JP2009299298A - Mechanical joint of steel pipe pile - Google Patents

Mechanical joint of steel pipe pile Download PDF

Info

Publication number
JP2009299298A
JP2009299298A JP2008152401A JP2008152401A JP2009299298A JP 2009299298 A JP2009299298 A JP 2009299298A JP 2008152401 A JP2008152401 A JP 2008152401A JP 2008152401 A JP2008152401 A JP 2008152401A JP 2009299298 A JP2009299298 A JP 2009299298A
Authority
JP
Japan
Prior art keywords
joint material
steel pipe
bolt insertion
pipe pile
bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008152401A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yoshida
耕之 吉田
Toshio Shinohara
敏雄 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Geotech Co Ltd
Original Assignee
Chiyoda Geotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Geotech Co Ltd filed Critical Chiyoda Geotech Co Ltd
Priority to JP2008152401A priority Critical patent/JP2009299298A/en
Publication of JP2009299298A publication Critical patent/JP2009299298A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mechanical joint which gives consideration to bending moment produced by earthquakes, a strong wind and the like. <P>SOLUTION: An outer joint material 3 is fixed to a lower steel pipe pile 2; an inner joint material 4 is fixed to an upper steel pipe pile 1; and pin insertion holes are drilled in such a manner as to be identically arranged in the circumferential directions of the outer and inner joint materials 3 and 4, respectively. The inner joint material 4 is inserted and fitted into the outer joint material 3; and a bolt 34 is inserted into each of bolt insertion holes 35 and 36. When a compressive force acts on the pair of steel pipe piles, an outer peripheral surface of the inner joint material 4 and that of the outer joint material 3 are tightened with the bolt 34, so that the inner and outer joint materials 4 and 3 can be coupled together. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は鋼管杭の機械式継手、詳しくは、製造が容易で、安価で提供出来るにもかかわらず、実用上十分な強度を有する信頼性に富む鋼管杭の機械式継手に関するものである。   TECHNICAL FIELD The present invention relates to a mechanical joint for steel pipe piles, and more particularly to a mechanical joint for steel pipe piles which is easy to manufacture and can be provided at a low cost and has a sufficient strength for practical use.

各種建築土木工事において用いられる既製杭には、鋼管杭とコンクリート杭とがあるが、いずれも必要に応じて接合する場合がある。一般的に、現場での杭の接合には、溶接が用いられることが多かったが、現場での溶接は、溶接品質の確保がむずかしい、作業が天候に左右されやすい、溶接作業時間が長くかかる、などの問題があり、コンクリート杭においては、現場溶接が不要な機械式継手を用いた接合が最近多く実施される様になっている。   There are steel pipe piles and concrete piles as ready-made piles used in various civil engineering works, both of which may be joined as necessary. Generally, welding is often used for joining piles in the field, but it is difficult to ensure the welding quality, the work is subject to the weather, and the welding work takes a long time. In concrete piles, joints using mechanical joints that do not require on-site welding have recently been implemented frequently.

又、コンクリート杭の分野において、機械式継手が普及した背景には、コンクリートよりも強度が数倍大きい鋼材を継手材料として使用出来ること、一般的にコンクリート杭の両端には鋼製端板があり、これを継手材の一部として利用出来るので、全体のコストを低く抑えられる、などの理由が存在している。   Also, in the field of concrete piles, the background of the spread of mechanical joints is that steel materials that are several times stronger than concrete can be used as joint materials, and generally there are steel end plates at both ends of concrete piles. Since this can be used as a part of the joint material, there are reasons that the overall cost can be kept low.

一方、鋼管杭の場合、鋼管杭と同じく鋼材を継手材料として用いるが、継手部分の強度を鋼管杭本体と同等以上にする為には、高品質高強度の鋼材の利用や複雑な構造を採用しなければならず、これに伴い継手の製造コストが高騰することが避けられず、普及が阻げられているのが現状である。
特開2006−28913公報 特開2001−11850公報 特開2006−207117公報 なし
On the other hand, in the case of steel pipe piles, steel is used as a joint material, as is the case with steel pipe piles, but in order to make the joint part strength equal to or higher than that of the steel pipe pile body, the use of high-quality, high-strength steel materials and complex structures are adopted. As a result, it is inevitable that the manufacturing cost of the joint will increase with this, and the spread is hindered.
JP 2006-28913 A JP 2001-11850 A JP 2006-207117 A None

特許文献1乃至3はいずれも鋼管杭の機械式継手に関するものであり、特許文献1には、雄円筒の外面と雌円筒の内面とにそれぞれ円弧状突起を円周方向に交互に設け、雄円筒を雌円筒に挿入後回転させて接合させる継手が開示されている。この継手においては、引っ張り力は円弧状突起(ギア)同士の接触で伝達される様になっており、引っ張り力の伝達能力が大きく、曲げモーメントにも強い特徴を有している。しかし、円弧状突起を溶接によって継手本体に固着させるのは非現実的であり、通常は、肉厚の円筒体を旋盤で切削して円弧状突起を形成することになるが、旋盤の特性上、円筒体の軸芯方向の切削は著しく能率が悪く、コスト高の最大の要因となることは明らかである。   Patent Documents 1 to 3 all relate to mechanical joints for steel pipe piles. In Patent Document 1, circular protrusions are alternately provided in the circumferential direction on the outer surface of the male cylinder and the inner surface of the female cylinder, respectively. A joint is disclosed in which a cylinder is inserted into a female cylinder and then rotated and joined. In this joint, the tensile force is transmitted by contact between the arc-shaped protrusions (gears), and the transmission capability of the tensile force is large and the bending moment is also strong. However, it is unrealistic to fix the arc-shaped projections to the joint body by welding. Normally, a thick cylindrical body is cut with a lathe to form arc-shaped projections. It is clear that the cutting of the cylindrical body in the axial direction is extremely inefficient and is the biggest factor of the high cost.

又、この継手においては、回転トルクは雌雄円筒間に設けたキーによって伝達する構造となっているが、この場合のキーは単なる円柱状ピンでない為、キーとその挿入孔の製作費は高くならざるを得ず、これも全体のコストを押し上げる要因となっており、これらの点から勘案して、この特許文献1に開示されている機械式継手はコスト的に難があった。   In this joint, the rotational torque is transmitted by a key provided between the male and female cylinders. However, since the key in this case is not a simple cylindrical pin, the manufacturing cost of the key and its insertion hole is high. Inevitably, this also increases the overall cost. Taking these points into consideration, the mechanical joint disclosed in Patent Document 1 is difficult in cost.

一方、特許文献2には、ピン挿入孔を有する内継手管又は複数の短冊状平板を、同じくピン挿入孔を有する外継手管に挿入した後、両ピン挿入孔にピンを挿入して結合する構造の機械式継手が開示されている。この継手においては、鋼管杭の軸方向の力(引っ張り力と圧縮力)は、ピン部材のせん断力を介して伝達される構造となっているが、ピン部材だけで大きな圧縮力や引っ張り力を伝達させるのは後述する様に強度的に無理があった。   On the other hand, in Patent Document 2, an inner joint pipe having a pin insertion hole or a plurality of strip-shaped flat plates are inserted into an outer joint pipe having the same pin insertion hole, and then a pin is inserted into both pin insertion holes to be coupled. A mechanical joint of structure is disclosed. In this joint, the axial force (tensile force and compressive force) of the steel pipe pile is transmitted through the shearing force of the pin member, but a large compressive force or tensile force can be generated only by the pin member. It was impossible in terms of strength to be transmitted as will be described later.

又、この継手においては、内継手管は、鋼管端部の内面に固着する構造になっており、図面には両端部を隅肉溶接する例と、内継手管下部に切り欠きを設け、溶接部の長さを増す例が示されているが、前者の場合、鋼管内側の溶接作業は、管径が十分に大きい場合を除いて難かしく、又、隅肉溶接であるので、溶接強度が確保しにくいという問題があり、これを補うものとして後者が示されているが、溶接長が長くなるに従い、作業性が悪くなることは当然であり、結果的にコストがかかってしまう欠点があった。   In this joint, the inner joint pipe is structured to be fixed to the inner surface of the steel pipe end, and in the drawing, both ends are fillet welded, and a notch is provided at the lower part of the inner joint pipe to weld. An example of increasing the length of the part is shown, but in the former case, the welding work inside the steel pipe is difficult unless the pipe diameter is sufficiently large, and because the fillet weld is used, the welding strength is There is a problem that it is difficult to secure, but the latter is shown as a supplement to this, but as the weld length becomes longer, it is natural that workability deteriorates, and as a result, there is a disadvantage that costs increase. It was.

一方、内継手管の代替として短冊状平板を用いる場合には、前述の切り欠き部の溶接の場合と同じく問題が生じると共に、短冊状断面は、円環状断面に比べてねじり耐力と剛性が著しく劣り、厚さを非常に大きくしないと鋼管本体と同等の強度を持ち得ない欠点があった。更に、この欠点を改善する為、肉厚の短管を介して内継手管と鋼管とを接合する技術も開示されているが、肉厚短管の調達費と溶接費が余分にかかってしまい、結果的にコスト高の継手になってしまう欠点があった。これらの点から、この特許文献2に開示されている継手も、十分な実用性を有しているとは言えなかった。   On the other hand, when a strip-shaped flat plate is used as an alternative to the inner joint pipe, the same problem as in the case of the welding of the notch described above occurs, and the torsional strength and rigidity of the strip-shaped section are significantly higher than those of the annular section. Inferiority, there was a drawback that the steel pipe body could not have the same strength unless the thickness was made very large. Furthermore, in order to remedy this drawback, a technique for joining an inner joint pipe and a steel pipe via a thick short pipe is also disclosed, but the procurement cost and welding cost of the thick short pipe are excessive. As a result, there is a drawback that the joint becomes expensive. From these points, the joint disclosed in Patent Document 2 cannot be said to have sufficient practicality.

更に、特許文献3には、端部に凹凸を設けた第1継手(上継手)と第2継手(下継手)の凹凸部を嵌合させたうえで、凹凸部の境界に設けられた孔にピンを挿入する構造の機械式継手が開示されており、前述の特許文献2に開示されている機械式継手とは形態的には大きく異なるものの、ピンによって軸方向だけではなく、曲げモーメントも伝達させ様としている点においては軌を一にしており、その意味においては、前述の特許文献2に開示されている機械式継手と同じ問題点を有していた。   Furthermore, Patent Document 3 discloses a hole provided at the boundary of the concavo-convex part after fitting the concavo-convex part of the first joint (upper joint) and the second joint (lower joint) provided with concavo-convex at the end part. A mechanical joint having a structure in which a pin is inserted is disclosed, and although it differs greatly in form from the mechanical joint disclosed in Patent Document 2, not only the axial direction but also the bending moment depends on the pin. The point of trying to transmit is uniform, and in that sense, it has the same problems as the mechanical joint disclosed in Patent Document 2 described above.

又、この継手においては、せん断方向を向いたピンはせん断抵抗を発揮し得ず、又、凹凸部における断面積はその上下の部分に比べ半分しかない為、十分なせん断耐力を確保出来ないという問題があった。従って、この特許文献3に開示されている継手も、強度的には十分なものではなく、実用上問題があると言わざるを得なかった。   In addition, in this joint, the pin facing the shear direction cannot exhibit shear resistance, and the cross-sectional area of the concavo-convex portion is only half that of the upper and lower portions, so that sufficient shear strength cannot be ensured. There was a problem. Therefore, the joint disclosed in Patent Document 3 is not sufficient in strength, and must be said to have a practical problem.

ところで、基礎杭に作用する力は、通常、圧縮力、引っ張り力、曲げモーメント、せん断力、回転トルク(ねじりせん断力)であるが、基礎杭に常時作用する力は、擁壁の基礎杭など特殊な例を除けば、杭軸方向の圧縮力であり、大きな引っ張り力や曲げモーメント、せん断力が基礎杭に作用するのは、地震や強風など異常時の短時間だけである。又、引っ張り力は圧縮力に比べ通常数分の1以下と小さく、その発生頻度も少ない。更に、曲げモーメントが作用する場合でも、曲げモーメント単独で杭に作用するのではなく、圧縮力と同時に作用するのが普通である。つまり、基礎杭を円環断面としてみた場合、引っ張り応力が発生している部分はその円周長のうち、ほんのわずかの部分で、しかもその値は小さく、大部分では圧縮応力が発生していることになる。   By the way, the force acting on the foundation pile is usually compressive force, tensile force, bending moment, shearing force, rotational torque (torsional shearing force). Except for special cases, it is the compressive force in the direction of the pile axis, and large pulling force, bending moment, and shearing force are applied to the foundation pile only for a short period of time such as an earthquake or strong wind. Further, the pulling force is usually as small as a fraction of the compression force, and the frequency of occurrence is low. Furthermore, even when a bending moment is applied, it is normal that the bending moment does not act on the pile alone but acts simultaneously with the compressive force. In other words, when the foundation pile is viewed as an annular cross section, the portion where the tensile stress is generated is only a small portion of the circumference, and the value is small, and the compressive stress is generated mostly. It will be.

一方、回転貫入杭の施工時には、鋼管杭のねじり耐力と同程度の大きさの回転トルクが頻繁に発生するので、継手をこの回転貫入杭に用いる場合には、このトルクに耐える必要があるが、ピンの水平方向せん断抵抗力のみでこの回転トルクに対抗しようとする場合、鋼管のねじり耐力と同等な回転トルクに対抗するピンのせん断力は、鋼管の引っ張り耐力と同等な引っ張り力に抵抗するピンのせん断力に比べ、理論上√1/3にすぎないことは、従来から知られている。   On the other hand, when a rotary penetrating pile is constructed, a rotational torque of the same magnitude as the torsional strength of steel pipe piles is frequently generated, so when using a joint for this rotary penetrating pile, it is necessary to withstand this torque. When trying to counter this rotational torque with only the horizontal shear resistance of the pin, the shearing force of the pin against the rotational torque equivalent to the torsional strength of the steel pipe resists the tensile force equivalent to the tensile strength of the steel pipe. It has hitherto been known that it is theoretically only 1/3 compared to the shearing force of the pin.

以上述べた基礎杭の一般的作用力の考察から、本発明者は、後述する様に、圧縮力はピンなどを介するよりも直接部材を当接させて伝達した方が合理的であり、一方、発生頻度が少なく、力も小さい引っ張り力は、ピンを介して伝達した方が機構的にも合理的であることを見出した。本発明者は、上記知見に基づき、鋼管杭の接合に用いる機械式継手に内在する問題点を解決すべく研究を行った結果、鋼管杭本体と同等以上の耐力を持ち、信頼性も高く、しかも安価に製作出来る機械式継手を特願2007−190470として提案した。   From the consideration of the general acting force of the foundation pile described above, the present inventor is more rational that the compressive force is transmitted by contacting the member directly rather than via a pin, as will be described later. It has been found that a pulling force with a low occurrence frequency and a small force is rational in terms of mechanism when transmitted through a pin. Based on the above findings, the present inventor has conducted research to solve the problems inherent in mechanical joints used for joining steel pipe piles. Moreover, a mechanical joint that can be manufactured at low cost was proposed as Japanese Patent Application No. 2007-190470.

この特願2007−190470として提案した機械式継手は図1〜図5に示す様に、肉厚円筒状をなした基部(8)の一方の端縁から外側に向かって直角に肉厚円環状のつば部(13)が一体的に延設された鋼製のつば付き円筒状をなし、つば部(13)の外径は接合対象である一対の鋼管杭の外径とほぼ同じに、基部(8)の外径は外継手材(3)の内径よりわずかに小さくなる様にそれぞれ形成されており、前記つば部(13)の端面には一方の鋼管杭の端面がその軸心を一致させた状態で溶接固着されると共に、前記基部(8)の周壁(16)には軸心から直角の方向を向かって放射状に複数のピン挿入孔(10)が間隔をあけて穿かれている内継手材(4); 接合対象である鋼管杭の外径とほぼ同じ外径、前記内継手材(4)の基部(8)の外径よりわずかに大きな内径をそれぞれ有し、もう一方の鋼管杭の端面がその軸心を一致させた状態で溶接固着されると共に、前記内継手材(4)の基部(8)に穿かれているピン挿入孔(10)に対応する箇所に同径のピン挿入孔(12)が穿かれている鋼製の肉厚円筒状の外継手材(3); とからなり、外継手材(3)の内径側に内継手材(4)の基部(8)を挿入し、それぞれのピン挿入孔(10)(12)にピン(18)を差し込み、内継手材(4)と外継手材(3)とを結合する様にしたものである。   As shown in FIGS. 1 to 5, the mechanical joint proposed as Japanese Patent Application No. 2007-190470 has a thick annular ring at right angles from one end edge of the base portion (8) having a thick cylindrical shape toward the outside. The collar portion (13) has a cylindrical shape with a steel collar that is integrally extended. The outer diameter of the collar portion (13) is substantially the same as the outer diameter of the pair of steel pipe piles to be joined. The outer diameter of (8) is formed so as to be slightly smaller than the inner diameter of the outer joint material (3), and the end face of one steel pipe pile coincides with the axial center of the end face of the collar part (13). A plurality of pin insertion holes (10) are formed in the peripheral wall (16) of the base portion (8) in a radial direction in a direction perpendicular to the axial center at intervals. Inner joint material (4); The outer diameter of the inner pipe material (4) is substantially the same as the outer diameter of the steel pipe pile to be joined. Each of which has an inner diameter slightly larger than the outer diameter of the portion (8), and the end face of the other steel pipe pile is weld-fixed in a state in which its axial center coincides, and the base portion of the inner joint material (4) ( 8) A thick cylindrical outer joint material (3) made of steel in which a pin insertion hole (12) of the same diameter is drilled at a location corresponding to the pin insertion hole (10) drilled in 8); The base portion (8) of the inner joint material (4) is inserted into the inner diameter side of the outer joint material (3), the pin (18) is inserted into each pin insertion hole (10) (12), and the inner joint material (4 ) And the outer joint material (3).

この機械式継手は、上鋼管杭1の下端に内継手材4のつば部13の上面をその軸心が一致した状態で溶接すると共に、下鋼管杭2の上面に外継手材3の下端面をその軸心が一致した状態で溶接し、下鋼管杭2の上面に固定されている外継手材3の内径側に内継手材4の基部8を挿入し、それぞれのピン挿入孔10、12の位置を合わせ、ここにピン18を差し込んで、下鋼管杭2と上鋼管杭1との結合を行うものであり、一対の継手同士の当接及びピンを介する場合の伝達特性をそれぞれ巧みに利用しており、圧縮力が作用する場合は、内継手材のつば部と外継手材の上端面の当接により、引っ張り力が作用する場合はピンにより力を伝達しており、実際の基礎杭の負荷条件を考慮した無駄のない簡潔な構造で、十分な信頼性を持ちながら、低いコストで製造することが可能で、現場での取付け結合作業も極めて容易に実施出来、高い実用性を有している。しかしながら、この特願2007−190470として提案した機械式継手は、この機械式継手で結合した鋼管杭に作用する曲げモーメントについては、特段の配慮はなされていなかった。これは、前述の通り、基礎杭に常時作用する力は、杭軸方向の圧縮力が中心で、曲げモーメントが作用するのは、地震や強風など異常時における短時間に過ぎなく、かつその値は鋼管の曲げ耐力に比べて十分に小さい、というのがその主な理由である。この特願2007−190470の機械式継手で結合した鋼管に大きな曲げモーメントが作用した時は、圧縮側では図6に示す様に、引張側では図7に示す様に、それぞれ内継手材と外継手材の離間を伴う「く」の字形の変形が生じる。なお、この図6及び図7は曲げモーメント作用時の変形状態をよりわかりやすく説明する為、変形を誇張して描いたものであり、実際の変形はこれより小さいことはもちろんである。ちなみに、所定の強度設計のもとで製造された機械式継手なら、曲げ耐力(最終強度)は鋼管と同等であるが、曲げ変位は鋼管より大きくなってしまう。たとえば、鋼管単体及び鋼管単体と同等な曲げ耐力を持った特願2007−190470に係る機械式継手を取付けた鋼管とをそれぞれ用意し、これらに対して図8に示す様に、曲げ荷重を加えて曲げ試験を実施して比較すると、図9のグラフに示す様に、継手付き鋼管の場合には、同じ曲げモーメントに対して中央部の変位が鋼管単体の場合に比べ大きくなってしまう。つまり、継手付き鋼管の場合、鋼管単体に比べ見かけ上の杭としての曲げ剛性は、小さいことになる。一般的には、継手部に大きな曲げモーメントが作用することは少なく、上記の現象が問題となることは少ないが、地震時に大きな曲げモーメントが発生する杭頭近くに継手を設けた場合などでは、設計上無視出来ない問題となる。本発明者は、特願2007−190470として提案した機械式継手における曲げモーメント作用時の見かけ上の曲げ剛性低下の現象を解消せんとして研究を行った結果、この曲げ剛性低下の現象を阻止することができる機械式継手を開発することに成功し、本発明としてここに提案するものである。   This mechanical joint is welded to the lower end of the upper steel pipe pile 1 with the upper surface of the collar portion 13 of the inner joint material 4 in a state where the axial center thereof coincides, and to the upper surface of the lower steel pipe pile 2 the lower end surface of the outer joint material 3. And the base 8 of the inner joint material 4 is inserted into the inner diameter side of the outer joint material 3 fixed to the upper surface of the lower steel pipe pile 2, and the respective pin insertion holes 10, 12 are welded. The pin 18 is inserted here and the lower steel pipe pile 2 and the upper steel pipe pile 1 are connected to each other, and the transmission characteristics in the case of contact between a pair of joints and via the pin are skillful. When the compressive force is applied, the contact between the flange of the inner joint material and the upper end surface of the outer joint material is used. When the tensile force is applied, the force is transmitted by the pin. With a simple structure without waste considering the load conditions of piles, while having sufficient reliability, Can be manufactured at a cost have, attaching binding work at the site can also performed very easily, and has high practicality. However, in the mechanical joint proposed as this Japanese Patent Application No. 2007-190470, no special consideration has been given to the bending moment acting on the steel pipe pile connected by this mechanical joint. As described above, the force that always acts on the foundation pile is centered on the compressive force in the direction of the pile axis, and the bending moment acts only for a short time in the event of an abnormality such as an earthquake or strong wind. The main reason is that it is sufficiently smaller than the bending strength of steel pipes. When a large bending moment is applied to the steel pipe joined by the mechanical joint of Japanese Patent Application No. 2007-190470, as shown in FIG. 6 on the compression side and as shown in FIG. A "<"-shaped deformation accompanied by the separation of the joint material occurs. 6 and 7 illustrate the deformation state when the bending moment is applied in an easy-to-understand manner, and the deformation is exaggerated. Of course, the actual deformation is smaller than this. Incidentally, a mechanical joint manufactured under a predetermined strength design has the same bending strength (final strength) as that of a steel pipe, but the bending displacement becomes larger than that of the steel pipe. For example, a steel pipe and a steel pipe to which a mechanical joint according to Japanese Patent Application No. 2007-190470 having a bending strength equivalent to that of the steel pipe is prepared, and a bending load is applied to them as shown in FIG. When the bending test is performed and compared, as shown in the graph of FIG. 9, in the case of the steel pipe with a joint, the displacement at the center portion becomes larger than the case of the steel pipe alone with respect to the same bending moment. That is, in the case of a steel pipe with a joint, the bending rigidity as an apparent pile is smaller than that of a steel pipe alone. In general, a large bending moment is unlikely to act on the joint, and the above phenomenon is unlikely to be a problem, but when a joint is installed near a pile head where a large bending moment occurs during an earthquake, This is a problem that cannot be ignored in design. The present inventor conducted research to eliminate the phenomenon of apparent bending rigidity reduction at the time of bending moment action in the mechanical joint proposed as Japanese Patent Application No. 2007-190470. The present inventors have succeeded in developing a mechanical joint that can be used, and propose it as the present invention.

肉厚円筒状をなした基部(8)の一方の端縁から外側に向かって直角に肉厚円環状のつば部(13)が一体的に延設された鋼製のつば付き円筒状をなし、つば部(13)の外径は接合対象である一対の鋼管杭の外径とほぼ同じに、基部(8)の外径は外継手材(3)の内径よりわずかに小さくなる様にそれぞれ形成されており、前記つば部(13)の端面には一方の鋼管杭の端面がその軸心を一致させた状態で溶接固着されると共に、前記基部(8)の周壁(16)には軸心から直角の方向を向かって放射状に複数のボルト挿入孔(35)が間隔をあけて穿かれている内継手材(4); 接合対象である鋼管杭の外径とほぼ同じ外径、前記内継手材(4)の基部(8)の外径よりわずかに大きな内径をそれぞれ有し、もう一方の鋼管杭の端面がその軸心を一致させた状態で溶接固着されると共に、前記内継手材(4)の基部(8)に穿かれているボルト挿入孔(35)に対応する箇所にボルト挿入孔(36)が穿かれている鋼製の肉厚円筒状の外継手材(3); とからなり、外継手材(3)の内径側に内継手材(4)の基部(8)を挿入し、それぞれのボルト挿入孔(35)(36)にボルト(34)を差し込み、内継手材の外周面と外継手材の内周面とをボルトによって締め付けることにより、内継手材(4)と外継手材(3)とを結合する様にして、上記課題を解決した。   Thick-cylindrical cylindrical portion with a thick annular ring (13) integrally extending perpendicularly outward from one end of the thick cylindrical base (8) The outer diameter of the collar portion (13) is substantially the same as the outer diameter of the pair of steel pipe piles to be joined, and the outer diameter of the base portion (8) is slightly smaller than the inner diameter of the outer joint material (3). And the end face of one of the steel pipe piles is welded and fixed to the end face of the collar part (13) in a state in which its axis is aligned, and the shaft (1) is attached to the peripheral wall (16) of the base part (8). An inner joint material (4) in which a plurality of bolt insertion holes (35) are drilled at intervals from each other in a direction perpendicular to the center; an outer diameter substantially the same as an outer diameter of a steel pipe pile to be joined; The end face of the other steel pipe pile, each having an inner diameter slightly larger than the outer diameter of the base (8) of the inner joint material (4) A bolt insertion hole (36) is formed at a position corresponding to the bolt insertion hole (35) formed in the base portion (8) of the inner joint material (4) while being welded and fixed with the axial centers thereof matched. A steel-made cylindrical outer joint material (3) which is perforated, and the base (8) of the inner joint material (4) is inserted into the inner diameter side of the outer joint material (3). The bolts (34) are inserted into the bolt insertion holes (35) and (36), and the outer peripheral surface of the inner joint material and the inner peripheral surface of the outer joint material are tightened with bolts, whereby the inner joint material (4) and the outer joint material ( The above problem was solved by combining 3).

上鋼管杭1の下端に内継手材4のつば部13の上面をその軸心が一致した状態で溶接すると共に、下鋼管杭2の上面に外継手材3の下端面をその軸心が一致した状態で溶接し、下鋼管杭2の上面に固定されている外継手材3の内径側に内継手材4の基部8を挿入し、それぞれのボルト挿入孔35、36の位置を合わせ、ここにボルト34を差し込んで、下鋼管杭2と上鋼管杭1との結合を行う。この状態で、上鋼管杭1から下方に向かって圧縮力が加わると、圧縮力は内継手材4のつば部13から外継手材3の端面に直接伝達されるので、非常に単純な力の伝達経路となる。従って、互いに当接する部分には支圧応力が生じるが、その分布は厚さ方向へ均等となり、かつ当接する面積は外継手材3の断面積に等しく、十分に広い為、大きな支圧応力差は発生せず、圧縮力は下鋼管杭2に無理なく伝達される。一方、上鋼管杭1からの引っ張り力がかかる場合は、引っ張り力は内継手材4のつば部13から基部8に伝わり、次にボルト34に鉛直方向せん断力として伝わり、更に外継手材3に引っ張り力として伝達されることになる。この場合、それぞれの接触部に発生する支圧応力度は単位面積当たりで比較した場合、上述の圧縮力に比べて非常に大きくなるが、引っ張り力が基礎杭に作用するのは地震や強風など異常時の短時間だけであり、しかも、引っ張り力は圧縮力に比べ、通常数分の1以下と小さく、その発生頻度も少ないので、ボルト34及びその接触部分は十分にこの支圧応力に耐え、引っ張り力を確実に伝達することが可能である。   The upper surface of the flange portion 13 of the inner joint material 4 is welded to the lower end of the upper steel pipe pile 1 in a state where the axis is aligned, and the lower end surface of the outer joint material 3 is aligned with the upper surface of the lower steel pipe pile 2 The base 8 of the inner joint material 4 is inserted into the inner diameter side of the outer joint material 3 fixed to the upper surface of the lower steel pipe pile 2 and the positions of the respective bolt insertion holes 35 and 36 are aligned. The bolt 34 is inserted into the lower steel pipe pile 2 and the upper steel pipe pile 1 is connected. In this state, when a compressive force is applied downward from the upper steel pipe pile 1, the compressive force is directly transmitted from the collar portion 13 of the inner joint member 4 to the end face of the outer joint member 3, so that a very simple force can be obtained. It becomes a transmission path. Therefore, bearing stress is generated in the abutting portions, but the distribution is uniform in the thickness direction, and the abutting area is equal to the cross-sectional area of the outer joint material 3 and is sufficiently wide, so that a large bearing stress difference occurs. No compression occurs, and the compressive force is transmitted to the lower steel pipe pile 2 without difficulty. On the other hand, when a tensile force is applied from the upper steel pipe pile 1, the tensile force is transmitted from the flange portion 13 of the inner joint material 4 to the base portion 8, and then transmitted to the bolt 34 as a vertical shearing force, and further to the outer joint material 3. It will be transmitted as a pulling force. In this case, the degree of bearing stress generated in each contact area is much larger than the above-mentioned compressive force when compared per unit area, but the tensile force acts on the foundation pile such as earthquake and strong wind It is only a short time at the time of abnormality, and the pulling force is usually less than a fraction of that of the compressive force, and its frequency of occurrence is low. Therefore, the bolt 34 and its contact portion sufficiently withstand this bearing stress. It is possible to reliably transmit the pulling force.

更に、曲げモーメントが作用する場合は、円環断面でみると、継手の略半分には図6に示す様な圧縮力が作用し、残り略半分には図7に示す様な引っ張り力が発生するが、外継手材3と内継手材4とはボルト34によって締め付けられ、強度的には一体化されているので、これらの力の伝達は鋼管単体の場合と同じになる。従って、図6及び図7に示す場合の様に、外継手材3と内継手材4とが離間して「く」の字形に変形することはなく、両者は一体として曲げモーメントに耐えることになる。一方、せん断力が作用する場合、上鋼管杭1からのせん断力は内継手材4のつば部13を介して内継手材4の基部8に伝わり、この基部8が外継手材3を押すことにより、これに伝達される。又、回転トルク(ねじりせん断力)が作用する場合、内継手材4のつば部13から基部8にねじりせん断力として伝わり、次にボルト34に水平方向せん断力として伝達され、これから外継手材3にねじりせん断力として伝わることになる。なお、回転貫入杭の施工時には、鋼管杭のねじり耐力と同程度の値の回転トルクが頻繁に発生するが、鋼管のねじり耐力と同等な回転トルクに対抗するボルト34のせん断力は、鋼管の引っ張り耐力と同等な引っ張り力に対抗するボルト34のせん断力に比べ、理論上およそ√1/3にすぎないので、ボルト34は十分にこの回転トルクに対抗することが出来る。   Further, when a bending moment is applied, when viewed from the annular cross section, a compressive force as shown in FIG. 6 is applied to substantially half of the joint, and a tensile force as shown in FIG. However, since the outer joint material 3 and the inner joint material 4 are fastened by bolts 34 and integrated in terms of strength, the transmission of these forces is the same as in the case of a steel pipe alone. Therefore, unlike the case shown in FIGS. 6 and 7, the outer joint material 3 and the inner joint material 4 are not separated and deformed into a “<” shape, and both are resistant to bending moment as a unit. Become. On the other hand, when a shearing force acts, the shearing force from the upper steel pipe pile 1 is transmitted to the base 8 of the inner joint material 4 via the collar portion 13 of the inner joint material 4, and this base 8 presses the outer joint material 3. Is transmitted to this. Further, when rotational torque (torsional shearing force) acts, it is transmitted as a torsional shearing force from the collar portion 13 of the inner joint material 4 to the base portion 8, and then as a horizontal shearing force to the bolt 34. It is transmitted as torsional shear force. In addition, during the construction of the rotary penetration pile, a rotational torque with a value similar to that of the steel pipe pile is frequently generated. Compared to the shearing force of the bolt 34 that opposes the tensile force equivalent to the tensile strength, the bolt 34 can sufficiently resist this rotational torque because it is theoretically only √1 / 3.

この様に、この発明に係る鋼管杭の接合用機械式継手は、外継手材3と内継手材4の端面同士を当接させ、しかも、両者の側面同士をボルトによって締め付けて、両者を強度的に一体化させているので、圧縮力が作用する場合は、内継手材4のつば部13と外継手材3の上端面6との当接によって力が伝達されると共に、曲げモーメントによる引っ張り力と圧縮力とが作用した場合には、外継手材3と内継手材4とが相互にボルトで接合されている為、離間しにくく、見かけ上の剛性の低下が大幅に軽減され、予想外の曲げモーメントにも十分耐えることが可能である。この様に、実際の基礎杭の荷重条件を考慮した無駄のない簡潔な構造で、十分な信頼性を持ちながら、低いコストで製造することが可能で、現場での取付け結合作業も極めて容易に実施出来る効果を有し、高い実用性を有するものである。   As described above, the mechanical joint for joining steel pipe piles according to the present invention brings the end surfaces of the outer joint material 3 and the inner joint material 4 into contact with each other, and tightens both side surfaces with bolts to strengthen the strength of the two. When the compressive force is applied, the force is transmitted by the contact between the flange portion 13 of the inner joint material 4 and the upper end surface 6 of the outer joint material 3, and the tension is caused by the bending moment. When force and compressive force are applied, the outer joint material 3 and the inner joint material 4 are joined to each other by bolts, so they are difficult to be separated from each other, and the decrease in apparent rigidity is greatly reduced. It can withstand external bending moments. In this way, it is possible to manufacture at a low cost while having sufficient reliability with a simple structure with no waste considering the load conditions of the actual foundation pile, and it is extremely easy to install and connect on site. It has an effect that can be implemented and has high practicality.

筒状をなした外継手材と内継手材の側面同士をボルトによって締め付けて結合した点に最大の特徴が存する。   The greatest feature lies in that the side surfaces of the outer joint material and the inner joint material that are formed into a cylindrical shape are joined together by fastening them with bolts.

図10はこの発明に係る鋼管杭の接合用機械式継手の実施例1の斜視図、図11はそれぞれ鋼管杭に固着した状態の斜視図、図12は同じく、鋼管杭を結合した状態の斜視図、図13は図12における矢視A−A線断面図、図14は図12における矢視B−B線断面図である。   FIG. 10 is a perspective view of Embodiment 1 of a mechanical joint for joining steel pipe piles according to the present invention, FIG. 11 is a perspective view in a state of being fixed to the steel pipe pile, and FIG. 13 is a cross-sectional view taken along line AA in FIG. 12, and FIG. 14 is a cross-sectional view taken along line BB in FIG.

図中1は接合対象である上鋼管杭、2は下鋼管杭である。この発明に係る鋼管杭の接合用機械式継手は、この上鋼管杭1の下端と下鋼管杭2の上端とを直列状に接合する為に用いるものであり、鋼製の内継手材4、外継手材3及び複数のボルト34とによって構成されている。   In the figure, 1 is an upper steel pipe pile to be joined, and 2 is a lower steel pipe pile. The mechanical joint for joining steel pipe piles according to the present invention is used to join the lower end of the upper steel pipe pile 1 and the upper end of the lower steel pipe pile 2 in series, and is made of a steel inner joint material 4, The outer joint material 3 and a plurality of bolts 34 are used.

内継手材4は、肉厚円筒状をなした基部8の上縁から外側に向かって直角に肉厚円環状のつば部13が一体的に延設された鋼製のつば付き円筒状の部材であり、つば部13の外径は上鋼管杭1の外径とほぼ同じ、基部8の外径は下鋼管杭2の内径よりわずかに小さくなる様に、それぞれ形成されており、前記つば部13の上面5には上鋼管杭1の下端面が、その軸心を一致させた状態で、溶接により固着される様になっている。又、基部8の周壁16には軸心から直角の方向へ向かって放射状に複数のボルト挿入孔35が間隔をあけて穿かれている。   The inner joint member 4 is a cylindrical member with a flange made of steel, in which a thick annular collar 13 is integrally extended perpendicularly from the upper edge of the base 8 having a thick cylindrical shape toward the outside. The outer diameter of the collar portion 13 is substantially the same as the outer diameter of the upper steel pipe pile 1, and the outer diameter of the base portion 8 is formed to be slightly smaller than the inner diameter of the lower steel pipe pile 2, respectively. The lower end surface of the upper steel pipe pile 1 is fixed to the upper surface 5 of 13 by welding in a state where the axes are aligned. Further, a plurality of bolt insertion holes 35 are formed in the peripheral wall 16 of the base portion 8 at intervals from each other in a direction perpendicular to the axis.

一方、外継手材3は下鋼管杭2の外径とほぼ同じ外径、前記内継手材4の基部8の外径よりわずかに大きい内径をそれぞれ有する鋼製の肉厚円筒状の部材であり、この外継手材3の内径側に前記内継手材4の基部8を挿入した際、内継定材4の基部8に穿かれているボルト挿入孔35に対応する箇所には同径のボルト挿入孔36が穿かれており、これらボルト挿入孔35、36にボルト34を差し込み、内継手材4の内側からナット21を螺合させることにより、外継手材3の内周面と内継手材4の外周面とを強固に締め付けて、両者を結合する様になっている。なお、図中22はボルト34の頭部である。そして、この外継手材3の下端は下鋼管杭2の上端面6に、その軸心が一致した状態で、溶接によって固着される様になっている。なお、この実施例においては、上鋼管杭1に内継手材4を、下鋼管杭2に外継手材3を溶接固着する様にしているが、これとは逆に、上鋼管杭1に外継手材3を、下鋼管杭2に内継手材4を溶接固着する様にしても良い。   On the other hand, the outer joint material 3 is a steel thick cylindrical member having an outer diameter substantially the same as the outer diameter of the lower steel pipe pile 2 and an inner diameter slightly larger than the outer diameter of the base 8 of the inner joint material 4. When the base portion 8 of the inner joint material 4 is inserted into the inner diameter side of the outer joint material 3, bolts of the same diameter are provided at locations corresponding to the bolt insertion holes 35 formed in the base portion 8 of the inner joint material 4. Insertion holes 36 are formed, and bolts 34 are inserted into these bolt insertion holes 35, 36, and the nut 21 is screwed from the inside of the inner joint material 4, whereby the inner peripheral surface of the outer joint material 3 and the inner joint material The outer peripheral surface of 4 is firmly tightened to couple them together. In the figure, reference numeral 22 denotes a head of the bolt 34. And the lower end of this outer joint material 3 is fixed to the upper end surface 6 of the lower steel pipe pile 2 by welding in a state in which its axial center coincides. In this embodiment, the inner joint material 4 is welded and fixed to the upper steel pipe pile 1 and the outer joint material 3 is welded and fixed to the lower steel pipe pile 2. The joint material 3 may be fixed to the lower steel pipe pile 2 by welding.

この外継手材3は既製の適当な鋼管を短尺切断したものでも、鍛造や鋳鋼で製造したものでも良く、内径側の真円度や寸法が不適当な場合は、旋盤で内径側を切削加工しても良い。一方、内継手材4は、シームレス鋼管や遠心力鋳鋼管などの肉厚の鋼管を短尺切断したものや、鍛造で製作した円筒体の外周面の下部を数値制御旋盤で切削して、L字状加工を施したものを用いても良い。   The outer joint material 3 may be a short cut of a suitable ready-made steel pipe, or may be manufactured by forging or cast steel. If the roundness and dimensions on the inner diameter side are inappropriate, the inner diameter side is cut with a lathe. You may do it. On the other hand, the inner joint material 4 is obtained by cutting a thin steel pipe such as a seamless steel pipe or a centrifugal cast steel pipe into a short length or by cutting the lower part of the outer peripheral surface of a cylindrical body manufactured by forging with a numerically controlled lathe. You may use what gave the shape process.

なお、これら切削加工は、管軸方向へギアを形成する場合などとは異なり、周方向へ一定の形状であるので、素材を回転させた状態で数値制御旋盤の刃物を当てれば短時間で簡単に実施することが出来る。又、ボルト挿入孔35、36は円形断面であるので数値制御運転が可能な横向きボール盤を使用すれば、短時間で正確に形成することが出来る。又、ボルト34及びこれに螺合するナット21は必要な強度を満たすものであるなら、既製のものを用いることが出来る。   These cutting processes are different from the case where gears are formed in the tube axis direction, etc., and since they have a constant shape in the circumferential direction, if the blade of the numerically controlled lathe is applied while the material is rotated, it is easy in a short time. Can be implemented. Further, since the bolt insertion holes 35 and 36 have a circular cross section, they can be accurately formed in a short time by using a horizontal drilling machine capable of numerical control operation. The bolts 34 and the nuts 21 to be screwed to the bolts 34 can be ready-made as long as they satisfy the required strength.

更に、上述の通り、内継手材4は上鋼管杭1の下端に、外継手材3は下鋼管杭2の上端にそれぞれ溶接によって固着されるのであるが、図15に示すものの様に、内継手材4のつば部13の外縁上部及び外継手材3の外縁下部をそれぞれ面取りし、開先溶接用の斜面19、20を形成しておけば、溶接作業をより簡単、確実、強固に行うことが出来、更に好都合である。この開先溶接用の斜面19、20は旋盤により簡単に形成することが出来る。なお、この図10〜図14に示す実施例においては、ボルト34の頭部22は外継手材3の外面より外側に突出しており、既存のボルトをそのまま用いることが出来ると共に、加工も容易であるという利点を有しており、最も基本的な構造であるが、設計施工上、ボルト34の頭部22が外継手材3の外面より外側に突出することが許されない場合には、図16に示す様に、両端にネジ溝23、24が形成されている無頭ボルト37を用いると共に、外継手材3のボルト挿入孔36にネジ溝25を形成し、外継手材3のネジ溝25と無頭ボルト37のネジ溝24とを螺合し、内継手材4から内側に突出したネジ溝23にナット21を螺合することにより、外継手材3と内継手材4とを締め付けて結合する様にしても良い。なお、図中26はこの無頭ボルト24を回転させる為の工具を係合する係合穴である。又、図17に示すものの様に、内継手材4のボルト挿入孔35及び外継手材3のボルト挿入孔36に共にネジ溝27、28を形成すると共に、全周面にわたってネジ溝29が形成されている無頭ボルト30を用意し、この無頭ボルト30によって外継手材3の内面と内継手材4の外周面とを結合する様にしても良い。更に、外継手材3と内継手材4とを結合する為のボルト挿入孔35及び36を一列に配列するだけではなく、図22に示す様に、ボルト挿入孔35及び36を上下二段に配列しても良い。この様にボルト挿入孔35及び36を上下二段に配置した場合は、外継手材3及び内継手材4の長さを一列配置の場合に比べ長くせざるを得ないが、図6及び図7に示す様な「く」の字形の変形がより起きにくくなる利点がある。なお、図10〜図14及び図16に示す実施例においては、それぞれナット21が用いられており、ナット21は内継手材4の内側に位置するので、ボルト34への螺合作業の際にその位置を適正に保持するのはなかなかむずかしいが、図18に示す様に、内継手材4のボルト挿入孔35にネジ溝27を形成し、有頭のボルト34の外周面に形成されているネジ溝をこのボルト挿入孔35に形成されているネジ溝27に螺合させることにより、外継手材3の内面と内継手材4の外周面とを締め付けて結合する様にすれば、螺合作業の際に位置の保持が面倒であるナットを用いる必要がなくなるので、作業性が向上する。又、図19に示す様に、ナット21を適正な位置に溶接や接着剤などの接着手段38で予め固定しておく様にしても良く、この場合には、ボルト34との螺合作業がしやすくなる。又、図20に示す様に、ボルト挿入孔35の内側にナット21が遊転しない大きさの箱形のナットホルダー31を固定しておき、この中にナット21を入れておく様にしても良く、この場合には、ボルト34の先端側にはテーパが形成されているので、ボルト34の回転に伴い、その先端側はこのナットホルダー31中のナット21のネジ孔にスムーズに案内され、ナット21はボルト34に引き寄せられて両者は強固に結合されることになり、ボルト締め作業がより容易に行える。なお、このナットホルダー31は薄鋼板を折り曲げて製作したり、角パイプを短尺切断し、これに蓋を付けるなどすれば、安価に製作することが出来る。更に、図21に示す様に、内継手材4の内側に、ボルト挿入孔35と間隔をおいて、円環状をなしたナット保持用リング32を支持材33を介して同心円状に固定して、このナット保持リング32にナット21を固定しておく様にしても良く、この場合にもボルト34とナット21の螺合作業は容易に実施出来る。この様に、この発明に係る鋼管杭の接合用機械式継手は、圧縮力及び引っ張り力だけではなく、曲げモーメントがかかる場合にも必要な強度、剛性を保持することが出来、十分な信頼性を持ちながら、低いコストで製造することが可能で、現場での取付け結合作業も容易であり、極めて高い実用性を有している。   Further, as described above, the inner joint material 4 is fixed to the lower end of the upper steel pipe pile 1 and the outer joint material 3 is fixed to the upper end of the lower steel pipe pile 2 by welding, but as shown in FIG. By chamfering the outer edge upper portion of the flange portion 13 of the joint material 4 and the outer edge lower portion of the outer joint material 3 to form the slopes 19 and 20 for groove welding, the welding operation can be performed more easily, reliably and firmly. More convenient. The slopes 19 and 20 for groove welding can be easily formed by a lathe. 10 to 14, the head portion 22 of the bolt 34 projects outward from the outer surface of the outer joint material 3, and the existing bolt can be used as it is, and the processing is also easy. If the head 22 of the bolt 34 is not allowed to protrude outward from the outer surface of the outer joint material 3 in terms of design and construction, it is the most basic structure. As shown in FIG. 4, a headless bolt 37 having screw grooves 23 and 24 formed at both ends is used, and a screw groove 25 is formed in the bolt insertion hole 36 of the outer joint material 3, so that the screw groove 25 of the outer joint material 3 is formed. And the screw groove 24 of the headless bolt 37 are screwed together, and the nut 21 is screwed into the screw groove 23 protruding inward from the inner joint material 4, thereby tightening the outer joint material 3 and the inner joint material 4. You may make it combine. In the figure, reference numeral 26 denotes an engagement hole for engaging a tool for rotating the headless bolt 24. Further, as shown in FIG. 17, screw grooves 27 and 28 are formed in the bolt insertion hole 35 of the inner joint material 4 and the bolt insertion hole 36 of the outer joint material 3, and the screw groove 29 is formed over the entire circumferential surface. The headless bolt 30 may be prepared, and the inner surface of the outer joint material 3 and the outer peripheral surface of the inner joint material 4 may be coupled by the headless bolt 30. Furthermore, not only the bolt insertion holes 35 and 36 for connecting the outer joint material 3 and the inner joint material 4 are arranged in a line, but also the bolt insertion holes 35 and 36 are arranged in two upper and lower stages as shown in FIG. It may be arranged. In this way, when the bolt insertion holes 35 and 36 are arranged in two upper and lower stages, the lengths of the outer joint material 3 and the inner joint material 4 must be made longer than in the case of one row arrangement. There is an advantage that the deformation of the “<” shape as shown in FIG. 10 to 14 and FIG. 16, the nut 21 is used, and the nut 21 is located inside the inner joint material 4. Therefore, the screw 21 is screwed into the bolt 34. Although it is difficult to hold the position properly, as shown in FIG. 18, a screw groove 27 is formed in the bolt insertion hole 35 of the inner joint member 4 and is formed on the outer peripheral surface of the headed bolt 34. If the screw groove is screwed into the screw groove 27 formed in the bolt insertion hole 35 so that the inner surface of the outer joint material 3 and the outer peripheral surface of the inner joint material 4 are tightened and coupled, Since it is not necessary to use a nut that is troublesome to maintain the position during work, workability is improved. Further, as shown in FIG. 19, the nut 21 may be fixed in advance at an appropriate position by an adhesive means 38 such as welding or adhesive. In this case, the screwing operation with the bolt 34 is performed. It becomes easy to do. Further, as shown in FIG. 20, a box-shaped nut holder 31 of a size that does not allow the nut 21 to rotate freely is fixed inside the bolt insertion hole 35, and the nut 21 may be put therein. Well, in this case, since the taper is formed on the tip side of the bolt 34, the tip side is smoothly guided to the screw hole of the nut 21 in the nut holder 31 as the bolt 34 rotates, The nut 21 is attracted to the bolt 34 and both are firmly coupled, so that the bolt fastening operation can be performed more easily. The nut holder 31 can be manufactured at low cost by bending a thin steel plate or by cutting a square pipe into short pieces and attaching a lid to the nut holder 31. Further, as shown in FIG. 21, an annular nut holding ring 32 is concentrically fixed via a support member 33 inside the inner joint member 4 at a distance from the bolt insertion hole 35. The nut 21 may be fixed to the nut holding ring 32. In this case, the bolt 34 and the nut 21 can be easily screwed together. As described above, the mechanical joint for joining steel pipe piles according to the present invention can maintain not only the compressive force and tensile force but also the necessary strength and rigidity even when a bending moment is applied, and has sufficient reliability. It can be manufactured at a low cost while having a low profile, and it is easy to mount and connect on site, and has extremely high practicality.

基礎杭を用いる各種建築土木工事において利用可能である。   It can be used in various civil engineering works using foundation piles.

特願2007−190470で提案した鋼管杭の接合用機械式継手の実施例1の斜視図。The perspective view of Example 1 of the mechanical coupling for joining of the steel pipe pile proposed by Japanese Patent Application No. 2007-190470. 同じく、それぞれ鋼管杭に固着した状態の斜視図。Similarly, the perspective view of the state which adhered to the steel pipe pile, respectively. 同じく、鋼管杭を接合した状態の斜視図。Similarly, the perspective view of the state which joined the steel pipe pile. 図3における矢視A−A線断面図。FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. 図4における矢視C−C線断面図。CC sectional view taken on the line CC in FIG. 同じく、曲げモーメントが作用した場合の変形状況を説明する為の圧縮側の断面図。Similarly, sectional drawing of the compression side for demonstrating the deformation | transformation condition when a bending moment acts. 同じく、曲げモーメントが作用した場合の変形状況を説明する為の引っ張り側の断面図。Similarly, sectional drawing on the pulling side for explaining a deformation situation when a bending moment is applied. 曲げモーメントを影響を調べる為に実施する荷重試験の方法を説明した説明図。Explanatory drawing explaining the method of the load test implemented in order to investigate the influence of a bending moment. 図8に示す荷重試験の結果を示したグラフ。The graph which showed the result of the load test shown in FIG. 鋼管杭の接合用機械式継手の実施例1の斜視図。The perspective view of Example 1 of the mechanical joint for joining of a steel pipe pile. 同じく、それぞれ鋼管杭に固着した状態の斜視図。Similarly, the perspective view of the state which adhered to the steel pipe pile, respectively. 同じく、鋼管杭を接合した状態の斜視図。Similarly, the perspective view of the state which joined the steel pipe pile. 図12における矢視B−B線断面図。FIG. 13 is a sectional view taken along line BB in FIG. 12. 図13における矢視D−D線断面図。FIG. 14 is a sectional view taken along the line DD in FIG. 13. 開先溶接用の斜面を設けた実施例の部分断面図。The fragmentary sectional view of the Example which provided the slope for groove welding. この発明に係る鋼管杭の接合用機械式継手の他の実施例の部分断面図。The fragmentary sectional view of the other Example of the mechanical joint for joining of the steel pipe pile concerning this invention. 同じく、更に他の実施例の部分断面図。Similarly, the fragmentary sectional view of other Examples. ナット21を省略した実施例の部分断面図。The fragmentary sectional view of the Example which abbreviate | omitted the nut 21. FIG. ナット21の脱落防止手段を設けた実施例の部分断面図。The fragmentary sectional view of the Example which provided the drop-off prevention means of the nut 21. FIG. 同じく、ナット21の他の脱落防止手段を設けた実施例の部分断面図。Similarly, the fragmentary sectional view of the Example which provided the other drop-off prevention means of the nut 21. FIG. 同じく、ナット21の更に別の脱落防止手段を設けた実施例の部分断面図。Similarly, the fragmentary sectional view of the Example which provided another drop-off prevention means of the nut 21. FIG. ボルト挿入孔35及び36をそれぞれ二段に設けた実施例の腰部の斜視図。The perspective view of the waist | lumbar part of the Example which provided the bolt insertion hole 35 and 36 in two steps, respectively.

符号の説明Explanation of symbols

1 上鋼管杭
2 下鋼管杭
3 外継手材
4 内継手材
5 上面
6 上端面
8 基部
10 ピン挿入孔
12 ピン挿入孔
13 つば部
16 周壁
18 ピン
19 開先溶接用の斜面
20 開先溶接用の斜面
21 ナット
22 頭部
23 ネジ溝
24 ネジ溝
25 ネジ溝
26 係合穴
27 ネジ溝
28 ネジ溝
29 ネジ溝
30 無頭ボルト
31 ナットホルダー
32 ナット保持リング
33 支持材
34 ボルト
35 ボルト挿入孔
36 ボルト挿入孔
37 無頭ボルト
38 接着手段
DESCRIPTION OF SYMBOLS 1 Upper steel pipe pile 2 Lower steel pipe pile 3 Outer joint material 4 Inner joint material 5 Upper surface 6 Upper end surface 8 Base part 10 Pin insertion hole 12 Pin insertion hole 13 Collar part 16 Perimeter wall 18 Pin 19 Slope 20 for groove welding For groove welding 21 Nut 22 Head 23 Screw groove 24 Screw groove 25 Screw groove 26 Engagement hole 27 Screw groove 28 Screw groove 29 Screw groove 30 Headless bolt 31 Nut holder 32 Nut holding ring 33 Support material 34 Bolt 35 Bolt insertion hole 36 Bolt insertion hole 37 Headless bolt 38 Adhesive means

Claims (7)

肉厚円筒状をなした基部の一方の端縁から外側に向かって直角に肉厚円環状のつば部が一体的に延設された鋼製のつば付き円筒状をなし、つば部の外径は接合対象である一対の鋼管杭の外径とほぼ同じに、基部の外径は外継手材の内径よりわずかに小さくなる様にそれぞれ形成されており、前記つば部の端面には一方の鋼管杭の端面がその軸心を一致させた状態で溶接固着されると共に、前記基部の周壁には軸心から直角の方向を向かって放射状に複数のボルト挿入孔が間隔をあけて穿かれている内継手材; 接合対象である鋼管杭の外径とほぼ同じ外径、前記内継手材の基部の外径よりわずかに大きな内径をそれぞれ有し、もう一方の鋼管杭の端面がその軸心を一致させた状態で溶接固着されると共に、前記内継手材の基部に穿かれているボルト挿入孔に対応する箇所に同径のボルト挿入孔が穿かれている鋼製の肉厚円筒状の外継手材; とからなり、外継手材の内径側に内継手材の基部を挿入し、それぞれのボルト挿入孔にボルトを差し込み、内継手材の外周面と外継手材の内周面とをボルトによって締めることにより、内継手材と外継手材とを結合する様にしたことを特徴とする鋼管杭の機械式継手。 The outer diameter of the collar is made of a steel collar with a thick-walled annular collar integrally extending perpendicularly from one end of the thick-walled base to the outside. Is formed so that the outer diameter of the base is slightly smaller than the inner diameter of the outer joint material, approximately the same as the outer diameter of the pair of steel pipe piles to be joined. The pile end face is welded and fixed with its axial center aligned, and a plurality of bolt insertion holes are formed at intervals in the peripheral wall of the base in a direction perpendicular to the axial center. Inner joint material; each has an outer diameter substantially the same as the outer diameter of the steel pipe pile to be joined, and an inner diameter slightly larger than the outer diameter of the base of the inner joint material, and the end face of the other steel pipe pile has its axis center It is welded and fixed in a matched state, and is drilled in the base of the inner joint material A thick cylindrical outer joint material made of steel having a bolt insertion hole of the same diameter at a position corresponding to the bolt insertion hole; and the base of the inner joint material is inserted into the inner diameter side of the outer joint material. The inner joint material and the outer joint material are joined by inserting bolts into the respective bolt insertion holes and tightening the outer peripheral surface of the inner joint material and the inner peripheral surface of the outer joint material with bolts. A steel pipe pile mechanical joint. 内継手材の内側にナットを位置させ、有頭のボルトのネジ溝を前記ナットに螺合させることにより、外継手材と内継手材とを締め付けて結合することを特徴とする請求項1記載の鋼管杭の機械式継手。 2. The outer joint material and the inner joint material are fastened and joined by positioning a nut inside the inner joint material and screwing a thread groove of a headed bolt into the nut. Steel pipe pile mechanical joint. 内継手材のボルト挿入孔にネジ溝を形成し、有頭のボルトのネジ溝をこのボルト挿入孔に形成されているネジ溝に螺合させることにより、外継手材と内継手材とを締め付けて結合することを特徴とする請求項1記載の鋼管杭の機械式継手。 Tighten the outer joint material and the inner joint material by forming a screw groove in the bolt insertion hole of the inner joint material and screwing the screw groove of the headed bolt into the screw groove formed in this bolt insertion hole. The mechanical joint for steel pipe piles according to claim 1, wherein the mechanical joints are joined together. 外継手材のボルト挿入孔の内面にネジ溝を形成し、前方部分及び後方部分にそれぞれネジ溝が形成されている無頭ボルトの後方部分のネジ溝を外継手材のボルト挿入孔のネジ溝に螺合させ、この無頭ボルトの後端面が外継手材の外周とほぼ面一(つらいち)になる様にすると共に、前方部分のネジ溝に内継手材の内側に位置したナットを螺合させて外継手材と内継手材とを締め付けて結合することを特徴とする請求項2記載の鋼管杭の機械式継手。 A screw groove is formed in the inner surface of the bolt insertion hole of the outer joint material, and a screw groove in the rear part of the headless bolt in which the screw groove is formed in the front part and the rear part, respectively. So that the rear end surface of the headless bolt is substantially flush with the outer periphery of the outer joint material, and a nut positioned inside the inner joint material is screwed into the thread groove of the front portion. The mechanical joint for steel pipe piles according to claim 2, wherein the outer joint material and the inner joint material are fastened and joined together. 外継手材のボルト挿入孔及び内継手材のボルト挿入孔のそれぞれの内面にネジ溝を形成し、外周にネジ溝が形成されている無頭ボルトを、その後端面が外継手材の外面とほぼ面一(つらいち)となる様にして前記両ボルト挿入孔のネジ溝に螺合させることにより、外継手材と内継手材とを結合することを特徴とする請求項2記載の鋼管杭の機械式継手。 Threaded grooves are formed on the inner surfaces of the bolt insertion holes of the outer joint material and the bolt insertion holes of the inner joint material, and the headless bolts with the thread grooves formed on the outer periphery are connected to the outer surface of the outer joint material. 3. The steel pipe pile according to claim 2, wherein the outer joint material and the inner joint material are coupled by screwing into the screw grooves of the both bolt insertion holes so as to be flush with each other. Mechanical coupling. ナットが内継手材の内側のボルト挿入孔と対向した位置に保持されていることを特徴とする請求項2記載の鋼管杭の機械式継手。 3. The steel pipe pile mechanical joint according to claim 2, wherein the nut is held at a position facing the bolt insertion hole inside the inner joint material. 外継手材のボルト挿入孔及び内継手材のボルト挿入孔がそれぞれ二段に配列されていることを特徴とする請求項2記載の鋼管杭の機械式継手。 The steel pipe pile mechanical joint according to claim 2, wherein the bolt insertion holes of the outer joint material and the bolt insertion holes of the inner joint material are arranged in two stages.
JP2008152401A 2008-06-11 2008-06-11 Mechanical joint of steel pipe pile Pending JP2009299298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152401A JP2009299298A (en) 2008-06-11 2008-06-11 Mechanical joint of steel pipe pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152401A JP2009299298A (en) 2008-06-11 2008-06-11 Mechanical joint of steel pipe pile

Publications (1)

Publication Number Publication Date
JP2009299298A true JP2009299298A (en) 2009-12-24

Family

ID=41546470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152401A Pending JP2009299298A (en) 2008-06-11 2008-06-11 Mechanical joint of steel pipe pile

Country Status (1)

Country Link
JP (1) JP2009299298A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122349A1 (en) * 2010-03-29 2011-10-06 日鐵住金建材株式会社 Mechanical joint structure for tubular steel piles
KR101205919B1 (en) * 2010-08-25 2012-11-28 최성희 Apparatus for connecting concrete piles
JP2013234561A (en) * 2012-04-12 2013-11-21 Tobu:Kk Steel pipe pile joint structure
CN108442368A (en) * 2018-05-18 2018-08-24 广西盛虎金属制品有限公司 A kind of connector for steel-pipe pile
US20180328524A1 (en) * 2015-02-16 2018-11-15 Nihonkansen Kogyo Kabushiki Kaisha Pressure Pipe Connection Method and Method for Constructing Pressure Pipe with Flange
JP2018178681A (en) * 2017-04-17 2018-11-15 次男 板垣 Steel pipe pile joint structure
JP2019105042A (en) * 2017-12-11 2019-06-27 日本コンクリート工業株式会社 Joint structure
JP7160150B1 (en) 2021-06-24 2022-10-25 Jfeスチール株式会社 Joint pipe, manufacturing method thereof, design method thereof, steel pipe with joint pipe, manufacturing method thereof, design method thereof, steel pipe pile and construction method of steel pipe pile
JP7354872B2 (en) 2020-02-20 2023-10-03 Jfeエンジニアリング株式会社 Jacketed structure and its construction method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122349A1 (en) * 2010-03-29 2011-10-06 日鐵住金建材株式会社 Mechanical joint structure for tubular steel piles
JP2011208373A (en) * 2010-03-29 2011-10-20 Nippon Steel & Sumikin Metal Products Co Ltd Mechanical joint structure of steel pipe pile
KR101205919B1 (en) * 2010-08-25 2012-11-28 최성희 Apparatus for connecting concrete piles
JP2013234561A (en) * 2012-04-12 2013-11-21 Tobu:Kk Steel pipe pile joint structure
US10316999B2 (en) * 2015-02-16 2019-06-11 Nihonkansen Kogyo Kabushiki Kaisha Pressure pipe connection method and method for constructing pressure pipe with flange
US20180328524A1 (en) * 2015-02-16 2018-11-15 Nihonkansen Kogyo Kabushiki Kaisha Pressure Pipe Connection Method and Method for Constructing Pressure Pipe with Flange
JP2018178681A (en) * 2017-04-17 2018-11-15 次男 板垣 Steel pipe pile joint structure
JP2019105042A (en) * 2017-12-11 2019-06-27 日本コンクリート工業株式会社 Joint structure
CN108442368A (en) * 2018-05-18 2018-08-24 广西盛虎金属制品有限公司 A kind of connector for steel-pipe pile
JP7354872B2 (en) 2020-02-20 2023-10-03 Jfeエンジニアリング株式会社 Jacketed structure and its construction method
JP7160150B1 (en) 2021-06-24 2022-10-25 Jfeスチール株式会社 Joint pipe, manufacturing method thereof, design method thereof, steel pipe with joint pipe, manufacturing method thereof, design method thereof, steel pipe pile and construction method of steel pipe pile
WO2022270262A1 (en) * 2021-06-24 2022-12-29 Jfeスチール株式会社 Joint pipe and methods of manufacturing and designing same, steel pipe with joint pipe and methods of manufacturing and designing same, steel pipe pile, and method of constructing steel pipe pile
JP2023003436A (en) * 2021-06-24 2023-01-17 Jfeスチール株式会社 Joint pipe, manufacturing method thereof, steel pipe with joint pipe, manufacturing method and design method thereof, and steel pipe pile and construction method thereof
TWI809936B (en) * 2021-06-24 2023-07-21 日商杰富意鋼鐵股份有限公司 Joint pipe, manufacturing method of joint pipe, design method of joint pipe, steel pipe with joint pipe, method of manufacturing steel pipe with joint pipe, design method of steel pipe with joint pipe, steel pipe pile, and construction method of steel pipe pile

Similar Documents

Publication Publication Date Title
JP2009299298A (en) Mechanical joint of steel pipe pile
JP4626450B2 (en) Threaded joint structure of metal pipe
WO2011122349A1 (en) Mechanical joint structure for tubular steel piles
JP5053828B2 (en) Joint structure
JP4115463B2 (en) Fitting device
JP3115424U (en) Steel pipe pile connection structure
JP2021011920A (en) Joining structure and joining method between members
JP4506969B2 (en) Bonding structure between concrete and pile head of foundation or footing and structure having the bonding structure
JP6144086B2 (en) Steel pipe pile joint structure
JP2013112953A (en) Steel pipe pile connection structure
JP2009024436A (en) Mechanical joint of steel pipe pile
JP2016050606A (en) Steel pipe pile joint structure
JP6575553B2 (en) Parallel threaded joint for structural steel pipes
JP2011132702A (en) Joint structure of steel pipe pile of rotary press-fitting type and construction method of the same
JP2010168789A (en) Mechanical coupling for steel pipe pile
JP3161542U (en) Pile head structure
JP2008127824A (en) Method of connecting building structures and connecting member
JP4621570B2 (en) Pile fastening structure and fastener used therefor
JP3902637B2 (en) Pile fastening structure and fastener
JP2004270204A (en) Joint structure of steel pipe and joining method of steel pipe
JP3965572B2 (en) Pile connection structure
JP2019082203A (en) Fastener, method for repairing sheet pile and method for repairing structure
JP2008231733A (en) Joint structure of pile
JP4854607B2 (en) Segment joint structure
JP2010024756A (en) Mechanical joint of steel pipe pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20121016