JP2009293033A - Phenolic resin foam - Google Patents

Phenolic resin foam Download PDF

Info

Publication number
JP2009293033A
JP2009293033A JP2009153155A JP2009153155A JP2009293033A JP 2009293033 A JP2009293033 A JP 2009293033A JP 2009153155 A JP2009153155 A JP 2009153155A JP 2009153155 A JP2009153155 A JP 2009153155A JP 2009293033 A JP2009293033 A JP 2009293033A
Authority
JP
Japan
Prior art keywords
resin foam
phenol resin
weight
foam
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009153155A
Other languages
Japanese (ja)
Inventor
Yuichi Arito
裕一 有戸
Kenji Takasa
健治 高佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17033380&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2009293033(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP2009153155A priority Critical patent/JP2009293033A/en
Publication of JP2009293033A publication Critical patent/JP2009293033A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phenolic resin foam having an excellent heat-insulating performance and an excellent mechanical strength such as compression strength, and improving brittleness by using as a foaming agent a hydrocarbon with low global warming potential and less risk of ozone layer destruction. <P>SOLUTION: A phenolic resin foam has a closed-cell content of 80% or more, an average cell diameter of 10 μm or more and 400 μm or less, and density of 10 kg/m<SP>3</SP>or more and 70 kg/m<SP>3</SP>or less, contains a hydrocarbon in the closed cells, and consists of a phenolic structure having a urea-crosslinked structure. The phenolic resin foam has brittleness of 20% or less, compression strength of 0.5 kg/cm<SP>2</SP>or more, and heat conductivity of 0.025 kcal/mhr°C or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、各種建築材料として好適な断熱用フェノール樹脂発泡体に関する。   The present invention relates to a phenol resin foam for heat insulation suitable as various building materials.

フェノール樹脂発泡体は、有機樹脂発泡体のなかでも、特に難燃性、耐熱性、低発煙性、寸法安定性、耐溶剤性、加工性に優れているため、各種建築材料として広く使用されている。一般的にフェノール樹脂発泡体は、フェノールとホルマリンをアルカリ性触媒により縮合したレゾール樹脂と、発泡剤、界面活性剤、硬化触媒、その他添加剤を均一に混合し発泡させることによって製造される。   Phenolic resin foams are widely used as various building materials because they are excellent in flame retardancy, heat resistance, low smoke generation, dimensional stability, solvent resistance, and processability among organic resin foams. Yes. Generally, a phenol resin foam is produced by uniformly mixing a resole resin obtained by condensing phenol and formalin with an alkaline catalyst, a foaming agent, a surfactant, a curing catalyst, and other additives and foaming.

従来のフェノール樹脂発泡体は、発泡剤としてトリクロロトリフルオロエタン(CFC−113)、トリクロロモノフルオロメタン(CFC−11)、ジクロロトリフルオロエタン(HCFC−123)、ジクロロフルオロエタン(HCFC−141b)等のハロゲン化炭化水素やその誘導体が用いられてきた。発泡剤としての、これらハロゲン化炭化水素やその誘導体は製造時の安全性に優れ、更にガス自体の熱伝導度が低いことから、得られた発泡体の熱伝導度をも低くできると言う利点を有していた。   Conventional phenol resin foams include, as a blowing agent, trichlorotrifluoroethane (CFC-113), trichloromonofluoromethane (CFC-11), dichlorotrifluoroethane (HCFC-123), dichlorofluoroethane (HCFC-141b) and the like. Halogenated hydrocarbons and their derivatives have been used. As a foaming agent, these halogenated hydrocarbons and their derivatives are superior in safety during production, and further, since the thermal conductivity of the gas itself is low, the thermal conductivity of the obtained foam can be lowered. Had.

しかしながら、現在においては、CFC−113、CFC−11等、塩素原子を含む物質は成層圏のオゾンを分解しオゾン層の破壊を引き起こすことが明らかにされるに至り、これらの物質は地球レベルでの環境破壊の原因として世界的に問題とされるようになり、それらの製造及び使用量が世界的に規制されるようになってきた。また、塩素を含まないオゾン破壊係数が0のフルオロ炭化水素である1,1,1,2−テトラフルオロエタン(HFC−134a)、1,1−ジフルオロエタン(HFC−152a)なども、地球温暖化係数が比較的大きいことから、ヨーロッパでは使用が制限される動きにあるために、発泡剤としてペンタン等の炭化水素類が注目されている。   At present, however, substances containing chlorine atoms, such as CFC-113 and CFC-11, have been shown to decompose ozone in the stratosphere and cause destruction of the ozone layer. As a cause of environmental destruction, it has become a global problem, and their production and use have been globally regulated. In addition, 1,1,1,2-tetrafluoroethane (HFC-134a) and 1,1-difluoroethane (HFC-152a), which are fluorohydrocarbons that do not contain chlorine and have an ozone depletion coefficient of 0, are also global warming. Since the coefficient is relatively large, use in Europe has been limited, so hydrocarbons such as pentane have attracted attention as blowing agents.

従来、フェノール樹脂発泡体の発泡剤としてノルマルペンタンやシクロペンタンの様な炭化水素を使用することは知られていたが、これらの炭化水素は、オゾン層を破壊することが無く、地球温暖化係数も比較的小さい点で優れているものの、ハロゲン化炭化水素と比べ、得られるフェノール樹脂発泡体の独立気泡率も低下し、ガス自体の熱伝導率が高いために良好な断熱性能は得られず、圧縮強度等の機械的強度も不十分であるなど実用上問題があった。   Conventionally, it has been known that hydrocarbons such as normal pentane and cyclopentane are used as blowing agents for phenolic resin foams, but these hydrocarbons do not destroy the ozone layer and have a global warming potential. However, compared to halogenated hydrocarbons, the closed cell ratio of the resulting phenolic resin foam also decreases, and the heat conductivity of the gas itself is high, so good heat insulation performance cannot be obtained. Further, there were practical problems such as insufficient mechanical strength such as compressive strength.

本発明は、従来のフェノール樹脂発泡体が有する上記諸問題を解決しうるものである。即ち本発明の課題は、発泡剤が炭化水素で、優れた断熱性能を有し、かつ、圧縮強度等の機械的強度に優れ、脆性が改善されたフェノール樹脂発泡体を提供することである。
本発明者らは、前記本発明の課題を達成するために、フェノール樹脂発泡体の製造条件、例えば、レゾール樹脂重合時のホルムアルデヒドとフェノールの仕込みのモル比やレゾール樹脂の分子量、更に触媒量や発泡温度などの発泡条件などを幅広く検討した結果、特定の気泡形態、特定の樹脂架橋構造を成したフェノール樹脂発泡体が、前記本発明の課題を達成し得ることを見出し、本発明を完成させるに至った。
The present invention can solve the above-mentioned problems of conventional phenol resin foams. That is, an object of the present invention is to provide a phenol resin foam that is a hydrocarbon foaming agent, has excellent heat insulation performance, is excellent in mechanical strength such as compressive strength, and has improved brittleness.
In order to achieve the object of the present invention, the present inventors have prepared the production conditions of a phenol resin foam, for example, the molar ratio of formaldehyde and phenol charged at the time of resole resin polymerization, the molecular weight of the resole resin, the catalyst amount, As a result of extensive examination of foaming conditions such as foaming temperature, it has been found that a phenol resin foam having a specific cell form and a specific resin cross-linked structure can achieve the object of the present invention, and completes the present invention. It came to.

即ち、本発明は下記のフェノール樹脂発泡体である。
1. 独立気泡率70%以上、平均気泡径10μm以上400μm以下、密度10kg/m3以上70kg/m3以下であって、独立気泡中に炭化水素を含有し、熱分解ガスクロマトグラフィーの熱分解パターンから求められる、熱分解生成物のトリメチルフェノールAのフェノールBに対する面積比C(C=A/B)が下記式(1)の範囲にあることを特徴とするフェノール樹脂発泡体。
0.05≦C≦4.0 (1)
2.熱分解ガスクロマトグラフィーの熱分解パターンから求められる、熱分解生成物の尿素架橋由来の成分Dのフェノール誘導体成分Eに対する面積比F(F=D/E)が下記式(2)の範囲である前項1記載のフェノール樹脂発泡体。
0.01≦F≦0.3 (2)
That is, this invention is the following phenol resin foam.
1. It has a closed cell ratio of 70% or more, an average bubble diameter of 10 μm or more and 400 μm or less, a density of 10 kg / m 3 or more and 70 kg / m 3 or less, containing hydrocarbons in the closed cells, and from the pyrolysis pattern of pyrolysis gas chromatography A phenol resin foam characterized in that the required area ratio C (C = A / B) of trimethylphenol A to phenol B of the thermal decomposition product is in the range of the following formula (1).
0.05 ≦ C ≦ 4.0 (1)
2. The area ratio F (F = D / E) of the component D derived from urea crosslinking of the pyrolysis product to the phenol derivative component E determined from the pyrolysis pattern of pyrolysis gas chromatography is in the range of the following formula (2). The phenolic resin foam according to item 1 above.
0.01 ≦ F ≦ 0.3 (2)

3.独立気泡中の炭化水素が1種類又は2種類以上の炭化水素からなり、該炭化水素の、少なくとも1つが炭素数4から6の飽和炭化水素であることを特徴とする前項1又は2記載のフェノール樹脂発泡体。
4. 飽和炭化水素がイソブタン、ノルマルブタン、シクロブタン、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタンであることを特徴とする前項3記載のフェノール樹脂発泡体。
5. 独立気泡中の炭化水素がイソブタン、ノルマルブタン、シクロブタンから選ばれるブタン類5〜95重量%とノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタンから選ばれるペンタン類95〜5重量%の混合物であることを特徴とする前項1又は2記載のフェノール樹脂発泡体。
3. 3. The phenol according to item 1 or 2, wherein the hydrocarbon in the closed cell is composed of one or more types of hydrocarbons, and at least one of the hydrocarbons is a saturated hydrocarbon having 4 to 6 carbon atoms. Resin foam.
4). 4. The phenol resin foam according to item 3, wherein the saturated hydrocarbon is isobutane, normal butane, cyclobutane, normal pentane, isopentane, cyclopentane, or neopentane.
5. The hydrocarbon in the closed cell is a mixture of 5 to 95% by weight of butanes selected from isobutane, normal butane and cyclobutane and 95 to 5% by weight of pentanes selected from normal pentane, isopentane, cyclopentane and neopentane. 3. The phenolic resin foam according to 1 or 2 above.

6. 独立気泡中の炭化水素がイソブタン5〜95重量%とノルマルペンタン95〜5重量%の混合物であることを特徴とする前項5記載のフェノール樹脂発泡体。
7. 独立気泡率80%以上、平均気泡径10μm以上400μm以下、密度10kg/m3以上70kg/m3以下であって、独立気泡中に炭化水素を含有し、尿素架橋構造を有するフェノール樹脂構造から成る脆性が20%以下、圧縮強度が0.5kg/cm2以上、熱伝導率が0.025kcal/mhr℃以下であることを特徴とするフェノール樹脂発泡体。
8. 高沸点の脂肪族炭化水素または高沸点の脂環式炭化水素またはそれらの混合物をフェノール樹脂発泡体に対して0.01〜10重量%含有することを特徴とする前項1又は2記載のフェノール樹脂発泡体。
6). 6. The phenol resin foam according to item 5 above, wherein the hydrocarbon in the closed cells is a mixture of 5 to 95% by weight of isobutane and 95 to 5% by weight of normal pentane.
7). It has a closed cell ratio of 80% or more, an average cell diameter of 10 μm or more and 400 μm or less, a density of 10 kg / m 3 or more and 70 kg / m 3 or less, comprising a hydrocarbon in the closed cells and a phenol resin structure having a urea cross-linking structure. A phenol resin foam having a brittleness of 20 % or less, a compressive strength of 0.5 kg / cm 2 or more, and a thermal conductivity of 0.025 kcal / mhr ° C. or less.
8). 3. The phenol resin according to item 1 or 2, which contains 0.01 to 10% by weight of a high-boiling point aliphatic hydrocarbon, a high-boiling point alicyclic hydrocarbon or a mixture thereof based on the phenol resin foam. Foam.

9.下記一般式(I)で示されるフルオロエーテルの少なくとも1種をフェノール樹脂発泡体に対して0.01〜5重量%含有することを特徴とする前項1又は2記載のフェノール樹脂発泡体。

Figure 2009293033
(式中、aは0、1、2、3であり、bは3−aであり、mおよびnは、それぞれ1以上の整数である。)
10.下記一般式(II)で示されるフルオロアミンの少なくとも1種をフェノール樹脂発泡体に対して0.01〜5重量%含有することを特徴とする前項1又は2記載のフェノール樹脂発泡体。
(Ccd3N (II)
(式中、cは4以上の自然数であり、dは2c+1である。) 9. 3. The phenol resin foam according to item 1 or 2, which contains 0.01 to 5% by weight of at least one fluoroether represented by the following general formula (I) with respect to the phenol resin foam.
Figure 2009293033
(Wherein, a is 0, 1, 2, 3; b is 3-a; and m and n are each an integer of 1 or more.)
10. 3. The phenol resin foam according to item 1 or 2, which contains 0.01 to 5% by weight of at least one fluoroamine represented by the following general formula (II) based on the phenol resin foam.
(C c F d ) 3 N (II)
(In the formula, c is a natural number of 4 or more, and d is 2c + 1.)

本発明によるフェノール樹脂発泡体は、優れた断熱性能を有し、圧縮強度等の機械的強度に優れ、表面脆性が著しく改善されている。   The phenol resin foam according to the present invention has excellent heat insulation performance, excellent mechanical strength such as compressive strength, and surface brittleness is remarkably improved.

第1図は、本発明によるフェノール樹脂発泡体サンプルの、熱分解ガスクロマトグラフィーのパイログラムの1例である。FIG. 1 is an example of a pyrolysis gas chromatography pyrogram of a phenolic resin foam sample according to the present invention. 第2図は、本発明によるフェノール樹脂発泡体サンプルの、熱分解ガスクロマトグラフィーのパイログラムの一つの尿素架橋由来構造成分(第1図のピーク7の成分)のマススペクトルの例である。FIG. 2 is an example of the mass spectrum of one structural component derived from urea crosslinking (the component of peak 7 in FIG. 1) in the pyrolysis gas chromatography pyrogram of the phenol resin foam sample of the present invention. 第3図は、本発明によるフェノール樹脂発泡体サンプルの、熱分解ガスクロマトグラフィーのパイログラムの一つの尿素架橋由来構造成分(第1図のピーク8の成分)のマススペクトルの例である。FIG. 3 is an example of a mass spectrum of one urea-crosslinking-derived structural component (component of peak 8 in FIG. 1) of a pyrolysis gas chromatography pyrogram of a phenol resin foam sample according to the present invention. 第4図は、本発明によるフェノール樹脂発泡体サンプルの、熱分解ガスクロマトグラフィーのパイログラムの一つの尿素架橋由来構造成分(第1図のピーク9の成分)のマススペクトルの例である。FIG. 4 is an example of the mass spectrum of one structural component derived from urea crosslinking (the component of peak 9 in FIG. 1) in the pyrolysis gas chromatography pyrogram of the phenol resin foam sample of the present invention. 第5図は、本発明によるフェノール樹脂発泡体サンプルの、熱分解ガスクロマトグラフィーのパイログラムの一つの尿素架橋由来構造成分(第1図のピーク10の成分)のマススペクトルの例である。FIG. 5 is an example of the mass spectrum of one structural component derived from urea crosslinking (the component of peak 10 in FIG. 1) in the pyrolysis gas chromatography pyrogram of the phenol resin foam sample of the present invention. 第6図は、本発明によるフェノール樹脂発泡体サンプルの、熱分解ガスクロマトグラフィーのパイログラムの一つの尿素架橋由来構造成分(第1図のピーク11の成分)のマススペクトルの例である。FIG. 6 is an example of a mass spectrum of one urea crosslinking-derived structural component (component of peak 11 in FIG. 1) in a pyrolysis gas chromatography pyrogram of a phenol resin foam sample according to the present invention.

以下、本発明を詳細に説明する。
本発明では、フェノール樹脂発泡体の組織を特定の組織とする必要がある。
本発明によるフェノール樹脂発泡体においては、独立気泡率は70%以上、好ましくは80%以上、更に好ましくは90%以上である。独立気泡率が70%未満であると、フェノール樹脂発泡体の発泡剤が空気と置換して断熱性能の経時低下が著しくなる恐れがあるばかりではなく、発泡体の表面脆性が増加して機械的実用性能を満足しなくなる懸念がある。なお、独立気泡率の上限としては99.3%以下であることが好ましい。
Hereinafter, the present invention will be described in detail.
In this invention, it is necessary to make the structure | tissue of a phenol resin foam into a specific structure | tissue.
In the phenol resin foam according to the present invention, the closed cell ratio is 70% or more, preferably 80% or more, and more preferably 90% or more. If the closed cell ratio is less than 70%, not only the foaming agent of the phenol resin foam may be replaced with air, but the thermal insulation performance may be significantly deteriorated over time, and the surface brittleness of the foam may increase and mechanical There is a concern that practical performance will not be satisfied. The upper limit of the closed cell ratio is preferably 99.3% or less.

本発明におけるフェノール樹脂発泡体の平均気泡径は10μm以上400μm以下であり、好ましくは15μm以上300μm以下であり、特に好ましくは20μm以上150μm以下である。平均気泡径が10μm未満であると、気泡壁の厚さに限界が有ることから、必然的に発泡体密度が上昇し、その結果発泡体における樹脂部の伝熱割合が増加しフェノール樹脂発泡体の断熱性能は不十分となる恐れがある。また、逆に気泡径が400μmを越えると、輻射による熱伝導が増加するようになり、発泡体の断熱性能が低下する。
本発明における発泡体の密度は10kg/m3以上70kg/m3以下であり、より好ましくは20kg/m3以上50kg/m3以下である。密度が10kg/m3未満であると、圧縮強度等の機械的強度が小さくなり、取り扱い時に破損しやすくなり、表面脆性も増加する。逆に密度が70kg/m3をこえると、樹脂部の伝熱が増加し断熱性能が低下する懸念がある。
The average cell diameter of the phenol resin foam in the present invention is 10 μm or more and 400 μm or less, preferably 15 μm or more and 300 μm or less, and particularly preferably 20 μm or more and 150 μm or less. If the average cell diameter is less than 10 μm, there is a limit to the thickness of the cell wall, which inevitably increases the foam density, resulting in an increase in the heat transfer rate of the resin part in the foam and the phenol resin foam. There is a risk that the heat insulation performance of will be insufficient. On the other hand, if the bubble diameter exceeds 400 μm, heat conduction due to radiation increases, and the heat insulating performance of the foam deteriorates.
The density of the foam in the present invention is from 10 kg / m 3 to 70 kg / m 3 , more preferably from 20 kg / m 3 to 50 kg / m 3 . When the density is less than 10 kg / m 3 , the mechanical strength such as compressive strength is reduced, the material is easily damaged during handling, and the surface brittleness is also increased. On the contrary, when the density exceeds 70 kg / m 3 , there is a concern that the heat transfer of the resin portion increases and the heat insulation performance is lowered.

本発明においては、フェノール樹脂発泡体を特定の樹脂架橋構造と成す必要がある。本発明では、この樹脂の架橋構造を間接的に測定する手段として、熱分解ガスクロマトグラフィーを用いる。フェノール樹脂発泡体を試料としたときの熱分解ガスクロマトグラフィーのパイログラムに現れるトリメチルフェノールやフェノールの各成分の面積は、直接フェノール樹脂発泡体の構造を示すものではないが、間接的に元のフェノール樹脂発泡体を構成している高分子の構造を反映する有力な指標となり得る。本発明においては、前記パイログラムのトリメチルフェノールAのフェノールBに対する面積比率C値(C=A/B)を、フェノール樹脂のメチレン構造ないしメチルエーテル構造の架橋密度を間接的に反映する指標とする。フェノール樹脂中にメチレン架橋やメチルエーテル架橋が多いとC値は大きくなり、逆にメチレン架橋やメチルエーテル架橋が少ないとC値は小さくなる。   In the present invention, it is necessary to form the phenol resin foam with a specific resin cross-linked structure. In the present invention, pyrolysis gas chromatography is used as a means for indirectly measuring the crosslinked structure of the resin. The area of each component of trimethylphenol and phenol appearing in the pyrolysis gas chromatography pyrogram when using a phenol resin foam as a sample does not directly indicate the structure of the phenol resin foam, but indirectly It can be an effective index reflecting the structure of the polymer constituting the phenol resin foam. In the present invention, the area ratio C value of trimethylphenol A to phenol B in the pyrogram (C = A / B) is used as an index that indirectly reflects the crosslink density of the methylene structure or methyl ether structure of the phenol resin. . If there are many methylene bridges or methyl ether bridges in the phenolic resin, the C value increases. Conversely, if there are few methylene bridges or methyl ether bridges, the C value decreases.

本発明においては、上記C値は0.05以上4.0以下であることが必要である。好ましくは0.1以上2.0以下であり、より好ましくは0.1以上1.0以下である樹脂架橋構造とする。本発明者らは、C値がこの範囲になるようにレゾール樹脂の分子量分布、重合時のホルムアルデヒドとフェノールの仕込み比、発泡条件を調整した。即ち、重合時のホルムアルデヒドとフェノールの仕込み比は1.3〜3.0が好ましく、より好ましくは1.5〜2.5であり、レゾール樹脂の分子量は、レゾール樹脂組成物の40℃における粘度が1000〜50000cpsの範囲となるように調整し、発泡時の混合機内の温度は80℃を超えないようにする。このように、レゾール樹脂の分子量分布、重合時のホルムアルデヒドとフェノールの仕込み比、発泡条件を調整した場合に、得られた発泡体の樹脂自体の強度及び発泡特性が著しく改善され、炭化水素発泡剤を用いても断熱性能及び機械的強度に優れたフェノール樹脂発泡体が得られることを見いだしたのである。   In the present invention, the C value needs to be 0.05 or more and 4.0 or less. The resin cross-linked structure is preferably from 0.1 to 2.0, more preferably from 0.1 to 1.0. The inventors adjusted the molecular weight distribution of the resole resin, the charging ratio of formaldehyde and phenol at the time of polymerization, and the foaming conditions so that the C value falls within this range. That is, the charging ratio of formaldehyde and phenol during polymerization is preferably 1.3 to 3.0, more preferably 1.5 to 2.5, and the molecular weight of the resole resin is the viscosity of the resole resin composition at 40 ° C. Is adjusted to be in the range of 1000 to 50000 cps so that the temperature in the mixer during foaming does not exceed 80 ° C. Thus, when the molecular weight distribution of the resole resin, the charging ratio of formaldehyde and phenol at the time of polymerization, and the foaming conditions are adjusted, the strength and foaming characteristics of the resin of the obtained foam are remarkably improved, and the hydrocarbon foaming agent It has been found that a phenolic resin foam excellent in heat insulation performance and mechanical strength can be obtained even when using.

本発明では、このC値が4.0を越えると、後述する比較例2から明らかなように発泡体が脆く実用性能が不十分となる恐れがある。さらに、発泡体製造時に樹脂の粘度が高すぎて発泡倍率が上がらないなどの不都合を生じる可能性がある。また、C値が0.05未満である場合は、後述する比較例3から明らかなように、フェノール樹脂発泡体の圧縮強度等が低下する。
更に、本発明者らは、フェノール樹脂中に尿素架橋構造を形成させるとフェノール樹脂発泡体の強度がより一層向上することを見いだした。尿素架橋構造を示す指標もC値と同様に、発泡体試料の熱分解ガスクロマトグラフィーのパイログラムに現れる成分の面積比率により求められる。本発明者らは、尿素架橋由来の成分Dのフェノール誘導体成分Eに対する面積比率F値(F=D/E)が、フェノール樹脂の尿素架橋構造の密度の指標になることを見出した。
In the present invention, when the C value exceeds 4.0, as is apparent from Comparative Example 2 described later, the foam is fragile and the practical performance may be insufficient. Furthermore, there is a possibility that inconveniences such as the foaming ratio does not increase due to the viscosity of the resin being too high during foam production. On the other hand, when the C value is less than 0.05, as is apparent from Comparative Example 3 described later, the compressive strength and the like of the phenol resin foam decreases.
Furthermore, the present inventors have found that the strength of the phenol resin foam is further improved when a urea cross-linked structure is formed in the phenol resin. Similarly to the C value, the index indicating the urea cross-linking structure is also determined by the area ratio of the components appearing in the pyrogram of the pyrolysis gas chromatography of the foam sample. The present inventors have found that the area ratio F value (F = D / E) of the component D derived from urea crosslinking to the phenol derivative component E is an indicator of the density of the urea crosslinked structure of the phenol resin.

本発明において、尿素架橋由来の成分Dとは、該パイログラムで、後述する測定条件において、保持時間8分から18分の間に放出される成分で、分子内にフェニル基とイソシアナート(−NCO)基を含む化合物である。具体的には第1図のピーク7から11で、これらに対応するマススペクトルが各々第2図から第6図に示すものである。ピーク7から11までの面積の総和をDとする。
本発明におけるフェノール誘導体とはフェノール、2−メチルフェノール、4−メチルフェノール、2,4−ジメチルフェノール、2,6−ジメチルフェノール、2,4,6−トリメチルフェノールであり、具体的には第1図のピーク1から6である。本発明ではこれらのパイログラムの面積の総和をEとする。F値は0.01以上0.3以下であることが好ましく、より好ましくは、0.02以上0.2以下である。F値が0.01未満の場合は、フェノール樹脂発泡体の著しい強度の向上は見られず、またF値が0.3を越えると逆に強度が低下するようになる。
In the present invention, the component D derived from urea crosslinking is a component released from the retention time of 8 to 18 minutes under the measurement conditions described later in the pyrogram, and includes a phenyl group and an isocyanate (—NCO in the molecule). ) Group-containing compounds. Specifically, peaks 7 to 11 in FIG. 1 and the corresponding mass spectra are shown in FIGS. 2 to 6, respectively. Let D be the sum of the areas from peaks 7 to 11.
The phenol derivatives in the present invention are phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, 2,6-dimethylphenol, and 2,4,6-trimethylphenol. Peaks 1 to 6 in the figure. In the present invention, E is the total area of these pyrograms. The F value is preferably 0.01 or more and 0.3 or less, and more preferably 0.02 or more and 0.2 or less. When the F value is less than 0.01, no significant improvement in the strength of the phenol resin foam is observed, and when the F value exceeds 0.3, the strength decreases.

本発明によるフェノール樹脂発泡体は、従来の炭化水素発泡剤のフェノール樹脂発泡体と比べ脆性及び圧縮強度も大きく改善されている。更に、尿素架橋構造を最適化すると、脆性が著しく改善される。これにより、従来のフェノール樹脂発泡体がその脆さ故に使用が制限されていた用途にも、利用範囲を拡大することが期待される。
本発明のフェノール樹脂発泡体は、後述する測定法による脆性が30%以下であり、より好ましくは20%以下である。脆性が30%を越えると、発泡体表面が削れた樹脂粉が多くなり施工時の作業性が低下するばかりでなく、運搬、施工などの取り扱い時に製品が破損し易くなるなどの問題がある。なお、脆性の下限としては1%以上であることが好ましい。また、圧縮強度は0.5kg/cm2以上であり、より好ましくは1.0kg/c
2以上である。圧縮強度が0.5kg/cm2未満の場合は、施工時などに破損し易いばかりでなく、その機械的強度の低さ故、利用範囲も限定されてしまう。なお、圧縮強度の上限としては20kg/cm2以下であることが好ましい。脆性及び圧縮強度は、フェノール樹脂発泡体の独立気泡率、平均気泡径、密度及び樹脂自体の強度と密接に関わっており、本発明では、特にフェノール樹脂発泡体を形成する樹脂自体を特定の架橋構造と成すことで樹脂の強度を向上させ、樹脂発泡体の脆性及び圧縮強度を著しく改善しうるのである。
The phenol resin foam according to the present invention is greatly improved in brittleness and compressive strength as compared with the phenol resin foam of the conventional hydrocarbon foaming agent. Furthermore, the brittleness is significantly improved when the urea cross-linking structure is optimized. As a result, it is expected that the use range of the conventional phenol resin foam will be expanded even in applications where its use is restricted due to its brittleness.
The phenol resin foam of the present invention has a brittleness of 30% or less, more preferably 20% or less, according to the measurement method described later. If the brittleness exceeds 30%, not only the resin powder with the foam surface shaved increases but the workability at the time of construction deteriorates, there is a problem that the product is easily damaged during handling such as transportation and construction. The lower limit of brittleness is preferably 1% or more. The compressive strength is 0.5 kg / cm 2 or more, more preferably 1.0 kg / c.
m 2 or more. When the compressive strength is less than 0.5 kg / cm 2 , it is not only easily damaged during construction, but also its use range is limited due to its low mechanical strength. The upper limit of the compressive strength is preferably 20 kg / cm 2 or less. Brittleness and compressive strength are closely related to the closed cell ratio, average cell diameter, density and strength of the resin itself of the phenol resin foam. In the present invention, the resin itself forming the phenol resin foam is specifically crosslinked. By forming the structure, the strength of the resin can be improved, and the brittleness and compressive strength of the resin foam can be remarkably improved.

本発明における発泡剤としては、炭化水素を用いることができるが、炭素数3から7の環状または鎖状のアルカン、アルケン、アルキンを好ましく使用できる。さらに、化学的安定性と熱伝導率の観点より炭素数4から6のアルカンもしくはシクロアルカンがより好ましい。具体的には、ノルマルブタン、イソブタン、シクロブタン、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタン、ノルマルヘキサン、イソヘキサン、2,2−ジメチルブタン、2,3−ジメチルブタン、シクロヘキサン等を挙げることが出来る。更にその中でも、ノルマルブタン、イソブタン、シクロブタンのブタン類とノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタンのペンタン類が本発明に特に好適である。   As the foaming agent in the present invention, hydrocarbons can be used, but cyclic or chain alkanes, alkenes and alkynes having 3 to 7 carbon atoms can be preferably used. Furthermore, an alkane or cycloalkane having 4 to 6 carbon atoms is more preferable from the viewpoints of chemical stability and thermal conductivity. Specific examples include normal butane, isobutane, cyclobutane, normal pentane, isopentane, cyclopentane, neopentane, normal hexane, isohexane, 2,2-dimethylbutane, 2,3-dimethylbutane, and cyclohexane. Among them, normal butane, isobutane, cyclobutane butanes and normal pentane, isopentane, cyclopentane, neopentane pentanes are particularly suitable for the present invention.

本発明では、これら炭化水素を2種類以上混合して使用することもできる。具体的にはペンタン類5〜95重量%とブタン類を95〜5重量%、より好ましくはペンタン類25〜75重量%とブタン類を75〜25重量%混合した混合物は、広い温度範囲で良好な断熱特性を示すので特に好ましい。その中でも、ノルマルペンタンとイソブタンの組み合わせは、低温域(例えば、−80℃程度の冷凍庫用断熱材)から高温域(例えば、200℃程度の加熱体用断熱材)までの広い範囲で優れた断熱性能を確保でき、更にこれら化合物が比較的安価であり経済的にも有利であるので特に好ましい。   In the present invention, two or more of these hydrocarbons can be mixed and used. Specifically, a mixture of 5 to 95% by weight of pentanes and 95 to 5% by weight of butanes, more preferably 25 to 75% by weight of pentanes and 75 to 25% by weight of butanes is good in a wide temperature range. It is particularly preferable because of its excellent heat insulating properties. Among them, the combination of normal pentane and isobutane has excellent heat insulation in a wide range from a low temperature region (for example, a heat insulating material for a freezer at about −80 ° C.) to a high temperature region (for example, a heat insulating material for a heating body at about 200 ° C.). It is particularly preferable because performance can be secured and these compounds are relatively inexpensive and economically advantageous.

また、パーフルオロブタン、パーフルオロシクロブタン、パーフルオロペンタン、パーフルオロシクロペンタン、パーフルオロヘキサン、パーフルオロシクロヘキサン、パーフルオロヘプタン、パーフルオロシクロヘプタン、パーフルオロオクタン、パーフルオロシクロオクタン等のフルオロカーボン類を発泡時に混合して使用することも出来る。さらに、窒素、ヘリウム、アルゴン、空気などの低沸点物質を発泡核として発泡剤に溶解させて使用することもできる。本発明における発泡剤の使用量は、所望する発泡体の密度、発泡条件等によって任意に選択して差し支えないが、通常、樹脂100重量部に対して、3から40重量部であることが好ましく、より好ましくは5から30重量部である。   Also, fluorocarbons such as perfluorobutane, perfluorocyclobutane, perfluoropentane, perfluorocyclopentane, perfluorohexane, perfluorocyclohexane, perfluoroheptane, perfluorocycloheptane, perfluorooctane and perfluorocyclooctane are foamed. Sometimes mixed and used. Furthermore, low boiling point substances such as nitrogen, helium, argon, and air can be used as foaming nuclei dissolved in a foaming agent. The amount of the foaming agent used in the present invention may be arbitrarily selected depending on the desired density of the foam, foaming conditions, etc., but is usually preferably 3 to 40 parts by weight with respect to 100 parts by weight of the resin. More preferably, it is 5 to 30 parts by weight.

本発明によるフェノール樹脂発泡体は、発泡剤が炭化水素でありながら、熱伝導率は0.025kcal/mhr℃以下であり、優れた断熱性能を有する。より好ましい熱伝導率では0.020kcal/mhr℃以下である。なお、熱伝導率の下限としては0.012kcal/mhr℃以上であることが好ましい。
さらに本発明者らは、発泡時に高沸点の脂肪族炭化水素若しくは高沸点の脂環式炭化水素またはそれらの混合物が発泡時に存在すると更に良いフェノール樹脂発泡体を形成することを見出した。本発明の高沸点の脂肪族炭化水素若しくは高沸点の脂環式炭化水素またはそれらの混合物は、1×105Paでの通常の沸点が150℃以上であってアルカン構
造またはシクロアルカン構造を主とする炭化水素であることが好ましく、具体的には固体パラフィン、流動パラフィン、ミネラルスピリット、低分子量ポリエチレン、低分子量ポリプロピレン等を挙げることが出来る。固体パラフィンはパラフィンロウとも呼ばれ炭素数は16から60の範囲に分布し主として正パラフィンからなるが、イソパラフィンおよびナフテンを含む物も多く、通常、融点は35℃から80℃程度に変化する。流動パラフィンは、通常流動点が−20℃以上で、比較的軽質の潤滑油留分たとえばスピンドル油留分を硫酸洗浄によって高度に精製した炭化水素油であり、揮発性が低く飽和炭化水素を主成分とする。ミネラルスピリットは、石油スピリットとも呼ばれ日本工業規格K2201(工業ガソリン規格)4号に規定されている。
The phenol resin foam according to the present invention has excellent heat insulation performance with a thermal conductivity of 0.025 kcal / mhr ° C. or less, while the foaming agent is a hydrocarbon. A more preferable thermal conductivity is 0.020 kcal / mhr ° C. or less. The lower limit of the thermal conductivity is preferably 0.012 kcal / mhr ° C. or higher.
Furthermore, the present inventors have found that when a high-boiling point aliphatic hydrocarbon or high-boiling point alicyclic hydrocarbon or a mixture thereof is present during foaming, a better phenolic resin foam is formed. The high boiling point aliphatic hydrocarbon or high boiling point alicyclic hydrocarbon of the present invention or a mixture thereof has an ordinary boiling point of 150 ° C. or higher at 1 × 10 5 Pa and mainly has an alkane structure or a cycloalkane structure. The hydrocarbon is preferably, and specific examples include solid paraffin, liquid paraffin, mineral spirit, low molecular weight polyethylene, and low molecular weight polypropylene. Solid paraffin, also called paraffin wax, has a carbon number ranging from 16 to 60 and is mainly composed of normal paraffin, but many contain isoparaffin and naphthene, and the melting point usually varies from 35 ° C to 80 ° C. Liquid paraffin is a hydrocarbon oil having a pour point of −20 ° C. or higher and a relatively light lubricating oil fraction, for example, a spindle oil fraction, highly purified by washing with sulfuric acid. Ingredients. Mineral spirit is also called petroleum spirit and is defined in Japanese Industrial Standard K2201 (Industrial Gasoline Standard) No. 4.

本発明において、高沸点の脂肪族炭化水素または高沸点の脂環式炭化水素またはそれらの混合物の量は、フェノール樹脂発泡体に対して0.01重量%から10重量%であり、より好ましくは、0.05重量%から5重量%である。高沸点の脂肪族炭化水素または高沸点の脂環式炭化水素またはそれらの混合物の量が0.01重量%未満であるとほとんど効果はない。また、重量が10重量%を越えると、気泡中で高沸点の脂肪族炭化水素または高沸点の脂環式炭化水素またはそれらの混合物が液化して断熱性能が低下したり、樹脂の剛性が低下したりする事が懸念される。
発泡時に高沸点の脂肪族炭化水素または高沸点の脂環式炭化水素またはそれらの混合物を存在させることによって、フェノール樹脂発泡体の気泡をより小さく均一にし、それによってフェノール樹脂発泡体の断熱性能を改善する効果がある。
In the present invention, the amount of the high-boiling point aliphatic hydrocarbon or high-boiling point alicyclic hydrocarbon or a mixture thereof is 0.01% by weight to 10% by weight, more preferably based on the phenol resin foam. 0.05 wt% to 5 wt%. When the amount of the high-boiling point aliphatic hydrocarbon or high-boiling point alicyclic hydrocarbon or a mixture thereof is less than 0.01% by weight, there is almost no effect. If the weight exceeds 10% by weight, the high-boiling point aliphatic hydrocarbon, the high-boiling point alicyclic hydrocarbon, or a mixture thereof is liquefied in the bubbles and the heat insulation performance is lowered, or the resin rigidity is lowered. There is a concern to do.
The presence of high boiling aliphatic hydrocarbons or high boiling alicyclic hydrocarbons or mixtures thereof during foaming makes the foam of the phenolic resin foam smaller and more uniform, thereby improving the thermal insulation performance of the phenolic resin foam. There is an effect to improve.

また本発明者らは、発泡時にフルオロエーテルが存在すると、良好なフェノール樹脂発泡体を得られることを見出した。本発明のフルオロエーテルは、下記一般式(I)で示される、分子内にパーフルオロプロピルエーテル構造とフルオロメチレン構造を併せ持つフルオロエーテルであって、例えば、アウジモント株式会社製のパーフルオロポリエーテル類であるガルデン(Galden)HT−70、ガルデン(Galden)HT−55等を好ましく用いることができる。

Figure 2009293033
(式中、aは0、1、2、3であり、bは3−aであり、mおよびnは、それぞれ1以上の整数であり、より好ましくは1以上10以下である。) The present inventors have also found that a good phenol resin foam can be obtained if fluoroether is present during foaming. The fluoroether of the present invention is a fluoroether having a perfluoropropyl ether structure and a fluoromethylene structure in the molecule represented by the following general formula (I), for example, perfluoropolyethers manufactured by Augmont Co., Ltd. A certain Galden HT-70, Galden HT-55, etc. can be used preferably.
Figure 2009293033
(Wherein, a is 0, 1, 2, 3; b is 3-a; and m and n are each an integer of 1 or more, more preferably 1 or more and 10 or less.)

本発明のフルオロエーテルの使用量は、フェノール樹脂発泡体に対して0.01重量%から5重量%であり、より好ましくは、0.05重量%から3重量%である。フルオロエーテルの量が0.01重量%未満であると効果が得られない。
また、フルオロエーテルの量が5重量%を越えると、製造コストが嵩み経済的に不利になるばかりではなく、気泡中で特定のフルオロエーテルが液化して断熱性能が低下したり、樹脂の剛性が低下する事が懸念される。
本発明におけるフルオロエーテルを発泡剤として単独で使用すると、フルオロエーテルが発泡の際に急激に樹脂相から分離してしまい発泡体は得られずに、フェノール樹脂の固まりになってしまった。これは、本発明におけるフルオロエーテルが、特開平3−231941号公報及び特開平4−202242号公報で使用されている特定のポリフルオロエーテル類及び特定のフッ化エーテル類とは異なり、発泡剤としての発泡機能を有しないためである。
The use amount of the fluoroether of the present invention is 0.01% to 5% by weight, more preferably 0.05% to 3% by weight, based on the phenol resin foam. If the amount of fluoroether is less than 0.01% by weight, the effect cannot be obtained.
In addition, if the amount of fluoroether exceeds 5% by weight, not only the manufacturing cost increases but also economically disadvantageous, the specific fluoroether is liquefied in the bubbles to lower the heat insulation performance, and the rigidity of the resin There is a concern about the decline.
When the fluoroether in the present invention is used alone as a foaming agent, the fluoroether is abruptly separated from the resin phase at the time of foaming and a foam is not obtained, resulting in a phenol resin mass. This is because the fluoroether in the present invention is different from the specific polyfluoroethers and the specific fluorinated ethers used in JP-A-3-231941 and JP-A-4-202242. This is because it has no foaming function.

本発明では、発泡剤として炭化水素を用いて、発泡時にフルオロエーテルを共存させることによって、フェノール樹脂発泡体の気泡径を小さくし、それによって断熱性能を改善するのである。
また、本発明によるフルオロエーテルは、酸素が分子内に存在するため、パーフルオロアルカン類と比較して大気中での寿命が短くなり地球温暖化係数が比較的小さくなり、地球環境保護に適合すると言う利点が期待できる。
更に本発明者らは、発泡時に下記一般式(II)で示されるフルオロアミンが存在すると良好なフェノール樹脂発泡体が得られることも見出した。
(Ccd3N (II)
(式中、cは4以上の自然数であり、より好ましくは4以上16以下の自然数である。dは2c+1である。)
In the present invention, by using hydrocarbon as a foaming agent and coexisting fluoroether during foaming, the cell diameter of the phenol resin foam is reduced, thereby improving the heat insulation performance.
In addition, since the fluoroether according to the present invention has oxygen in the molecule, the lifetime in the atmosphere is shortened compared to perfluoroalkanes, and the global warming potential is relatively small. You can expect the benefits to say.
Furthermore, the present inventors have also found that a good phenol resin foam can be obtained when a fluoroamine represented by the following general formula (II) is present during foaming.
(C c F d ) 3 N (II)
(In the formula, c is a natural number of 4 or more, more preferably a natural number of 4 or more and 16 or less. D is 2c + 1.)

本発明におけるフルオロアミンは沸点が高く、発泡剤としては機能しない。具体的には、住友スリーエム株式会社製のフロリナートFC−43(トリパーフルオロブチルアミン)、FC−70(トリパーフルオロアミルアミン)、FC−71(トリパーフルオロヘキシルアミン)等を好ましく用い得る。
本発明ではフルオロアミンの使用量を、フェノール樹脂発泡体に対して0.01重量%から5重量%とする必要があり、より好ましくは、0.05重量%から3重量%である。フルオロアミンの量が0.01重量%未満であると効果が得られない。また、フルオロアミンはその使用量が5重量%を越えると、製造コストが嵩み経済的に不利になるばかりではなく、気泡壁面にフルオロアミンが析出して断熱性能が低下したり、樹脂の剛性が低下する事が懸念される。
The fluoroamine in the present invention has a high boiling point and does not function as a foaming agent. Specifically, Fluorinert FC-43 (triperfluorobutylamine), FC-70 (triperfluoroamylamine), FC-71 (triperfluorohexylamine) manufactured by Sumitomo 3M Limited may be preferably used.
In the present invention, the amount of fluoroamine used must be 0.01% to 5% by weight, more preferably 0.05% to 3% by weight, based on the phenol resin foam. If the amount of fluoroamine is less than 0.01% by weight, the effect cannot be obtained. In addition, if the amount of fluoroamine used exceeds 5% by weight, not only the production cost increases but also economically disadvantageous, fluoroamines are deposited on the cell walls and the heat insulation performance is reduced, and the rigidity of the resin is reduced. There is a concern about the decline.

本発明におけるフルオロアミンは沸点が高いため発泡剤としての発泡機能を有しない。従って、本発明におけるフルオロアミンを発泡剤として単独で使用すると、全く発泡する事がない。しかしながら、本発明によるフルオロアミンはフェノール樹脂発泡時に発泡性組成物中に存在させることによって、フェノール樹脂発泡体の気泡部及び樹脂部の構造形成に好適に機能するのである。すなわち、本発明では、発泡剤として炭化水素を用いて、発泡時にフルオロアミンを共存させることによって、フェノール樹脂発泡体の気泡径が小さくなり、それ故に本発明によるフェノール樹脂発泡体は、断熱性能が改善されるのである。   Since the fluoroamine in the present invention has a high boiling point, it does not have a foaming function as a foaming agent. Therefore, when the fluoroamine in the present invention is used alone as a foaming agent, there is no foaming at all. However, when the fluoroamine according to the present invention is present in the foamable composition at the time of foaming the phenol resin, it functions suitably for the formation of the structure of the cell part and the resin part of the phenol resin foam. That is, in the present invention, by using hydrocarbon as a foaming agent and coexisting fluoroamine at the time of foaming, the cell diameter of the phenol resin foam is reduced. Therefore, the phenol resin foam according to the present invention has a heat insulation performance. It will be improved.

次に、本発明によるフェノール樹脂発泡体の製造法について説明する。
フェノール樹脂発泡体を製造するレゾール樹脂は、フェノールとホルマリンを原料としてアルカリ触媒により40℃から100℃の温度範囲で加熱して重合させる。その際、原料フェノールの一部をサリゲニンに代替するとC値をコントロールするのに有効である。すなわち、レゾール樹脂の分子量を上げていくとC値は大きくなる傾向に有るが、分子量を上げすぎると、レゾール樹脂の粘度が急激に上昇して、取り扱い難くなる。サリゲニンをフェノールの代替または一部代替として用いると、取り扱いやすい低分子のレゾール樹脂で有りながらC値の大きな、すなわち架橋密度の高いフェノール樹脂発泡体を得ることが出来る。尿素架橋構造を導入する場合には、レゾール重合時に尿素を添加して尿素と反応したレゾール樹脂を調整しても良いが、予めアルカリ触媒でメチロール化した尿素をレゾール樹脂に混合し塩基性のまま加熱反応させると更に良い。レゾール樹脂組成物中のメチロール化尿素量は、通常レゾール樹脂に対し1〜40重量%、好ましくは2〜30重量%、添加する。レゾール樹脂組成物は、水分量を調整することにより所望する粘度にして使用される。樹脂組成物の好適粘度は発泡条件により異なるが、40℃における粘度が、好ましくは1000〜50000cpsで、より好ましくは2000〜30000cpsである。
Next, the manufacturing method of the phenol resin foam by this invention is demonstrated.
The resol resin for producing the phenol resin foam is polymerized by heating phenol and formalin as raw materials in the temperature range of 40 ° C. to 100 ° C. with an alkali catalyst. At that time, replacing part of the raw material phenol with saligenin is effective in controlling the C value. That is, as the molecular weight of the resole resin is increased, the C value tends to increase. However, when the molecular weight is increased too much, the viscosity of the resole resin increases rapidly, making it difficult to handle. When saligenin is used as a substitute or partial substitute for phenol, it is possible to obtain a phenol resin foam having a large C value, that is, a high crosslink density, while being a low-molecular resol resin that is easy to handle. In the case of introducing a urea cross-linked structure, it is possible to adjust the resole resin reacted with urea by adding urea at the time of resole polymerization. It is better to react by heating. The amount of methylolated urea in the resol resin composition is usually 1 to 40% by weight, preferably 2 to 30% by weight, based on the resol resin. The resol resin composition is used with a desired viscosity by adjusting the water content. Although the suitable viscosity of a resin composition changes with foaming conditions, the viscosity in 40 degreeC becomes like this. Preferably it is 1000-50000 cps, More preferably, it is 2000-30000 cps.

適正な粘度に調整されたレゾール樹脂組成物と、発泡剤、界面活性剤、硬化触媒、更に必要に応じて高沸点の脂肪族炭化水素、高沸点の脂環式炭化水素またはそれらの混合物、フルオロエーテル、フルオロアミン、その他添加剤を混合機に導入し、均一に混合して、発泡性組成物を得ることが出来る。その際、界面活性剤を予め樹脂に混合しておいて、混合機に導入しても良いし、これらを別々に混合機に導入しても良い。ただし、硬化触媒は予めレゾール樹脂と混合されると、発泡前に硬化反応が進行し良好な発泡体が得られないため、混合機でレゾール樹脂と硬化触媒とを混合することが望ましい。また、高沸点の脂肪族炭化水素、高沸点の脂環式案化水素またはそれらの混合物、フルオロエーテル、フルオロアミンを用いる場合には、これらを予めレゾール樹脂と混合して混合機に導入しても良いし、混合機に単独で供給しても良いが、発泡剤に溶解して混合機に導入すると、より効果的で好ましい。混合機で混合して得られた発泡性組成物を、型枠などに流し込み、加熱処理により発泡硬化を完了させ、フェノール樹脂発泡体を得る。   Resole resin composition adjusted to proper viscosity, foaming agent, surfactant, curing catalyst, if necessary, high boiling aliphatic hydrocarbon, high boiling alicyclic hydrocarbon or mixture thereof, fluoro Ether, fluoroamine and other additives can be introduced into a mixer and mixed uniformly to obtain a foamable composition. At that time, the surfactant may be mixed with the resin in advance and introduced into the mixer, or these may be separately introduced into the mixer. However, if the curing catalyst is mixed with the resole resin in advance, the curing reaction proceeds before foaming and a good foam cannot be obtained. Therefore, it is desirable to mix the resole resin and the curing catalyst with a mixer. In addition, when using high-boiling point aliphatic hydrocarbons, high-boiling point alicyclic hydrogen or mixtures thereof, fluoroethers, fluoroamines, these are mixed with a resol resin in advance and introduced into a mixer. Alternatively, it may be supplied alone to the mixer, but it is more effective and preferable if it is dissolved in a foaming agent and introduced into the mixer. The foamable composition obtained by mixing with a mixer is poured into a mold or the like, and the foam curing is completed by heat treatment to obtain a phenol resin foam.

発泡硬化させる際の硬化触媒としては、トルエンスルホン酸、キシレンスルホン酸、ベンゼンスルホン酸、フェノールスルホン酸、スチレンスルホン酸、ナフタレンスルホン酸などの芳香族スルホン酸を単独又は2種類以上混合して使用できる。また硬化助剤としてレゾルシノール、クレゾール、サリゲニン(o−メチロールフェノール)、p−メチロールフェノールなどを添加しても良い。また、これら硬化触媒を、ジエチレングリコール、エチレングリコールなどの溶媒で希釈しても良い。   As a curing catalyst for foam curing, aromatic sulfonic acids such as toluene sulfonic acid, xylene sulfonic acid, benzene sulfonic acid, phenol sulfonic acid, styrene sulfonic acid and naphthalene sulfonic acid can be used alone or in combination of two or more. . Resorcinol, cresol, saligenin (o-methylolphenol), p-methylolphenol, etc. may be added as a curing aid. These curing catalysts may be diluted with a solvent such as diethylene glycol or ethylene glycol.

本発明で使用する界面活性剤は、フェノール樹脂発泡体製造に有効な物のうち任意の物を使用できる。中でも、ノニオン系の界面活性剤が効果的であり、例えば、エチレンオキサイドとプロピレンオキサイドの共重合体であるアルキレンオキサイドや、アルキレンオキサイドとヒマシ油の縮合物、アルキレンオキサイドとノニルフェノール、ドデシルフェノールのようなアルキルフェノールとの縮合生成物、更にはポリオキシエチレン脂肪酸エステル等の脂肪酸エステル類、ポリジメチルシロキサン等のシリコーン系化合物、ポリアルコール類等がある。これらの界面活性剤は一種類で用いても良いし、二種類以上を組み合わせて用いても良い。また、その使用量についても特に制限はないが、本発明ではレゾール樹脂100重量部当たり0.3〜10重量部の範囲で好ましく使用される。   As the surfactant used in the present invention, any of those effective for producing a phenol resin foam can be used. Among these, nonionic surfactants are effective. For example, alkylene oxide which is a copolymer of ethylene oxide and propylene oxide, condensates of alkylene oxide and castor oil, alkylene oxide and nonylphenol, dodecylphenol, and the like. Condensation products with alkylphenols, fatty acid esters such as polyoxyethylene fatty acid esters, silicone compounds such as polydimethylsiloxane, polyalcohols, and the like. These surfactants may be used alone or in combination of two or more. Moreover, although there is no restriction | limiting in particular also about the usage-amount, in this invention, it is preferably used in 0.3-10 weight part per 100 weight part of resole resin.

次に本発明におけるフェノール樹脂発泡体の組織、構造、特性の評価方法について説明する。
本発明における発泡体の平均気泡径とは、発泡体内部の50倍拡大写真上に9cmの長さの直線を4本引き、各直線が横切った気泡の数を各直線で求め、それらの平均値(JIS K6402に準じて測定したセル数)で1800μmを割った値である。
密度は、20cm角のフェノール樹脂発泡体を試料とし、この試料の面材、サイディング材を取り除いて重量と見かけ容積を測定して求めた値であり、JIS K7222に従
い測定した。
Next, a method for evaluating the structure, structure, and characteristics of the phenol resin foam in the present invention will be described.
The average cell diameter of the foam in the present invention means that a straight line having a length of 9 cm is drawn on a 50 times magnified photograph inside the foam, and the number of bubbles crossed by each straight line is obtained by each straight line. It is a value obtained by dividing 1800 μm by the value (the number of cells measured according to JIS K6402).
The density is a value obtained by measuring a weight and an apparent volume by removing a face material and a siding material of a 20 cm square phenol resin foam sample, and was measured according to JIS K7222.

独立気泡率は、次のようにして測定した。フェノール樹脂発泡体からコルクボーラーでくり貫いた直径35〜36mmの円筒試料を、高さ30〜40mmに切りそろえ、空気比較式比重計1000型(東京サイエンス社製)の標準使用方法により試料容積を測定する。その試料容積から試料重量と樹脂密度から計算した気泡壁の容積を差し引いた値を、試料の外寸から計算した見かけの容積で割った値であり、ASTM D2856に従い測定した。ただし、フェノール樹脂の密度は1.27g/cm3とした。
熱伝導率はサンプル200mm角、低温板5℃、高温板35℃でJIS A1412の平板熱流計法に従い測定した。
The closed cell ratio was measured as follows. A cylindrical sample with a diameter of 35 to 36 mm punched from a phenolic resin foam with a cork borer is cut to a height of 30 to 40 mm, and the sample volume is measured by the standard method of using an air-comparing hydrometer 1000 (manufactured by Tokyo Science). To do. The value obtained by subtracting the volume of the bubble wall calculated from the sample weight and the resin density from the sample volume was divided by the apparent volume calculated from the outer dimension of the sample, and measured according to ASTM D2856. However, the density of the phenol resin was 1.27 g / cm 3 .
The thermal conductivity was measured with a 200 mm square sample, a low temperature plate of 5 ° C., and a high temperature plate of 35 ° C. according to the JIS A1412 flat plate heat flow meter method.

脆性試験の試験片は、一つの面に成形スキン又は面材を含むように一辺25±1.5mmの立方体12個切り出して試料とした。ただし、発泡体の厚さが25mmに満たない場合の試験片の厚さは発泡体の厚さとした。室温乾燥した一辺19±0.8mmの樫製の立方体24個と試験片12個を、埃が箱の外へ出ないように密閉できる内寸191×197×197mmの樫製の木箱に入れ、毎分60±2回転の速度で600±3回転させる。回転終了後、箱の中身を呼び寸法9.5mmの網に移し、ふるい分けをして小片を取り除き、残った試験片の重量を測定し、試験前の試験片重量からの減少率を計算した値が脆性であり、JIS A9511に従い測定した。   Test specimens for the brittleness test were prepared by cutting 12 cubes each having a side of 25 ± 1.5 mm so as to include a molding skin or face material on one side. However, the thickness of the test piece when the thickness of the foam was less than 25 mm was the thickness of the foam. Place 24 smoked cubes with a side of 19 ± 0.8mm and 12 specimens, dried at room temperature, in a smoked wooden box with an internal dimension of 191 x 197 x 197mm that can be sealed so that dust does not come out of the box. Rotate 600 ± 3 at a speed of 60 ± 2 revolutions per minute. After completion of rotation, the contents of the box are transferred to a net with a size of 9.5 mm, screened to remove small pieces, the weight of the remaining specimen is measured, and the rate of decrease from the specimen weight before the test is calculated. Is brittle and measured according to JIS A9511.

圧縮強さはJIS K7220に従い規定ひずみを0.05として測定した。
熱分解ガスクロマトグラフィーのパイログラムの測定は次のように行った。測定に用いるフェノール樹脂発泡体サンプルは、面材、サイディング材を取り除いた発泡体コア部分よりカッターナイフなどで削りだした粉末を更に乳鉢で入念に粉砕し、一度の測定当たり0.3〜0.4mgを試料量とした。熱分解装置は、加熱炉型熱分解装置であるフロンティアラボ社製PY2010Dを用いた。熱分解温度は670℃で行った。ガスクロマトグラフィーの測定はヒューレットパッカード社 HP5890A型で、無極性液相のキャピラリーカラムであるデュラボンド(Durabondo) DB−1(内径0.25mm、膜厚0.25μm、長さ30m)を用いた。キャリヤーガスはヘリウム(He)、全流量は100cc/min、ヘッドプレッシャー100kPa、オーブン温度は、50℃からスタートし毎分20℃のスピードで340℃まで昇温し15.5分間保持した。
各成分の検出は水素炎イオン化検出器(FID)で行い、各ピークの面積値を全検出成分で規格化し、それぞれの成分の比率とした。ただし、ピークの裾が重なる場合には、ピークの重なりの谷間から、ベースラインへ垂線を下ろし、ベースラインと垂線に囲まれた範囲をピーク面積とした。
The compressive strength was measured according to JIS K7220 with a specified strain of 0.05.
Pyrogram measurement of pyrolysis gas chromatography was performed as follows. The phenol resin foam sample used for the measurement was further carefully pulverized with a mortar from the foam core portion from which the face material and siding material had been removed, and 0.3 to 0.00 per measurement. The sample amount was 4 mg. As the thermal decomposition apparatus, PY2010D manufactured by Frontier Laboratories, which is a heating furnace type thermal decomposition apparatus, was used. The thermal decomposition temperature was 670 ° C. Gas chromatography measurement was performed by using Hewlett Packard HP5890A type non-polar liquid phase capillary column (Durabondo DB-1 (inner diameter 0.25 mm, film thickness 0.25 μm, length 30 m)). The carrier gas was helium (He), the total flow rate was 100 cc / min, the head pressure was 100 kPa, the oven temperature was started from 50 ° C., increased to 340 ° C. at a speed of 20 ° C. per minute, and held for 15.5 minutes.
Each component was detected with a flame ionization detector (FID), and the area value of each peak was normalized with all the detected components to obtain the ratio of each component. However, when the peaks were overlapped, a perpendicular line was drawn from the valley of the peak overlap to the base line, and the area surrounded by the base line and the perpendicular line was defined as the peak area.

本発明によるフェノール樹脂発泡体サンプルのガスクマトグラムの一例を第1図に示す。各成分の構造は、ガスクロマトグラフィーにより分離した成分を質量分析機へ導入して得たマススペクトルにより確認した。マススペクトルは日本電子JMS AX−505Hにより、電子衝撃イオン化法(EI法)でイオン化電圧70eV、イオン化電流300mAで測定した。
気泡中に残存する発泡剤および高沸点の脂肪族炭化水素、高沸点の脂環式炭化水素またはそれらの混合物、フルオロエーテル、フルオロアミンは、以下のように確認できる。フェノール樹脂発泡体サンプルを密閉した容器に入れたピリジン、トルエン、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)等から選んだの適当な溶媒中で粉砕し、発泡剤および高沸点の脂肪族炭化水素、高沸点の脂環式炭化水素またはそれらの混合物、フルオロエーテル、フルオロアミンを抽出しガスクロマトグラフィー又は液体クロマトグラフィーにかけ、同定できる。
An example of a gas chromatogram of a phenolic resin foam sample according to the present invention is shown in FIG. The structure of each component was confirmed by a mass spectrum obtained by introducing the components separated by gas chromatography into a mass spectrometer. Mass spectra were measured by JEOL JMS AX-505H by an electron impact ionization method (EI method) at an ionization voltage of 70 eV and an ionization current of 300 mA.
The foaming agent remaining in the bubbles and the high-boiling point aliphatic hydrocarbon, high-boiling point alicyclic hydrocarbon or mixture thereof, fluoroether, and fluoroamine can be confirmed as follows. A phenol resin foam sample is pulverized in a suitable solvent selected from pyridine, toluene, tetrahydrofuran (THF), dimethylformamide (DMF), etc. in a sealed container, and a blowing agent and a high-boiling point aliphatic hydrocarbon are obtained. High boiling alicyclic hydrocarbons or mixtures thereof, fluoroethers, fluoroamines can be extracted and subjected to gas chromatography or liquid chromatography for identification.

該フェノール樹脂発泡体中の尿素架橋由来構造の比率は、フェノールとトリメチルフェノールの比率を求めたのと同様に熱分解ガスクロトグラフィーを測定し、その各成分の面積より計算できる。パイログラムの尿素架橋由来構造の成分の面積の総和Dと、フェノール、2−メチルフェノール、4−メチルフェノール、2,4−ジメチルフェノール、2,6−ジメチルフェノール、2,4,6−トリメチルフェノールの面積の総和Eを求め、DのEに対する面積比をF(F=D/E)とする。
本発明によるフェノール樹脂発泡体の尿素架橋由来の分解生成物のマススペクトルの例は第2図から第6図に示す。
The ratio of the structure derived from urea crosslinking in the phenol resin foam can be calculated from the area of each component by measuring pyrolysis gas chromatography in the same manner as the ratio of phenol and trimethylphenol. The total area D of the components of the structure derived from urea crosslinking in the pyrogram and phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, 2,6-dimethylphenol, 2,4,6-trimethylphenol The total area E of D is obtained, and the area ratio of D to E is defined as F (F = D / E).
Examples of mass spectra of the decomposition products derived from urea crosslinking of the phenolic resin foam according to the present invention are shown in FIGS.

次に実施例および比較例によって本発明をさらに詳細に説明する。
以下の実施例及び比較例で用いたレゾール樹脂は以下のようにして準備した。
(A) レゾール樹脂の合成
反応機に、37%ホルマリン(和光純薬社製、試薬特級)5500gと99%フェノール(和光純薬社製、試薬特級)3000gを仕込み、プロペラ回転式の撹拌機により撹拌し、温調機により反応機内部液温度を40℃に調整する。次いで、50%水酸化ナトリウム(NaOH)水溶液を60g加え、反応液を40℃から85℃に上昇させ115分間保持した。その後、反応液を5℃まで冷却する。これを、レゾール樹脂A−1とする。
更に、反応機に37%ホルマリン2160gと水2000gと50%水酸化ナトリウム(NaOH)水溶液156gを加え、尿素(和光純薬社製、試薬特級)3200gを仕込み、プロペラ回転式の撹拌機により撹拌し、温調機により反応機内部液温度を40℃に調整する。次いで、反応液を50℃から70℃に上昇させ60分間保持した。これを、メチロール尿素Uとする。
次に、レゾール樹脂A−1全量にメチロール尿素Uを1230g混合して液温度を60℃に上昇させ1時間保持した。次いで反応液を30℃まで冷却し、パラトルエンスルホン酸−水和物の50%水溶液でpHが5になるまで中和した。この反応液を、60℃で脱水処理して、粘度を測定したところ40℃における粘度は6700cpsであった。これを、レゾール樹脂Aとする。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.
Resole resins used in the following examples and comparative examples were prepared as follows.
(A) Synthesis of resole resin
A reactor is charged with 5500 g of 37% formalin (manufactured by Wako Pure Chemicals, special grade of reagent) and 3000 g of 99% phenol (made by Wako Pure Chemicals, special grade of reagent) and stirred with a propeller rotating stirrer. The reactor internal liquid temperature is adjusted to 40 ° C. Next, 60 g of a 50% aqueous sodium hydroxide (NaOH) solution was added, and the reaction mixture was raised from 40 ° C. to 85 ° C. and held for 115 minutes. Thereafter, the reaction solution is cooled to 5 ° C. This is designated as resole resin A-1.
Furthermore, 2160 g of 37% formalin, 2000 g of water, and 156 g of 50% sodium hydroxide (NaOH) aqueous solution were added to the reactor, and 3200 g of urea (made by Wako Pure Chemical Industries, Ltd., reagent special grade) was added, followed by stirring with a propeller rotating stirrer. The temperature inside the reactor is adjusted to 40 ° C. using a temperature controller. Subsequently, the reaction liquid was raised from 50 ° C. to 70 ° C. and held for 60 minutes. This is methylol urea U.
Next, 1230 g of methylol urea U was mixed with the total amount of the resole resin A-1, and the liquid temperature was raised to 60 ° C. and held for 1 hour. The reaction solution was then cooled to 30 ° C. and neutralized with a 50% aqueous solution of paratoluenesulfonic acid-hydrate until the pH reached 5. The reaction solution was dehydrated at 60 ° C. and the viscosity was measured. The viscosity at 40 ° C. was 6700 cps. This is designated as resole resin A.

(B) レゾール樹脂の合成
レゾール樹脂Bの合成は添加するメチロール尿素Uの重量を300gに変更した以外はレゾール樹脂Aと同様に行った。
(C) レゾール樹脂の合成
レゾール樹脂Cの合成は添加するメチロール尿素Uの重量を2500gに変更した以外はレゾール樹脂Aと同様に行った。
(D) レゾール樹脂の合成
反応機に、37%ホルマリン3800gと99%フェノール3000gを仕込み、プロペラ回転式の撹拌機により撹拌し、温調機により反応機内部液温度を50℃に調整する。次いで、50%水酸化ナトリウム(NaOH)水溶液60gを加え、反応液を50℃から55℃に20分間保持した。その後温度を85℃に上げ、温度が85℃に達してから125分間保持した。その後、反応液を5℃まで冷却した。これを、レゾール樹脂D−1とする。
レゾール樹脂Dの合成は、レゾール樹脂A−1をD−1に変更し、添加するメチロール尿素Uの重量を1000gに変更した以外はレゾール樹脂Aと同様に行った。
(B) Synthesis of resole resin
Resole resin B was synthesized in the same manner as resole resin A, except that the weight of methylolurea U to be added was changed to 300 g.
(C) Synthesis of resole resin
Resole resin C was synthesized in the same manner as resole resin A, except that the weight of methylolurea U to be added was changed to 2500 g.
(D) Synthesis of resole resin
The reactor is charged with 3800 g of 37% formalin and 3000 g of 99% phenol, stirred with a propeller rotating stirrer, and the temperature inside the reactor is adjusted to 50 ° C. with a temperature controller. Subsequently, 60 g of 50% sodium hydroxide (NaOH) aqueous solution was added, and the reaction solution was kept at 50 to 55 ° C. for 20 minutes. Thereafter, the temperature was raised to 85 ° C. and held for 125 minutes after the temperature reached 85 ° C. Thereafter, the reaction solution was cooled to 5 ° C. This is designated as resole resin D-1.
Resole resin D was synthesized in the same manner as resole resin A, except that resole resin A-1 was changed to D-1 and the weight of methylolurea U to be added was changed to 1000 g.

(E) レゾール樹脂の合成
レゾール樹脂Eの合成は添加するメチロール尿素Uの重量を500gに変更した以外はレゾール樹脂Dと同様に行った。
(F) レゾール樹脂の合成
レゾール樹脂Fの合成は添加するメチロール尿素Uの重量を1500gに変更した以外はレゾール樹脂Dと同様に行った。
(E) Synthesis of resole resin
Resole resin E was synthesized in the same manner as resole resin D, except that the weight of methylolurea U to be added was changed to 500 g.
(F) Synthesis of resole resin
Resole resin F was synthesized in the same manner as resole resin D, except that the weight of methylolurea U to be added was changed to 1500 g.

(G) レゾール樹脂の合成
反応機に、37%ホルマリン5200gと99%フェノール3000gを仕込み、プロペラ回転式の撹拌機により撹拌し、温調機により反応機内部液温度を50℃に調整する。次いで、50%水酸化ナトリウム(NaOH)水溶液60gを加え、反応液を40℃に10分間保持した。その後温度を85℃に上げ、温度が85℃に達してから120分間保持した。その後、反応液を20℃まで冷却した。これを、レゾール樹脂G−1とする。
レゾール樹脂G−1をパラトルエンスルホン酸一水和物の50%水溶液でpHが5になるまで中和し、この反応液を、60℃で脱水処理した。これを、レゾール樹脂Gとする。
(G) Synthesis of resole resin
The reactor is charged with 5200 g of 37% formalin and 3000 g of 99% phenol, stirred with a propeller rotating stirrer, and the temperature inside the reactor is adjusted to 50 ° C. with a temperature controller. Next, 60 g of 50% aqueous sodium hydroxide (NaOH) was added and the reaction was held at 40 ° C. for 10 minutes. Thereafter, the temperature was raised to 85 ° C. and held for 120 minutes after the temperature reached 85 ° C. Thereafter, the reaction solution was cooled to 20 ° C. This is designated as resole resin G-1.
The resole resin G-1 was neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until the pH reached 5 and the reaction solution was dehydrated at 60 ° C. This is designated as resole resin G.

(H)レゾール樹脂の合成
反応機に、37%ホルマリン3040gとサリゲニン(東京化成工業株式会社製)3300gと99%フェノール500gを仕込み、プロペラ回転式の撹拌機により撹拌し、温調機により反応機内部液温度を50℃に調整する。次いで、50%水酸化ナトリウム(NaOH)水溶液60gを加え、反応液を50℃から55℃に20分間保持した。その後温度を85℃に上げ、温度が85℃に達してから110分間保持した。その後、反応液を5℃まで冷却した。これを、レゾール樹脂H−1とする。
レゾール樹脂H−1をパラトルエンスルホン酸一水和物の50%水溶液でpHが5になるまで中和し、この反応液を、60℃で脱水処理した。これを、レゾール樹脂Hとする。
(H) Synthesis of resole resin A reactor was charged with 3040 g of 37% formalin, 3300 g of saligenin (manufactured by Tokyo Chemical Industry Co., Ltd.) and 500 g of 99% phenol, stirred with a propeller rotary stirrer, and reacted with a temperature controller. The internal liquid temperature is adjusted to 50 ° C. Subsequently, 60 g of 50% sodium hydroxide (NaOH) aqueous solution was added, and the reaction solution was kept at 50 to 55 ° C. for 20 minutes. Thereafter, the temperature was raised to 85 ° C. and held for 110 minutes after the temperature reached 85 ° C. Thereafter, the reaction solution was cooled to 5 ° C. This is designated as resole resin H-1.
The resole resin H-1 was neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until the pH reached 5 and the reaction solution was dehydrated at 60 ° C. This is designated as resole resin H.

(I) レゾール樹脂の合成
レゾール樹脂Iの合成は添加するメチロール尿素Uの重量を4000gに変更した以外はレゾール樹脂Dと同様に行った。
(J) レゾール樹脂の合成
反応器に、37%ホルマリン6300gと99%フェノール3000gを仕込み、プロペラ回転式の撹拌機により撹拌し、温調機により反応器内部液温度を50℃に調整する。次いで、50%水酸化ナトリウム(NaOH)水溶液60gを加え、反応液を20分間50から55℃に保持した。その後温度を85℃に上げ、温度が85℃に達してから180分間保持した。その後、反応液を5℃まで冷却する。これを、レゾール樹脂J−1とする。
レゾール樹脂Jの合成は、レゾール樹脂A−1をJ−1に変更した以外はレゾール樹脂Aと同様に行った。
(I) Synthesis of resole resin
Resole resin I was synthesized in the same manner as resole resin D, except that the weight of methylolurea U to be added was changed to 4000 g.
(J) Synthesis of resole resin
A reactor is charged with 6300 g of 37% formalin and 3000 g of 99% phenol, stirred with a propeller rotating stirrer, and the temperature inside the reactor is adjusted to 50 ° C. with a temperature controller. Then 60 g of 50% aqueous sodium hydroxide (NaOH) was added and the reaction was held at 50-55 ° C. for 20 minutes. Thereafter, the temperature was raised to 85 ° C. and held for 180 minutes after the temperature reached 85 ° C. Thereafter, the reaction solution is cooled to 5 ° C. This is designated as resole resin J-1.
Resole resin J was synthesized in the same manner as resole resin A, except that resole resin A-1 was changed to J-1.

(K) レゾール樹脂の合成
反応器に、37%ホルマリン3330gと99%フェノール3000gを仕込み、プロペラ回転式の撹拌機により撹拌し、温調機により反応器内部液温度を50℃に調整する。次いで、50%水酸化ナトリウム(NaOH)水溶液34gを加え、反応液を50〜85℃に上げ、温度が85℃に達してから120分保持した。その後、反応液を5℃まで冷却した。これを、レゾール樹脂K−1とする。
レゾール樹脂Kの合成は、レゾール樹脂Aにおけるレゾール樹脂A−1をK−1に変更した以外はレゾール樹脂Aと同様に行った。
(K) Synthesis of resole resin
A reactor is charged with 3330 g of 37% formalin and 3000 g of 99% phenol, stirred with a propeller rotating stirrer, and the temperature inside the reactor is adjusted to 50 ° C. with a temperature controller. Next, 34 g of a 50% aqueous sodium hydroxide (NaOH) solution was added, the reaction solution was raised to 50 to 85 ° C., and held for 120 minutes after the temperature reached 85 ° C. Thereafter, the reaction solution was cooled to 5 ° C. This is designated as resole resin K-1.
Resole resin K was synthesized in the same manner as resole resin A except that resole resin A-1 in resole resin A was changed to K-1.

[実施例1]
レゾール樹脂Aにペインタッド32(ダウコーニングアジア株式会社製界面活性剤)をレゾール樹脂100gに対して3.5gの割合で溶解した。この、レゾール樹脂混合物と、発泡剤として、窒素を0.3重量%溶解したノルマルペンタン(和光純薬、純度99%以上)と、イソブタン(エスケイ産業株式会社製、純度99%以上)の1対1混合物と、硬化触媒としてパラトルエンスルホン酸一水和物(和光純薬、純度95%以上)60重量%とジエチレングリコール(和光純薬、純度98%以上)40重量%の混合物をそれぞれ、樹脂混合物100部、発泡剤7部、硬化触媒15部の割合で温調ジャケット付きピンミキサーに供給した。ミキサー内温度が80℃を超えないように温調ジャケットで冷却した。ミキサーから出てきた混合物をスパンボンドE1040(旭化成工業株式会社製)を敷いた型枠に流し込み、80℃のオーブンに入れ5時間保持し本実施例のフェノール樹脂発泡体を得た。
[Example 1]
Paintad 32 (a surfactant manufactured by Dow Corning Asia Co., Ltd.) was dissolved in resole resin A at a ratio of 3.5 g with respect to 100 g of resole resin. A pair of the resole resin mixture, normal pentane (Wako Pure Chemicals, purity 99% or more) in which 0.3% by weight of nitrogen is dissolved as a blowing agent, and isobutane (manufactured by SK Sangyo Co., Ltd., purity 99% or more) 1 mixture and a mixture of 60% by weight of paratoluenesulfonic acid monohydrate (Wako Pure Chemical, purity of 95% or more) and 40% by weight of diethylene glycol (Wako Pure Chemical, purity of 98% or more) as a curing catalyst, respectively, as a resin mixture 100 parts, a foaming agent of 7 parts, and a curing catalyst of 15 parts were supplied to a pin mixer with a temperature control jacket. It cooled with the temperature control jacket so that the temperature in a mixer might not exceed 80 degreeC. The mixture that came out of the mixer was poured into a mold laid with Spunbond E1040 (manufactured by Asahi Kasei Kogyo Co., Ltd.), placed in an oven at 80 ° C. and held for 5 hours to obtain a phenol resin foam of this example.

[実施例2]
硬化触媒としてパラトルエンスルホン酸一水和物40重量%とジエチレングリコール30重量%、レゾルシノール30重量%の混合物を樹脂100部に対し14部の割合に変更した以外実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[実施例3]
発泡剤としてPF−5050(3M社製パーフルオロペンタン)を3重量%と窒素を0.3重量%溶解したノルマルペンタンと、イソブタンの1対1混合物を使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[Example 2]
A phenol resin was used in the same manner as in Example 1 except that a mixture of 40% by weight of paratoluenesulfonic acid monohydrate, 30% by weight of diethylene glycol and 30% by weight of resorcinol was changed to a ratio of 14 parts to 100 parts of the resin as a curing catalyst. A foam was produced.
[Example 3]
Exactly the same as in Example 1 except that a 1 to 1 mixture of normal butane and 3% by weight of PF-5050 (perfluoropentane manufactured by 3M) and 0.3% by weight of nitrogen were used as a blowing agent. Thus, a phenol resin foam was produced.

[実施例4〜10、比較例1〜3]
実施例4〜10、比較例1〜3は、レゾール樹脂として表1に示す樹脂を用い、触媒部数を調整しながら、その他は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[実施例11]
発泡剤として窒素を0.3重量%溶解したノルマルペンタンを使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[実施例12]
発泡剤として窒素を0.3重量%溶解したイソブタンを使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[Examples 4 to 10, Comparative Examples 1 to 3]
In Examples 4 to 10 and Comparative Examples 1 to 3, the resins shown in Table 1 were used as the resol resins, and the phenol resin foams were produced in exactly the same manner as in Example 1 while adjusting the number of catalyst parts.
[Example 11]
A phenol resin foam was produced in the same manner as in Example 1 except that normal pentane in which 0.3% by weight of nitrogen was dissolved was used as the foaming agent.
[Example 12]
A phenol resin foam was produced in the same manner as in Example 1 except that isobutane in which 0.3% by weight of nitrogen was dissolved was used as the foaming agent.

[実施例13]
発泡剤として窒素を0.3重量%溶解したノルマルペンタンと、ノルマルブタン(エスケイ産業株式会社製、純度99%以上)の1対1混合物を使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[実施例14]
発泡剤として窒素を0.3重量%溶解したイソペンタン(和光純薬、純度99%以上)と、イソブタンの1対1混合物を使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[Example 13]
A phenol resin exactly as in Example 1 except that a one-to-one mixture of normal pentane having 0.3% by weight of nitrogen dissolved therein and normal butane (manufactured by SK Sangyo Co., Ltd., purity 99% or more) was used as a blowing agent. A foam was produced.
[Example 14]
A phenolic resin foam was produced in exactly the same manner as in Example 1 except that isopentane in which 0.3% by weight of nitrogen was dissolved as a foaming agent (Wako Pure Chemical Industries, Ltd., purity 99% or more) and a one-to-one mixture of isobutane were used. did.

[実施例15]
発泡剤として窒素を0.3重量%溶解したイソペンタンと、ノルマルブタンの1対1混合物を使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[実施例16]
発泡剤として窒素を0.3重量%溶解したノルマルヘキサン(和光純薬、一級試薬)と、イソブタンの3対7混合物を使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[実施例17]
発泡剤としてパラフィン(和光純薬社製、融点44℃から46℃、一級試薬)5重量%と窒素を0.3重量%溶解したノルマルペンタンと、イソブタンの1対1混合物を使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[Example 15]
A phenol resin foam was produced in exactly the same manner as in Example 1 except that a one-to-one mixture of isopentane and normal butane in which 0.3% by weight of nitrogen was dissolved as a foaming agent.
[Example 16]
A phenol resin foam was produced in exactly the same manner as in Example 1 except that normal hexane (Wako Pure Chemicals, first grade reagent) in which 0.3% by weight of nitrogen was dissolved as a foaming agent and a 3 to 7 mixture of isobutane were used. .
[Example 17]
Implemented except that 1-to-1 mixture of parabutene (manufactured by Wako Pure Chemical Industries, Ltd., melting point 44 ° C. to 46 ° C., primary reagent) 5% by weight, normal pentane in which 0.3% by weight of nitrogen was dissolved, and isobutane was used. A phenol resin foam was produced in exactly the same manner as in Example 1.

[実施例18]
発泡剤として流動パラフィン(和光純薬社製、一級試薬)5重量%と窒素を0.3重量%溶解したノルマルペンタンと、イソブタンの1対1混合物を使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[実施例19]
発泡剤としてガルデン(Galden)HT−55(アウジモンド株式会社製)3重量%と窒素を0.3重量%溶解したノルマルペンタンと、イソブタンの1対1混合物を使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[Example 18]
Exactly the same as Example 1 except that 5% by weight of liquid paraffin (manufactured by Wako Pure Chemical Industries, Ltd., primary reagent), normal pentane in which 0.3% by weight of nitrogen was dissolved, and isobutane were used as a foaming agent. Thus, a phenol resin foam was produced.
[Example 19]
Exactly the same as Example 1 except that a 1-to-1 mixture of normal pentane in which 3% by weight of Galden HT-55 (manufactured by Audimond Co., Ltd.) and 0.3% by weight of nitrogen were dissolved was used as a blowing agent. Thus, a phenol resin foam was produced.

[実施例20]
発泡剤としてガルデン(Galden)HT−70(アウジモンド株式会社製)3重量%と窒素を0.3重量%溶解したノルマルペンタンと、イソブタンの1対1混合物を使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[実施例21]
発泡剤としてフロリナートFC−71(スリーエム社製)3重量%と窒素を0.3重量%溶解したノルマルペンタンと、イソブタンの1対1混合物を使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
[Example 20]
Exactly the same as Example 1 except that 3% by weight of Galden HT-70 (manufactured by Audimond Co., Ltd.), normal pentane in which 0.3% by weight of nitrogen was dissolved, and isobutane were used as the blowing agent. Thus, a phenol resin foam was produced.
[Example 21]
Phenol resin in exactly the same manner as in Example 1 except that a one-to-one mixture of 3% by weight of Fluorinert FC-71 (manufactured by 3M), normal pentane having 0.3% by weight of nitrogen dissolved therein, and isobutane was used. A foam was produced.

[実施例22]
発泡剤としてフロリナートFC−70(スリーエム社製)3重量%と窒素を0.3重量%溶解したノルマルペンタンと、イソブタンの1対1混合物を使用した以外は実施例1と全く同様にしてフェノール樹脂発泡体を製造した。
なお、以上の実施例、比較例で得たフェノール樹脂発泡体サンプルの、熱分解ガスクロマトグラフィーのパイログラムのトリメチルフェノール成分の面積Aのフェノール成分の面積Bに対する比C値と、全尿素架橋由来の成分の面積Dの全フェノール誘導体成分の面積Eに対する比F値及び発泡体の独立気泡率、平均気泡径、密度、熱伝導率、脆性、圧縮強度を表1にまとめて示す。
[Example 22]
Phenol resin in exactly the same manner as in Example 1 except that a one-to-one mixture of 3% by weight of Fluorinert FC-70 (manufactured by 3M), normal pentane having 0.3% by weight of nitrogen dissolved therein, and isobutane was used. A foam was produced.
In addition, the ratio C value with respect to the area B of the phenol component of the area A of the trimethylphenol component of the pyrogram of the pyrolysis gas chromatography of the phenol resin foam sample obtained by the above Example and the comparative example, and all urea bridge | crosslinking origin Table 1 summarizes the ratio F value of the area D of the component to the area E of the total phenol derivative component and the closed cell ratio, average cell diameter, density, thermal conductivity, brittleness, and compressive strength of the foam.

Figure 2009293033
Figure 2009293033

Figure 2009293033
Figure 2009293033

実施例1〜22に示すように、C値が0.05〜4.0の範囲で、独立気泡率が70%以上、平均気泡径10〜400μmの範囲のフェノール樹脂発泡体は、密度が27〜29kg/m3程度と低い場合においても圧縮強度が1.5kg/cm2以上であり、機械的強度が優れている。また、脆性も30%未満と改善されている。このとき、実施例の熱伝導率は、0.025kcal/mhr℃以下となり、優れた断熱性能を示している。
また、参考例1及び2を除く実施例は、F値が0.01〜0.3の範囲であり、脆性が20%未満となり、熱伝導率も0.020kcal/mhr℃以下となり、より優れた性能を示している。
As shown in Examples 1 to 22, a phenol resin foam having a C value in the range of 0.05 to 4.0, a closed cell ratio of 70% or more, and an average cell diameter in the range of 10 to 400 μm has a density of 27. Even when it is as low as ˜29 kg / m 3 , the compressive strength is 1.5 kg / cm 2 or more, and the mechanical strength is excellent. In addition, brittleness is improved to less than 30%. At this time, the thermal conductivity of the example is 0.025 kcal / mhr ° C. or lower, indicating excellent heat insulation performance.
Further, in Examples except Reference Examples 1 and 2, the F value is in the range of 0.01 to 0.3, the brittleness is less than 20%, and the thermal conductivity is 0.020 kcal / mhr ° C. or less, which is more excellent. Performance.

更に、実施例17〜22に示すように、高沸点の脂肪族炭化水素、高沸点の脂環式炭化水素またはそれらの混合物、フルオロエーテル、フルオロアミンが発泡時に存在する場合には、熱伝導率が0.018kcal/mhr℃以下と、特に優れた断熱性能を示している。
これに対し、C値が4.13と大きすぎる比較例2及び0.04と小さすぎる比較例3では、いずれの場合も熱伝導率は0.025kcal/mhr℃以上、脆性は30%以上と大きな値となっており、断熱性と機械的強度が劣っている。
また、比較例1では、C値は0.11と本発明の範囲内であるものの、独立気泡率が61.8%と本発明の範囲を外れており、熱伝導率は0.0273kcal/mhr℃と断熱性に劣り、脆性は43%と機械的強度も劣っている。
Furthermore, as shown in Examples 17-22, when high boiling aliphatic hydrocarbons, high boiling alicyclic hydrocarbons or mixtures thereof, fluoroethers, fluoroamines are present during foaming, thermal conductivity Of 0.018 kcal / mhr ° C. or less, particularly excellent heat insulation performance.
On the other hand, in Comparative Example 2 where the C value is too large as 4.13 and Comparative Example 3 where the C value is too small as 0.04, the thermal conductivity is 0.025 kcal / mhr ° C. or more in both cases, and the brittleness is 30% or more. The value is large, and the heat insulation and mechanical strength are inferior.
In Comparative Example 1, the C value is 0.11, which is within the range of the present invention, but the closed cell ratio is 61.8%, which is outside the range of the present invention, and the thermal conductivity is 0.0273 kcal / mhr. The heat resistance is inferior at 0 ° C., the brittleness is 43% and the mechanical strength is also inferior.

本発明によるフェノール樹脂発泡体は、優れた断熱性能を有し、圧縮強度等の機械的強度に優れ、表面脆性が著しく改善されている。本発明による樹脂発泡体は、オゾン層破壊の恐れがなく地球温暖化係数の低い発泡剤を使用しているため、地球環境により適合した建築用断熱材として好適である。   The phenol resin foam according to the present invention has excellent heat insulation performance, excellent mechanical strength such as compressive strength, and surface brittleness is remarkably improved. Since the resin foam according to the present invention uses a foaming agent having a low global warming potential without fear of destruction of the ozone layer, it is suitable as a heat insulating material for buildings that is more suitable for the global environment.

Claims (1)

独立気泡率80%以上、平均気泡径10μm以上400μm以下、密度10kg/m3以上70kg/m3以下であって、独立気泡中に炭化水素を含有し、尿素架橋構造を有するフェノール樹脂構造から成る脆性が20%以下、圧縮強度が0.5kg/cm2以上、熱伝導率が0.025kcal/mhr℃以下であることを特徴とするフェノール樹脂発泡体。 It has a closed cell ratio of 80% or more, an average cell diameter of 10 μm or more and 400 μm or less, a density of 10 kg / m 3 or more and 70 kg / m 3 or less, comprising a hydrocarbon in the closed cells and a phenol resin structure having a urea cross-linking structure. A phenol resin foam having a brittleness of 20 % or less, a compressive strength of 0.5 kg / cm 2 or more, and a thermal conductivity of 0.025 kcal / mhr ° C. or less.
JP2009153155A 1997-09-03 2009-06-29 Phenolic resin foam Pending JP2009293033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153155A JP2009293033A (en) 1997-09-03 2009-06-29 Phenolic resin foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23865697 1997-09-03
JP2009153155A JP2009293033A (en) 1997-09-03 2009-06-29 Phenolic resin foam

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51660399A Division JP4711469B2 (en) 1997-09-03 1998-09-01 Phenolic resin foam

Publications (1)

Publication Number Publication Date
JP2009293033A true JP2009293033A (en) 2009-12-17

Family

ID=17033380

Family Applications (2)

Application Number Title Priority Date Filing Date
JP51660399A Expired - Lifetime JP4711469B2 (en) 1997-09-03 1998-09-01 Phenolic resin foam
JP2009153155A Pending JP2009293033A (en) 1997-09-03 2009-06-29 Phenolic resin foam

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP51660399A Expired - Lifetime JP4711469B2 (en) 1997-09-03 1998-09-01 Phenolic resin foam

Country Status (4)

Country Link
JP (2) JP4711469B2 (en)
KR (1) KR100370995B1 (en)
AU (1) AU8888698A (en)
WO (1) WO1999011697A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2559509C2 (en) * 2010-10-18 2015-08-10 Асахи Касеи Констракшн Материалс Корпорейшн Phenolic resin-based foamed plastic
JP2016180103A (en) * 2015-03-24 2016-10-13 積水化学工業株式会社 Phenolic resin foam
JP2017114993A (en) * 2015-12-22 2017-06-29 旭化成建材株式会社 Phenol resin foam body and manufacturing method therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3813062B2 (en) * 1998-07-03 2006-08-23 旭化成建材株式会社 Phenolic foam
JP2007131803A (en) * 2005-11-14 2007-05-31 Asahi Kasei Construction Materials Co Ltd Method for producing phenolic resin foam
KR101766988B1 (en) * 2012-12-11 2017-08-09 아사히 가세이 겐자이 가부시키가이샤 Phenolic resin foam and method for producing same
JP5700873B2 (en) * 2013-12-25 2015-04-15 積水化学工業株式会社 Foamable resol-type phenolic resin molding material and phenolic resin foam
RU2017101191A (en) 2014-06-18 2018-07-18 Асахи Касеи Констракшн Матириалс Корпорейшн FENOL RESIN FOAM AND METHOD FOR PRODUCING IT
RU2703133C1 (en) * 2015-12-22 2019-10-15 Асахи Касеи Констракшн Матириалс Корпорейшн Phenol resin-based foam plastic and a method for production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008230A1 (en) * 1995-08-28 1997-03-06 Owens Corning Process for producing phenolic foams

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546119A (en) * 1984-11-29 1985-10-08 Fiberglas Canada, Inc. Closed cell phenolic foam
JP3110235B2 (en) * 1993-12-29 2000-11-20 旭有機材工業株式会社 Foam curable phenolic resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008230A1 (en) * 1995-08-28 1997-03-06 Owens Corning Process for producing phenolic foams

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2559509C2 (en) * 2010-10-18 2015-08-10 Асахи Касеи Констракшн Материалс Корпорейшн Phenolic resin-based foamed plastic
US9976026B2 (en) 2010-10-18 2018-05-22 Asahi Kasei Construction Materials Corporation Phenol resin foamed plate
JP2016180103A (en) * 2015-03-24 2016-10-13 積水化学工業株式会社 Phenolic resin foam
JP2017114993A (en) * 2015-12-22 2017-06-29 旭化成建材株式会社 Phenol resin foam body and manufacturing method therefor

Also Published As

Publication number Publication date
AU8888698A (en) 1999-03-22
WO1999011697A1 (en) 1999-03-11
KR100370995B1 (en) 2003-02-06
KR20010023571A (en) 2001-03-26
JP4711469B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP2009293033A (en) Phenolic resin foam
JP6031579B2 (en) Phenol resin foam and method for producing the same
JP5688487B1 (en) Phenolic resin foam
US5166182A (en) Thermosetting plastic foams and methods of production thereof using novel blowing agents
KR100429437B1 (en) Phenolic foam
JPH11140216A (en) Phenolic resin foam
JPH10225993A (en) Manufacture of phenol resin foam
US5786398A (en) Manufacture of insulating foams containing film forming additives
EP1040157B1 (en) Phenol foam
JP3681307B2 (en) Method for producing phenolic resin foam
EP0977804A1 (en) Method for making a closed-cell phenolic resin foam
JP4868653B2 (en) Phenolic resin foam
JP2007131803A (en) Method for producing phenolic resin foam
JPH11140217A (en) Phenolic foam
WO1998036021A1 (en) Phenolic resin foam
JP2000230070A (en) Phenol resin foam
JP2002309031A (en) Phenol resin foam for fine foam
JP2001114922A (en) Phenol resin foam
JP2007131801A (en) Method for producing phenolic resin foam
JPH11181140A (en) Foamed phenol resin thermal insulant
MXPA00012823A (en) Phenolic foam
EP1572790A2 (en) A closed cell phenolic foam
JPH03128950A (en) Formed heat insulation material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131