JP2009024436A - Mechanical joint of steel pipe pile - Google Patents
Mechanical joint of steel pipe pile Download PDFInfo
- Publication number
- JP2009024436A JP2009024436A JP2007190470A JP2007190470A JP2009024436A JP 2009024436 A JP2009024436 A JP 2009024436A JP 2007190470 A JP2007190470 A JP 2007190470A JP 2007190470 A JP2007190470 A JP 2007190470A JP 2009024436 A JP2009024436 A JP 2009024436A
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- joint material
- pipe pile
- base
- pin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Piles And Underground Anchors (AREA)
Abstract
Description
この発明は鋼管杭の機械式継手、詳しくは、製造が容易で、安価で提供出来るにもかかわらず、実用上十分な強度を有する信頼性に富む鋼管杭の機械式継手に関するものである。 TECHNICAL FIELD The present invention relates to a mechanical joint for steel pipe piles, and more particularly to a mechanical joint for steel pipe piles which is easy to manufacture and can be provided at a low cost and has a sufficient strength for practical use.
各種建築土木工事において用いられる既製杭には、鋼管杭とコンクリート杭とがあるが、いずれも必要に応じて接合する場合がある。一般的に、現場での杭の接合には、溶接が用いられることが多かったが、現場での溶接は、溶接品質の確保がむずかしい、作業が天候に左右されやすい、溶接作業時間が長くかかる、などの問題があり、コンクリート杭においては、現場溶接が不要な機械式継手を用いた接合が最近多く実施される様になっている。 There are steel pipe piles and concrete piles as ready-made piles used in various civil engineering works, both of which may be joined as necessary. Generally, welding is often used for joining piles in the field, but it is difficult to ensure the welding quality, the work is subject to the weather, and the welding work takes a long time. In concrete piles, joints using mechanical joints that do not require on-site welding have recently been implemented frequently.
又、コンクリート杭の分野において、機械式継手が普及した背景には、コンクリートよりも強度が数倍大きい鋼材を継手材料として使用出来ること、一般的にコンクリート杭の両端には鋼製端板があり、これを継手材の一部として利用出来るので、全体のコストを低く抑えられる、などの理由が存在している。 Also, in the field of concrete piles, the background of the spread of mechanical joints is that steel materials that are several times stronger than concrete can be used as joint materials, and generally there are steel end plates at both ends of concrete piles. Since this can be used as a part of the joint material, there are reasons that the overall cost can be kept low.
一方、鋼管杭の場合、鋼管杭と同じく鋼材を継手材料として用いるが、継手部分の強度を鋼管杭本体と同等以上にする為には、高品質高強度の鋼材の利用や複雑な構造を採用しなければならず、これに伴い継手の製造コストが高騰することが避けられず、普及が阻げられているのが現状である。
特許文献1乃至3はいずれも鋼管杭の機械式継手に関するものであり、特許文献1には、雄円筒の外面と雌円筒の内面とにそれぞれ円弧状突起を円周方向に交互に設け、雄円筒を雌円筒に挿入後回転させて接合させる継手が開示されている。この継手においては、引っ張り力は円弧状突起(ギア)同士の接触で伝達される様になっており、引っ張り力の伝達能力が大きく、曲げモーメントにも強い特徴を有している。しかし、円弧状突起を溶接によって継手本体に固着させるのは非現実的であり、通常は、肉厚の円筒体を旋盤で切削して円弧状突起を形成することになるが、旋盤の特性上、円筒体の軸芯方向の切削は著しく能率が悪く、コスト高の最大の要因となることは明らかである。
又、この継手においては、回転トルクは雌雄円筒間に設けたキーによって伝達する構造となっているが、この場合のキーは単なる円柱状ピンでない為、キーとその挿入孔の製作費は高くならざるを得ず、これも全体のコストを押し上げる要因となっており、これらの点から勘案して、この特許文献1に開示されている機械式継手はコスト的に難があった。
In this joint, the rotational torque is transmitted by a key provided between the male and female cylinders. However, since the key in this case is not a simple cylindrical pin, the manufacturing cost of the key and its insertion hole is high. Inevitably, this also increases the overall cost. Taking these points into consideration, the mechanical joint disclosed in
一方、特許文献2には、ピン挿入孔を有する内継手管又は複数の短冊状平板を、同じくピン挿入孔を有する外継手管に挿入した後、両ピン挿入孔にピンを挿入して結合する構造の機械式継手が開示されている。この継手においては、鋼管杭の軸方向の力(引っ張り力と圧縮力)は、ピン部材のせん断力を介して伝達される構造となっているが、ピン部材だけで大きな圧縮力や引っ張り力を伝達させるのは後述する様に強度的に無理があった。
On the other hand, in
又、この継手においては、内継手管は、鋼管端部の内面に固着する構造になっており、図面には両端部を隅肉溶接する例と、内継手管下部に切り欠きを設け、溶接部の長さを増す例が示されているが、前者の場合、鋼管内側の溶接作業は、管径が十分に大きい場合を除いて難かしく、又、隅肉溶接であるので、溶接強度が確保しにくいという問題があり、これを補うものとして後者が示されているが、溶接長が長くなるに従い、作業性が悪くなることは当然であり、結果的にコストがかかってしまう欠点があった。 In this joint, the inner joint pipe is structured to be fixed to the inner surface of the steel pipe end, and in the drawing, both ends are fillet welded, and a notch is provided at the lower part of the inner joint pipe to weld. An example of increasing the length of the part is shown, but in the former case, the welding work inside the steel pipe is difficult unless the pipe diameter is sufficiently large, and because the fillet weld is used, the welding strength is There is a problem that it is difficult to secure, but the latter is shown as a supplement to this, but as the weld length becomes longer, it is natural that workability deteriorates, and as a result, there is a disadvantage that costs increase. It was.
一方、内継手管の代替として短冊状平板を用いる場合には、前述の切り欠き部の溶接の場合と同じく問題が生じると共に、短冊状断面は、円環状断面に比べてねじり耐力と剛性が著しく劣り、厚さを非常に大きくしないと鋼管本体と同等の強度を持ち得ない欠点があった。更に、この欠点を改善する為、肉厚の短管を介して内継手管と鋼管とを接合する技術も開示されているが、肉厚短管の調達費と溶接費が余分にかかってしまい、結果的にコスト高の継手になってしまう欠点があった。これらの点から、この特許文献2に開示されている継手も、十分な実用性を有しているとは言えなかった。
On the other hand, when a strip-shaped flat plate is used as an alternative to the inner joint pipe, the same problem as in the case of the welding of the notch described above occurs, and the torsional strength and rigidity of the strip-shaped section are significantly higher than those of the annular section. Inferiority, there was a drawback that the steel pipe body could not have the same strength unless the thickness was made very large. Furthermore, in order to remedy this drawback, a technique for joining an inner joint pipe and a steel pipe via a thick short pipe is also disclosed, but the procurement cost and welding cost of the thick short pipe are excessive. As a result, there is a drawback that the joint becomes expensive. From these points, the joint disclosed in
更に、特許文献3には、端部に凹凸を設けた第1継手(上継手)と第2継手(下継手)の凹凸部を嵌合させたうえで、凹凸部の境界に設けられた孔にピンを挿入する構造の機械式継手が開示されており、前述の特許文献2に開示されている機械式継手とは形態的には大きく異なるものの、ピンによって軸方向だけではなく、曲げモーメントも伝達させ様としている点においては軌を一にしており、その意味においては、前述の特許文献2に開示されている機械式継手と同じ問題点を有していた。
Furthermore,
又、この継手においては、せん断方向を向いたピンはせん断抵抗を発揮し得ず、又、凹凸部における断面積はその上下の部分に比べ半分しかない為、十分なせん断耐力を確保出来ないという問題があった。従って、この特許文献3に開示されている継手も、強度的には十分なものではなく、実用上問題があると言わざるを得なかった。
In addition, in this joint, the pin facing the shear direction cannot exhibit shear resistance, and the cross-sectional area of the concavo-convex portion is only half that of the upper and lower portions, so that sufficient shear strength cannot be ensured. There was a problem. Therefore, the joint disclosed in
ところで、基礎杭に作用する力は、通常、圧縮力、引っ張り力、曲げモーメント、せん断力、回転トルク(ねじりせん断力)であるが、基礎杭に常時作用する力は、擁壁の基礎杭など特殊な例を除けば、杭軸方向の圧縮力であり、大きな引っ張り力や曲げモーメント、せん断力が基礎杭に作用するのは、地震や強風など異常時の短時間だけである。又、引っ張り力は圧縮力に比べ通常数分の1以下と小さく、その発生頻度も少ない。更に、曲げモーメントが作用する場合でも、曲げモーメント単独で杭に作用するのではなく、圧縮力と同時に作用するのが普通である。つまり、基礎杭を円環断面としてみた場合、引っ張り応力が発生している部分はその円周長のうち、ほんのわずかの部分で、しかもその値は小さく、大部分では圧縮応力が発生していることになる。 By the way, the force acting on the foundation pile is usually compressive force, tensile force, bending moment, shearing force, rotational torque (torsional shearing force). Except for special cases, it is the compressive force in the direction of the pile axis, and large pulling force, bending moment, and shearing force are applied to the foundation pile only for a short period of time such as an earthquake or strong wind. Further, the pulling force is usually as small as a fraction of the compression force, and the frequency of occurrence is low. Furthermore, even when a bending moment is applied, it is normal that the bending moment does not act on the pile alone but acts simultaneously with the compressive force. In other words, when the foundation pile is viewed as an annular cross section, the portion where the tensile stress is generated is only a small portion of the circumference, and the value is small, and the compressive stress is generated mostly. It will be.
一方、回転貫入杭の施工時には、鋼管杭のねじり耐力と同程度の大きさの回転トルクが頻繁に発生するので、継手をこの回転貫入杭に用いる場合には、このトルクに耐える必要があるが、ピンの水平方向せん断抵抗力のみでこの回転トルクに対抗しようとする場合、鋼管のねじり耐力と同等な回転トルクに対抗するピンのせん断力は、鋼管の引っ張り耐力と同等な引っ張り力に抵抗するピンのせん断力に比べ、理論上√1/3にすぎないことは、従来から知られている。 On the other hand, when a rotary penetrating pile is constructed, a rotational torque of the same magnitude as the torsional strength of steel pipe piles is frequently generated, so when using a joint for this rotary penetrating pile, it is necessary to withstand this torque. When trying to counter this rotational torque with only the horizontal shear resistance of the pin, the shearing force of the pin against the rotational torque equivalent to the torsional strength of the steel pipe resists the tensile force equivalent to the tensile strength of the steel pipe. It has hitherto been known that it is theoretically only 1/3 compared to the shearing force of the pin.
以上述べた基礎杭の一般的作用力の考察から、本発明者は、後述する様に、圧縮力はピンなどを介するよりも直接部材を当接させて伝達した方が合理的であり、一方、発生頻度が少なく、力も小さい引っ張り力は、ピンを介して伝達した方が機構的にも合理的であることを見出した。本発明者は、上記知見に基づき、鋼管杭の接合に用いる機械式継手に内在する問題点を解決すべく研究を行った結果、鋼管杭本体と同等以上の耐力を持ち、信頼性も高く、しかも安価に製作出来る実用価値の高い機械式継手を開発することに成功し、本発明として、ここに提案するものである。 From the consideration of the general acting force of the foundation pile described above, the present inventor is more rational that the compressive force is transmitted by contacting the member directly rather than via a pin, as will be described later. It has been found that a pulling force with a low occurrence frequency and a small force is rational in terms of mechanism when transmitted through a pin. Based on the above findings, the present inventor has conducted research to solve the problems inherent in mechanical joints used for joining steel pipe piles. In addition, the present inventors have succeeded in developing a mechanical joint with high practical value that can be manufactured at low cost, and propose it as the present invention.
肉厚円筒状をなした基部(8)の一方の端縁から外側に向かって直角に肉厚円環状のつば部(13)が一体的に延設された鋼製のつば付き円筒状をなし、つば部(13)の外径は接合対象である一対の鋼管杭の外径とほぼ同じに、基部(8)の外径は外継手材(3)の内径よりわずかに小さくなる様にそれぞれ形成されており、前記つば部(13)の端面には一方の鋼管杭の端面がその軸心を一致させた状態で溶接固着されると共に、前記基部(8)の周壁(16)には軸心から直角の方向を向かって放射状に複数のピン挿入孔(10)が間隔をあけて穿かれている内継手材(4); 接合対象である鋼管杭の外径とほぼ同じ外径、前記内継手材(4)の基部(8)の外径よりわずかに大きな内径をそれぞれ有し、もう一方の鋼管杭の端面がその軸心を一致させた状態で溶接固着されると共に、前記内継手材(4)の基部(8)に穿かれているピン挿入孔(10)に対応する箇所に同径のピン挿入孔(12)が穿かれている鋼製の肉厚円筒状の外継手材(3); とからなり、外継手材(3)の内径側に内継手材(4)の基部(8)を挿入し、それぞれのピン挿入孔(10)(12)にピン(18)を差し込み、一対の鋼管杭に圧縮力が作用したときに、内継手材(4)のつば部(13)の端面と外継手材(3)の端面とが当接する様に、内継手材(4)と外継手材(3)とを結合して、上記課題を解決した。 Thick-cylindrical cylindrical portion with a thick annular ring (13) integrally extending perpendicularly outward from one end of the thick cylindrical base (8) The outer diameter of the collar portion (13) is substantially the same as the outer diameter of the pair of steel pipe piles to be joined, and the outer diameter of the base portion (8) is slightly smaller than the inner diameter of the outer joint material (3). And the end face of one of the steel pipe piles is welded and fixed to the end face of the collar part (13) in a state in which its axis is aligned, and the shaft (1) is attached to the peripheral wall (16) of the base part (8). An inner joint material (4) in which a plurality of pin insertion holes (10) are drilled at intervals from each other in a direction perpendicular to the center; an outer diameter substantially the same as the outer diameter of the steel pipe pile to be joined; Each has an inner diameter slightly larger than the outer diameter of the base (8) of the inner joint material (4), and the end face of the other steel pipe pile is Of the inner diameter of the inner joint material (4) and the pin insertion hole (10) having the same diameter at a position corresponding to the pin insertion hole (10) formed in the base (8). 12) A steel-walled cylindrical outer joint material (3) having a perforation formed therein. The base (8) of the inner joint material (4) is inserted into the inner diameter side of the outer joint material (3). When the pin (18) is inserted into each of the pin insertion holes (10) and (12) and a compressive force is applied to the pair of steel pipe piles, the end face of the flange portion (13) of the inner joint material (4) and the outer joint The inner joint material (4) and the outer joint material (3) were combined so that the end surface of the material (3) was in contact with each other, thereby solving the above problem.
上鋼管杭1の下端に内継手材4のつば部13の上面をその軸心が一致した状態で溶接すると共に、下鋼管杭2の上面に外継手材3の下端面をその軸心が一致した状態で溶接し、下鋼管杭2の上面に固定されている外継手材3の内径側に内継手材4の基部8を挿入し、それぞれのピン挿入孔10、12の位置を合わせ、ここにピン18を差し込んで、下鋼管杭2と上鋼管杭1との結合を行う。この状態で、上鋼管杭1から下方に向かって圧縮力が加わると、圧縮力はつば部13を介して外継手材3にまっすぐに伝わることになる。つまり、圧縮力は内継手材4のつば部13から外継手材3の端面に直接伝達され、基本的にはピン18には力は伝わらず、非常に単純な力の伝達経路となる。従って、互いに当接する部分には支圧応力が生じるが、その分布は厚さ方向へ均等となり、かつ当接する面積は外継手材3の断面積に等しく、十分に広い為、大きな支圧応力差は発生せず、圧縮力は下鋼管杭2に無理なく伝達される。
The upper surface of the
一方、上鋼管杭1からの引っ張り力がかかる場合は、引っ張り力は内継手材4のつば部13から基部8に伝わり、次にピン18に鉛直方向せん断力として伝わり、更に外継手材3に引っ張り力として伝達されることになる。この場合、それぞれの接触部に発生する支圧応力度は単位面積当たりで比較した場合、上述の圧縮力に比べて非常に大きくなる。図12は引っ張り力がピン18を介して内継手材4の基部8から外継手材3に伝達される場合の各部材の変形状態を、図13は外継手材3、内継手材4のピン18の接触部に発生する支圧応力の分布状態を模式的に表わしたものであり、内継手材4の基部8及び外継手材3の支圧を受ける面積(接触面積)は前述の圧縮の場合と比べてはるかに小さい為、接触部に生じる支圧応力の平均値が相当に大きくなっている。しかしながら、引っ張り力が基礎杭に作用するのは地震や強風など異常時の短時間だけであり、しかも、引っ張り力は圧縮力に比べ、通常数分の1以下と小さく、その発生頻度も少ないので、ピン18及びその接触部分は十分にこの支圧応力に耐え、引っ張り力を確実に伝達することが可能である。
On the other hand, when a tensile force is applied from the upper
更に、曲げモーメントが作用する場合は、円環断面でみると、継手の略半分には圧縮力が作用し、残り略半分には引っ張り力が発生する。これらの力の伝達は、それぞれ前述の圧縮力が作用した場合と引っ張り力が作用した場合と同じ伝達機構になる。しかし、杭に曲げモーメントが単独で作用することはなく、前述のように圧縮力と同時に作用するのが普通である。このため、円筒状肉厚断面としてみたとき、大部分には圧縮応力が発生し、引っ張り力が発生する領域はごく限定されたものとなる。その結果、ピン周辺の支圧応力は小さく、曲げモーメント作用時でも無理なく設計することができる。一方、せん断力が作用する場合、上鋼管杭1からのせん断力は内継手材4のつば部13を介して内継手材4の基部8に伝わり、この基部8が外継手材3を押すことにより、これに伝達される。又、回転トルク(ねじりせん断力)が作用する場合、内継手材4のつば部13から基部8にねじりせん断力として伝わり、次にピン18に水平方向せん断力として伝達され、これから外継手材3にねじりせん断力として伝わることになる。なお、回転貫入杭の施工時には、鋼管杭のねじり耐力と同程度の値の回転トルクが頻繁に発生するが、鋼管のねじり耐力と同等な回転トルクに対抗するピン18のせん断力は、鋼管の引っ張り耐力と同等な引っ張り力に対抗するピン18のせん断力に比べ、理論上およそ√1/3にすぎないので、ピン18は十分にこの回転トルクに対抗することが出来る。
Further, when a bending moment is applied, a compression force is applied to approximately half of the joint and a tensile force is generated to approximately the other half when viewed from the annular cross section. The transmission of these forces is the same transmission mechanism as that when the aforementioned compressive force is applied and when the tensile force is applied. However, the bending moment does not act on the pile alone, and usually acts simultaneously with the compressive force as described above. For this reason, when viewed as a cylindrical thick section, compressive stress is generated mostly, and the region where the tensile force is generated is extremely limited. As a result, the bearing stress around the pin is small and can be designed without difficulty even when a bending moment is applied. On the other hand, when a shearing force acts, the shearing force from the upper
この様に、この発明に係る鋼管杭の接合用機械式継手は、一対の継手同士の当接及びピンを介する場合の伝達特性をそれぞれ巧みに利用しており、圧縮力(曲げモーメントによる圧縮力を含む)が作用する場合は、内継手材のつば部と外継手材の上端面の当接により、引っ張り力(曲げモーメントによる引っ張り力を含む)が作用する場合はピンにより力を伝達しており、実際の基礎杭の荷重条件を考慮した無駄のない簡潔な構造で、十分な信頼性を持ちながら、低いコストで製造することが可能で、現場での取付け結合作業も極めて容易に実施出来る効果を有し、高い実用性を有するものである。 As described above, the mechanical joint for joining steel pipe piles according to the present invention skillfully utilizes the contact characteristics between a pair of joints and the transmission characteristics when using a pin, respectively, and compressive force (compressive force due to bending moment). If a tensile force (including a tensile force due to a bending moment) is applied due to contact between the flange of the inner joint material and the upper end surface of the outer joint material, the force is transmitted by the pin. It has a simple structure with no waste considering the load conditions of the actual foundation pile, can be manufactured at low cost while having sufficient reliability, and installation and connection work on site can be performed very easily. It has an effect and has high practicality.
一対の継手材の形態に工夫を凝らし、圧縮力は直接、引っ張り力はピンを介してそれぞれ伝達される様にした点に最大の特徴が存する。 The greatest feature lies in that the form of the pair of joint members is devised so that the compressive force is transmitted directly and the tensile force is transmitted via the pins.
図1はこの発明に係る鋼管杭の接合用機械式継手の実施例1の斜視図、図2はそれぞれ鋼管杭に固着した状態の斜視図、図3は同じく、鋼管杭を結合した状態の斜視図、図4は図3における矢視A−A線断面図、図5は図4における矢視B−B線断面図、図6は図4における矢視C−C線断面図である。
1 is a perspective view of
図中1は接合対象である上鋼管杭、2は下鋼管杭である。この発明に係る鋼管杭の接合用機械式継手は、この上鋼管杭1の下端と下鋼管杭2の上端とを直列状に接合する為に用いるものであり、鋼製の内継手材4、外継手材3及び複数のピン18とによって構成されている。
In the figure, 1 is an upper steel pipe pile to be joined, and 2 is a lower steel pipe pile. The mechanical joint for joining steel pipe piles according to the present invention is used to join the lower end of the upper
内継手材4は、肉厚円筒状をなした基部8の上縁から外側に向かって直角に肉厚円環状のつば部13が一体的に延設された鋼製のつば付き円筒状の部材であり、つば部13の外径は上鋼管杭1の外径とほぼ同じ、基部8の外径は下鋼管杭2の内径よりわずかに小さくなる様に、それぞれ形成されており、前記つば部13の上面5には上鋼管杭1の下端面が、その軸心を一致させた状態で、溶接により固着される様になっている。又、基部8の周壁16には軸心から直角の方向へ向かって放射状に複数のピン挿入孔10が間隔をあけて穿かれている。
The inner
一方、外継手材3は下鋼管杭2の外径とほぼ同じ外径、前記内継手材4の基部8の外径よりわずかに大きい内径をそれぞれ有する鋼製の肉厚円筒状の部材であり、この外継手材3の内径側に前記内継手材4の基部8を挿入した際、内継定材4の基部8に穿かれているピン挿入孔10に対応する箇所には同径のピン挿入孔12が穿かれており、これらピン挿入孔10、12にピン18を差し込むことにより、外継手材3と内継手材4とを連結する様になっている。そして、この外継手材3の下端は下鋼管杭2の上端面6に、その軸心が一致した状態で、溶接によって固着される様になっている。なお、この実施例においては、上鋼管杭1に内継手材4を、下鋼管杭2に外継手材3を溶接固着する様にしているが、これとは逆に、上鋼管杭1に外継手材3を、下鋼管杭2に内継手材4を溶接固着する様にしても良い。
On the other hand, the outer
この外継手材3は既製の適当な鋼管を短尺切断したものでも、鍛造や鋳鋼で製造したものでも良く、内径側の真円度や寸法が不適当な場合は、旋盤で内径側を切削加工しても良い。一方、内継手材4は、シームレス鋼管や遠心力鋳鋼管などの肉厚の鋼管を短尺切断したものや、鍛造で製作した円筒体の外周面の下部を数値制御旋盤で切削して、L字状加工を施したものを用いても良い。
The outer
なお、これら切削加工は、管軸方向へギアを形成する場合などとは異なり、周方向へ一定の形状であるので、素材を回転させた状態で数値制御旋盤の刃物を当てれば短時間で簡単に実施することが出来る。又、ピン挿入孔10、12は円形断面であるので数値制御運転が可能な横向きボール盤を使用すれば、短時間で正確に形成することが出来る。又、ピン18はPC鋼棒などの高強度棒鋼を短尺切断して製作したり、型鍛造で製作しても良い。
These cutting processes are different from the case where gears are formed in the tube axis direction, etc., and since they have a constant shape in the circumferential direction, if the blade of the numerically controlled lathe is applied while the material is rotated, it is easy in a short time. Can be implemented. Further, since the pin insertion holes 10 and 12 have a circular cross section, they can be accurately formed in a short time by using a horizontal drilling machine capable of numerical control operation. Further, the
更に、上述の通り、内継手材4は上鋼管杭1の下端に、外継手材3は下鋼管杭2の上端にそれぞれ溶接によって固着されるのであるが、図7に示すものの様に、内継手材4のつば部13の外縁上部及び外継手材3の外縁下部をそれぞれ面取りし、開先溶接用の斜面19、20を形成しておけば、溶接作業をより簡単、確実、強固に行うことが出来、更に好都合である。この開先溶接用の斜面19、20は旋盤により簡単に形成することが出来る。
Further, as described above, the inner
又、施工中にピン18がピン挿入孔10、12から脱落や移動しないことが必要であるが、その為には、裏当て金具状の帯材を内継手材4の基部8の内径側にあらかじめ取り付けておけば足りるが、図8に示す様にピン挿入孔10を内径側まで完全に貫通させずに途中で止め、非貫通部21を形成したり、図9に示す様に、不完全貫通部22を形成するなどして、抜け止め手段を設ければ、裏当て金具状の帯材を取り付けるよりはるかに安いコストでピン18の移動脱落防止を図ることが出来る。なお、通常、ドリル刃物の刃先は円錐状となっているので、図9に示す不完全貫通部22の形成は極めて容易である。
In addition, it is necessary that the
一方、ピン18の外側への移動脱落防止を図るには、外継手材3の外側にガムテープなどを巻き付けたり、図10に示す様に、鋼製の外バンド23を回巻し、ネジなどで固定すれば良い。又、施工方法や地盤条件によっては、鋼管杭周辺の土砂から思わぬ力が加わり、ピン18の移動脱落防止用の外バンド23がずれたり、脱落する場合もあるが、その様なおそれのある場合には、図11に示す様に、ピン挿入孔12の形成面を外継手材3の外周より少しへこませると共に、ピン18の長さをへこませた分だけ短くし、外バンド23を予め外継手材3の外周に巻いておき、外継手材3と内継手材4の結合時には外バンド23をずらし、ピン18を差し込んだ後、外バンド23をピン18の端面に覆せ、外バンド23の外周と下鋼管杭2の外周とが面一(つらいち)になる様にすれば良い。
On the other hand, in order to prevent the
この様に、この発明に係る鋼管杭の接合様機械式継手は一対の継手同士の当接及びピンを介する場合の伝達特性をそれぞれ巧みに利用して、圧縮力(曲げモーメントによる圧縮力を含む)が作用する場合では、内継手材のつば部と外継手材の上端面の当接により、引っ張り力(曲げモーメントによる引っ張り力を含む)はピンにより力を伝達しており、実際の基礎杭の荷重条件を考慮した無駄のない簡潔な構造で、十分な信頼性を持ちながら、低いコストで製造することが可能で、現場での取付け結合作業も極めて容易に実施出来る効果を有し、高い実用性を有するものである。 In this way, the steel pipe pile joint-like mechanical joint according to the present invention skillfully utilizes the contact characteristics between a pair of joints and the transmission characteristics when the pins are interposed, and includes a compressive force (including a compressive force due to a bending moment). ) Acts, the pulling force (including the pulling force due to the bending moment) is transmitted by the pin due to the contact between the flange of the inner joint material and the upper end surface of the outer joint material. It has a simple structure with no waste in consideration of the load conditions, and can be manufactured at low cost while having sufficient reliability. It has practicality.
基礎杭を用いる各種建築土木工事において利用可能である。 It can be used in various civil engineering works using foundation piles.
1 上鋼管杭
2 下鋼管杭
3 外継手材
4 内継手材
5 上面
6 上端面
8 基部
10 ピン挿入孔
12 ピン挿入孔
13 つば部
16 周壁
18 ピン
19 開先溶接用の斜面
20 開先溶接用の斜面
21 非貫通部
22 不完全貫通部
23 外バンド
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007190470A JP2009024436A (en) | 2007-07-23 | 2007-07-23 | Mechanical joint of steel pipe pile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007190470A JP2009024436A (en) | 2007-07-23 | 2007-07-23 | Mechanical joint of steel pipe pile |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009024436A true JP2009024436A (en) | 2009-02-05 |
Family
ID=40396503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007190470A Pending JP2009024436A (en) | 2007-07-23 | 2007-07-23 | Mechanical joint of steel pipe pile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009024436A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101865245A (en) * | 2009-04-14 | 2010-10-20 | Ims传动装置有限公司 | Speed changer especially has the planetary transmission of flange and hollow wheel gear |
CN104060606A (en) * | 2014-07-01 | 2014-09-24 | 国鼎(南通)管桩有限公司 | Combined splicing tubular pile and pile splicing method |
CN110258547A (en) * | 2019-05-17 | 2019-09-20 | 中国电力科学研究院有限公司 | A kind of steel pipe pile joint and its processing method |
JP7160150B1 (en) | 2021-06-24 | 2022-10-25 | Jfeスチール株式会社 | Joint pipe, manufacturing method thereof, design method thereof, steel pipe with joint pipe, manufacturing method thereof, design method thereof, steel pipe pile and construction method of steel pipe pile |
-
2007
- 2007-07-23 JP JP2007190470A patent/JP2009024436A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101865245A (en) * | 2009-04-14 | 2010-10-20 | Ims传动装置有限公司 | Speed changer especially has the planetary transmission of flange and hollow wheel gear |
EP2241781B2 (en) † | 2009-04-14 | 2015-03-25 | IMS Gear GmbH | Gear, in particular planetary gear with a flange and a hollow wheel |
CN104060606A (en) * | 2014-07-01 | 2014-09-24 | 国鼎(南通)管桩有限公司 | Combined splicing tubular pile and pile splicing method |
CN104060606B (en) * | 2014-07-01 | 2016-06-08 | 国鼎(南通)管桩有限公司 | A kind of combined and spliced pile tube and pile extension method thereof |
CN110258547A (en) * | 2019-05-17 | 2019-09-20 | 中国电力科学研究院有限公司 | A kind of steel pipe pile joint and its processing method |
JP7160150B1 (en) | 2021-06-24 | 2022-10-25 | Jfeスチール株式会社 | Joint pipe, manufacturing method thereof, design method thereof, steel pipe with joint pipe, manufacturing method thereof, design method thereof, steel pipe pile and construction method of steel pipe pile |
WO2022270262A1 (en) * | 2021-06-24 | 2022-12-29 | Jfeスチール株式会社 | Joint pipe and methods of manufacturing and designing same, steel pipe with joint pipe and methods of manufacturing and designing same, steel pipe pile, and method of constructing steel pipe pile |
JP2023003436A (en) * | 2021-06-24 | 2023-01-17 | Jfeスチール株式会社 | Joint pipe, manufacturing method thereof, steel pipe with joint pipe, manufacturing method and design method thereof, and steel pipe pile and construction method thereof |
TWI809936B (en) * | 2021-06-24 | 2023-07-21 | 日商杰富意鋼鐵股份有限公司 | Joint pipe, manufacturing method of joint pipe, design method of joint pipe, steel pipe with joint pipe, method of manufacturing steel pipe with joint pipe, design method of steel pipe with joint pipe, steel pipe pile, and construction method of steel pipe pile |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009299298A (en) | Mechanical joint of steel pipe pile | |
JP4626450B2 (en) | Threaded joint structure of metal pipe | |
JP2011208373A (en) | Mechanical joint structure of steel pipe pile | |
JP3329781B2 (en) | Pillar | |
JP2009024436A (en) | Mechanical joint of steel pipe pile | |
JP2011220049A (en) | Mechanical joint | |
JP6370284B2 (en) | Steel pipe connection structure and steel pipe connection method | |
JP3115424U (en) | Steel pipe pile connection structure | |
JP5916780B2 (en) | Steel pipe connection structure and steel pipe connection method | |
JP6405631B2 (en) | Steel pipe pile rotation deterrent structure | |
JP6911270B2 (en) | Joint structure | |
JP2011132702A (en) | Joint structure of steel pipe pile of rotary press-fitting type and construction method of the same | |
JP4278105B2 (en) | Reinforcement structure of steel reinforced concrete structural material, its construction method, and steel reinforcing member | |
JP5836865B2 (en) | Joint structure between steel pipe pile and pile head, and concrete foundation construction method using this joint structure | |
JP4450579B2 (en) | Steel pipe and steel pipe connection structure | |
JP4716121B2 (en) | Steel column connection structure and steel column connection method | |
JP2010168789A (en) | Mechanical coupling for steel pipe pile | |
JP2012046945A (en) | Joint structure of rotary press-in steel pipe pile | |
JP2008231733A (en) | Joint structure of pile | |
JP2014234654A (en) | Joining structure of steel pipe constituting rotary pile | |
JP2021055290A (en) | Joint structure for steel pipe, rotary pipe with blade at tip, and joint method for steel pipe | |
JP2020143421A (en) | Steel pipe pile connection member | |
JP6470699B2 (en) | Pile connection structure | |
JP2006257715A (en) | Joint structure for steel pipe sheet pile, and method of constructing steel pipe sheet pile | |
JP2007077695A (en) | Pile fastening structure and fastener used therefor |