JP2010168789A - Mechanical coupling for steel pipe pile - Google Patents

Mechanical coupling for steel pipe pile Download PDF

Info

Publication number
JP2010168789A
JP2010168789A JP2009011731A JP2009011731A JP2010168789A JP 2010168789 A JP2010168789 A JP 2010168789A JP 2009011731 A JP2009011731 A JP 2009011731A JP 2009011731 A JP2009011731 A JP 2009011731A JP 2010168789 A JP2010168789 A JP 2010168789A
Authority
JP
Japan
Prior art keywords
joint pipe
steel
pipe
diameter
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009011731A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yoshida
耕之 吉田
Toshio Shinohara
敏雄 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Geotech Co Ltd
Original Assignee
Chiyoda Geotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Geotech Co Ltd filed Critical Chiyoda Geotech Co Ltd
Priority to JP2009011731A priority Critical patent/JP2010168789A/en
Publication of JP2010168789A publication Critical patent/JP2010168789A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mechanical coupling for a steel pipe pile which allows a steel cylindrical body to be extracted at low cost and is increased in reliability though the cost for manufacture is low. <P>SOLUTION: This mechanical coupling for the steel pipe pile comprises an outer joint pipe 3 which is cylindrical, the diameter of which is generally equal to those of steel pipe piles 1, 2 to be joined to each other, and which has a plurality of holes 6, 7 in the peripheral wall, an inner joint pipe 4 which is cylindrical, the outer diameter of which is slightly smaller than the inner diameter of the outer joint pipe, and which has a hole of the same diameter communicating with the hole of the outer joint pipe, a steel outer ring 9 the outer diameter of which is generally equal to that of the steel pipe piles and the inner diameter of which is slightly larger than the outer diameter of the inner joint pipe, and the steel cylindrical body 8 the outer diameter of which is slightly smaller than the hole. The outer joint pipe is affixed to the end surface of one steel pipe pile 2, and the steel outer ring is inserted along the outer periphery of the inner joint pipe. The inside of the gap surrounded by the steel pipe piles, the steel outer ring, and the inner joint pipe is welded, the inner joint pipe is welded to the other steel pipe pile 1 through the steel outer ring, and the inner joint pipe is inserted into the outer joint pipe in such a manner that the holes of the inner and outer joint pipes communicate with each other. The end surface of the steel outer ring and the end surface of the outer joint pipe are made to face each other, and the steel cylindrical body is inserted into the holes to joint the inner joint pipe to the outer joint pipe. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は鋼管杭の機械的継手、詳しくは現場溶接が不要かつ低コストな鋼管杭の機械式継手に関するものである。   The present invention relates to a mechanical joint for steel pipe piles, and more particularly to a mechanical joint for steel pipe piles that requires no on-site welding and is low in cost.

鋼管杭はコンクリート杭と共に、各種建築土木工事において広く用いられており、現場条件に応じて施工現場で接合する場合も多い。一般に、現場でのこれら杭の接合には溶接が用いられているが、溶接品質の確保が難しいこと、溶接作業が天候に左右されやすいこと、作業時間が長いことなどの問題がある。このため、最近では、現場溶接が不要な機械式継手が多く用いられており、特に、既成コンクリート杭分野では広く普及している。一方、鋼管杭分野においては、その使用はごく限られた範囲に止まっているのが現状である。   Steel pipe piles are widely used in various civil engineering works together with concrete piles, and are often joined at construction sites according to site conditions. Generally, welding is used for joining these piles in the field, but there are problems such as difficulty in ensuring the welding quality, the fact that the welding work is easily influenced by the weather, and the long work time. For this reason, recently, mechanical joints that do not require on-site welding are often used, and are particularly widespread in the field of precast concrete piles. On the other hand, in the steel pipe pile field, its use is currently limited to a limited range.

既成コンクリート杭分野で機械式継手が普及した背景としては、コンクリートよりも強度が数倍大きい鋼材を継手材料として使用できること、および既成コンクリート杭には両端に鋼製端板があり、これを継手材の一部として利用できることが挙げられる。その結果、継手コストを低く抑えることも容易である。一方、鋼管杭分野においては、多様な形式の機械式継手が提案あるいは既に実施されているものの、継手材料として鋼管本体と同じ鋼材を使用せざるを得ないので、いずれの形式のものも厚肉あるいは高強度の鋼材を使用している。また、継手構造が複雑で、加工費が高いものが多かった。その結果、継手の製造コストが高くなり、普及が進んでいないのが現状である。   The reason for the spread of mechanical joints in the field of precast concrete piles is that steel materials that are several times stronger than concrete can be used as joint materials, and precast concrete piles have steel end plates at both ends. It can be used as a part of. As a result, it is easy to keep the joint cost low. On the other hand, in the steel pipe pile field, although various types of mechanical joints have been proposed or already implemented, the same steel material as the steel pipe body must be used as the joint material. Alternatively, high strength steel is used. In addition, the joint structure is complicated, and many machining costs are high. As a result, the manufacturing cost of the joint becomes high, and the current situation is that the spread is not progressing.

特願2007−190470Japanese Patent Application No. 2007-190470 特願2008−152401Japanese Patent Application No. 2008-152401

なしNone

そこで、本発明者らは、十分な継手強度を有し、構造が単純で安価に提供できる鋼管杭の機械式継手を、特願2007-190470及び特願2008-152401としてに提案した。両者は、外継手と内継手を繋ぐ鋼製円柱体としてピンを使用するかボルトを使用するかの違いはあるものの、基礎杭に作用する外力条件の特性を巧みに利用して、非常に簡易な構造でありながら鋼管杭の継手として十分な耐力を有するという特徴を持つ。また、機械加工が容易であるため、他のタイプの継手に比べ経済性の面でも優れている。   Therefore, the present inventors have proposed, as Japanese Patent Application Nos. 2007-190470 and 2008-152401, mechanical joints of steel pipe piles that have sufficient joint strength and that can be provided at a low cost with a simple structure. Both of them use a pin or a bolt as a steel cylinder connecting the outer joint and the inner joint, but skillfully utilize the characteristics of the external force conditions acting on the foundation pile, making it very simple It has a characteristic that it has sufficient proof stress as a joint of steel pipe piles though it is a simple structure. Moreover, since machining is easy, it is excellent also in terms of economy compared to other types of joints.

しかしながら、前述したコンクリート杭の継手に比べれば、製造コストはまだ高く、広く普及するまでの経済性を備えているとは言い難い。その理由として3つ挙げられる。第1の理由は、近年鋼材の価格が高騰したため、継手材の素材費が高いこと、第2の理由は、内継手材の素材は非常に厚くなるため、安価な電気抵抗溶接管は使用できず、高価な継目無し鋼管や鍛造鋼管を使用せざるを得ないこと、第3の理由は、これが最大の理由であるが、機械加工量が多いことである。本発明者の試算によると、L字状断面の内継手材の製作において、旋盤やボール盤などにより機械切削される重量は、素材(短尺厚肉鋼管)重量の5〜6割にも達し、半分以上の鋼材を削り捨てていることになる。その結果、高い鋼材を無駄に使用しているとともに、機械加工費が高くなるといった問題点が存在していた。   However, compared with the concrete pile joint described above, the manufacturing cost is still high, and it is difficult to say that it is economical to spread widely. There are three reasons for this. The first reason is that the price of steel materials has soared in recent years, so the material cost of the joint material is high. The second reason is that the material of the inner joint material becomes very thick, so an inexpensive electric resistance welded tube can be used. In addition, expensive seamless steel pipes and forged steel pipes must be used, and the third reason is that this is the largest reason, but the amount of machining is large. According to the calculation of the present inventor, in the production of the inner joint material having an L-shaped cross section, the weight machined by a lathe or drilling machine reaches 50 to 60% of the weight of the material (short thick-walled steel pipe), and is half The above steel materials are scraped away. As a result, there is a problem that a high steel material is wasted and the machining cost becomes high.

又、内継手と外継手とを繋ぐ鋼製円柱体としてピンを使用する場合は、施工時に挿入孔から抜け出すことを防止する手段を設ける必要があった。特に、施工時に正回転と逆回転の大きなトルクをかける回転貫入工法の場合、抜け出し防止は大きな課題であり、その防止手段として様々な方法が提案されてはいるが、抜け出し防止策は余分なコストに当たり、いずれの手段の場合でもコスト面で問題があった。   Further, when a pin is used as a steel cylinder connecting the inner joint and the outer joint, it is necessary to provide means for preventing the pin from coming out of the insertion hole during construction. In particular, in the case of the rotation penetration method that applies large torques in the forward and reverse rotations during construction, prevention of pull-out is a major issue, and various methods have been proposed to prevent it, but measures to prevent pull-out are an extra cost. In either case, there was a problem in terms of cost in either case.

以上の課題に鑑み、継手の素材費と機械加工費を大幅に低減して製造コストの削減を図るとともに、低コストで鋼製円柱体の抜け出しを出来る様にした低コストながら信頼性の高い鋼管杭の機械式継手の提供を本発明の目的とする。   In view of the above problems, low-cost yet highly reliable steel pipes that can reduce the manufacturing cost by significantly reducing the material cost and machining cost of the joint, and enabling the steel cylinder to be pulled out at a low cost. It is an object of the present invention to provide a mechanical joint for a pile.

短尺円筒状をなし、接合対象である一対の鋼管杭の外径とほぼ同じ外径を有し、周壁には軸心から直角の方向に向かって放射状に、周壁を貫通した孔が複数個穿かれている外継手管;同じく短尺円筒状をなし、前記外継手管の内径よりわずかに小さい外径を有し、前記外継手管の孔が形成されている位置と対応する位置の周壁に、軸心から直角の方向に向かって放射状に外継手管の孔と同径の孔が穿かれている内継手管; 外径が前記鋼管杭の外径とほぼ同じで、内径が前記内継手管の外径よりわずかに大きい鋼製外リング; 外径が前記孔よりわずかに小さい鋼製円柱体; とから鋼管杭の機械式継手を構成し、外継手管を一方の鋼管杭の端面に軸心が一致する様に溶接固着すると共に、鋼製リングを内継手管の一方の端部寄りの外周に挿入し、鋼管杭の端面、鋼製外リングの端面、内継手管の周面にそれぞれ囲われた帯状空間内を溶接金属で満たすことにより、この鋼製外リングを介して、内継手管をもう一方の鋼管杭に溶接固着し、外継手管の孔が内継手管の孔と連通する様に外継手管の内径側に内継手管を挿入し、鋼製外リングの端面と外継手管の端面とを対向させた状態で、これら孔に鋼製円柱体を差し込み、内継手管と外継手管とを結合する様にして上記課題を解決した。   It has a short cylindrical shape and has approximately the same outer diameter as the pair of steel pipe piles to be joined, and the peripheral wall has a plurality of holes that penetrate the peripheral wall in a radial direction from the axis. An outer joint pipe which is also formed in a short cylindrical shape, has an outer diameter slightly smaller than the inner diameter of the outer joint pipe, and a peripheral wall at a position corresponding to the position where the hole of the outer joint pipe is formed, Inner joint pipe in which holes having the same diameter as the hole of the outer joint pipe are formed radially in a direction perpendicular to the axis; the outer diameter is substantially the same as the outer diameter of the steel pipe pile, and the inner diameter is the inner joint pipe A steel outer ring slightly larger than the outer diameter of the steel; a steel cylinder whose outer diameter is slightly smaller than the hole; and forming a mechanical joint of the steel pipe pile, and the outer joint pipe is pivoted to the end face of one of the steel pipe piles The steel ring is inserted on the outer periphery of one end of the inner joint pipe while welding and fixing so that the centers coincide. The inner joint pipe is connected to the other end of the steel pipe through this steel outer ring by filling the inside of the strip space surrounded by the end face of the steel pipe pile, the end face of the steel outer ring, and the peripheral surface of the inner joint pipe. The inner joint pipe is inserted on the inner diameter side of the outer joint pipe so that the hole of the outer joint pipe communicates with the hole of the inner joint pipe, and the end face of the steel outer ring and the end face of the outer joint pipe The above-mentioned problems have been solved by inserting steel cylinders into these holes and connecting the inner joint pipe and the outer joint pipe.

図2に示す様に、上鋼管杭1の下端に鋼製外リング9を介して内継手管4の上面をその軸心が一致した状態で溶接固着すると共に、下鋼管杭2の上面に外継手管3の下端面をその軸心が一致した状態で溶接固着し、下鋼管杭2の上面に固定されている外継手管3の内径側に内継手管4を挿入し、前記鋼製外リング9の端面と外継手管3の端面とを当接させ、それぞれに穿かれている孔6、7の位置を合わせ、ここに鋼製円柱体8を差し込むことにより、下鋼管杭2と上鋼管杭1との結合を行う。   As shown in FIG. 2, the upper surface of the inner joint pipe 4 is welded and fixed to the lower end of the upper steel pipe pile 1 through a steel outer ring 9 in a state where the axial centers thereof coincide with each other, and the upper surface of the lower steel pipe pile 2 is The lower end surface of the joint pipe 3 is welded and fixed in a state where the axial centers thereof coincide with each other, the inner joint pipe 4 is inserted into the inner diameter side of the outer joint pipe 3 fixed to the upper surface of the lower steel pipe pile 2, and the steel outer The end face of the ring 9 and the end face of the outer joint pipe 3 are brought into contact with each other, and the positions of the holes 6 and 7 formed in each are aligned. Bonding with the steel pipe pile 1 is performed.

この状態における荷重の伝達特性について図9〜図11を用いて説明すると、鋼管杭に作用する主たる荷重は鉛直方向の圧縮力であり、この圧縮力が作用すると鋼製外リング9の下面と外継手管3上端とは当接し、杭頭からの圧縮力は上鋼管杭1の下端から溶接金属13及び鋼製外リング9を介して下鋼管杭1の上端まで直線的に伝達される。このため、外継手管3の圧縮耐力を上鋼管杭1の圧縮耐力と同等以上に設定しておけば、圧縮力は安全確実に下鋼管杭2に伝達される。
一方、鋼管杭に引張力が作用する場合、その引張力は上鋼管杭1の下端から溶接金属13を介して内継手管4に伝わり、次に鋼製円柱体8にせん断力として伝わる。そのせん断力はすぐに外継手管3に伝わり、再度引張力に変換され、最後に溶接部28を介して下鋼管杭2に伝わる。この様な両継手管3,4と鋼製円柱体8との相互の力の伝達に際し、その接触部には支圧応力が発生するが、この支圧応力は均一な分布ではなく、その最大値は平均応力度の数倍もの値になるので、両継手管3,4は局部的に降伏して塑性化しやすく、鋼製円柱体8を介するこの様な部材間の力の伝達構造はコストが低い反面、やや確実性に欠ける点があるが、幸いなことに、鋼管杭に引張力が発生するのは通常は地震の際の短時間だけであり、かつ、その値は圧縮力に比べて数分の1と小さいので鋼製円柱体8を介して引張力を伝達させる本発明の構造でも、十分に安全性は保たれる。
The transmission characteristics of the load in this state will be described with reference to FIGS. 9 to 11. The main load acting on the steel pipe pile is a vertical compressive force, and when this compressive force acts, the lower surface of the steel outer ring 9 and the outer The upper end of the joint pipe 3 abuts, and the compressive force from the pile head is transmitted linearly from the lower end of the upper steel pipe pile 1 to the upper end of the lower steel pipe pile 1 via the weld metal 13 and the steel outer ring 9. For this reason, if the compressive strength of the outer joint pipe 3 is set to be equal to or higher than the compressive strength of the upper steel pipe pile 1, the compressive force is transmitted to the lower steel pipe pile 2 safely and reliably.
On the other hand, when a tensile force acts on the steel pipe pile, the tensile force is transmitted from the lower end of the upper steel pipe pile 1 to the inner joint pipe 4 via the weld metal 13 and then transmitted to the steel cylinder 8 as a shearing force. The shearing force is immediately transmitted to the outer joint pipe 3, converted into a tensile force again, and finally transmitted to the lower steel pipe pile 2 through the welded portion 28. In the transmission of the mutual force between the joint pipes 3 and 4 and the steel cylinder 8 as described above, a bearing stress is generated at the contact portion. However, the bearing stress is not uniformly distributed, and the maximum Since the value is several times the average stress, both joint pipes 3 and 4 tend to yield locally and become plastic, and the force transmission structure between such members via the steel cylinder 8 is cost-effective. However, fortunately, tensile force is generated in steel pipe piles only for a short period of time during an earthquake, and the value is relatively small compared to compressive force. Therefore, even in the structure of the present invention in which the tensile force is transmitted through the steel cylinder 8, the safety is sufficiently maintained.

次に、鋼管杭に曲げモーメントが作用する場合について説明する。両継手管3,4での曲げモーメントの伝達は二つの作用で行われ、一つは、内継手管4と外継手管3がそれぞれ反対方向に回転しようとして生じる”押し合い”によるモーメント伝達であり、その様子を模式的に表したものを図10に示す。両継手管3,4に曲げモーメントが作用したとき、両継手管3,4の重なり部分の上半分の右側と、下半分の左側がそれぞれ押し合う。内継手管4が押される力の分布を図中に矢印の三角形で表す。この二つの三角形の力は偶力となり、外力のモーメントに抵抗する共に、両継手管3,4間でモーメントが伝達される。この押し合いによるモーメント抵抗力の大きさは両継手管3,4の重なり長さLによって大きく変わる。両継手管3,4の厚さによっても異なるが、すべてのモーメントを負担するためには、長さLは鋼管径の1.5倍程度必要となり、その結果、両継手管3,4の全体長さは鋼管杭の径の2倍程度必要であり、両継手管3,4の製作コストが非常に高くなるが、実際には、両継手管3,4の長さを短く抑え、他の作用によるモーメントの負担と併せて外力モーメントに抵抗することになる。   Next, the case where a bending moment acts on a steel pipe pile is demonstrated. The transmission of the bending moment in both joint pipes 3 and 4 is performed by two actions. One is the moment transmission by "pushing" generated when the inner joint pipe 4 and the outer joint pipe 3 try to rotate in opposite directions. FIG. 10 schematically shows the state. When a bending moment is applied to both joint pipes 3 and 4, the right side of the upper half and the left side of the lower half are pressed against each other. The distribution of the force with which the inner joint pipe 4 is pushed is represented by an arrow triangle in the figure. The force of these two triangles becomes a couple, resists the moment of the external force, and transmits the moment between the joint pipes 3 and 4. The magnitude of the moment resistance force due to this pressing greatly varies depending on the overlap length L of the joint pipes 3 and 4. The length L is required to be about 1.5 times the diameter of the steel pipe in order to bear all the moments, depending on the thickness of the joint pipes 3 and 4, and as a result, the entire joint pipes 3 and 4 as a whole. The length needs to be about twice the diameter of the steel pipe pile, and the manufacturing cost of both joint pipes 3 and 4 is very high, but in practice the length of both joint pipes 3 and 4 is kept short, It will resist the external force moment together with the moment burden due to the action.

もう一つのモーメント伝達は、鋼製円柱体8及び両継手管3,4の当接によって行われる。両継手管3,4を円環状断面でみると、その半円周には引張力が、残り半円周には圧縮力が発生するが、引張力発生部分では、モーメントは、前述の引張力伝達と同様の機構により鋼製円柱体8によって伝達される。一方、圧縮力発生部分ではやや複雑となり、前述の圧縮力伝達と同じく鋼製外リング9と外継手管3上端の当接によって伝達する場合と、引張力と同じく鋼製円柱体8で伝達される二通りがある。多くの場合、荷重として曲げモーメントだけでなく同時に圧縮力も作用しているため、鋼製外リング9と外継手管3の上端は当接しており、ここで圧縮力が伝達される。しかし、外力として曲げと同時に引張力が作用している場合、鋼製外リング9と外継手管3の端部は当接していないため、力の伝達は行われず、鋼製円柱体8を介して圧縮力が伝達される。
以上のように、曲げモーメントの伝達はやや複雑になるが、通常鋼管杭に作用する曲げモーメントは、地震時の短時間に限られること、および、大きな曲げモーメントは杭頭付近の極限られた範囲であり、両継手管3,4に大きな曲げモーメントは作用しないことから、鋼製円柱体8で曲げモーメントを負担する構造にしても、実用上安全性が損なわれることはない。
以上述べたように、本発明による鋼管杭の機械式継手は、単純な構造でありながら、継手に作用する外力に対して十分な耐力を確保することができる。
Another moment transmission is performed by the contact between the steel cylinder 8 and the joint pipes 3 and 4. When the joint pipes 3 and 4 are viewed in an annular cross section, a tensile force is generated in the semicircular area and a compressive force is generated in the remaining semicircular area. It is transmitted by the steel cylinder 8 by the same mechanism as the transmission. On the other hand, the compression force generation part is slightly complicated, and is transmitted by the contact between the steel outer ring 9 and the upper end of the outer joint pipe 3 as in the case of the above-described compression force transmission, and is transmitted by the steel cylinder 8 as in the tensile force. There are two ways. In many cases, since not only a bending moment but also a compressive force acts simultaneously as a load, the upper end of the steel outer ring 9 and the outer joint pipe 3 are in contact with each other, and the compressive force is transmitted here. However, when a tensile force is applied simultaneously with bending as an external force, the steel outer ring 9 and the end of the outer joint pipe 3 are not in contact with each other, so that no force is transmitted and the steel cylinder 8 is interposed. The compression force is transmitted.
As described above, the transmission of bending moment is somewhat complicated, but the bending moment that normally acts on steel pipe piles is limited to a short time during an earthquake, and the large bending moment is a limited range near the pile head. Since a large bending moment does not act on both joint pipes 3 and 4, even if a structure in which the bending moment is borne by the steel cylindrical body 8, safety is not practically impaired.
As described above, the mechanical joint for steel pipe piles according to the present invention has a simple structure, but can ensure a sufficient proof strength against an external force acting on the joint.

又、上鋼管杭1と内継手管4との間に介在している鋼製外リング9は、内継手管4とは別体であり、削り出し加工により内継手管4を製作する場合の様に、鋼材の一部が切削屑として無駄に捨てられてしまうことがなく、高価な肉厚鋼管を用いる必要もなく、内継手管4自体は電気抵抗溶接鋼管などの安価な鋼管で足り、鋼材重量の軽量化及び切削量の大幅な削減が可能で、加工コストの大幅低下及び貴重な金属資材の有効利用が図られる。   Further, the steel outer ring 9 interposed between the upper steel pipe pile 1 and the inner joint pipe 4 is separate from the inner joint pipe 4, and is used when the inner joint pipe 4 is manufactured by machining. In the same manner, a part of the steel material is not wasted and discarded as cutting waste, and it is not necessary to use an expensive thick steel pipe, and the inner joint pipe 4 itself may be an inexpensive steel pipe such as an electric resistance welded steel pipe, The weight of the steel material can be reduced and the amount of cutting can be greatly reduced, the processing cost can be greatly reduced, and valuable metal materials can be effectively used.

この発明に係る鋼管杭の機械式継手の実施例1の斜視図。The perspective view of Example 1 of the mechanical coupling of the steel pipe pile which concerns on this invention. 同じく、その半裁断面図。Similarly, the half cut sectional view. 同じく、図2における矢視A−A線断面図。Similarly, arrow AA sectional view taken on the line in FIG. 同じく、外継手管と下鋼管杭との溶接要領を示した拡大部分断面図。Similarly, the expanded fragmentary sectional view which showed the welding point of an outer joint pipe and a lower steel pipe pile. 同じく、内継手管の外径と上鋼管杭の内径とが異なる場合の接続要領を示した拡大部分断面図。Similarly, the expanded partial sectional view which showed the connection point when the outer diameter of an inner joint pipe and the inner diameter of an upper steel pipe pile differ. 同じく、内継手管と上鋼管杭とを溶接固着する為の要領を示した拡大部分断面図。Similarly, the expanded partial sectional view which showed the point for welding and adhering an inner joint pipe and an upper steel pipe pile. 同じく、鋼製円柱体を挿入する孔を二段に設けた場合の内継手管の斜視図。Similarly, the perspective view of an inner joint pipe at the time of providing the hole which inserts steel cylinders in two steps. 同じく、内継手管と外継手管をボトル/ナットで結合した場合の縦断面図。Similarly, the longitudinal cross-sectional view at the time of combining an inner joint pipe and an outer joint pipe with a bottle / nut. 同じく、荷重の伝達特性を説明する為、外継手管と内継手管の結合状態を示した縦断面図。Similarly, the longitudinal cross-sectional view which showed the coupling | bonding state of the outer joint pipe and the inner joint pipe in order to demonstrate the transmission characteristic of a load. 同じく、この機械式継手に曲げモーメントが作用した場合の説明図。Similarly, explanatory drawing when a bending moment acts on this mechanical joint. 同じく、曲げモーメントが作用し、結合箇所が「く」字形に変形した状態を示した縦断面図。Similarly, the longitudinal cross-sectional view which showed the state which the bending moment acted and the joint location deform | transformed into the "<" shape. 同じく、曲げモーメントが作用した際、結合箇所が「く字形」に変形することを抑制した実施例の拡大部分断面図。Similarly, when a bending moment is applied, an enlarged partial cross-sectional view of an embodiment in which a joint portion is prevented from being deformed into a “<” shape. 同じく、曲げモーメントが作用した際、結合箇所が「く字形」に変形することを抑制した実施例の拡大部分断面図。Similarly, when a bending moment is applied, an enlarged partial cross-sectional view of an embodiment in which a joint portion is prevented from being deformed into a “<” shape. この発明に係る鋼管杭の機械式継手の実施例2の半裁縦断面図。The half-cut longitudinal cross-sectional view of Example 2 of the mechanical coupling of the steel pipe pile which concerns on this invention. 同じく、鋼製内リングの他の例の拡大部分断面図。Similarly, the expanded partial sectional view of other examples of steel inner rings. 同じく、鋼製内リングの他の例の拡大部分断面図。Similarly, the expanded partial sectional view of other examples of steel inner rings. 同じく、曲げモーメントへの耐力を更に強化した実施例の縦断面図。Similarly, the longitudinal cross-sectional view of the Example which further strengthened the yield strength to a bending moment. この発明に係る鋼管杭の機械式継手の実施例3の縦断面図。The longitudinal cross-sectional view of Example 3 of the mechanical coupling of the steel pipe pile which concerns on this invention. 同じく、その要部である鋼製円柱体の斜視図。Similarly, the perspective view of the steel cylinder which is the principal part. 同じく、鋼製円柱体の突起部分の拡大断面図。Similarly, the expanded sectional view of the projection part of a steel cylinder. 同じく、鋼製円柱体を孔に挿入する要領を示した説明図。Similarly, explanatory drawing which showed the point which inserts steel cylinders in a hole. 同じく、鋼製円柱体が孔に挿入された状態の説明図。Similarly, explanatory drawing of the state by which the steel cylinder was inserted in the hole. 内継手管に形成されている孔がめくら孔になっている実施例を示し部分断面図。The fragmentary sectional view which shows the Example by which the hole formed in the inner joint pipe is a blind hole.

短尺円筒状をなし、接合対象である一対の鋼管杭の外径とほぼ同じ外径を有し、周壁には軸心から直角の方向に向かって放射状に、周壁を貫通した孔が複数個穿かれている外継手管; 同じく短尺円筒状をなし、前記外継手管の内径よりわずかに小さい外径を有し、前記外継手管の孔が形成されている位置と対応する位置の周壁に、軸心から直角の方向に向かって放射状に外継手管の孔と同径の孔が穿かれている内継手管; 外径が前記鋼管杭の外径とほぼ同じで、内径が前記内継手管の外径よりわずかに大きい鋼製外リング; 外径が前記孔よりわずかに小さい鋼製円柱体; とからなり、外継手管を一方の鋼管杭の端面に軸心が一致する様に溶接固着すると共に、鋼製リングを内継手管の一方の端部寄りの外周に挿入し、鋼管杭の端面、鋼製外リングの端面、内継手管の周面にそれぞれ囲われた帯状空間内を溶接金属で満たすことにより、この鋼製外リングを介して、内継手管をもう一方の鋼管杭に溶接固着し、外継手管の孔が内継手管の孔と連通する様に外継手管の内径側に内継手管を挿入し、鋼製外リングの端面と外継手管の端面とを対向させた状態で、これら孔に鋼製円柱体を差し込むことにより、内継手管と外継手管とを結合する様にした。   It has a short cylindrical shape and has approximately the same outer diameter as the pair of steel pipe piles to be joined, and the peripheral wall has a plurality of holes that penetrate the peripheral wall in a radial direction from the axis. An outer joint pipe that is also formed in a short cylindrical shape, has an outer diameter slightly smaller than the inner diameter of the outer joint pipe, and a peripheral wall at a position corresponding to the position where the hole of the outer joint pipe is formed, Inner joint pipe in which holes having the same diameter as the hole of the outer joint pipe are formed radially in a direction perpendicular to the axis; the outer diameter is substantially the same as the outer diameter of the steel pipe pile, and the inner diameter is the inner joint pipe A steel outer ring slightly larger than the outer diameter of the steel; a steel cylinder whose outer diameter is slightly smaller than the hole; and the outer joint pipe is welded and fixed so that the axial center of the outer joint pipe coincides with the end face of one of the steel pipe piles At the same time, the steel ring is inserted into the outer periphery near one end of the inner joint pipe, and the end face of the steel pipe pile, steel The inner joint pipe is welded and fixed to the other steel pipe pile via this steel outer ring by filling the inside of the belt-shaped space surrounded by the end face of the outer ring and the peripheral surface of the inner joint pipe with the weld metal, Insert the inner joint pipe on the inner diameter side of the outer joint pipe so that the hole of the outer joint pipe communicates with the hole of the inner joint pipe, and with the end face of the steel outer ring facing the end face of the outer joint pipe, By inserting a steel cylinder into these holes, the inner joint pipe and the outer joint pipe were joined.

図1はこの発明に係る鋼管杭の機械式継手の実施例1の斜視図、図2はその半裁縦断面図、図3は図2における矢視A−A線横断面図である。   1 is a perspective view of Embodiment 1 of a mechanical joint for steel pipe piles according to the present invention, FIG. 2 is a half-cut longitudinal sectional view thereof, and FIG. 3 is a cross-sectional view taken along line AA in FIG.

図中1は接合対象である上鋼管杭、2は下鋼管杭であり、この発明に係る鋼管杭の機械式継手は、この上鋼管杭1の下端と下鋼管杭2の上端とを外継手管3と内継手管4とを介在させて直列状に連結するものである。   In the figure, 1 is the upper steel pipe pile to be joined, 2 is the lower steel pipe pile, and the mechanical joint of the steel pipe pile according to the present invention is such that the lower end of the upper steel pipe pile 1 and the upper end of the lower steel pipe pile 2 are connected to the outer joint. The pipe 3 and the inner joint pipe 4 are interposed and connected in series.

外継手管3は短尺円筒状をなした鋼管であり、接合対象である下鋼管杭2の外径とほぼ同じ外径を有し、その軸心が下鋼管杭2の軸心と一致する様に、下鋼管杭2の端面に溶接することにより、下鋼管杭2に強固に固着される。なお、図中28は両者を結合する溶接金属である。又、その周壁5には、軸心から直角の方向に向かって放射状に複数の孔6が間隔をあけ、周壁5を貫通する様に穿がれている。   The outer joint pipe 3 is a steel pipe having a short cylindrical shape, and has an outer diameter substantially the same as the outer diameter of the lower steel pipe pile 2 to be joined, and its axis coincides with the axis of the lower steel pipe pile 2. In addition, it is firmly fixed to the lower steel pipe pile 2 by welding to the end face of the lower steel pipe pile 2. In the figure, 28 is a weld metal that joins both. In addition, a plurality of holes 6 are formed in the peripheral wall 5 so as to penetrate the peripheral wall 5 in a radial direction in a direction perpendicular to the axis.

一方、内継手管4は、外継手管3と同様に、短尺円筒状をなした鋼管製で、外継手管3の内径によりわずかに小さい外径を有し、外継手管3の孔6に対応した位置には、同様に軸心から直角の方向に向かって放射状に複数の孔7が等間隔で形成されており、外継手管3の孔6と内継手管4の孔7に鋼製円柱体8を差し込むことにより、外継手管3と内継手管4とを結合出来る様になっている。なお、図2に示す実施例においては、内継手管3に形成された孔7は、その周壁を貫通した透孔となっているが、図23に示すものの様に、内周面側が閉塞されためくら孔としても良く、この場合にはこれに挿入する鋼製円柱体8の内周側への脱落を防ぐことが出来る。   On the other hand, the inner joint pipe 4 is made of a steel tube having a short cylindrical shape like the outer joint pipe 3 and has an outer diameter slightly smaller than the inner diameter of the outer joint pipe 3. Similarly, a plurality of holes 7 are formed at equal intervals radially in the direction perpendicular to the axis, and the holes 6 of the outer joint pipe 3 and the holes 7 of the inner joint pipe 4 are made of steel. By inserting the cylindrical body 8, the outer joint pipe 3 and the inner joint pipe 4 can be coupled. In the embodiment shown in FIG. 2, the hole 7 formed in the inner joint pipe 3 is a through-hole penetrating the peripheral wall, but the inner peripheral surface side is closed as shown in FIG. It may be a blind hole. In this case, the steel cylinder 8 inserted into the hole can be prevented from falling off to the inner peripheral side.

又、図中9は内継手管4を上鋼管杭1に固着する際に介在させる鋼製外リングであり、内継手管4の外径よりわずかに大きい内径、上鋼管杭1の外径とほぼ同じ外径を有し、その断面は角形状を呈している。更に、図中8は、外径が孔6及び鋼7よりわずかに小さく形成されたピン形状をなした鋼製円柱体であり、長尺円柱鋼棒を短尺に切断することにより、容易に製作することが出来る。   Reference numeral 9 in the figure denotes a steel outer ring that is interposed when the inner joint pipe 4 is fixed to the upper steel pipe pile 1. The inner diameter is slightly larger than the outer diameter of the inner joint pipe 4, and the outer diameter of the upper steel pipe pile 1 is They have substantially the same outer diameter, and the cross section has an angular shape. Furthermore, 8 in the figure is a steel cylinder having a pin shape whose outer diameter is slightly smaller than the hole 6 and the steel 7, and can be easily manufactured by cutting a long cylindrical steel rod into a short length. I can do it.

そして、図2及び図6に示す様に、内継手管4の一方の端部寄りの外周に鋼製外リング9を挿入し、上鋼管杭1の下端面10,鋼製外リング9の上端面11、内継手管4の外周面12によって三方が囲われた帯状空間内を溶接金属13で満たすことにより、内継手管4は上鋼管杭1の下端に固着されている。   Then, as shown in FIGS. 2 and 6, a steel outer ring 9 is inserted into the outer periphery near one end of the inner joint pipe 4, and the upper steel pipe pile 1 has a lower end surface 10 and a steel outer ring 9 above. The inner joint pipe 4 is fixed to the lower end of the upper steel pipe pile 1 by filling the inside of the strip-shaped space surrounded by the end face 11 and the outer peripheral face 12 of the inner joint pipe 4 with the weld metal 13.

なお、この実施例1においては、上鋼管杭1に内継手管4を、下鋼管杭2に外継手管3をそれぞれ固着する様にしているが、これとは逆に、上鋼管杭1に外継手管3を、下鋼管杭2に内継手管4を固着する様にしても良い。外継手管3及び内継手管4は、いずれも既製の鋼管を短尺切断したものであり、本件出願人が先に提案した特願2007−190470及び特願2008−152401における内継手管に比べ十分に薄い鋼管で足り、安価な電気抵抗溶接管なども使用することが出来る。   In the first embodiment, the inner joint pipe 4 is fixed to the upper steel pipe pile 1 and the outer joint pipe 3 is fixed to the lower steel pipe pile 2. The outer joint pipe 3 may be fixed to the lower steel pipe pile 2. Both the outer joint pipe 3 and the inner joint pipe 4 are obtained by cutting a ready-made steel pipe into a short length, which is sufficient as compared with the inner joint pipes in Japanese Patent Application Nos. 2007-190470 and 2008-152401 previously proposed by the applicant. A thin steel pipe is sufficient, and an inexpensive electric resistance welded pipe can also be used.

又、この実施例においては、外継手管3を下鋼管杭2に溶接固着する際には、図4に示す様に、内周面側に裏当てリング14を当接させて外面側から溶接する様にしたが、裏当てリング14を用いず、内外両面から溶接する様にしても良い。又、図4に示す様に、外継手管3の下端面を斜めに面取り、開先溶接用斜面15と形成しても良く、こうすることにより、より確実に溶け込みが行われ、固着が確実となる。   In this embodiment, when the outer joint pipe 3 is welded and fixed to the lower steel pipe pile 2, as shown in FIG. 4, the backing ring 14 is brought into contact with the inner peripheral surface side and welded from the outer surface side. However, the backing ring 14 may not be used and welding may be performed from both the inside and outside. Further, as shown in FIG. 4, the lower end surface of the outer joint pipe 3 may be chamfered obliquely to form a bevel welding slope 15 so that the penetration can be made more reliably and the fixing can be ensured. It becomes.

なお、上鋼管杭1の内径と内継手管4の外径とはほぼ同じであることが好ましいが、実際には設計上の理由などから、内継手管4の外径が上鋼管杭1の内径より小さい場合もあるが、その様な場合には、図5に示す様に、上鋼管杭1の内周壁面と内継手管4の外周壁との間に鋼製フィラー16を介在させて両者間のすき間を埋め、この状態において溶接を施せば良い。   In addition, although it is preferable that the inner diameter of the upper steel pipe pile 1 and the outer diameter of the inner joint pipe 4 are substantially the same, the outer diameter of the inner joint pipe 4 is actually the upper steel pipe pile 1 of the upper steel pipe pile 1 for reasons of design. Although it may be smaller than the inner diameter, in such a case, a steel filler 16 is interposed between the inner peripheral wall surface of the upper steel pipe pile 1 and the outer peripheral wall of the inner joint pipe 4 as shown in FIG. What is necessary is just to fill in the clearance gap between both and to weld in this state.

この実施例1においては、上鋼管杭1、内継手管4、鋼製外リング9の三者を一度に溶接しており、溶接箇所の幅を適度に確保することにより、溶接金属13を介して三者を完全に一体化させることが出来る。このときの溶接方法としては、上鋼管杭1、内継手管4、鋼製円柱体9の三者及び鋼製フィラー16を相互に仮溶接した状態で、ターニングローラに載せ、一定速度で回転させながら、三者で囲われた帯状空間を下から順に下向きで溶接する手段が用いられる。
図6は、このときの溶接順序と溶接トーチの狙い位置・角度を示したものであり、図中の矢印に付された番号は溶接順序、矢印は溶接トーチの狙い位置・角度を表わす。なお、この様な多層盛りの溶接には長時間を要するので、必要な溶接品質を維持する為には、溶接ロボットを使用することが望ましい。
In the first embodiment, the upper steel pipe pile 1, the inner joint pipe 4 and the steel outer ring 9 are welded at a time, and the width of the welded portion is appropriately secured, so that the weld metal 13 is interposed. The three can be completely integrated. As a welding method at this time, the upper steel pipe pile 1, the inner joint pipe 4, the three steel column bodies 9, and the steel filler 16 are temporarily welded to each other and placed on a turning roller and rotated at a constant speed. However, means for welding the strip-shaped space surrounded by the three parties in order from the bottom downward is used.
FIG. 6 shows the welding order and the target position / angle of the welding torch at this time. The numbers attached to the arrows in the figure indicate the welding order, and the arrows indicate the target position / angle of the welding torch. In addition, since such multi-layer welding requires a long time, it is desirable to use a welding robot in order to maintain the required welding quality.

又、外継手管3と内継手管4とを結合する為の孔6及び孔7は、一列に配列するだけではなく、二段に配列しても良い。ただし、この様に、孔6及び孔7を上下二段に配置する場合は、図7に示す様に、上段及び下段をそれぞれ千鳥配置にして、両継手管3,4内部の応力集中を避けるのが望ましい。   Further, the holes 6 and the holes 7 for connecting the outer joint pipe 3 and the inner joint pipe 4 may be arranged not only in one row but also in two stages. However, when the holes 6 and 7 are arranged in two upper and lower stages as described above, as shown in FIG. 7, the upper and lower stages are respectively arranged in a staggered manner to avoid stress concentration inside the joint pipes 3 and 4. Is desirable.

更に、上記実施例においては、外継手管3と内継手管4との結合はピン形状を呈した鋼製円柱体8によって行ったが、図8に示す様に、孔6と孔7にボルト17を挿通し、ナット18で締め付けることによって両者の結合を行っても良く、この場合には、曲げモーメント作用時に外継手管3と内継手管4とが離間して「く」の字形に変形する現象が発生しにくくなる。   Further, in the above embodiment, the outer joint pipe 3 and the inner joint pipe 4 are joined by the steel cylinder 8 having a pin shape. However, as shown in FIG. 17 may be inserted and tightened with a nut 18, and in this case, the outer joint pipe 3 and the inner joint pipe 4 are separated and deformed into a "<" shape when the bending moment is applied. This phenomenon is less likely to occur.

又、図12に示す様に、鋼製外リング9の下端面に逆階段状の係合面31を、外継手管3の上端面にこれに対応する階段状の係合面32をそれぞれ形成しても良く、こうすることにより、曲げモーメント作用時に、これら係合面31,32が係合し、外継手管3と内継手管4とが離間することが阻止され、曲げモーメント作用時の剛性低下を一層効果的に抑制することが出来る。
更に、図13に示す様に、鋼製外リング9の下端面に逆テーパ状の係合面31を、外継手管3の上端面にテーパ状の係合面32をそれぞれ形成しても良く、この場合も、同様に曲げモーメント作用時の剛性低下を抑制することが出来る。
Further, as shown in FIG. 12, an inverted stepped engagement surface 31 is formed on the lower end surface of the steel outer ring 9, and a corresponding stepped engagement surface 32 is formed on the upper end surface of the outer joint pipe 3. By doing so, it is possible to prevent the outer joint pipe 3 and the inner joint pipe 4 from being separated when the engagement surfaces 31 and 32 are engaged when the bending moment is applied, and when the bending moment is applied. It is possible to more effectively suppress the decrease in rigidity.
Further, as shown in FIG. 13, a reverse tapered engagement surface 31 may be formed on the lower end surface of the steel outer ring 9, and a tapered engagement surface 32 may be formed on the upper end surface of the outer joint pipe 3. In this case as well, it is possible to suppress a decrease in rigidity when the bending moment is applied.

この実施例1は上記の通りの構成を有するものであり、図9に示す様に、上鋼管杭1の下端に鋼製外リング9を介して内継手管4をその軸心が一致した状態で溶接固着すると共に、下鋼管杭2の上面に外継手管3の下端面をその軸心が一致した状態で溶接固着し、下鋼管杭2の上面に固定されている外継手管3の内径側に内継手管4を挿入し、前記鋼製外リング9の下端面と外継手管3の上端面とを当接させ、孔6と孔7の位置を合わせ、ここに鋼製円柱体8を差し込んで、下鋼管杭2と上鋼管杭1との結合を行うものであり、内継手管4の上部と上鋼管杭1の下端との間に鋼製外リング9が介在しているので、従来のものの様に内継手管4の上端にL字状の張り出し部を別途形成しなくとも内継手管4の上部に上鋼管杭1との当接部が形成出来、上鋼管杭1から下鋼管杭2に圧縮力を安全確実に伝達することが可能となる。又、従来のものの様に、内継手管4の上部へL字形の張り出し部を形成する為の切削加工が全く必要ないので、高い鋼材の無駄な浪費がなくなると共に、加工コストも極めて低くすることが可能である。   This Example 1 has the structure as described above, and as shown in FIG. 9, the inner joint pipe 4 is aligned with the lower end of the upper steel pipe pile 1 through the steel outer ring 9 in the axial center. The inner diameter of the outer joint pipe 3 is fixed to the upper surface of the lower steel pipe pile 2 by being welded and fixed to the upper surface of the lower steel pipe pile 2 with the lower end face of the outer joint pipe 3 being welded and fixed in a state where the axis is aligned. The inner joint pipe 4 is inserted on the side, the lower end surface of the steel outer ring 9 and the upper end surface of the outer joint pipe 3 are brought into contact with each other, and the positions of the holes 6 and 7 are aligned. And the lower steel pipe pile 2 and the upper steel pipe pile 1 are coupled, and the steel outer ring 9 is interposed between the upper part of the inner joint pipe 4 and the lower end of the upper steel pipe pile 1. In addition, a contact portion with the upper steel pipe pile 1 is formed on the upper portion of the inner joint pipe 4 without separately forming an L-shaped protruding portion on the upper end of the inner joint pipe 4 as in the conventional case. Years, consisting of upper steel pipe pile 1 can be safely reliably transmit the compressive forces under the steel pipe pile 2. In addition, since there is no need for cutting work to form an L-shaped overhang on the upper part of the inner joint pipe 4 as in the conventional case, wasteful waste of high steel material is eliminated and the machining cost is also extremely low. Is possible.

図14はこの発明に係る鋼管杭の機械式継手の実施例2の半裁断面図である。   FIG. 14 is a half cut sectional view of Embodiment 2 of the mechanical joint for steel pipe piles according to the present invention.

図中19は鋼製内リングであり、下鋼管杭2の内径よりわずかに小さい外径を有し、上面側には階段状の係合面20が形成されており、下鋼管杭2の上端面寄りの内周面に溶接金属28を介して溶接固着されている。   In the figure, 19 is a steel inner ring having an outer diameter slightly smaller than the inner diameter of the lower steel pipe pile 2, and a stepped engagement surface 20 is formed on the upper surface side. The inner peripheral surface near the end surface is welded and fixed via a weld metal 28.

一方、内継手管4の下端には前記鋼製内リング19の係合面20に対応する様に逆階段状の係合面21が形成されており、両係合面20,21はわずかな隙間を保って対向せしめられている。他の部分は実施例1と同じであり、同一符号を付して説明を省略する。なお、内継手管3に形成される孔7は、図23に示すものの様に、めくら孔でも良いことはもちろんである。   On the other hand, a reverse step-like engagement surface 21 is formed at the lower end of the inner joint pipe 4 so as to correspond to the engagement surface 20 of the steel inner ring 19. It is made to oppose with a gap. Other parts are the same as those of the first embodiment, and the same reference numerals are given and the description thereof is omitted. Needless to say, the hole 7 formed in the inner joint pipe 3 may be a blind hole as shown in FIG.

この実施例2においては、両継手管3,4の結合箇所に曲げモーメントが作用し、図11に示す様に、結合箇所が「く」字形に変形しそうになったときは、鋼製内リング19の係合面20と内継手管4の係合面21とが係合して、外継手管3と内継手管4とが離間するの阻止し、曲げ剛性の低下を抑制することになる。   In the second embodiment, when a bending moment acts on the joint portion of both joint pipes 3 and 4 and the joint portion is likely to be deformed into a "<" shape as shown in FIG. The engagement surface 20 of 19 and the engagement surface 21 of the inner joint pipe 4 are engaged to prevent the outer joint pipe 3 and the inner joint pipe 4 from being separated from each other, and the decrease in bending rigidity is suppressed. .

なお、継手付き鋼管と鋼管単体に対し曲げ試験を行うと、継手付き鋼管の曲げ変形量は、鋼管単体よりも大きくなるという現象が発生しやすい。
図11は、この曲げを受けた継手の変形状態を誇張して描いたものであり、この変形は、図10に示す様に、両継手管3,4の結合箇所に偏圧が作用し、両者の接触部の一部に離間が生じる為に起こる。実施例2においては、上述の通り、鋼製内リング19によって外継手管3の根元部と内継手管4の下端部が離間することを阻止しており、それによって曲げ剛性の低下を抑制している。
In addition, when a bending test is performed on a steel pipe with a joint and a single steel pipe, a phenomenon that the bending deformation amount of the steel pipe with a joint becomes larger than that of the single steel pipe tends to occur.
FIG. 11 is an exaggerated depiction of the deformation state of the joint subjected to this bending, and this deformation causes a bias pressure to act on the joint location of both joint pipes 3 and 4, as shown in FIG. This occurs because a part of the contact portion is separated. In the second embodiment, as described above, the steel inner ring 19 prevents the root portion of the outer joint pipe 3 and the lower end portion of the inner joint pipe 4 from being separated, thereby suppressing a decrease in bending rigidity. ing.

この実施例2においては両係合面20,21の間にわずかな隙間を設けることが肝要であり、この隙間を設けないと、鋼製外リング9と鋼製内リング19の取付け位置精度にわずかな狂いが生じても、鋼製外リング9と外継手管3の上端部とが当接しなくなり、上鋼管杭1と外継手管3との間で、圧縮力が伝達出来なくなってしまう。   In the second embodiment, it is important to provide a slight gap between the engagement surfaces 20 and 21. If this gap is not provided, the mounting position accuracy of the steel outer ring 9 and the steel inner ring 19 is improved. Even if a slight deviation occurs, the steel outer ring 9 and the upper end portion of the outer joint pipe 3 do not come into contact with each other, and the compressive force cannot be transmitted between the upper steel pipe pile 1 and the outer joint pipe 3.

なお、外継手管3の下端及び下鋼管杭2の上端とにそれぞれ接合される鋼製内リング19の外周面の溶接箇所22は、図15に示す様に、斜面に形成しても良く、こうすることにより、外継手管3と下鋼管杭2のそれぞれの肉厚の違いを補うことが出来る。又、係合面20,21は必ずしも階段状ではなく、図16に示す様に、テーパ状に形成しても良い。   In addition, as shown in FIG. 15, the welding location 22 of the outer peripheral surface of the steel inner ring 19 joined to the lower end of the outer joint pipe 3 and the upper end of the lower steel pipe pile 2 may be formed on a slope, By carrying out like this, the difference in thickness of each of the outer joint pipe 3 and the lower steel pipe pile 2 can be compensated. Further, the engaging surfaces 20 and 21 are not necessarily stepped, but may be tapered as shown in FIG.

更に、図17に示す様に、鋼管外リング9の下端に逆階段状の係合面23を形成すると共に、これに対向した外継手管3の上端に階段状の係合面24を形成しても良く、この様にした場合には、結合箇所が「く」字形に変形することを拘束する偶力の関係にある一対の力P1,P2が発生して抵抗モーメントとなり、曲げ耐力は更に増強される。 Further, as shown in FIG. 17, an inverted stepped engagement surface 23 is formed at the lower end of the steel pipe outer ring 9, and a stepped engagement surface 24 is formed at the upper end of the outer joint pipe 3 opposed thereto. In such a case, a pair of forces P 1 and P 2 that have a couple relationship that restrains the joint portion from being deformed into a “<” shape is generated, resulting in a resistance moment and a bending strength. Is further enhanced.

図18はこの発明に係る鋼管杭の機械式継手の実施例3の縦断面図である。   FIG. 18 is a longitudinal sectional view of Example 3 of a mechanical joint for steel pipe piles according to the present invention.

この実施例3は、短尺円筒状をなし、接合対象である一対の鋼管杭1,2の外径とほぼ同じ外径を有し、周壁には軸心から直角の方向に向かって放射状に、周壁を貫通した孔6が複数個穿かれている外継手管3’、同じく短尺円筒状をなし、前記外継手管3’の孔6が形成されている位置と対応する位置の周壁に、軸心から垂直の方向に向かって放射状に複数の孔7が形成されている内継手管4’及びこれら孔6,7に挿通されるピン状をなした鋼製円柱体8’からなるものであり、鋼製円柱体8’の本体26は、孔6,7の内径よりわずかに小さい外径を有し、図19(a)(b)に示す様に、その外周面には突起25が一個又は複数個溶接により形成されている。この突起25の高さ及び大きさはこれを設けた鋼製円柱体8’をこれら孔6,7内にハンマー30等でたたいて打ち込める程度の寸法であり、高さが低すぎると施工中に抜け出るおそれがあり、高すぎると打ち込みが困難となり、共に好ましくないので、溶接によって本体26にこの突起25を形成した後、図20に示す様にグラインダで過剰部分29を切削して高さを調節すれば、最適な寸法の突起25を形成できる。又、打ち込む方向を考慮してこの突起25に斜面27を形成すると、打込み挿入が容易となる。更に、内継手管4は図18に示したL字形状を有するのものに限らず、図2及び図14に示すものなどでもよく、同様に、外継手管も、図2及び図17に示すものなどでも良い。又、内継手管3に形成される孔7は、図2に示すめくら孔でもよい。   This Example 3 has a short cylindrical shape, has substantially the same outer diameter as the outer diameter of the pair of steel pipe piles 1 and 2 to be joined, and the peripheral wall is radially directed from the axis toward the direction perpendicular to the axis. An outer joint pipe 3 ′ having a plurality of holes 6 penetrating the peripheral wall, which is also in the form of a short cylinder, is formed on the peripheral wall at a position corresponding to the position where the hole 6 of the outer joint pipe 3 ′ is formed. It consists of an inner joint pipe 4 'in which a plurality of holes 7 are formed radially in the direction perpendicular to the center and a steel cylinder 8' in the form of a pin inserted into these holes 6, 7. The main body 26 of the steel cylinder 8 'has an outer diameter slightly smaller than the inner diameter of the holes 6 and 7, and as shown in FIGS. 19 (a) and 19 (b), one protrusion 25 is provided on the outer peripheral surface thereof. Or it is formed by multiple welding. The height and size of the projection 25 are such that the steel cylinder 8 ′ provided with the projection 25 can be driven into the holes 6 and 7 with a hammer 30 or the like. If the height is too high, it will be difficult to drive and both are not preferred. Therefore, after forming this projection 25 on the main body 26 by welding, the excess portion 29 is cut with a grinder as shown in FIG. If adjusted, the projection 25 having an optimum size can be formed. Further, if the inclined surface 27 is formed on the projection 25 in consideration of the driving direction, the driving insertion becomes easy. Further, the inner joint pipe 4 is not limited to the one having the L-shape shown in FIG. 18, but may be one shown in FIGS. 2 and 14, and the outer joint pipe is also shown in FIGS. Things may be used. The hole 7 formed in the inner joint pipe 3 may be a blind hole shown in FIG.

この実施例3においては、鋼製円柱体8’には突起25が形成されているので、連通した孔6と孔7に、図21に示す様にハンマー30等で打ち込むと、図22に示す様に、突起25及びこれが当たるこれら孔6,7の内径側壁面は適度に変形し、鋼製円柱体8’は孔6及び孔7に強固に固定され、大きな回転トルクを受ける施工時においても、鋼製円柱体8’は孔6,7から抜け出ることはなく、抜け止め手段を別途設ける必要が全くなくなり、その分の製造コスト及び加工コストを大幅に低下させることが出来る。   In the third embodiment, since the projections 25 are formed on the steel cylinder 8 ′, when the hammers 30 and the like are driven into the communicating holes 6 and 7, as shown in FIG. 21, they are shown in FIG. In the same manner, the protrusion 25 and the inner wall surfaces of the holes 6 and 7 with which the protrusions hit are appropriately deformed, and the steel cylinder 8 ′ is firmly fixed to the holes 6 and 7, even during construction that receives a large rotational torque. The steel cylinder 8 'does not come out of the holes 6 and 7, and it is not necessary to provide a separate retaining means at all, and the manufacturing cost and processing cost can be greatly reduced.

又、鋼製円柱体8’は長尺円柱鋼棒を短尺に切断して簡単に作ることが出来、材質強度の高い素材も安価に入手可能な為、非常に低コストで調達することが出来る。又、突起25は溶接によって形成されるので、その為の加工コストは極めて低くてすむ。   Also, the steel cylinder 8 'can be easily made by cutting a long cylindrical steel rod into a short length, and a material with high material strength can be obtained at a low cost, so it can be procured at a very low cost. . Further, since the projection 25 is formed by welding, the processing cost for that is very low.

基本杭を用いる各種建築土木工事において利用可能である。   It can be used in various civil engineering works using basic piles.

1 上鋼管杭
2 下鋼管杭
3 外継手管
4 内継手管
5 周壁
6 孔
7 孔
8 鋼製円柱体
9 鋼製外リング
10 下端面
11 上端面
12 外周面
13 溶接金属
14 裏当りリング
15 開先溶接用斜面
16 鋼製フィラー
17 ボルト
18 ナット
19 鋼製内リング
20 係合面
21 係合面
22 溶接箇所
23 係合面
24 係合面
25 突起
26 本体
27 斜面
28 溶接金属
29 過剰部分
30 ハンマー
31 係合面
32 係合面
DESCRIPTION OF SYMBOLS 1 Upper steel pipe pile 2 Lower steel pipe pile 3 Outer joint pipe 4 Inner joint pipe 5 Peripheral wall 6 Hole 7 Hole 8 Steel cylinder 9 Steel outer ring 10 Lower end surface 11 Upper end surface 12 Outer surface 13 Weld metal 14 Backing ring 15 Open Pre-weld slope 16 Steel filler 17 Bolt 18 Nut 19 Steel inner ring 20 Engagement surface 21 Engagement surface 22 Welding location 23 Engagement surface 24 Engagement surface 25 Projection 26 Main body 27 Slope 28 Weld metal 29 Excess portion 30 Hammer 31 engaging surface 32 engaging surface

Claims (3)

短尺円筒状をなし、接合対象である一対の鋼管杭の外径とほぼ同じ外径を有し、周壁には軸心から直角の方向に向かって放射状に、周壁を貫通した孔が複数個穿かれている外継手管; 同じく短尺円筒状をなし、前記外継手管の内径よりわずかに小さい外径を有し、前記外継手管の孔が形成されている位置と対応する位置の周壁に、軸心から直角の方向に向かって放射状に外継手管の孔と同径の孔が穿かれている内継手管; 外径が前記鋼管杭の外径とほぼ同じで、内径が前記内継手管の外径よりわずかに大きい鋼製外リング; 外径が前記孔よりわずかに小さい鋼製円柱体; とからなり、外継手管を一方の鋼管杭の端面に軸心が一致する様に溶接固着すると共に、鋼製リングを内継手管の一方の端部寄りの外周に挿入し、鋼管杭の端面、鋼製外リングの端面、内継手管の周面にそれぞれ囲われた帯状空間内を溶接金属で満たすことにより、鋼製外リングを介して、内継手管をもう一方の鋼管杭に溶接固着し、外継手管の孔が内継手管の孔と連通する様に外継手管の内径側に内継手管を挿入し、鋼製外リングの端面と外継手管の端面とを対向させた状態で、これら両孔に鋼製円柱体を差し込むことにより、内継手管と外継手管とを結合する様にしたことを特徴とする鋼管杭の機械式継手。   It has a short cylindrical shape and has approximately the same outer diameter as the pair of steel pipe piles to be joined, and the peripheral wall has a plurality of holes that penetrate the peripheral wall in a radial direction from the axis. An outer joint pipe that is also formed in a short cylindrical shape, has an outer diameter slightly smaller than the inner diameter of the outer joint pipe, and a peripheral wall at a position corresponding to the position where the hole of the outer joint pipe is formed, Inner joint pipe in which holes having the same diameter as the hole of the outer joint pipe are formed radially in a direction perpendicular to the axis; the outer diameter is substantially the same as the outer diameter of the steel pipe pile, and the inner diameter is the inner joint pipe A steel outer ring slightly larger than the outer diameter of the steel; a steel cylinder whose outer diameter is slightly smaller than the hole; and the outer joint pipe is welded and fixed so that the axial center of the outer joint pipe coincides with the end face of one of the steel pipe piles At the same time, the steel ring is inserted into the outer periphery near one end of the inner joint pipe, and the end face of the steel pipe pile, steel By filling the inner ring space surrounded by the end face of the outer ring and the peripheral surface of the inner joint pipe with weld metal, the inner joint pipe is welded and fixed to the other steel pipe pile via the steel outer ring. Insert the inner joint pipe on the inner diameter side of the outer joint pipe so that the hole of the joint pipe communicates with the hole of the inner joint pipe, and with the end face of the steel outer ring facing the end face of the outer joint pipe, A mechanical joint for steel pipe piles, wherein an inner joint pipe and an outer joint pipe are joined by inserting a steel cylinder into both holes. 短尺円筒状をなし、接合対象である一対の鋼管杭の外径とほぼ同じ外径を有し、周壁には軸心から直角の方向に向かって放射状に、周壁を貫通した孔が複数個穿かれている外継手管; 同じく短尺円筒状をなし、前記外継手管の内径よりわずかに小さい外径を有し、一方の端部の内径側には、逆階段状あるいは逆テーパ状に削り取られた係合面が形成されており、更に、前記外継手管の孔が形成されている位置と対応する位置の周壁に、軸心から直角の方向に向かって放射状に外継手管の孔と同径の孔が穿かれている内継手管; 外径が前記鋼管杭の外径とほぼ同じで、内径が前記内継手管の外径よりわずかに大きい鋼製外リング; 鋼管杭の内径よりわずかに小さい外径を有し、一方の端部には、前記内継手管の係合面に対応する様に、階段状あるいはテーパ状の係合面が形成された鋼製内リング; 外径が前記孔よりわずかに小さい鋼製円柱体; とからなり、外継手管を一方の鋼管杭の端面に、軸心が一致する様に溶接固着すると共に、鋼製外リングを内継手管の一方の端部寄りの外周に挿入し、鋼管杭の端面、鋼製外リングの端面、内継手管の周面にそれぞれ囲われた帯状空間内を溶接金属で満たすことにより、この鋼製外リングを介して、内継手管をもう一方の鋼管杭に溶接固着すると共に、外継手管の内径側に内継手管を挿入した際に、内継手管端部の係合面と鋼製内リングの係合面とがわずかな隙間を保って対向する様に鋼製内リングを鋼管杭の内径側端部に溶接固定し、外継手管の孔が内継手管の孔と連通する様に、外継手管の内径側に内継手管を挿入し、鋼製外リングの端面と外継手管の端面、内継手管の係合面と鋼製内リングの係合面とがそれぞれ対向した状態で、これら両孔に鋼製円柱体を差し込むことにより、内継手管と外継手管とを結合する様にしたことを特徴とする鋼管杭の機械式継手。   It has a short cylindrical shape and has approximately the same outer diameter as the pair of steel pipe piles to be joined, and the peripheral wall has a plurality of holes that penetrate the peripheral wall in a radial direction from the axis. The outer joint pipe is also formed in a short cylindrical shape, has an outer diameter slightly smaller than the inner diameter of the outer joint pipe, and is scraped off in an inverted stepped shape or an inverted tapered shape on the inner diameter side of one end. Further, the same engagement surface as that of the outer joint pipe is formed radially on the peripheral wall at a position corresponding to the position where the hole of the outer joint pipe is formed. Inner joint pipe with a hole having a diameter; Steel outer ring whose outer diameter is almost the same as the outer diameter of the steel pipe pile and whose inner diameter is slightly larger than the outer diameter of the inner pipe; A small outer diameter, and one end has a stairway so as to correspond to the engagement surface of the inner joint pipe. Or a steel inner ring with a tapered engagement surface; a steel cylinder whose outer diameter is slightly smaller than the hole; and the outer joint pipe is aligned with the end face of one of the steel pipe piles and the axis is aligned The steel outer ring is inserted into the outer periphery near one end of the inner joint pipe and surrounded by the end face of the steel pipe pile, the end face of the steel outer ring, and the inner joint pipe. The inner joint pipe is welded and fixed to the other steel pipe pile via this steel outer ring by filling the inside of the strip-shaped space with weld metal, and the inner joint pipe is inserted into the inner diameter side of the outer joint pipe. The steel inner ring is welded and fixed to the inner diameter side end of the steel pipe pile so that the engagement surface of the inner joint pipe end faces the engagement surface of the steel inner ring with a slight gap. Insert the inner joint pipe on the inner diameter side of the outer joint pipe so that the hole of the joint pipe communicates with the hole of the inner joint pipe. The end face of the outer joint pipe, the end face of the outer joint pipe, the engagement face of the inner joint pipe and the engagement face of the steel inner ring face each other, and a steel cylinder is inserted into these holes, A mechanical joint for steel pipe piles, characterized in that it is connected to an outer joint pipe. 短尺円筒状をなし、接合対象である一対の鋼管杭の外径とほぼ同じ外径を有し、周壁には軸心から直角の方向に向かって放射状に、周壁を貫通した孔が複数個穿かれている外継手管; 同じく短尺円筒状をなし、前記外継手管の内径よりわずかに小さい外径を有し、前記外継手管の孔が形成されている位置と対応する位置の周壁に、軸心から直角の方向に向かって放射状に外継手管の孔と同径の孔が穿かれている内継手管; 前記孔よりわずかに小さい外径を有する本体の周面に一個又は複数個の突起が溶接により形成された鋼製円柱体; とからなり、外継手管を一方の鋼管杭の端面に軸心が一致する様に溶接固着すると共に、内継手管をもう一方の鋼管杭に溶接固着し、外継手管の孔が内継手管の孔と連通する様に、外継手管の内径側に内継手管を挿入し、これら孔に鋼製円柱体を打ち込み、突起がこれら孔の内周面に変形圧接した状態で、内継手管と外継手管とを結合する様にしたことを特徴とする鋼管杭の機械式継手。   It has a short cylindrical shape and has approximately the same outer diameter as the pair of steel pipe piles to be joined, and the peripheral wall has a plurality of holes that penetrate the peripheral wall in a radial direction from the axis. An outer joint pipe that is also formed in a short cylindrical shape, has an outer diameter slightly smaller than the inner diameter of the outer joint pipe, and a peripheral wall at a position corresponding to the position where the hole of the outer joint pipe is formed, An inner joint pipe in which a hole having the same diameter as the hole of the outer joint pipe is formed radially in a direction perpendicular to the axis; one or more on the peripheral surface of the main body having an outer diameter slightly smaller than the hole A steel cylinder with protrusions formed by welding; and fixing the outer joint pipe to the end face of one steel pipe pile by welding and fixing the inner joint pipe to the other steel pipe pile The inner pipe of the outer joint pipe is fixed so that the hole of the outer joint pipe communicates with the hole of the inner joint pipe. It is characterized in that the hand pipes are inserted, steel cylinders are driven into these holes, and the inner joint pipe and the outer joint pipe are joined in a state where the projections are deformed and pressed against the inner peripheral surfaces of these holes. Mechanical joint for steel pipe piles.
JP2009011731A 2009-01-22 2009-01-22 Mechanical coupling for steel pipe pile Pending JP2010168789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009011731A JP2010168789A (en) 2009-01-22 2009-01-22 Mechanical coupling for steel pipe pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009011731A JP2010168789A (en) 2009-01-22 2009-01-22 Mechanical coupling for steel pipe pile

Publications (1)

Publication Number Publication Date
JP2010168789A true JP2010168789A (en) 2010-08-05

Family

ID=42701180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009011731A Pending JP2010168789A (en) 2009-01-22 2009-01-22 Mechanical coupling for steel pipe pile

Country Status (1)

Country Link
JP (1) JP2010168789A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122349A1 (en) * 2010-03-29 2011-10-06 日鐵住金建材株式会社 Mechanical joint structure for tubular steel piles
KR101930725B1 (en) * 2017-04-18 2018-12-19 디에이치기초건설(주) Connecting apparatus kit for Concrete Pile ends
JP7354872B2 (en) 2020-02-20 2023-10-03 Jfeエンジニアリング株式会社 Jacketed structure and its construction method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122349A1 (en) * 2010-03-29 2011-10-06 日鐵住金建材株式会社 Mechanical joint structure for tubular steel piles
JP2011208373A (en) * 2010-03-29 2011-10-20 Nippon Steel & Sumikin Metal Products Co Ltd Mechanical joint structure of steel pipe pile
KR101930725B1 (en) * 2017-04-18 2018-12-19 디에이치기초건설(주) Connecting apparatus kit for Concrete Pile ends
JP7354872B2 (en) 2020-02-20 2023-10-03 Jfeエンジニアリング株式会社 Jacketed structure and its construction method

Similar Documents

Publication Publication Date Title
JP4626450B2 (en) Threaded joint structure of metal pipe
JP3747594B2 (en) Steel pipe pile joints
JP4757733B2 (en) Manufacturing method of sheet pile for underground continuous wall and sheet pile
JP2009299298A (en) Mechanical joint of steel pipe pile
JP4645268B2 (en) Joint structure of steel pipe pile for landslide prevention and steel pipe pile for landslide prevention provided with the same
JP2005351412A (en) Connection method for steel pipes
JP5053828B2 (en) Joint structure
JP5703210B2 (en) Shear key structure
JP2010168789A (en) Mechanical coupling for steel pipe pile
JP2008274613A (en) Connecting structure of steel pipe pile
JP4506969B2 (en) Bonding structure between concrete and pile head of foundation or footing and structure having the bonding structure
JP2013112953A (en) Steel pipe pile connection structure
JP3115424U (en) Steel pipe pile connection structure
JP2009024436A (en) Mechanical joint of steel pipe pile
JP2013163890A (en) Connection method for foundation pile for housing
JP2005003029A (en) Joint structure for tube body
JP2011132702A (en) Joint structure of steel pipe pile of rotary press-fitting type and construction method of the same
JP2008308856A (en) Steel pipe pile for under-pinning
JP4716121B2 (en) Steel column connection structure and steel column connection method
JP2019167758A (en) Joint structure for steel pipe pile
JP2003105752A (en) Connecting structure of steel pipe
JP2004293231A (en) Connection structure of steel pipe and its connecting method
JP2007100486A (en) Steel pipe pile connecting structure for vibration piling and its connecting method
JP2012031682A (en) Joint structure of rotary press-fitting type steel pipe pile
JP6470699B2 (en) Pile connection structure