As

Publication number Publication date
US20070037392A1 (en) 2007-02-15
WO2007019437A1 (en) 2007-02-15
KR20080038209A (ko) 2008-05-02
TW200720467A (en) 2007-06-01
EP1913174A1 (en) 2008-04-23
US7632351B2 (en) 2009-12-15

Similar Documents

Publication Publication Date Title
US7632351B2 (en) Atomic layer deposition processes for the formation of ruthenium films, and ruthenium precursors useful in such processes
JP5918316B2 (ja) 揮発性ジヒドロピラジニル及びジヒドロピラジン金属錯体
US7759508B2 (en) Volatile copper(1) complexes and processes for deposition of copper films by atomic layer deposition
TWI722456B (zh) 雙(二氮雜二烯)鈷化合物、其製造方法及使用方法
KR20110050646A (ko) 전이 금속 함유 필름의 침착을 위한 헤테로렙틱 시클로펜타디에닐 전이 금속 전구체
US7736697B2 (en) Atomic layer deposition of tantalum-containing films using surface-activating agents and novel tantalum complexes
US7776394B2 (en) Atomic layer deposition of metal-containing films using surface-activating agents
US9034761B2 (en) Heteroleptic (allyl)(pyrroles-2-aldiminate) metal-containing precursors, their synthesis and vapor deposition thereof to deposit metal-containing films
TWI343367B (en) Volatile copper(i) complexes for deposition of copper films by atomic layer deposition
US7619107B2 (en) Copper (II) complexes for deposition of copper films by atomic layer deposition
JP2016508497A (ja) マンガン含有化合物、その合成及びマンガン含有膜の堆積へのその使用
KR20250044413A (ko) 몰리브덴 함유 막의 증착을 위한 액체 몰리브덴 비스(아렌) 조성물
JP2016513087A (ja) マンガン含有化合物、その合成及びマンガン含有膜の堆積へのその使用
WO2022243274A1 (en) Selective deposition of ruthenium film by utilizing ru(i) precursors
WO2025252680A1 (en) Metal compounds for ald applications
US20080075958A1 (en) Copper(I) complexes and processes for deposition of copper films by atomic layer deposition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090807

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20091019