JP2009302391A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2009302391A
JP2009302391A JP2008156860A JP2008156860A JP2009302391A JP 2009302391 A JP2009302391 A JP 2009302391A JP 2008156860 A JP2008156860 A JP 2008156860A JP 2008156860 A JP2008156860 A JP 2008156860A JP 2009302391 A JP2009302391 A JP 2009302391A
Authority
JP
Japan
Prior art keywords
alloy
layer
opening
bump
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008156860A
Other languages
English (en)
Inventor
Natsuya Ishikawa
夏也 石川
Toru Tanaka
徹 田中
Hiroshi Asami
浅見  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008156860A priority Critical patent/JP2009302391A/ja
Publication of JP2009302391A publication Critical patent/JP2009302391A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】組成測定用の合金バンプの組成を測定することにより、組成測定用以外の合金バンプの合金組成測定を正確に調べることが可能な半導体装置を提供する。
【解決手段】能動素子10と、能動素子10の電極上に形成された第1のバリアメタル層22と、第1のバリアメタル層22上に形成された第1の合金バンプ24とを備える。さらに、能動素子10の電極上以外に形成された、第2のバリアメタル層32と、第2のバリアメタル層32の下部及び第2のバリアメタル層32の周囲に形成されためっきシード層15aと、第2のバリアメタル層32上及びめっきシード層15aに形成される第2の合金バンプ36とを備える。
【選択図】図6

Description

本発明は、能動素子上に複数の合金バンプが形成された半導体装置及びその製造方法に係わる。
半導体技術の進歩により、例えば、半導体チップ等の能動素子と有機基板、能動素子とウエハ基板、又は、能動素子同士の高速伝送技術として、合金バンプを用いたフリップチップ接続が主に多端子接続の高速信号電送技術として用いられている。
上述の接続方法で用いられる合金バンプは、SnPb系合金、SnAg系合金、及び、SnCu系合金等の複数の金属からなり、一定の組成で形成される合金である。これは、合金化によりバンプ強度が向上し、接続信頼性を向上させることができるためである。一般的にこのような合金バンプは、能動素子等の電極上に、電解めっきを行うことで形成される。
ところでこの合金バンプは、その合金組成が変化すると、バンプの強度が低下して接続信頼性が低下する。さらに、合金は組成により溶融温度が変わるため、フリップチップ接続時の合金バンプの溶融温度が変わり、接続信頼性に影響が出る。この結果、フリップチップ接続の際、半導体チップと基板との間のギャップ寸法が変化してしまい、フリップチップ接続の後の工程で用いられるアンダーフィル樹脂の流入性が変わり、信頼性に悪影響を与える。
上述のように、バンプの合金組成の管理は、バンプ製造時の重要な管理項目である。このため、従来、合金バンプが形成された製品に対する、製造工程品質検査(IPQC:In Process Quality Control)管理手法として、製品に形成されたバンプの合金組成を非破壊で測定できる、蛍光X線を用いた組成測定が行われている。
一方、近年の合金バンプの形成技術の進歩により、上述のフリップチップ接続に用いる合金バンプの最大径が、例えば従来の100μm〜150μmから、50μm以下に小径化している(例えば、非特許文献1、非特許文献2参照)。
この最大径が50μm以下の合金バンプは、一般にマイクロバンプと呼ばれている。
半導体装置等に、このようなマイクロバンプを用いることによって、バンプ当りの接続容量を低減することができる。さらに、バンプ径を50μm以下とすることで、半導体チップ当りのバンプの数を従来よりも増やすことができる。このため、フリップチップ接続間において、高速信号電送が可能となる。
最大径が50μm以下のマイクロバンプにおいても、上述の従来の最大径が100〜150μmの合金バンプと同様に、合金組成の厳密な管理が必要である。
pp.28-34, Nov. 2002. [5] T. Ezaki, K. Kondo, H. Ozaki, N. Sasaki, H. Yonemura, M. Kitano,. S. Tanaka, and T. Hirayama, "A 160 G/b/s interface design con-. figuration for multichip LSI," ISSCC Digest of Technical Papers 江崎孝之,尾崎裕司,石川夏也,佐々木直人:COC技術を採用した高速データ転送技術,エレクトロニクス実装学会誌,Vol. 8, No. 7, p. 550-554(2005)
上述の蛍光X線を用いた合金バンプの組成測定方法は、例えば、X線源から発せられたX線を、コリメータ及びスリット(窓)を用いて絞り、バンプに直接照射してバンプからの特性X線を検出機を用いて検出し、特性X線量から組成を同定するものである。
このため、コリメータによりX線照射範囲は最小で直径30〜50μm程度に絞ることができる。しかし、X線の照射範囲を小さくすることにより、被測定物に照射されるX線量が減少する。このため、合金組成の測定に時間を要することになる。さらに、測定結果は微量な特性X線量を検出器で検出するため検出器のノイズにより精度が悪化し、正確な合金組成の測定ができなくなるなどの弊害が起こる。
従って、個々の合金バンプの合金組成を精度良く測定するためには、バンプの最大径を100〜150μm程度にする必要がある。そして、100μm以下のバンプ径であるマイクロバンプの合金組成を高速で、かつ精度よく測定することは困難であった。
このため、マイクロバンプのようなバンプの最大径が50μm以下の合金組成の管理は、接続端子用の合金バンプの他に、蛍光X線測定機で組成が測定できるような100〜150μmの組成測定用の合金バンプを、ウエハ上に形成する。そして、この組成測定用の合金バンプの組成が、マイクロバンプの組成と同一組成であるとみなして、合金組成を測定することが行われる。
この接続端子用の合金バンプと組成測定用の合金バンプの構成について、図7を用いて説明する。図7Aに、ウエハ50上でダイシングされた状態の複数の半導体チップ等による能動素子51を備える半導体装置を示す。また、この能動素子51を備える半導体装置の拡大図を図7Bに示す。
図7Bに示すように、能動素子51には、能動素子51の外縁に沿って形成された複数のアルミニウム等からなる電極54と、この電極54上に形成された接続端子用の合金バンプ52とを備える。また、能動素子51の中央部に形成された組成測定用の合金バンプ53を備える。
接続端子用の合金バンプ52は、バンプの最大径が50μm以下のマイクロバンプである。また、組成測定用の合金バンプ53は、上述のX線による組成測定に供するために、100μm以上のバンプ径である。
上述の図7A,Bに示すウエハ50上の接続端子用の合金バンプ52及び組成測定用の合金バンプ53は、一般に上述の能動素子51等の電極上に、電解めっきを行うことで形成される。この接続端子用の合金バンプ52及び組成測定用の合金バンプ53の製造方法を図8〜11を用いて説明する。なお、図8〜11では、図7Bに示した半導体装置の断面図であり、能動素子と、能動素子上に形成する接続端子用の合金バンプと、組成測定用の合金バンプとを1つずつ例示する。
図8Aに示すように、まず能動素子51は、接続端子用の合金バンプ形成領域55、及び、組成測定用の合金バンプ形成領域56にそれぞれ電極57,58を備える。
そして、この能動素子51に、洗浄及び逆スパッタ等を行い、能動素子51の不純物等の汚れを除去し、図8Bに示すように、例えばスパッタ等を用いてめっきシード層59を形成する。そして、図8Cに示すようにめっきシード層59上にレジスト層60を形成する。
次に、図9Dに示すように、レジスト層60を、パターンマスク61を用いて露光する。
そして、露光後にレジスト層60を現像し、図9Eに示すようにレジスト層60に開口部62及び63を形成する。また、必要に応じて開口部62及び63内のスカムを除去する。
露光により形成される開口部62及び63は、後の工程で形成する合金バンプの大きさに合わせて形成される。つまり、接続端子用の合金バンプ形成領域55に形成される開口部62は、マイクロバンプ用に最大開口径が50μm以下である。
そして、組成測定用の合金バンプ形成領域56に形成される開口部63は、最大開口径が100μm以上である。また、パターンマスク61も、上記の開口径に合わせてパターンが形成される。
次に、能動素子51に電解めっきを行うことにより、図9Fに示すように、開口部62,63内のめっきシード層59上に、バリアメタル層64及び65を形成する。
さらに、能動素子51に電解めっきを行い、図10Gに示すように、バリアメタル層64及び65上に、合金層66及び67を形成する。そして、剥離剤等を用いてレジスト層を除去し、図10Hに示すようにめっきシード層59、バリアメタル層64,65、及び、合金層66,67を露出する。
そして、図10Iに示すように、能動素子51上で露出した部分のめっきシード層59を除去する。
次に、図11Jに示すように、能動素子51上をフラックス68でコーティングする。そして、図11Kに示すように、フラックス68をコーティングした状態で能動素子51にリフロー等を行い、合金層を溶融する。そして、溶融させた合金層を冷却して固化した後、フラックス68を洗浄する。
以上の工程により、図11Lに示すように、能動素子51と、能動素子51上に形成された接続端子用の合金バンプ52及び組成測定用の合金バンプ53とを備えた、半導体装置を製造することができる。
しかし、上述の工程で合金層を形成した場合には、接続端子用の合金バンプと、組成測定用の合金バンプとで、合金組成の差が発生することがある。
これは、電解めっきで合金層を形成する工程において、レジスト層の開口部の径が、接続端子用の合金バンプ形成領域と、組成測定用の合金バンプ形成領域とで異なるため、開口部内でのめっき液の流動性が、それぞれ異なるためである。
このような電解めっきによって合金層を形成する際の、開口部径の差によるめっき液の流動性と、発生する合金組成の差について、図12を用いて説明する。
まず、図12Aに、バンプ径100μm程度の従来の合金バンプの形成工程を示す。図12Aは、能動素子51と、能動素子51上に形成されためっきシード層59と、このめっきシード層59上に開口部71及び開口部72が形成されたレジスト層60とを表す。
レジスト層60の開口部71は、接続端子用の合金バンプを形成するための開口部である。このため、開口部71の径は、接続端子用のバンプ径に合わせて100μm程度に形成される。
そして、レジスト層60の開口部72は、組成測定用の合金バンプを形成するため開口部である。このため、開口部72の径は、組成測定用の合金バンプ径に合わせて100〜150μmに形成される。
このように、開口部71及び開口部72の径が、共に100μm程度の場合には、開口部のアスペクト比が低いため、電解めっきにより合金層を形成するときの、開口部内でのめっき液の流動性に差がない。このため、開口部の底部付近でも、めっき液の置換が容易に行われる。電解めっき中にめっき液の置換が容易に行われることにより、開口部内のめっき液の組成が常に一定の状態を維持している。
次に、接続端子用の合金バンプとして、バンプ径が50μm以下のマイクロバンプを形成する場合を図12Bに示す。
図12Bは、能動素子51と、能動素子51上に形成されためっきシード層59と、このめっきシード層59上に開口部73及び開口部74が形成されたレジスト層60とを表す。
レジスト層60の開口部73は、接続端子用のマイクロバンプを形成するための開口部である。このため、開口部71の径は、接続端子用のマイクロバンプ径に合わせて50μm以下に形成される。
そして、レジスト層60の開口部74は、組成測定用の合金バンプを形成するため開口部である。このため、開口部74の径は、組成測定用の合金バンプ径に合わせて100〜150μmに形成される。
上述のように、開口部73の径は、組成測定用の合金バンプを形成するための開口部74の径に比べて小さい。このように、開口部の径が小さく、アスペクト比が高いと、開口部73内のめっき液の流動性が悪くなる。このため、電解めっきにより合金層を形成するとき、特に開口部の底部付近においてめっき液が置換され難い。
めっき液の置換が行われないと、電解めっきにより、析出速度の速い金属が開口部73内に析出することにより、開口部73内のめっき液中で析出速度の速い金属のイオン濃度が低下する。このため、開口部73内のめっき液の組成が、一定の状態を保てず、部分的な組成の偏りを示す。
これに対して、組成測定用の合金バンプを形成するための開口部74の最大径は100〜150μmであるため、めっき液の流動性が高く、上述のマイクロバンプのようなめっき液中の組成の偏りが発生しない。
従って、電解めっき中に、めっき液の組成が開口部73内と開口部74とで異なるため、電解めっきによって形成する、開口部73内合金層の組成と、開口部74内の合金層の組成との間に差が発生する。
従って、図8〜11を用いて説明した半導体装置の製造方法において、接続端子用の合金バンプと、組成測定用の合金バンプとでは、合金組成に差が発生する。
この結果、蛍光X線測定により、組成測定用の合金バンプで組成測定しても、接続端子用の合金バンプの組成を正確に調べることができない。
上述のように、蛍光X線により測定可能な組成測定用バンプと、接続端子用のマイクロバンプの組成が同等であるとみなして、組成測定用バンプ測定する方法では、バンプの微細化とともにそれぞれのバンプに合金組成の差が発生する。
さらに、組成測定用バンプと、接続端子用のマイクロバンプとの組成の誤差を確認する方法がない。そして、接続端子用のマイクロバンプの最大径が、例えば50μmから30μm、20μmと微細化するに従い、組成測定用の合金バンプと接続端子用の合金バンプとの組成の差はさらに大きくなる。
また、上述の非破壊検査とは異なる方法での検査、いわゆる破壊検査を行うことも考えられる。しかし、破壊検査では、数チップ分の合金バンプを溶解し、溶解した合金バンプの平均組成を原子吸光法にて測定することで行う。このため、個々の合金バンプの組成を測定することができない。
上述した問題の解決のため、本発明においては、組成測定用の合金バンプの組成を測定することにより、組成測定用以外の合金バンプの合金組成を正確に測定することが可能な、半導体装置及び半導体装置の製造方法を提供するものである。
本発明の半導体装置の製造方法は、能動素子上にめっきシード層を形成する工程と、
めっきシード層上に第1のレジスト層を形成する工程と、第1のレジスト層に複数の開口部を形成する工程と、電解めっき法を用いて開口部に合金層を形成する工程を備える。そして、第1レジスト層を除去する工程と、合金層の少なくとも1つにおいて、合金層と合金層の周囲を第2のレジスト層により被覆する工程と、第2のレジスト層で覆われた部分以外のめっきシード層を除去する工程と、合金層を溶融する工程とを備える。
本発明の半導体装置の製造方法によれば、能動素子上に、めっきシード層を形成し、このめっきシード層上に合金層を形成する。そして、形成した合金層のうち、少なくとも1つの合金層とその周囲を第2のレジスト層で被覆した後、めっきシード層を除去する。このため、第2のレジスト層で覆われた部分のめっきシード層は、除去されずに能動素子上に残存する。また、第2のレジスト層で被覆していないめっき下地層は、合金層の下部にのみ残存し、能動素子上の合金層の下部以外は除去される。
そして、第2のレジスト層を除去した後、合金層を溶融する。このとき、第2のレジスト層に覆われていた合金層は、能動素子上に残存する合金層の周囲のめっきシード層にぬれ広がり、合金層の形成時よりも最大径が大きな合金バンプとなる。また、第2のレジスト層に覆われていた合金層以外の合金層は、合金層の周囲にぬれ広がるめっき下地層がないため、形成時の合金層の最大径と同じ最大径の合金バンプとなる。
従って、能動素子上に、溶融後に形成時の最大径を維持する合金バンプと、形成時よりも大きな最大径となる合金バンプが存在する。
それぞれの合金層は、形成時の最大径が同じため、合金層ごとに組成が変化しない。このため、合金層を溶融した後、形成時の合金層と同じ最大径の合金バンプと、ぬれ広がりによって形成時の合金層よりも最大径が拡大した合金バンプとを、同じ組成で形成することができる。
形成時の合金層と同じ最大径の合金バンプを端子接続用に供し、ぬれ広がりによって形成時の合金層よりも最大径が拡大した合金バンプを組成測定に供することで、接続端子用の合金バンプと、組成測定用の合金バンプとを同じ組成で形成することができる。
本発明の半導体装置は、能動素子と、能動素子の電極上に形成された第1のバリアメタル層と、第1のバリアメタル層上に形成された第1の合金バンプとを備える。さらに、能動素子の電極上以外に形成された、第2のバリアメタル層と、第2のバリアメタル層の下部及び第2のバリアメタル層の周囲に形成されためっきシード層と、第2のバリアメタル層上及びめっきシード層に形成される第2の合金バンプとを備える。
本発明の半導体装置によれば、能動素子上に、第1の合金バンプと第2の合金バンプとを備える。そして、第1の合金バンプは、第1のバリアメタル層上に形成される。これに対し、第2の合金バンプは、第2のバリアメタル層上と、第2のバリアメタル層の周囲のめっき下地層上に形成される。このため、第2の合金バンプは、めっき下地層上にぬれ広がることにより、第2のバリアメタル層及び第1の合金バンプよりも最大径が大きい。
第1の合金バンプ及び第2の合金バンプは、めっき時は同じ径で形成されるため、めっき液の流動性がほぼ同じとなり、合金組成が同じになる。その後、めっき層を溶融して、第2の合金バンプの最大径を広げるため、同じ組成のものを比較的広い径で作成することができる。そして、第1合金バンプを端子接続用に供し、第2の合金バンプを組成測定に供することができる。
本発明によれば、めっき液の組成の偏りに起因する合金組成の差が、接続端子用の合金バンプと、組成測定用の合金バンプとの間に発生しない。このため、組成測定用の合金バンプの金属組成を測定することにより、接続端子用の合金バンプの組成を正確に知ることができる。
以下、本発明の一実施の形態について図面を用いて説明する。
図1〜6に本実施の形態の半導体装置の製造方法を示す。なお、図1〜6は、半導体装置の断面図であり、能動素子上に形成する接続端子用の合金バンプと組成測定用の合金バンプを、各1つずつ例示する。また、本実施の形態では、個片化した状態の半導体装置を例として製造方法の説明を行うが、これに係わらず、例えば個片化する前の半導体ウエハの状態でも同様に行うことができる。
まず、図1Aに示すように、接続端子用の合金バンプを形成する第1の合金バンプ形成領域20と、組成測定用の合金バンプを形成する第2の合金バンプ形成領域30を備えた能動素子10を準備する。
能動素子10は、例えばシリコン等からなる半導体基体11と、半導体基体11上に形成される下地絶縁膜12とを備える。また、下地絶縁膜12上に、図示しないトランジスタ等の半導体素子や配線等を含む電子回路、及び、アルミニウム等からなる電極14を備える。さらに、電極14上を除いて形成される、図示しない電子回路形成面を保護するための保護層13、いわゆるパッシベーション膜を備える。
上述の能動素子10の表面を、例えば酸及び過酸化水素等を用いて洗浄する。さらに、能動素子10の表面に、例えば逆スパッタ処理を行う。この工程により、能動素子10の表面に付着した微粒子や重金属等の不純物を除去する。
次に、図1Bに示すように、能動素子10上の全面に、めっき下地層となるめっきシード層15を形成する。めっきシード層15は、例えばスパッタリング法により、TiやCu等 を成膜する。
次に、図1Cに示すように、めっきシード層15を形成した能動素子10上に、第1のレジスト層16を形成する。
まず、めっきシード層15上の全面に、例えばスピンコート法を用いて、感光性のレジストを層厚20μmに塗布する。そして、塗布した感光性のレジストを乾燥させることにより、第1のレジスト層16を形成する。
なお、レジスト層16の層厚は、上記の厚さ以外でも製造する半導体装置の種類に応じて適宜変更でき、少なくとも電解めっきによって形成するバリアメタル層と合金層との合計の厚さよりも、厚く形成することが好ましい。このため、第1のレジスト層16の形成には、厚膜を形成することが可能なフォトレジストを使用する。このような感光性のレジストとして、例えば、東京応化製PMER−P−LA900PM(商品名) を用いることができる。
次に、図2D に示すように、能動素子10上に形成した第1のレジスト層16を、パターンマスク17を用いて露光する。そして、露光後、第1のレジスト層16を現像する。この工程により、図2Eに示すように、能動素子10上の、接続端子用の合金バンプを形成する第1の合金バンプ形成領域20に、第1の開口部21を形成する。また、能動素子10上の、組成測定用の合金バンプを形成する第2の合金バンプ形成領域30に、第2の開口部31を形成する。また、必要に応じて、レジスト層16に形成した第1の開口部21及び第2の開口部31内を洗浄し、スカムを除去する。
第1の開口部21の最大開口径は、能動素子10の電極14上に形成する接続端子用の合金バンプの最大径と同じ開口径となるように形成する。また、第2の開口部31の最大開口径は、第1の開口部21の最大開口径と同じになるように形成する。
例えば、最大径が50μm以下のマイクロバンプを形成する場合には、レジスト層に形成する開口部の最大径も、バンプ径に合わせて50μm以下に形成する。このように、最大径が小さく、開口部のアスペクト比が高い開口部内に、電解めっきを行う場合は、開口部内のめっき液の流動性が低下する。そして、めっき液の流動性が低下した状態で電解めっきを行うと、析出速度の速い金属が開口部内に析出し、開口部内のめっき液中で析出速度の速い金属のイオン濃度が低下する。このため、開口部内のめっき液の組成が、一定の状態を保てず、部分的な組成の偏りを示す。
このように、めっき液の組成が偏った状態で、電解めっきにより合金層を形成すると、めっき液の組成の偏りに応じて、析出する合金層の組成が変化する。
しかし、第1の開口部21と第2の開口部31の開口径が同じであれば、電解めっきを行う際の開口部内のめっき液の流動性も第1の開口部21と第2の開口部31とで同じ様に低下する。そして、第1の開口部21と第2の開口部31のめっき液の流動性が同じであれば、開口部内のめっき液の組成も同じ様な偏りを示す。
このため、開口部内で、めっき液の組成の偏りが発生し、析出する合金層の組成が変動した場合でも、第1の開口部21及び第2の開口部31内に形成される合金層は、合金組成がほぼ同じになる。
なお、上述の第2の開口部31の開口径と、第1の開口部21の開口径は、厳密に同じである必要はない。第1の開口部21と第2の開口部31は、電解めっき中のめっき液の流動性の差に起因して、第1の開口部21と第2の開口部31内にそれぞれ形成される合金層に組成に、差が発生しない程度であれば、開口径に差があってもよい。
このため、第2の開口部31の開口径が、第1の開口部21の開口径に対して、±50% の差があっても、それぞれの第1の開口部21,31内に形成される合金層に組成の変化がほとんど発生しない。このため、第1の開口部21の開口径に対して、第2の開口部31の開口径は、50%以下の差にすることが好ましい。
さらに、開口径の差が±20%以下であれば、第1の開口部21,31内に形成される合金層の組成の差を小さくすることができる。このため、第1の開口部21の開口径に対して、第2の開口部31の開口径は、20%以下の差にすることが好ましい。
次に、図2Fに示すように、電解めっき法を用いて、第1の開口部21内のめっきシード層15上に、第1のバリアメタル層22を形成し、第2の開口部31内のめっきシード層15上に、第2のバリアメタル層32を形成する。この第1のバリアメタル層22及び第2のバリアメタル層32は、めっきシード層15を構成する、例えばCu,Ti等の合金層への拡散を防ぐために形成する。
第1のバリアメタル層22及び第2のバリアメタル層32は、めっきシード層15及び合金層への拡散速度が遅く、めっき液への耐性が高い金属で構成する。このような金属としては、例えばニッケル等を用いることができる。なお、バリアメタル層として、合金層に拡散し難い金属を用いた場合には、このバリアメタル層を形成しなくてもよい。
次に、図3Gに示すように、電解めっき法を用いて、第1の開口部21内の第1のバリアメタル層22上に、第1の合金層23を形成し、第2の開口部31内の第2のバリアメタル層32上に、第2の合金層33を形成する。
第1の合金層23及び第2の合金層33は、半導体装置の接続端子用の電極として使用できるはんだ合金により形成する。また、第1の合金層23及び第2の合金層33は、電解めっき法を用いて形成することができるはんだ合金により形成する。この合金としては、例えば、はんだ合金の融点や機械的特性等を考慮し、製造する半導体装置に応じて選択する。例えば、SnAg系合金、SnPb系合金、SnCu系合金等の二元系合金、及び、これらの元素を含む三元系合金、その他の添加元素等や不可避不純物を含む各種の合金を用いることができる。
電解めっき法による第1の合金層23及び第2の合金層33の形成工程では、第1の開口部21と第2の開口部31の開口径に差がない。このため、第1の合金層23と第2の合金層33との間で、上述のめっき液の流動性に起因した合金組成の差が発生しない。従って、第1の合金層23と第2の合金層33を、ほぼ同じ組成の合金で形成することができる。
次に、図3Hに示すように、剥離剤(はくり104 )等を用いて、第1のレジスト層16を除去する。第1のレジスト層16を除去することにより、第1のバリアメタル層22、第1の合金層23、第2のバリアメタル層32、及び、第2の合金層33を露出する。さらに、能動素子10上に形成しためっきシード層15のうち、第1のバリアメタル層22及び第2のバリアメタル層32が形成された部分以外を露出する。
次に、図4Iに示すように、組成測定用の合金バンプを形成する第2の合金バンプ形成領域30に、第2のレジスト層34を形成する。
第2のレジスト層34は、例えば、ディスペンサ35を用いたポティング法により塗布した後、ホットプレート上で100℃、10分間保持し、塗布したレジストを乾燥して形成する。
第2のレジスト層34は、第2の合金層33、及び、第2のバリアメタル層32を覆うように形成する。また、第2のレジスト層34は、第2の合金層33及び第2のバリアメタル層32の周囲に形成されているめっきシード層15を覆うように形成する。
この第2のレジスト層34は、半導体装置に形成する組成測定用の合金バンプと同じ形状にめっきシード層15を覆うように形成する。このため、第2のレジスト層34は、例えば蛍光X線測定で合金組成の測定が可能な径である、150μm以上の最大径として形成する。
ディスペンサを用いたポッティング法では、例えば、シリンジ内に上述の第1のレジスト層を形成するために使用したレジストと同じものを入れ、ニードルサイズ#25 で1滴塗布する。この方法では、ディスペンサ35から塗出する第2のレジスト層の塗布量を、例えば、ニードル径、加圧時間、及び、レジストの粘度により調整することで、第2のレジスト層34の径を調整することができる。
例えば、レジストの粘度を900cp(0.9Pa・s)、第2のレジスト層34の塗布径を150μmとして形成することにより、蛍光X線測定機において、短時間で精度よく測定することが可能となる。
なお、第2のレジスト層34は、第2の合金層33及びその周囲のめっきシード層15を覆うことができればよい。このため、例えば、フォトリソグラフィを用いた精密な画像形成等を行わなくてもよい。ポッティング法を用いることにより、工程数及びコストの増加を最小減に抑えることができる。
また、第2のレジスト層34を形成するために使用するディスペンサの種類は限定されず、例えば、空気加圧により塗布するディスペンサの他に、例えばジェットディスペンス式ディスペンサ等を用いてレジストを塗布しても同様の効果が得られる。
次に、図4Jに示すように、能動素子10上で露出しているめっきシード層15をエッチングし、第2のレジスト層34を形成した部分以外のめっきシード層15を除去する。この工程により、能動素子10上には、第2のレジスト層34及び第2のバリアメタル層32の下部に形成された、めっきシード層15aが残存する。
そして、第2のレジスト層34を、第1のレジスト層の除去と同様に、剥離剤等を用いて除去する。第2のレジスト層34を除去することにより、図5Kに示すように、めっきシード層15aを露出する。
次に、図5Lに示すように、能動素子10の全面にフラックス18を塗布する。そして、フラックス18を塗布した状態で、能動素子10にリフロー等を行い、第1の合金層23と、第2の合金層33を溶融する。この工程により、図5Mに示すように、合金が溶融した状態の第1の合金層23aと、第2の合金層33aが形成される。
合金が溶融した状態の第1の合金層23aは、第1のバリアメタル層22上で表面張力により、バンプ形状となる。
また、合金が溶融した状態の第2の合金層33aは、フラックス18により、第2のバリアメタル層32上から、めっきシード層15aの全面にぬれ広がる。
めっきシード層15aの最大径は、半導体装置に形成する組成測定用の合金バンプの最大径に合わせて形成した第2のレジスト層34と同じ、例えば150μmである。このため、合金が溶融した状態の第2の合金層33aの最大径は、めっきシード層15aの最大径と同じく、例えば150μmとすることができる。
次に、溶融した第1の合金層23aと第2の合金層33aを冷却して固化する。そして、第1の合金層23aと第2の合金層33aを固化した後、能動素子10をアセトンなどの有機溶剤を用いて洗浄し、フラックス18を除去する。
以上の工程により、図6Nに示すように、能動素子10上の接続端子用の合金バンプを形成する第1の合金バンプ形成領域20に、第1の合金バンプ24を形成することができる。そして、能動素子10上の組成測定用の合金バンプを形成する第2の合金バンプ形成領域30に、第2の合金バンプ36を形成することができる。
第1の合金バンプ24は、接続端子用の合金バンプである。このため、第1の合金バンプ24は、例えばバンプ径が50μm以下のマイクロバンプである。そして、第2の合金バンプ36は、組成測定用の合金バンプである。このため、第2の合金バンプ36は、バンプ径が蛍光X線測定可能な100μm以上、例えば150μmの合金バンプである。
以上の工程により、接続端子用の第1の合金バンプ24と、組成測定用の第2の合金バンプ36とを備えた半導体装置40を製造することができる。
上述の実施の形態において形成した半導体装置において、接続端子用の合金バンプと組成測定用の合金バンプは、電解めっきの際に同じ径の開口部内に形成される。このため、接続端子用の合金バンプと組成測定用の合金バンプが、同じ条件で形成される。
従って、レジストの開口径の違いにより、めっき液が開口部内部で十分に置換されないことに起因する合金組成のばらつきが生じにくく、電解めっきにて形成された組成測定用の合金バンプは、接続端子用のバンプとほぼ同じ組成の合金になる。
また、その後、組成測定用の合金バンプは、リフロー工程において、めっきシード層の径までぬれ広がる。このため、蛍光X線測定機で合金組成を測定するために、X線のビームサイズをバンプサイズに合わせて絞る必要がなくなる。従って、合金組成を測定するために十分な量の特性X線を組成測定電極から得ることが可能となり、合金組成を短時間で精度よく測定することができる。
上述のように、本発明の半導体装置及び製造方法によれば、例えばバンプの最大径が50μm以下のマイクロバンプが形成された半導体装置において、バンプの最大径の微細化にともなう合金組成測定の困難を解消することができる。このため、従来の方法では難しかったマイクロバンプと同じ最大径の合金組成を短時間で高精度に測定することが可能となる。
また、本発明の製造方法によれば、マイクロバンプが形成された半導体装置において、非破壊検査により、高精度にバンプの合金組成を測定できるようになる。このため、近年のマイクロバンプの微細化に伴い、バンプの組成測定を直接行えないために起きていた、組成ずれに起因するバンプ合金の強度の低下を解消することができ、半導体装置の接続信頼性を向上させることができる。
本発明は、上述の構成に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。
A〜Cは、本発明の一実施の形態の半導体装置の製造工程図である。 D〜Fは、本発明の一実施の形態の半導体装置の製造工程図である。 G,Hは、本発明の一実施の形態の半導体装置の製造工程図である。 I,Jは、本発明の一実施の形態の半導体装置の製造工程図である。 K〜Mは、本発明の一実施の形態の半導体装置の製造工程図である。 Nは、本発明の一実施の形態の半導体装置の断面図である。 Aは、本発明が解決しようとする課題を説明するための半導体ウエハの図である。Bは、本発明が解決しようとする課題を説明するための半導体装置の断面図である。 A〜Cは、本発明が解決しようとする課題を説明するための半導体装置の製造工程図である。 D〜Fは、本発明が解決しようとする課題を説明するための半導体装置の製造工程図である。 G〜Iは、本発明が解決しようとする課題を説明するための半導体装置の製造工程図である。 J〜Lは、本発明が解決しようとする課題を説明するための半導体装置の製造工程図である。 A,Bは、本発明が解決しようとする課題を説明するための半導体装置の製造工程図である。
符号の説明
10,51 能動素子、20 第1の合金バンプ形成領域、30 第2の合金バンプ形成領域、11 半導体基体、12 下地絶縁膜、13 保護層、14,54,57,58 電極、15,15a,59 めっきシード層、16 第1のレジスト層、17,61 パターンマスク、18,68 フラックス、21 第1の開口部、31 第2の開口部、22 第1のバリアメタル層、32 第2のバリアメタル層、23,23a 第1の合金層、33,33a 第2の合金層、34 第2のレジスト層、35 ディスペンサ、24 第1の合金バンプ、36 第2の合金バンプ、40 半導体装置、50 ウエハ、52 接続端子用の合金バンプ、53 組成測定用の合金バンプ、55 接続端子用の合金バンプ形成領域、56 組成測定用の合金バンプ形成領域、60 レジスト層、62,63,71,72,73,74 開口部、64,65 バリアメタル層、66,67 合金層

Claims (9)

  1. 能動素子 上にめっきシード層を形成する工程と、
    前記めっきシード層上に第1のレジスト層を形成する工程と、
    前記第1のレジスト層に複数の開口部を形成する工程と、
    電解めっき法を用いて前記開口部に合金層 を形成する工程と、
    前記第1レジスト層を除去する工程と、
    前記合金層の少なくとも1つにおいて、前記合金層と前記合金層の周囲を第2のレジスト層により被覆する工程と、
    前記第2のレジスト層で覆われた部分以外の前記めっきシード層を除去する工程と、
    前記合金層を溶融する工程と
    を備える半導体装置の製造方法。
  2. 前記開口部の最大開口径が、75μm以下 である請求項1記載の半導体装置の製造方法。
  3. 前記合金層の周囲を被覆する前記第2のレジスト層の最大径が100μm以上である請求項1記載の半導体装置の製造方法。
  4. 前記開口部が第1の開口部と第2の開口部からなり、前記第1の開口部と前記第2の開口部の最大開口径の差が50%以下である請求項1 記載の半導体装置の製造方法。
  5. 第2のレジスト層により被覆する工程を、ディスペンサを用いたポッティング法により行う請求項1記載の半導体装置の製造方法。
  6. 前記合金層を形成する工程を、電解めっき法により行う請求項1 記載の半導体装置の製造方法。
  7. 能動素子と、
    能動素子の電極上に形成された第1のバリアメタル層と、
    前記第1のバリアメタル層上に形成された第1の合金バンプと、
    前記能動素子の電極上以外に形成された、第2のバリアメタル層と、
    前記第2のバリアメタル層の下部及び前記第2のバリアメタル層の周囲に形成されためっきシード層と、
    前記第2のバリアメタル層上及び前記めっきシード層に形成される第2の合金バンプと
    を備える半導体装置。
  8. 前記第1の合金バンプの最大径が75μm以下である請求項7記載の半導体装置。
  9. 前記第2の合金バンプの最大径が100μm以上である請求項7記載の半導体装置。
JP2008156860A 2008-06-16 2008-06-16 半導体装置及びその製造方法 Pending JP2009302391A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156860A JP2009302391A (ja) 2008-06-16 2008-06-16 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156860A JP2009302391A (ja) 2008-06-16 2008-06-16 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2009302391A true JP2009302391A (ja) 2009-12-24

Family

ID=41548968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156860A Pending JP2009302391A (ja) 2008-06-16 2008-06-16 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2009302391A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943578A (zh) * 2014-04-04 2014-07-23 华进半导体封装先导技术研发中心有限公司 铜柱凸点结构及成型方法
CN108242437A (zh) * 2016-12-26 2018-07-03 拉碧斯半导体株式会社 半导体装置以及半导体装置的制造方法
CN114551246A (zh) * 2022-04-25 2022-05-27 宁波芯健半导体有限公司 一种晶圆及提升电镀凸块高度均匀性的方法
CN114783892A (zh) * 2022-04-25 2022-07-22 宁波芯健半导体有限公司 一种晶圆及提高芯片倒装均一性的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943578A (zh) * 2014-04-04 2014-07-23 华进半导体封装先导技术研发中心有限公司 铜柱凸点结构及成型方法
CN108242437A (zh) * 2016-12-26 2018-07-03 拉碧斯半导体株式会社 半导体装置以及半导体装置的制造方法
JP2018107262A (ja) * 2016-12-26 2018-07-05 ラピスセミコンダクタ株式会社 半導体装置及び半導体装置の製造方法
CN108242437B (zh) * 2016-12-26 2023-12-05 拉碧斯半导体株式会社 半导体装置以及半导体装置的制造方法
CN114551246A (zh) * 2022-04-25 2022-05-27 宁波芯健半导体有限公司 一种晶圆及提升电镀凸块高度均匀性的方法
CN114783892A (zh) * 2022-04-25 2022-07-22 宁波芯健半导体有限公司 一种晶圆及提高芯片倒装均一性的方法

Similar Documents

Publication Publication Date Title
US10153243B2 (en) Semiconductor devices, methods of manufacture thereof, and packaged semiconductor devices
US9013037B2 (en) Semiconductor package with improved pillar bump process and structure
JP6163550B2 (ja) ピラーオンパッド相互接続構造、半導体ダイスおよび当該相互接続構造を含むダイアセンブリ、ならびに関連する方法
TWI495024B (zh) 半導體裝置,其製造方法,以及製造線路板之方法
JP4704679B2 (ja) 半導体素子のアンダーバンプ金属
US11935866B2 (en) Semiconductor device having reduced bump height variation
US9269602B2 (en) Fabrication method of wafer level semiconductor package and fabrication method of wafer level packaging substrate
US7932169B2 (en) Interconnection for flip-chip using lead-free solders and having improved reaction barrier layers
US20060094226A1 (en) Bumping process
US20150262950A1 (en) Method for Fabricating Equal Height Metal Pillars of Different Diameters
US8227924B2 (en) Substrate stand-offs for semiconductor devices
TWI576974B (zh) Semiconductor device and method for manufacturing semiconductor device
US20060214296A1 (en) Semiconductor device and semiconductor-device manufacturing method
US20060087034A1 (en) Bumping process and structure thereof
US20120077313A1 (en) Semiconductor device manufacturing method
Yu et al. Study of 15µm pitch solder microbumps for 3D IC integration
US20060088992A1 (en) Bumping process and structure thereof
JP2009302391A (ja) 半導体装置及びその製造方法
JP2010016332A (ja) チップ・レベルのアンダーフィル・プロセスおよびその構造
Tsun-Sheng Chou et al. Heterogeneous integration on 2.3 D hybrid substrate using solder joint and underfill
JP2012054366A (ja) 半導体装置および半導体装置の製造方法
JP2012074406A (ja) 半導体装置および半導体装置の製造方法
JP2010027633A (ja) 半導体装置およびその製造方法
US20180211895A1 (en) Semiconductor device and manufacturing method thereof
Eslampour et al. fcCuBE technology: A pathway to advanced Si-node and fine pitch flip chip