WO1998036021A1 - Phenolic resin foam - Google Patents

Phenolic resin foam Download PDF

Info

Publication number
WO1998036021A1
WO1998036021A1 PCT/JP1998/000622 JP9800622W WO9836021A1 WO 1998036021 A1 WO1998036021 A1 WO 1998036021A1 JP 9800622 W JP9800622 W JP 9800622W WO 9836021 A1 WO9836021 A1 WO 9836021A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
phenolic resin
resin foam
less
ratio
Prior art date
Application number
PCT/JP1998/000622
Other languages
French (fr)
Japanese (ja)
Inventor
Yuuichi Arito
Kenzi Takasa
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to AU58809/98A priority Critical patent/AU5880998A/en
Publication of WO1998036021A1 publication Critical patent/WO1998036021A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols

Definitions

  • the present invention relates to a phenolic resin foam for thermal insulation having excellent heat insulating performance, excellent mechanical strength such as compressive strength, and improved surface brittleness.
  • Funinol resin foam is very useful as a building material because of its excellent flame retardancy, heat resistance, low smoke emission, dimensional stability, solvent resistance, and workability among organic resin foams. It is something.
  • conventional phenolic resin foams have a major disadvantage that the foam is brittle, which causes the foam to have poor surface brittleness, cracks, and has a problem in the cell wall.
  • problems such as the occurrence of pinholes, the replacement of the blowing agent with air, and a decrease in heat insulation performance.
  • Japanese Patent Application Laid-Open No. 53-13669 discloses a method in which the amount of water in the resin is extremely limited, and the method disclosed in Japanese Patent Publication No. Sho 63-3-24060.
  • Japanese Unexamined Patent Publication No. Sho 61-238833 discloses a method in which a saccharide is added, and Japanese Patent Publication No. Sho 62-48997 Have tried to use modified phenol or various additives, but none of them was sufficient, and a cell with a high closed cell rate could not be obtained.
  • the thermal conductivity was at most 0.020 (kca 1 / mhr ° C) or more, and the use as a heat insulating material was limited to those that required fire protection and fire resistance. .
  • CFCs chlorine-containing chlorine-containing fluorocarbons
  • HCFCs hydrogenated fluorocarbons
  • HFCs fluorocarbons that do not contain chlorine atoms
  • HFCs that can be used industrially include HFC_134a (1,1,1,2-tetrafluoroethane), HFC-152a (1,1-difluoroethane), HFC — 1 25 (1,1,1,2,2-pentafluoroethane), etc., all of which have a low boiling point, which increases the pressure during foaming and breaks the cell walls,
  • HFC_134a 1,1,1,2-tetrafluoroethane
  • HFC-152a 1,1-difluoroethane
  • HFC — 1 25 (1,1,1,2,2-pentafluoroethane
  • a common method for producing these phenolic resin foams is to uniformly mix a phenolic resin and a formalin-condensed resin with a foaming agent, surfactant, curing catalyst, and other additives. And foam it.
  • An object of the present invention is to provide a fusol resin foam for heat insulation, which uses HFC as a foaming agent, has excellent heat insulating performance, has excellent mechanical strength such as compressive strength, and has improved surface brittleness. It is. Disclosure of the invention
  • the present inventors have conducted intensive studies on phenolic resin foams, and as a result, have a specific cross-linking density, and by providing urea-derived cross-linking, have excellent heat insulation performance even when HFC is used as a blowing agent, The present inventors have found that a phenol resin foam having improved mechanical strength and surface brittleness can be obtained, and have completed the present invention.
  • a phenolic resin foam comprising a phenolic resin structure having a urea cross-linking structure
  • the fluorohydrocarbon is at least one of 1,1,1,2-tetrafluoroethane or 1,1—difluoroethane or 1,1,1,2,2-pentafluoroethane.
  • the phenolic resin foam according to any one of the above 1 to 3, wherein
  • a resol resin composition consisting of a resole resin and methyl urea monofluoride is formed by forming a urea crosslinked structure by foaming and curing a fluorocarbon hydrocarbon as a foaming agent, with a closed cell rate of 80% or more, average Bubble diameter 20 / m or more and 300 / m or less, density 20 kg / m 3 or more and 50 kg / m 3 or less, thermal conductivity 0.018 kca 1 Xmh r ° C or less, brittleness 30%
  • a phenolic resin foam characterized in that: BRIEF DESCRIPTION OF THE FIGURES
  • Figure 1 is a pyrolysis gas chromatography pyrogram of a phenolic resin foam sample. The vertical axis indicates the relative intensity.
  • Figure 2 shows the mass spectrum of the phenol component in a pyrogram of pyrolysis gas chromatography of a phenol resin foam sample.
  • Figure 3 shows the mass spectrum of the trimethylphenol component of the pyrolysis gas chromatography pyrogram of the phenol resin foam sample.
  • Figure 4 shows the mass spectrum of the 0-methylphenol component of the pyrolysis gas chromatography pyrogram of the phenol resin foam sample.
  • Fig. 5 shows the mass spectrum of the p-methylphenol component in the pyrogram of the pyrolysis gas chromatograph of the phenol resin foam sample.
  • FIG. 6 is a mass spectrum of one-third of a urea-crosslinking-derived structural component of a pyrogram of a phenol resin foam sample by pyrolysis gas chromatography.
  • FIG. 9 is a mass spectrum of a structural component derived from one-third of urea cross-links in a pyrolysis gas chromatography pyrogram of a phenol resin foam sample.
  • FIG. 10 is a mass spectrum of a structural component derived from one urea cross-link in a microgram of pyrogel gas chromatography of a phenol resin foam sample.
  • Fig. 11 shows a mass spectrum of a structural component derived from one urea cross-link in a pyrolysis gas chromatography pyrogram of a phenol resin foam sample.
  • FIG. 12 is a mass spectrum of a structural component derived from one-third of a urea cross-linking pyrogram of a phenol resin foam sample.
  • the closed cell ratio when the closed cell ratio is low, not only the surface brittleness of the foam increases, but also the foaming gas in the cells is replaced with air, and the heat insulation performance deteriorates with time.
  • the closed cell rate needs to be 70% or more, more preferably 80% or more, and still more preferably 90% or more.
  • the closed cell ratio in the present invention is a volume ratio of closed cells contained in voids in the phenolic resin foam, and is measured by a method described later.
  • the average cell diameter in the present invention must be 10 m or more and 400 m or less, and more preferably 20 m / m or more and 300 m or less.
  • the density of Fuwenoru resin foam of the present invention is 1 0 kg Zm 3 or 7 0 kg Z m 3 must be at or less, more preferably 2 0 kg / m 3 or more 5 0 kg / m 3 or less.
  • the phenolic resin foam according to the present invention has a phenolic resin structure having a urea crosslinked structure.
  • the phenolic resin structure can be specified by displaying the pattern of the pyrolysis products of the pyrolysis gas chromatography of the fininol resin that forms the foam (hereinafter referred to as the “pyrogram”) (see Fig. 1). .
  • the ratio C of the pie mouth grams in pyrolysis gas chromatography is an index reflecting the crosslink density of the phenol resin
  • the ratio F is an index reflecting the density of the urea crosslinked structure of the phenol resin.
  • the crosslink density and the density of the urea crosslink structure, and thus the ratios C and F, are based on the amount of urea methylol to be mixed, the molar ratio of formaldehyde and phenol used (hereinafter referred to as the “FZP ratio”), the temperature during foaming, the amount of catalyst, etc.
  • the phenolic resin foam of the present invention having the above excellent properties can be obtained by appropriately selecting these factors.
  • the component D derived from the urea crosslinking in the ratio F is a component released in the pyrogram during a retention time of 8 minutes to 18 minutes, and contains a phenyl group and an isocyanate (—NCO) group in the molecule. Including compounds. These components are identified by a mass spectrum or the like. Specifically, for example, the peak? The mass spectra corresponding to these are shown in Figs.
  • the phenol derivative component E having the ratio F is defined as phenol, methylphenol, It is the sum of tilphenol and trimethylphenol. These components are identified by a mass spectrum or the like. Specifically, peaks 1 to 6 and the corresponding mass spectra are shown in FIGS. 2 to 7, respectively.
  • the ratio C according to the present invention is preferably 0.2 or more and 4.0 or less, more preferably 0.2 or more and 2.0 or less, particularly preferably 0.25 or more and 1.5 or less, and
  • the ratio F is preferably not less than 0.03 and not more than 0.3, more preferably not less than 0.035 and not more than 0.2, and particularly preferably not less than 0.04 and not more than 0.15.
  • the strength of the phenol resin itself is improved due to the specificity of its crosslinked structure, and the resin with the improved strength is significantly reflected in the improvement in the brittleness and strength of the phenol resin foam. .
  • the phenolic resin foam according to the present invention has a brittleness of 30% or less and a thermal conductivity of 0.018 kca 1 Zm hr ° C or less, as is clear from the examples described later.
  • An extremely excellent phenol resin foam can be provided.
  • the pyrolysis of the foam sample is performed at 670 ° C. using a heating furnace type pyrolysis apparatus. Gas chromatography is measured by the method and conditions described later.
  • HFC having an ozone depletion potential of 0 and low thermal conductivity is used as a foaming agent.
  • HFC the ability to use HFCs having 1 to 8 carbon atoms ⁇ , and the thermal conductivity and economical reasons, HFCs having 2 carbon atoms are preferable.
  • Specific examples include 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, and 1,1,2,2-pentafluoroethane. Among them, 1,1,1,2-tetratetrafluoroethane is more preferred.
  • These HFCs can be used as a mixture of two or more kinds.
  • perfluorobutane perfluorocyclobutane, perfluorocyclopentane, perfluorocyclopentane, perfluorocyclohexane, perfluorocyclohexane, perfluorocyclohexane, perfluoroheptane, etc.
  • Fluorocarbons such as perfluorocycloheptane, perfluorooctane, and perfluorocyclooctane can also be used as a mixture.
  • low-boiling substances such as nitrogen, helium, argon, and air can be used as foam nuclei dissolved in a foaming agent.
  • the phenolic resin foam according to the present invention foams and cures a resinous resin composition comprising a resinous resin and methylolated urea using fluorocarbon as a foaming agent to form a phenolic resin structure having a urea crosslinked structure.
  • a method for producing a foam characterized in that: This will be described in more detail below.
  • the cell wall is not destroyed only by the vapor pressure of the volatile components such as the foaming agent, water, and formaldehyde in the resin composition during foaming.
  • the viscosity of the resin composition and the reactivity of the resin to be cured before the foaming agent escapes from the foam are required. Since the factors that affect the viscosity of the resin composition are temperature and the degree of crosslinking of the resin, controlling the crosslinking reactivity of the resin is the most important void in forming an independent microcell structure. You can say it.
  • Resin resin for producing phenolic resin foam is heated from 40 ° C to 100 ° C in a temperature range of 40 ° C to 100 ° C using phenol and formaldehyde as raw materials using an aluminum catalyst. Polymerized.
  • the curing reactivity of the resole resin greatly depends on the FZP ratio and the molecular weight. In general, the initial reaction is faster with a resin resin with a small F / P ratio, but the increase in viscosity in the latter half with the progress of the bridge is smaller. Regarding the molecular weight, the lower the molecular weight of the resin resin, the faster the initial reaction, but the increase in viscosity in the latter half as the crosslinking progresses becomes smaller. Therefore, besides the production examples shown here, it is possible to obtain the phenolic resin foam of the present invention by controlling the reactivity of the resole resin by optimizing the F / P ratio and the molecular weight distribution. Think.
  • the present inventors synthesized a resin resin having a high initial reactivity and a large viscosity increase in the latter half of the reaction, further mixed with methylolated urea to obtain a resole resin composition, and obtained the resole resin composition.
  • a phenolic resin foam containing a urea crosslinked structure was obtained using the same.
  • the amount of methylolated urea in the resole resin composition is not particularly limited, but is usually added to the resole resin in an amount of about 2 to about 40% by weight.
  • the viscosity of the resin resin composition can be optimized by adjusting the amount of water. Although the viscosity of the resin composition varies depending on the foaming conditions, the viscosity at 40 ° C.
  • the foamable composition is preferably from 100 to 5 OOOO cps, and more preferably from 200 to 300 cps.
  • the foamable composition can be obtained by introducing into a machine and mixing uniformly. Thereafter, the foaming composition is foamed and cured by heat treatment to obtain a phenol resin foam.
  • a curing catalyst for foaming and curing toluene sulfonic acid, xylene sulfonate and the like can be used alone or in combination of two or more. Further, resornol, cresol, saligenin (0-methylolphenol), P-methylolphenol and the like may be added as a curing aid.
  • nonionic surfactants are effective, for example, alkylene oxide ⁇ , which is a copolymer of ethylene oxide and propylene oxide, condensate of alkylene oxide and castor oil, or Condensation products of alkylenoxide with alkylphenols such as nonylphenol and dodecylphenol, fatty acid esters such as polyoxyethylene fatty acid esters, silicone-based compounds such as polydimethylsiloxane, and polyalcohols.
  • alkylene oxide ⁇ which is a copolymer of ethylene oxide and propylene oxide
  • condensate of alkylene oxide and castor oil or Condensation products of alkylenoxide with alkylphenols such as nonylphenol and dodecylphenol
  • fatty acid esters such as polyoxyethylene fatty acid esters
  • silicone-based compounds such as polydimethylsiloxane, and polyalcohols.
  • the closed cell ratio of the phonol resin foam was measured as follows. A cylindrical sample of 35 to 36 mm in diameter cut out from phenolic resin foam with a cork borer is cut to a total thickness of 30 forces, 40 mm, and 40 mm, and an air-comparison hydrometer is used. The sample volume is measured according to the standard use method of Type 0 (manufactured by Tokyo Science). The value obtained by subtracting the volume of the cell wall calculated from the sample weight and the resin density from the sample volume and dividing it by the apparent volume calculated from the outer dimensions of the sample is expressed as ASTMD28.
  • the density of the phenol resin was 1.27 g / cm 3 .
  • the average cell diameter of the phenolic resin foam according to the present invention is defined as the average cross-sectional diameter of the foam cross section of 50 times, and four straight lines of 9 cm length (actual length of 180 m) are drawn on the enlarged photograph. It is a value obtained by dividing 180 m by the average value of the number of bubbles crossed by a straight line.
  • the density is a value obtained by measuring a weight and an apparent volume by removing a face material and a siding material from a phenol resin foam of 20 cm square as a sample, and was measured according to JISK722.
  • the contents of the box are transferred to a mesh with a nominal size of 9.5 mm, sieved to remove small pieces, the weight of the remaining test piece is measured, and the rate of reduction from the weight of the test piece before the test is calculated.
  • the measured value was brittle, and was measured according to JISA 9511.
  • the compressive strength was measured according to JIS K7202 using a 50 mm square sample with a specified strain of 0.05.
  • the pyrogram of pyrolysis gas chromatography was measured as follows.
  • the powder obtained by shaving the foam core portion from which the face material and siding material have been removed with a cutter knife, etc. is further carefully crushed in a mortar, and 0.3 to 0 for one measurement.
  • the sample amount was adjusted within the range of 4 mg.
  • the thermal decomposition apparatus PY210D manufactured by Frontier Lab Co., Ltd., which is a heating furnace type thermal decomposition apparatus, was used. The thermal decomposition was performed at 670 ° C.
  • Gas chromatography was measured using Hewlett-Packard HP 5890 Type A, a non-polar liquid phase capillary column, Durab 0 nd DB-1 (0.25 mm ID, 0.25 mm film thickness). 25 m and a length of 30 m) were used.
  • Carrier gas is helium (He).
  • the total flow rate is 100 cc / min
  • the head pressure is 100 kPa
  • the oven temperature is 50 ° C
  • the speed is 20 ° C / min.
  • the temperature was raised to 34O 0 C and held for 15.5 minutes.
  • the detection of each component was performed by a flame ionization detector (FID), and the area value of each peak was normalized with respect to all the detected components to obtain the ratio of each component.
  • FID flame ionization detector
  • FIG. 1 shows an example of a gas chromatogram of a phenol resin foam sample according to the present invention. The structure of each component was confirmed by a mass spectrum obtained by introducing the component separated by gas chromatography into a mass spectrometer. The mass vector is JEOL JMS
  • the confirmation of the foaming agent can be performed as follows.
  • a phenolic resin foam sample can be identified by immersing it in a solvent selected from pyridine, toluene, tetrahydrofuran (THF), dimethylformamide (DMF), etc., pulverizing it, extracting the foaming agent, and subjecting it to gas chromatography. If necessary, the components separated by gas chromatography can be introduced into a mass spectrometer to confirm the molecular structure.
  • Resin B was synthesized in the same manner as Resin A except that the weight ratio of A-2 to A-1 in Resin A was changed to 0.05. Was.
  • Resin Resin C was synthesized in the same manner as Resin Resin A except that the weight ratio of A-2 to A-1 in Resin Resin A was changed to 0.49. Was.
  • a reactor was charged with 37% formaldehyde 43,050 g and 99% ethanol 300,000 g, stirred with a propeller rotary stirrer, and the temperature inside the reactor was adjusted to 50 with a temperature controller. Adjust to ° C.
  • 60 g of a 50% aqueous sodium hydroxide solution was added, and the temperature of the reaction solution was kept at 50 ° C. to 55 ° C. for 20 minutes. Thereafter, the temperature was raised to 85 ° C, and after the temperature reached 85 ° C, the temperature was maintained for 130 minutes. Thereafter, the reaction solution was cooled to 5 ° C. This is referred to as Resin Resin D-1.
  • Resole resin D was synthesized in the same manner as resole resin A except that resole resin A-1 in the synthesis of resole resin A was changed to D-1.
  • a reactor was charged with 37% formaldehyde 26 13 g and 99% ethanol 18 36 g, stirred with a propeller rotary stirrer, and the temperature inside the reactor was adjusted to 50 with a temperature controller. Adjust to ° C. Then, 36.3 g of a 50% aqueous sodium hydroxide solution was added, and the reaction solution was kept at a temperature in the range of 50 ° C to 55 ° C for 20 minutes. Thereafter, the temperature was raised to 85 ° C, and was maintained for 130 minutes after the temperature reached 85 ° C. Then, the reaction solution is
  • the mixture was cooled to 30 ° C. and neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until the value became 5. After dehydrating the reaction solution at 60 ° C and measuring the viscosity,
  • a reactor was charged with 37% formaldehyde (317.4 g) and 99% phenol (1600 g), stirred by a propeller rotary stirrer, and the temperature inside the reactor was adjusted to 50 ° by a temperature controller. Adjust to C. Next, 34.1 g of a 50% aqueous sodium hydroxide solution was added, and the reaction solution was maintained at a temperature in the range of 50 ° C to 55 ° C for 20 minutes. Thereafter, the temperature was raised to 85 ° C, and was held for 105 minutes after the temperature reached 85 ° C. Then, the reaction solution is
  • the mixture was cooled to 30 ° C and neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until ⁇ 1 became 5. After dehydrating the reaction solution at 60 ° C and measuring the viscosity,
  • the viscosity at 40 ° C. was 1300 cps. This is designated as Resin Resin F.
  • Resin Resin G was synthesized in the same manner as Resole Resin A except that the weight ratio of A-2 to A_1 in Resin Resin A was changed to 0.01.
  • a reactor was charged with 33% formaldehyde 333.3 g and 99% ethanol 300 g, stirred by a propeller rotary stirrer, and the temperature inside the reactor was adjusted to 40 ° by a temperature controller. Adjust to C. Next, 57 g of a 50% aqueous sodium hydroxide solution was added, and the reaction solution was heated from 40 ° C. to 85 ° C. and held for 2 hours and 30 minutes. Then, cool the reaction solution to 5 ° C. This is designated as Resin Resin H-1.
  • Resin resin H was synthesized in the same manner as resole resin A except that resole resin A-1 in resole resin A was changed to resole resin H-1.
  • Resin Resin I was synthesized in the same manner as Resin Resin D except that the weight ratio of methylol urea A-2 to Resole Resin D-1 was changed to 0.012. Resin I was obtained.
  • a reactor was charged with 37% formaldehyde (317.4 g) and 99% phenol (1600 g), and stirred with a propeller rotary stirrer. Adjust JP 8 degrees to 50 ° C. Next, 34.1 g of a 50% aqueous sodium hydroxide solution was added, and the reaction solution was kept at 50 ° C. to 55 ° C. for 20 minutes. Thereafter, the temperature was raised to 85 ° C, and after the temperature reached 85 ° C, the temperature was maintained for 150 minutes. Then, cool the reaction solution to 5 ° C. This is referred to as Resin Resin J-1.
  • Resole Resin J In the synthesis of Resole Resin J, Resole Resin A was changed to Resin Resin A-i to J-11, and the weight ratio of methylol urea A-2 was changed to 0.96. In the same manner as in A, a resin resin J was obtained.
  • a mixture of the resole resin mixture, HF C-134a (manufactured by Daikin Industries, Ltd.) 99.5% by weight and nitrogen 0.5% by weight as a foaming agent, and para-toluenesulfonic acid monohydrate as a curing catalyst A mixture of 50% Japanese product (95% pure Wako Pure Chemicals) and 50% diethylene glycol (98% pure Wako Pure Chemicals), 100 parts resin mixture, 17 parts foaming agent, 17 parts curing catalyst Five parts were supplied to a pin mixer equipped with a temperature control jacket. At this time, the mixer jacket was adjusted to 40 ° C and the internal pressure of the mixer was 15 kgZcm. The mixture coming out of the mixer is poured into a formwork laid with Spunbond E 104 (made by Asahi Kasei Corporation), and then put in an oven at 85 ° C for 5 hours to obtain a phenol resin foam.
  • Spunbond E 104 made by Asahi Kasei Corporation
  • Example 1 was repeated except that a mixture of 20% of paratoluenesulfonic acid monohydrate, 50% of diethyleneglycol monoole, and 30% of resorcinol was used as a curing catalyst in a ratio of i 2 parts to 100 parts of resin. In the same manner, a phenol resin foam was produced. Table 1 shows the measurement results of the obtained funinol resin foam.
  • Example 3 A phenolic resin foam was produced in the same manner as in Example 1, except that 3% by weight of PF-5500 (3M Perfluoropentane) was added to HFC-134a as a foaming agent.
  • PF-5500 3M Perfluoropentane
  • Table 1 shows the measurement results of the obtained phenol resin foam.
  • a phenol resin foam was produced in the same manner as in Example 1 except that the resin A was changed to the resin E.
  • Table 1 shows the measurement results of the obtained phenol resin foam.
  • a phenol resin foam was produced in the same manner as in Example 1 except that the resin A was changed to the resin E and 5 parts by weight of urea was added to 100 parts by weight of the resin. In such a case, almost no foaming agent was removed at the time of curing, and the foam was not formed.
  • Table 1 shows the measurement results of the obtained phenol resin foam.
  • a phenolic resin foam was produced in the same manner as in Example 1 except that the resin A was changed to the resin F.
  • Table 1 shows the measurement results of the obtained phenol resin foam.
  • Table 1 shows the measurement results of the obtained phenol resin foam.
  • Example 4 to 6 and Comparative Examples 5 to 8 as in Examples 1 to 4, the resin shown in Table 1 was used as the resin, and the number of catalyst parts was adjusted. A phenolic resin foam was produced.
  • the foam of the present invention has excellent heat insulation performance, is excellent in mechanical strength such as compressive strength, and has improved surface brittleness, so that it is suitable as a heat insulating material for buildings, and has a foam that does not cause ozone layer destruction. It is compatible with the global environment because of the use of chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A phenolic resin foam characterized by having a proportion of closed cells of 70 % or above, a mean cell diameter of 10 to 400 νm and a density of 10 to 70 kg/m3, containing a hydrofluorocarbon in the closed cells, and being made of a phenolic resin having a urea-cross-linked structure. By virtue of the specific cross-linking density and the urea-cross-linked structure, this foam exhibits excellent heat insulating performance and is improved in mechanical strengths and surface brittleness, though HFC is used as the blowing agent.

Description

明細書  Specification
フエノール樹脂発泡体 技術分野  Phenol resin foam Technical field
本発明は、 優れた断熱性能を有し、 かつ、 圧縮強度等の機械的強度に優れ、 表 面脆性が改善された断熱用フユノール樹脂発泡体に関する。 背景技術  TECHNICAL FIELD The present invention relates to a phenolic resin foam for thermal insulation having excellent heat insulating performance, excellent mechanical strength such as compressive strength, and improved surface brittleness. Background art
フニノール樹脂発泡体は、 有機樹脂発泡体のなかでも、 特に難燃性、 耐熱性、 低発煙性、 寸法安定性、 耐溶剤性、 加工性に優れているため、 各種建築材料とし て非常に有用なものである。  Funinol resin foam is very useful as a building material because of its excellent flame retardancy, heat resistance, low smoke emission, dimensional stability, solvent resistance, and workability among organic resin foams. It is something.
一般的に従来のフェノ一ル榭脂発泡体は、 発泡体が脆 、という大きな欠点を有し ており、 これが原因となつて発泡体の表面脆性が悪くなつたり、 割れたり、 また 気泡壁にピンホールが発生し、 発泡剤が空気と置換して、 断熱性能が低下するな どの問題があった。 In general, conventional phenolic resin foams have a major disadvantage that the foam is brittle, which causes the foam to have poor surface brittleness, cracks, and has a problem in the cell wall. There were problems such as the occurrence of pinholes, the replacement of the blowing agent with air, and a decrease in heat insulation performance.
この欠点改良のため、 特開昭 5 3 - 1 3 6 6 9号公報ではレゾ一ル樹脂中の水 分量を極端に制限することにより、 また、 特公昭 6 3— 2 0 4 6 0号公報では高 分子量のレゾール樹脂を用いて、 それぞれ発泡性混合物の高粘度化を図り、 気泡 壁強度を向上させ、 独立気泡発泡体を得る技術が提案されているが、 高粘度のた め樹脂が取り扱い難く、 更にフ ノール樹脂固有の脆弱性のため、 表面脆性が悪 く粉化したり、 表面材が剝がれやすいと言う欠点があつた。  In order to improve this disadvantage, Japanese Patent Application Laid-Open No. 53-13669 discloses a method in which the amount of water in the resin is extremely limited, and the method disclosed in Japanese Patent Publication No. Sho 63-3-24060. Has proposed a technique to obtain a closed-cell foam by using a high-molecular-weight resole resin to increase the viscosity of the foamable mixture, improve the cell wall strength, and obtain a closed-cell foam. Difficulty, and because of the fragility inherent in phenolic resin, surface brittleness was poor and powdered, and the surface material was easily peeled.
また、 樹脂の脆性を改善するためには、 これまでに、 特開昭 6 1 - 2 3 8 8 3 3 号公報では、 糖類を添加したり、 特公昭 6 2 — 4 8 9 7 8号公報では、 変性フヱ ノールを用いたり、 種々の添加剤を用いて改善を試みているが、 いずれも充分で なく、 高独立気泡率のものは得られなかった。 Further, in order to improve the brittleness of the resin, Japanese Unexamined Patent Publication No. Sho 61-238833 discloses a method in which a saccharide is added, and Japanese Patent Publication No. Sho 62-48997 Have tried to use modified phenol or various additives, but none of them was sufficient, and a cell with a high closed cell rate could not be obtained.
従って、 これら従来技術では熱伝導率が高々 0 . 0 2 0 ( k c a 1 /m h r °C ) 以上であり、 断熱材として使用されるのは、 特に防火耐火が要求されるものに 限られていた。  Therefore, in these prior arts, the thermal conductivity was at most 0.020 (kca 1 / mhr ° C) or more, and the use as a heat insulating material was limited to those that required fire protection and fire resistance. .
しかも、 これら従来技術においては発泡剤として、 1 , 1, 2 —トリクロ口— 1, 2, 2—トリフルォロェタンゃジクロロフルォロメタン等の比較的沸点の高 いハロゲン化炭化水素が使用されている力く、 これら塩素を含む、 クロ口フルォロ カーボン (以下 「CFC」 という) や、 C F Cの塩素の幾つかを水素に置換した 水素化クロ口フルォロカ一ボン (以下 「HCFC」 という) は、 オゾン層を破壊 するという疑いから使用が制限されるようになつた。 Moreover, in these prior arts, 1, 1, 2-triclo mouth- 1,2,2-Trifluoroethane dichlorofluoromethane and other halogenated hydrocarbons with relatively high boiling points are used, and these chlorine-containing chlorine-containing fluorocarbons (hereinafter referred to as “CFCs”) The use of hydrogenated fluorocarbons (hereinafter referred to as “HCFCs”), in which some of the chlorine in CFCs has been replaced with hydrogen, has been restricted due to suspected destruction of the ozone layer.
そこで、 オゾン層を破壊しない熱伝導率の低いガスとして、 塩素原子が存在し ないフルォロ炭化水素 (以下 「HFC」 という) が発泡剤として注目されている 。 経済的理由から、 工業的に使用できる HFCとして、 HFC_ 1 3 4 a (1, 1 , 1, 2—テトラフルォロェタン) 、 HFC— 1 5 2 a ( 1, 1—ジフルォロ ェタン) 、 HFC— 1 2 5 ( 1, 1, 1, 2, 2—ペンタフルォロェタン) 等が 挙げられるが、 何れも沸点が低く、 そのために発泡時の圧力が高くなり、 気泡壁 が破壊されたり、 気泡径が大きくなるなどの理由から、 従来のフ ノール樹脂発 泡体を製造する技術では、 これら HF Cを発泡剤として用いて断熱性能の高い製 品を製造するのはさらに困難なことであった。  Therefore, as a low thermal conductivity gas that does not destroy the ozone layer, fluorocarbons that do not contain chlorine atoms (hereinafter referred to as “HFCs”) are attracting attention as blowing agents. For economic reasons, HFCs that can be used industrially include HFC_134a (1,1,1,2-tetrafluoroethane), HFC-152a (1,1-difluoroethane), HFC — 1 25 (1,1,1,2,2-pentafluoroethane), etc., all of which have a low boiling point, which increases the pressure during foaming and breaks the cell walls, With the conventional technology for producing phenolic resin foam, it is even more difficult to produce products with high thermal insulation performance using these HFCs as foaming agents, for example, due to the large cell diameter. Was.
これらのフヱノール樹脂発泡体を製造する一般的な方法は、 フヱノ一ルとホル マリンをアルカリ性触媒により縮合したレゾ一ル樹脂と、 発泡剤、 界面活性剤、 硬化触媒、 その他添加剤を均一に混合し発泡させるものである。  A common method for producing these phenolic resin foams is to uniformly mix a phenolic resin and a formalin-condensed resin with a foaming agent, surfactant, curing catalyst, and other additives. And foam it.
本発明の課題は、 発泡剤として HFCを用い、 優れた断熱性能を有し、 かつ、 圧縮強度等の機械的強度に優れ、 表面脆性が改善された断熱用フユノール樹脂発 泡体を提供することである。 発明の開示  An object of the present invention is to provide a fusol resin foam for heat insulation, which uses HFC as a foaming agent, has excellent heat insulating performance, has excellent mechanical strength such as compressive strength, and has improved surface brittleness. It is. Disclosure of the invention
本発明者らは、 フエノール樹脂発泡体について鋭意検討した結果、 特定の架橋 密度を有し、 さらに尿素由来の架橋を設けることにより、 発泡剤として HFCを 用いても優れた断熱性能を有し、 機械的強度、 表面脆性が改善されたフエノール 樹脂発泡体が得られることを見出し本発明を完成するに至った。  The present inventors have conducted intensive studies on phenolic resin foams, and as a result, have a specific cross-linking density, and by providing urea-derived cross-linking, have excellent heat insulation performance even when HFC is used as a blowing agent, The present inventors have found that a phenol resin foam having improved mechanical strength and surface brittleness can be obtained, and have completed the present invention.
即ち、 本発明は、  That is, the present invention
1. 独立気泡率 7 0 %以上、 平均気泡径 1 0 a m以上 4 0 0 m以下、 密度 1 0 k g/m:1 以上 7 0 k g/m3 以下であり、 独立気泡中にフルォロ炭化水素を 含有し、 尿素架橋構造を有するフエノ一ル樹脂構造から成ることを特徴とするフ 二ノール樹脂発泡体、 1. closed cell ratio 70% or more, the average cell diameter 1 0 am or 4 0 0 m or less, the density 1 0 kg / m: 1 or 7 and at 0 kg / m 3 or less, the Furuoro hydrocarbons in closed cells A phenolic resin foam comprising a phenolic resin structure having a urea cross-linking structure,
2. フヱノール樹脂構造が、 フヱノ一ル樹脂の熱分解ガスクロマトグラフィー の熱分解パターンにおいて、 熱分解生成物のトリメチルフエノールの割合 Aの熱 分解生成物のフヱノールの割合 Bに対する比 C二 A/Bが、 0. 2以上 4. 0以 下であり、 熱分解生成物の尿素架橋由来の成分 Dのフェノール誘導体成分 Eに対 する比 F = D/Eが、 0. 0 3以上 0. 3以下であることを特徴とする前記 1記 載のフエノール樹脂発泡体。  2. In the thermal decomposition pattern of the pyrolysis gas chromatography of the phenolic resin, the ratio of trimethylphenol in the pyrolysis products A to the ratio of the phenols in the pyrolysis products to the ratio B Is not less than 0.2 and not more than 4.0, and the ratio F = D / E of the component D derived from urea crosslinking of the thermal decomposition product to the phenol derivative component E is 0.03 or more and 0.3 or less. 3. The phenolic resin foam according to the item 1, wherein
3. 熱伝導率が 0. 0 1 8 k c a 1 mh r °C以下、 脆性が 3 0 %以下である ことを特徴とする前記 1又は 2記載のフェノ一ル樹脂発泡体、  3. The phenolic resin foam according to the above 1 or 2, wherein the thermal conductivity is 0.018 kca 1 mhr r ° C or less, and the brittleness is 30% or less.
4. フルォロ炭化水素が 1, 1, 1, 2—テトラフルォロェタン又は、 1 , 1 —ジフルォロェタン又は、 1, 1, 1 , 2, 2—ペンタフルォロェタンの内の少 なくとも 1種類であることを特徴とする前記 1ないし 3のいずれか 1項に記載の フエノール樹脂発泡体、  4. The fluorohydrocarbon is at least one of 1,1,1,2-tetrafluoroethane or 1,1—difluoroethane or 1,1,1,2,2-pentafluoroethane. The phenolic resin foam according to any one of the above 1 to 3, wherein
5. レゾール樹脂とメチ口一ル化尿素から成るレゾール樹脂組成物をフルォ口 炭化水素を発泡剤とし、 発泡、 硬化させ、 尿素架橋構造を形成させて成り、 独立 気泡率 8 0 %以上、 平均気泡径 2 0 / m以上 3 0 0 /m以下、 密度 2 0 k g/m 3 以上 5 0 k g/m3 以下、 熱伝導率 0. 0 1 8 k c a 1 Xmh r°C以下、 脆性 3 0 %以下であることを特徴とするフエノール樹脂発泡体、 である。 図面の簡単な説明 5. A resol resin composition consisting of a resole resin and methyl urea monofluoride is formed by forming a urea crosslinked structure by foaming and curing a fluorocarbon hydrocarbon as a foaming agent, with a closed cell rate of 80% or more, average Bubble diameter 20 / m or more and 300 / m or less, density 20 kg / m 3 or more and 50 kg / m 3 or less, thermal conductivity 0.018 kca 1 Xmh r ° C or less, brittleness 30% A phenolic resin foam, characterized in that: BRIEF DESCRIPTION OF THE FIGURES
図 1は、 フヱノール樹脂発泡体サンプルの、 熱分解ガスクロマトグラフィーの パイログラムである。 縦軸は相対的な強度を示す。  Figure 1 is a pyrolysis gas chromatography pyrogram of a phenolic resin foam sample. The vertical axis indicates the relative intensity.
図 2は、 フヱノール樹脂発泡体サンプルの、 熱分解ガスクロマトグラフィーの パイ口グラムのフヱノール成分のマススぺク トルである。  Figure 2 shows the mass spectrum of the phenol component in a pyrogram of pyrolysis gas chromatography of a phenol resin foam sample.
図 3は、 フヱノール樹脂発泡体サンプルの、 熱分解ガスクロマトグラフィーの パイログラムのトリメチルフヱノ一ル成分のマススぺク トルである。  Figure 3 shows the mass spectrum of the trimethylphenol component of the pyrolysis gas chromatography pyrogram of the phenol resin foam sample.
図 4は、 フヱノ一ル樹脂発泡体サンプルの、 熱分解ガスクロマトグラフィーの パイログラムの 0—メチルフヱノール成分のマススぺク トルである。 図 5は、 フヱノール樹脂発泡体サンプルの、 熱分解ガスク口マトグラフィ一の パイログラムの p—メチルフヱノ一ル成分のマススぺク トルである。 Figure 4 shows the mass spectrum of the 0-methylphenol component of the pyrolysis gas chromatography pyrogram of the phenol resin foam sample. Fig. 5 shows the mass spectrum of the p-methylphenol component in the pyrogram of the pyrolysis gas chromatograph of the phenol resin foam sample.
図 6は、 フヱノール樹脂発泡体サンプルの、 熱分解ガスクロマトグラフィーの ノ、3イログラムの 2, 4ージメチルフエノール成分のマススぺク トルである。 図 7は、 フヱノール樹脂発泡体サンプルの、 熱分解ガスクロマトグラフィーの パイログラムの 2, 6—ジメチルフエノール成分のマススぺク トルである。 図 8は、 フヱノ一ル樹脂発泡体サンプルの、 熱分解ガスクロマトグラフィーの パイ口グラムの一^ 3の尿素架橋由来構造成分のマススぺク トルである。 6, the Fuwenoru resin foam samples, the pyrolysis gas chromatography Bruno, a Masusu Bae-vector of 2, 4-dimethyl phenol component of 3 Iroguramu. Figure 7 shows the mass spectrum of the 2,6-dimethylphenol component of a pyrolysis gas chromatography pyrogram of a phenol resin foam sample. FIG. 8 is a mass spectrum of one-third of a urea-crosslinking-derived structural component of a pyrogram of a phenol resin foam sample by pyrolysis gas chromatography.
図 9は、 フヱノール樹脂発泡体サンプルの、 熱分解ガスクロマトグラフィーの パイログラムの一^ 3の尿素架橋由来構造成分のマススぺク トルである。  FIG. 9 is a mass spectrum of a structural component derived from one-third of urea cross-links in a pyrolysis gas chromatography pyrogram of a phenol resin foam sample.
図 1 0は、 フヱノ一ル樹脂発泡体サンプルの、 熱分解ガスクロマ卜グラフィ一 のパイ口グラムの一つの尿素架橋由来構造成分のマススぺク トルである。  FIG. 10 is a mass spectrum of a structural component derived from one urea cross-link in a microgram of pyrogel gas chromatography of a phenol resin foam sample.
図 1 1は、 フエノール樹脂発泡体サンプルの、 熱分解ガスクロマトグラフィー のパイログラムの一つの尿素架橋由来構造成分のマススぺク トルである。  Fig. 11 shows a mass spectrum of a structural component derived from one urea cross-link in a pyrolysis gas chromatography pyrogram of a phenol resin foam sample.
図 1 2は、 フヱノール樹脂発泡体サンプルの、 熱分解ガスクロマトグラフィー のパイログラムの一^ 3の尿素架橋由来構造成分のマススぺク トルである。  FIG. 12 is a mass spectrum of a structural component derived from one-third of a urea cross-linking pyrogram of a phenol resin foam sample.
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
一般に、 独立気泡率が低いと、 フォームの表面脆性が増加するばかりでなく、 気泡中の発泡ガスが空気と置換して断熱性能の経時低下が著しくなる。 本発明に おいては、 この断熱性能の低下をなくすために、 発泡ガスを長期間にわたって保 持し得る独立気泡の存在比率を高めることが重要である。 即ち、 本発明では、 独 立気泡率が 7 0 %以上であることが必要であり、 より好ましくは 8 0 %以上、 更 に好ましくは、 9 0 %以上である。  In general, when the closed cell ratio is low, not only the surface brittleness of the foam increases, but also the foaming gas in the cells is replaced with air, and the heat insulation performance deteriorates with time. In the present invention, it is important to increase the ratio of closed cells that can hold the foaming gas for a long period of time in order to eliminate the decrease in the heat insulation performance. That is, in the present invention, the closed cell rate needs to be 70% or more, more preferably 80% or more, and still more preferably 90% or more.
本発明における独立気泡率は、 フエノール樹脂発泡体中の空隙部にしめる独立 気泡の体積比率であり、 後述する方法によつて測定される。  The closed cell ratio in the present invention is a volume ratio of closed cells contained in voids in the phenolic resin foam, and is measured by a method described later.
また、 発泡体の平均気泡径が小さすぎると、 気泡壁の厚さに限界が有ることから 、 必然的にフォーム密度が上昇し、 その結果、 樹脂部の伝熱割合が増加しフエノ ール樹脂発泡体の断熱性能は低下する。 また、 逆に気泡径が大きすぎると、 輻射 による熱伝導が増加し断熱性能が低下する。 この断熱性能の低下を無くすため、 本発明における平均気泡径は、 1 0 m以上、 4 0 0 m以下である必要があり 、 より好ましくは 2 0 / m以上 3 0 0 m以下である。 Also, if the average cell diameter of the foam is too small, there is a limit to the thickness of the cell wall, so the foam density inevitably increases, and as a result, the heat transfer ratio of the resin portion increases, and the phenol resin The insulation performance of the foam decreases. On the other hand, if the bubble diameter is too large, heat conduction due to radiation increases and the heat insulation performance decreases. In order to eliminate this decrease in heat insulation performance, The average cell diameter in the present invention must be 10 m or more and 400 m or less, and more preferably 20 m / m or more and 300 m or less.
フエノール樹脂発泡体の密度が小さすぎると圧縮強度等の機械的強度が小さく なり、 取り扱い時に破損しやすくなり、 表面脆性も増加する。 逆に密度が大きす ぎると樹脂部の伝熱が増加し断熱性能が低下する。 このような支障を無くすため 、 本発明におけるフヱノール樹脂発泡体の密度は 1 0 k g Zm 3 以上 7 0 k g Z m 3 以下である必要があり、 より好ましくは 2 0 k g /m 3 以上 5 0 k g /m 3 以下である。 If the density of the phenolic resin foam is too low, the mechanical strength, such as the compressive strength, will be reduced, and the phenolic resin foam will be easily damaged during handling, and the surface brittleness will also increase. Conversely, if the density is too high, the heat transfer of the resin part increases and the heat insulation performance decreases. To eliminate such trouble, the density of Fuwenoru resin foam of the present invention is 1 0 kg Zm 3 or 7 0 kg Z m 3 must be at or less, more preferably 2 0 kg / m 3 or more 5 0 kg / m 3 or less.
本発明によるフエノール樹脂発泡体は、 尿素架橋構造を有するフェノール樹脂 構造から成る。 フエノール樹脂構造は、 発泡体を形成するフニノール樹脂の熱分 解ガスクロマ トグラフィーの熱分解生成物のパターンを表示したもの (以下 「パ イログラム」 と言う) によって特定することが出来る (図 1参照) 。 前記、 パイ ログラムにおける、 トリメチルフヱノールの割合 Aのフヱノールの割合 Bに対す る比 C = A Z Bおよび、 尿素架橋由来の成分 Dのフエノール誘導体成分 Eに対す る比 F = D / Eは、 フヱノール樹脂発泡体の構造を直接的に示すものではないが 、 元の高分子の構造を間接的に反映するものである。 すなわち、 熱分解ガスクロ マトグラフィ一のパイ口グラムの比 Cはフヱノール樹脂の架橋密度を反映する指 標であり、 比 Fは、 フエノール樹脂の尿素架橋構造の密度を反映する指標である 。 架橋密度と尿素架橋構造の密度、 ひいては比 Cおよび比 Fは、 配合する尿素メ チロールの量、 仕込のホルムアルデヒドとフヱノールのモル比 (以下 「F Z P比 」 という) 、 発泡時の温度、 触媒量などの発泡条件により影響される値であり、 これら因子を適宜選定することにより上記優れた特性を有した本発明のフエノ一 ル樹脂発泡体を得ることができる。  The phenolic resin foam according to the present invention has a phenolic resin structure having a urea crosslinked structure. The phenolic resin structure can be specified by displaying the pattern of the pyrolysis products of the pyrolysis gas chromatography of the fininol resin that forms the foam (hereinafter referred to as the “pyrogram”) (see Fig. 1). . In the pyrogram, the ratio of trimethylphenol A to the ratio of phenol to the ratio of B to B, C = AZB, and the ratio of the component D derived from urea crosslinking to the phenol derivative component E to F = D / E, It does not directly show the structure of the resin foam, but indirectly reflects the structure of the original polymer. That is, the ratio C of the pie mouth grams in pyrolysis gas chromatography is an index reflecting the crosslink density of the phenol resin, and the ratio F is an index reflecting the density of the urea crosslinked structure of the phenol resin. The crosslink density and the density of the urea crosslink structure, and thus the ratios C and F, are based on the amount of urea methylol to be mixed, the molar ratio of formaldehyde and phenol used (hereinafter referred to as the “FZP ratio”), the temperature during foaming, the amount of catalyst, etc. The phenolic resin foam of the present invention having the above excellent properties can be obtained by appropriately selecting these factors.
該比 Fの尿素架橋由来の成分 Dとは、 該パイログラムで、 保持時間 8分〜 1 8 分の間に放出される成分で、 分子内にフヱニル基とイソシアナ一ト (― N C O ) 基を含む化合物である。 これら成分は、 マススぺク トル等で同定され、 具体的に は、 例えば、 図 1のピーク?〜 1 1で、 これらに対応するマススペク トルが各々 図 8〜 1 2に示すものである。  The component D derived from the urea crosslinking in the ratio F is a component released in the pyrogram during a retention time of 8 minutes to 18 minutes, and contains a phenyl group and an isocyanate (—NCO) group in the molecule. Including compounds. These components are identified by a mass spectrum or the like. Specifically, for example, the peak? The mass spectra corresponding to these are shown in Figs.
該比 Fのフヱノール誘導体成分 Eとは、 フヱノール、 メチルフヱノール、 ジメ チルフヱノール及びトリメチルフヱノールの和である。 これら成分は、 マススぺ ク トル等で同定され、 具体的には、 ピーク 1〜6で、 これらに対応するマススぺ ク トルが各々図 2〜 7に示すものである。 The phenol derivative component E having the ratio F is defined as phenol, methylphenol, It is the sum of tilphenol and trimethylphenol. These components are identified by a mass spectrum or the like. Specifically, peaks 1 to 6 and the corresponding mass spectra are shown in FIGS. 2 to 7, respectively.
本発明による比 Cは、 好ましくは 0. 2以上 4. 0以下であり、 より好ましく は 0. 2以上 2. 0以下であり特に好ましくは 0. 2 5以上1. 5以下であり、 かつ、 比 Fが好ましくは 0. 0 3以上0. 3以下であり、 より好ましくは 0. 0 3 5以上0. 2以下であり、 特に好ましくは 0. 0 4以上 0. 1 5以下である。 このようなフヱノ一ル樹脂は、 その架橋構造の特異性からフヱノール樹脂自体の 強度が改善され、 その強度が改善された樹脂がフェノ一ル樹脂発泡体の脆性改善 、 強度向上に著しく反映される。  The ratio C according to the present invention is preferably 0.2 or more and 4.0 or less, more preferably 0.2 or more and 2.0 or less, particularly preferably 0.25 or more and 1.5 or less, and The ratio F is preferably not less than 0.03 and not more than 0.3, more preferably not less than 0.035 and not more than 0.2, and particularly preferably not less than 0.04 and not more than 0.15. In such a phenol resin, the strength of the phenol resin itself is improved due to the specificity of its crosslinked structure, and the resin with the improved strength is significantly reflected in the improvement in the brittleness and strength of the phenol resin foam. .
すなわち、 本発明によるフエノール樹脂発泡体は、 後述する実施例からも明ら かなように、 脆性が 3 0 %以下であり、 熱伝導率が 0. 0 1 8 k c a 1 Zm h r °C以下である極めて優れたフェノ一ル樹脂発泡体を提供することができる。 なお、 本発明においては、 前記樹脂構造を特定するにさいして、 発泡体試料の 熱分解を加熱炉型熱分解装置を用いて 6 7 0 °Cで行う。 また、 ガスクロマトグラ フィ一は、 後述する方法、 条件で測定する。  That is, the phenolic resin foam according to the present invention has a brittleness of 30% or less and a thermal conductivity of 0.018 kca 1 Zm hr ° C or less, as is clear from the examples described later. An extremely excellent phenol resin foam can be provided. In the present invention, when specifying the resin structure, the pyrolysis of the foam sample is performed at 670 ° C. using a heating furnace type pyrolysis apparatus. Gas chromatography is measured by the method and conditions described later.
本発明は発泡剤として、 オゾン破壊係数が 0で、 熱伝導率の低い H F Cを使用 する。 HF Cとしては炭素数 1から 8の HF Cを使用できる力 <、 熱伝導率と経済 的な理由から炭素数 2の HF Cが好ましい。 具体的には 1, 1 , 1, 2—テトラ フルォロェタン、 1 , 1 —ジフルォロェタン、 し 1 , 1, 2, 2—ペン夕フル ォロェタン等が挙げられる。 その中でも、 更に好ましくは 1, 1, 1 , 2—テト ラフルォロェタンである。 これら、 HF Cは 2種類以上混合して使用することも できる。 また、 これら HF Cに発泡助剤として、 パ一フルォロブタン、 パーフル ォロシクロブタン、 パ一フルォロペンタン、 パーフルォロシクロペンタン、 パー フルォ口へキサン、 パーフルォロシクロへキサン、 パーフルォロヘプタン、 パ一 フルォロシクロヘプタン、 パーフルォロオクタン、 パ一フルォロシクロオクタン 等のフルォロカ一ボンを混合して使用することもできる。 さらに、 窒素、 へリウ ム、 アルゴン、 空気などの低沸点物質を発泡核として発泡剤に溶解させ使用する こともできる。 次に、 本発明のフェノ一ル樹脂発泡体の製造法について説明する。 In the present invention, HFC having an ozone depletion potential of 0 and low thermal conductivity is used as a foaming agent. As the HFC, the ability to use HFCs having 1 to 8 carbon atoms <, and the thermal conductivity and economical reasons, HFCs having 2 carbon atoms are preferable. Specific examples include 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, and 1,1,2,2-pentafluoroethane. Among them, 1,1,1,2-tetratetrafluoroethane is more preferred. These HFCs can be used as a mixture of two or more kinds. In addition, perfluorobutane, perfluorocyclobutane, perfluorocyclopentane, perfluorocyclopentane, perfluorocyclohexane, perfluorocyclohexane, perfluorocyclohexane, perfluoroheptane, etc. Fluorocarbons such as perfluorocycloheptane, perfluorooctane, and perfluorocyclooctane can also be used as a mixture. Furthermore, low-boiling substances such as nitrogen, helium, argon, and air can be used as foam nuclei dissolved in a foaming agent. Next, a method for producing the phenolic resin foam of the present invention will be described.
本発明によるフヱノール樹脂発泡体は、 レゾ一ル樹脂とメチロール化尿素から 成るレゾ一ル樹脂組成物をフルォロ炭化水素を発泡剤として、 発泡、 硬化させ、 尿素架橋構造を有するフニノール樹脂構造を形成させることを特徴とする発泡体 の製造方法である。 以下により詳細に説明する。  The phenolic resin foam according to the present invention foams and cures a resinous resin composition comprising a resinous resin and methylolated urea using fluorocarbon as a foaming agent to form a phenolic resin structure having a urea crosslinked structure. A method for producing a foam, characterized in that: This will be described in more detail below.
一般に、 独立気泡率の高いフ Xノール樹脂発泡体を得るためには、 発泡時の樹 脂組成物中の発泡剤、 水、 ホルムアルデヒ ド等の揮発成分の蒸気圧で気泡壁が破 壊されないだけの樹脂組成物の粘度と、 発泡体から発泡剤が抜ける前に樹脂が硬 化する反応性が要求される。 そして、 樹脂組成物の粘度に影響を与える因子は温 度と樹脂の架橋度である事から、 樹脂の架橋反応性をコントロールすることが独 立の微細セル構造を形成する上で最も重要なボイン卜といえる。  In general, in order to obtain a phenol resin foam with a high closed cell rate, the cell wall is not destroyed only by the vapor pressure of the volatile components such as the foaming agent, water, and formaldehyde in the resin composition during foaming. The viscosity of the resin composition and the reactivity of the resin to be cured before the foaming agent escapes from the foam are required. Since the factors that affect the viscosity of the resin composition are temperature and the degree of crosslinking of the resin, controlling the crosslinking reactivity of the resin is the most important void in forming an independent microcell structure. You can say it.
フエノ一ル樹脂発泡体を製造するレゾ一ル樹脂は、 フヱノ一ルとホルムアルデ ヒ ドを原料としてアル力リ触媒によ'り 4 0 °Cから 1 0 0 °Cの温度範囲で加熱して 重合される。 レゾ一ル樹脂の硬化反応性は、 F Z P比や分子量により大きく左右 される。 一般に、 F / P比の小さいレゾ一ル樹脂の方が初期の反応は早いが、 架 橋の進行に伴う後半の粘度上昇は逆に小さくなる。 分子量に関しては、 分子量の 小さいレゾ一ル樹脂の方が初期の反応は早いが、 架橋の進行に伴う後半の粘度上 昇は逆に小さくなる。 従って、 ここに示す製造例以外にも、 F / P比と分子量分 布を最適化して、 レゾール樹脂の反応性をコントロールすれば、 本発明のフェノ ール樹脂発泡体を得ることは可能であると考える。  Resin resin for producing phenolic resin foam is heated from 40 ° C to 100 ° C in a temperature range of 40 ° C to 100 ° C using phenol and formaldehyde as raw materials using an aluminum catalyst. Polymerized. The curing reactivity of the resole resin greatly depends on the FZP ratio and the molecular weight. In general, the initial reaction is faster with a resin resin with a small F / P ratio, but the increase in viscosity in the latter half with the progress of the bridge is smaller. Regarding the molecular weight, the lower the molecular weight of the resin resin, the faster the initial reaction, but the increase in viscosity in the latter half as the crosslinking progresses becomes smaller. Therefore, besides the production examples shown here, it is possible to obtain the phenolic resin foam of the present invention by controlling the reactivity of the resole resin by optimizing the F / P ratio and the molecular weight distribution. Think.
本発明者らは、 初期反応性が高く、 反応後半の粘度上昇の大きなレゾ一ル樹脂 を合成し、 更にメチロール化尿素を混合してレゾール樹脂組成物を得、 そのレゾ —ル樹脂組成物を用いて尿素架橋構造を含有したフェノール樹脂発泡体を得た。 レゾ一ル樹脂組成物中のメチロール化尿素量は、 特に制限しないが通常レゾ一 ル樹脂に対して 2力、ら 4 0重量%程度添加する。 レゾ一ル樹脂組成物は水分量を 調整することにより粘度を最適化して使用することができる。 樹脂組成物の粘度 は発泡条件により異なるが、 4 0 °Cにおける粘度は、 好ましくは 1 0 0 0から 5 O O O O c p sで、 より好ましくは 2 0 0 0から 3 0 0 0 0 c p sの範囲である c 水分を調整したレゾール榭脂混合物と、 発泡剤、 界面活性剤、 硬化触媒を混合 機に導入し均一に混合して、 発泡性組成物を得ることが出来る。 その後、 発泡性 組成物を加熱処理により発泡、 硬化を完了させ、 フエノール樹脂発泡体を得る。 発泡、 硬化させる際の硬化触媒としては、 トルエンスルホン酸、 キシレンスル ホン酸などが単独又は 2種類以上混合して使用できる。 また硬化助剤としてレゾ ルンノール、 クレゾ一ル、 サリゲニン (0—メチロールフエノール) 、 P—メチ ロールフヱノ一ルなどを添加しても良い。 The present inventors synthesized a resin resin having a high initial reactivity and a large viscosity increase in the latter half of the reaction, further mixed with methylolated urea to obtain a resole resin composition, and obtained the resole resin composition. A phenolic resin foam containing a urea crosslinked structure was obtained using the same. The amount of methylolated urea in the resole resin composition is not particularly limited, but is usually added to the resole resin in an amount of about 2 to about 40% by weight. The viscosity of the resin resin composition can be optimized by adjusting the amount of water. Although the viscosity of the resin composition varies depending on the foaming conditions, the viscosity at 40 ° C. is preferably from 100 to 5 OOOO cps, and more preferably from 200 to 300 cps. c Mixing resole resin mixture with adjusted moisture, blowing agent, surfactant, curing catalyst The foamable composition can be obtained by introducing into a machine and mixing uniformly. Thereafter, the foaming composition is foamed and cured by heat treatment to obtain a phenol resin foam. As a curing catalyst for foaming and curing, toluene sulfonic acid, xylene sulfonate and the like can be used alone or in combination of two or more. Further, resornol, cresol, saligenin (0-methylolphenol), P-methylolphenol and the like may be added as a curing aid.
本発明で使用される界面活性剤は、 フ ノ一ル樹脂発泡体の製造に有効性を示 す物のうち任意の物を使用できる。 一般には、 ノニオン系の界面活性剤が効果的 であり、 例えば、 エチレンォキサイ ドとプロピレンォキサイ ドの共重合体である アルキレンォキサイ ドゃ、 アルキレンォキサイ ドとヒマシ油の縮合物、 又はアル キレンォキサイ ドとノ二ルフヱノール、 ドデシルフヱノールのようなアルキルフ ェノールとの縮合生成物、 更にはポリオキシェチレン脂肪酸ェステル等の脂肪酸 エステル類、 ポリ ジメチルシロキサン等のシリコーン系化合物、 ポリアルコール 等が挙げられる。  As the surfactant used in the present invention, any of the surfactants that are effective in producing a phenol resin foam can be used. In general, nonionic surfactants are effective, for example, alkylene oxide ゃ, which is a copolymer of ethylene oxide and propylene oxide, condensate of alkylene oxide and castor oil, or Condensation products of alkylenoxide with alkylphenols such as nonylphenol and dodecylphenol, fatty acid esters such as polyoxyethylene fatty acid esters, silicone-based compounds such as polydimethylsiloxane, and polyalcohols. No.
次に本発明におけるフエノール樹脂発泡体の組織、 構造、 特性の評価方法につ いて説明する。  Next, a method for evaluating the structure, structure, and characteristics of the phenolic resin foam according to the present invention will be described.
フょノール樹脂発泡体の独立気泡率は、 次のようにして測定した。 フエノール 樹脂発泡体からコルクボーラ一でくり貫いた直径 3 5から 3 6 mmの円筒試料を 、 厚さの合計が 3 0力、ら 4 0 mmになるように切りそろえ、 空気比較式比重計 1 0 0 0型 (東京サイエンス社製) の標準使用方法により試料容積を測定する。 そ の試料容積から、 試料重量と樹脂密度から計算した気泡壁の容積を差し引いた値 を、 試料の外寸から計算した見かけの容積で割った値であり、 A S T M D 2 8 The closed cell ratio of the phonol resin foam was measured as follows. A cylindrical sample of 35 to 36 mm in diameter cut out from phenolic resin foam with a cork borer is cut to a total thickness of 30 forces, 40 mm, and 40 mm, and an air-comparison hydrometer is used. The sample volume is measured according to the standard use method of Type 0 (manufactured by Tokyo Science). The value obtained by subtracting the volume of the cell wall calculated from the sample weight and the resin density from the sample volume and dividing it by the apparent volume calculated from the outer dimensions of the sample is expressed as ASTMD28.
5 6に従い測定した。 本発明では、 フヱノール樹脂の密度は 1 . 2 7 g / c m 3 とした。 It was measured according to 56. In the present invention, the density of the phenol resin was 1.27 g / cm 3 .
本発明におけるフエノール樹脂発泡体の平均気泡径とは、 発泡体断面の 5 0倍 拡大写真上に 9 c mの長さ (実際の長さは 1 8 0 0 m) の直線を 4本引き、 各 直線が横切った気泡の数の平均値で 1 8 0 0 mを割った値であり、 J I S K The average cell diameter of the phenolic resin foam according to the present invention is defined as the average cross-sectional diameter of the foam cross section of 50 times, and four straight lines of 9 cm length (actual length of 180 m) are drawn on the enlarged photograph. It is a value obtained by dividing 180 m by the average value of the number of bubbles crossed by a straight line.
6 4 0 2に準じて測定したセル数より計算した平均値である。 This is an average value calculated from the number of cells measured according to 640.
熱伝導率はフェノ一ル樹脂発泡体サンプル 2 0 0 mm角、 低温板 5 °C、 高温板 3 5°Cで J I S A 1 4 1 2の平板熱流計法に従い測定した。 Thermal conductivity of phenol resin foam sample 200 mm square, low temperature plate 5 ° C, high temperature plate The measurement was performed at 35 ° C according to the plate heat flow meter method of JISA 1412.
密度は、 2 0 cm角のフヱノール樹脂発泡体を試料とし、 この試料の面材、 サ ィディング材を取り除いて重量と見かけ容積を測定して求めた値であり、 J I S K 7 2 2 に従い測定した。  The density is a value obtained by measuring a weight and an apparent volume by removing a face material and a siding material from a phenol resin foam of 20 cm square as a sample, and was measured according to JISK722.
脆性試験の試験片は、 一つの面に成形スキン又は面材を含むように一辺 2 5士 1. 5 mmの立方体 1 2個を切り出して試料とした。 ただし、 発泡体の厚さが 2 5 mmに満たない場合の試験片の厚さは発泡体の厚さとした。 室温乾燥した比重 0. 6 5、 一辺 1 9 ± 0. 8 mmの樫製の立方体 2 4個と試験片 1 2個を、 埃が 箱の外へ出ないように密閉できる内寸 1 9 1 X 1 9 7 X 1 9 7 mmの樫製の木箱 に入れ、 毎分 6 0 ±2回転の速度で 6 0 0 ± 3回転させる。 回転終了後、 箱の中 身を呼び寸法 9. 5 mmの網に移し、 ふるい分けをして小片を取り除き、 残った 試験片の重量を測定し、 試験前の試験片重量からの減少率を計算した値が脆性で あり、 J I S A 9 5 1 1に従い測定した。  For the test piece for the brittle test, 12 cubes of 2.5 mm × 1.5 mm on a side were cut out so as to include a molded skin or face material on one side, and used as a sample. However, when the thickness of the foam was less than 25 mm, the thickness of the test piece was the thickness of the foam. Room temperature dried specific gravity 0.65, oak cubes with sides 1 9 ± 0.8 mm 2 4 cubes and 1 2 test specimens Inner dimensions that can be sealed so that dust does not come out of the box 1 9 1 Put it in a wooden box of X197 x X197 mm and make 600 ± 3 revolutions at 60 ± 2 revolutions per minute. After the rotation is completed, the contents of the box are transferred to a mesh with a nominal size of 9.5 mm, sieved to remove small pieces, the weight of the remaining test piece is measured, and the rate of reduction from the weight of the test piece before the test is calculated. The measured value was brittle, and was measured according to JISA 9511.
圧縮強度は J I S K 7 2 2 0に従い、 5 0 mm角の試料を用いて規定ひずみ を 0. 0 5として測定した。  The compressive strength was measured according to JIS K7202 using a 50 mm square sample with a specified strain of 0.05.
熱分解ガスクロマトグラフィ一のパイログラムの測定は次のように行った。 測 定に用いるフヱノール樹脂発泡体サンプルは、 面材、 サイディ ング材を取り除い たフォームコア部分よりカッターナイフなどにより削りだした粉末を更に乳鉢で 入念に粉砕し、 一度の測定に 0. 3から 0. 4 mgの範囲で試料量を調整して用 いた。 熱分解装置は、 加熱炉型熱分解装置であるフロンティアラボ社製 PY 2 0 1 0 Dを用いた。 熱分解温度は、 6 7 0 °Cで行った。 ガスクロマトグラフィーの 測定はヒューレッ トパッカード社 H P 5 8 9 0 A型で、 無極性液相のキヤビラ リーカラムであるデユラボンド (D u r a b 0 n d) DB - 1 (内径 0. 2 5 mm、 膜厚 0. 2 5〃m、 長さ 3 0 m) を用いた。 キヤリヤーガスはヘリウム ( H e) . 全流量は 1 0 0 c c /m i n、 へッ ドプレッシャーは 1 0 0 k P a、 ォ ーブン温度は、 5 0°Cからスタートし毎分 2 0°Cのスピードで 3 4 0 °Cまで昇温 し 1 5. 5分保持した。 各成分の検出は水素炎イオン化検出器 (F I D) で行い 、 各ピークの面積値を全検出成分で規格化しそれぞれの成分の比率とした。 ただ し、 ピークの裾が重なる場合には、 ピークの重なりの谷間から、 ベースライ 垂線を下ろし、 ベースラインと垂線に囲まれた範囲をピーク面積とした。 本発明 によるフヱノール樹脂発泡体サンプルのガスクロマトグラムの一例を図 1に示す 。 各成分の構造は、 ガスクロマトグラフィーにより分離した成分を質量分析機に 導入して得たマススぺク トルにより確認した。 マススぺク トルは日本電子 J M SThe pyrogram of pyrolysis gas chromatography was measured as follows. For the phenolic resin foam sample used for measurement, the powder obtained by shaving the foam core portion from which the face material and siding material have been removed with a cutter knife, etc., is further carefully crushed in a mortar, and 0.3 to 0 for one measurement. The sample amount was adjusted within the range of 4 mg. As the thermal decomposition apparatus, PY210D manufactured by Frontier Lab Co., Ltd., which is a heating furnace type thermal decomposition apparatus, was used. The thermal decomposition was performed at 670 ° C. Gas chromatography was measured using Hewlett-Packard HP 5890 Type A, a non-polar liquid phase capillary column, Durab 0 nd DB-1 (0.25 mm ID, 0.25 mm film thickness). 25 m and a length of 30 m) were used. Carrier gas is helium (He). The total flow rate is 100 cc / min, the head pressure is 100 kPa, the oven temperature is 50 ° C, and the speed is 20 ° C / min. The temperature was raised to 34O 0 C and held for 15.5 minutes. The detection of each component was performed by a flame ionization detector (FID), and the area value of each peak was normalized with respect to all the detected components to obtain the ratio of each component. However, if the tails of the peaks overlap, the baseline is taken from the valley where the peaks overlap. The vertical line was lowered, and the area surrounded by the baseline and the vertical line was defined as the peak area. FIG. 1 shows an example of a gas chromatogram of a phenol resin foam sample according to the present invention. The structure of each component was confirmed by a mass spectrum obtained by introducing the component separated by gas chromatography into a mass spectrometer. The mass vector is JEOL JMS
A X— 5 0 5 Hにより、 電子衝撃イオン化法 (E I法) でイオン化電圧 7 0 e V、 イオン化電流 3 0 0 m Aで測定した。 フエノールと トリメチルフエノールの マススぺク トルを図 2、 図 3に示す。 The measurement was performed with an electron impact ionization method (EI method) at an ionization voltage of 70 eV and an ionization current of 300 mA using AX-505H. Figures 2 and 3 show the mass spectra of phenol and trimethylphenol.
発泡剤の確認は、 以下のように行える。 フヱノール樹脂発泡体サンプルをピリ ジン、 トルエン、 テトラヒ ドロフラン (T H F ) 、 ジメチルホルムアミ ド (D M F ) 等から選んだ溶媒に浸漬して粉砕し、 発泡剤を抽出しガスクロマトグラフィ 一にかけ、 同定できる。 必要があれば、 ガスクロマトグラフィーにより分離した 成分を質量分析機に導入して分子構造を確認できる。 発明を実施するための最良の形態  The confirmation of the foaming agent can be performed as follows. A phenolic resin foam sample can be identified by immersing it in a solvent selected from pyridine, toluene, tetrahydrofuran (THF), dimethylformamide (DMF), etc., pulverizing it, extracting the foaming agent, and subjecting it to gas chromatography. If necessary, the components separated by gas chromatography can be introduced into a mass spectrometer to confirm the molecular structure. BEST MODE FOR CARRYING OUT THE INVENTION
次に実施例および比較例によつて本発明をさらに詳細に説明する。  Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[レゾール樹脂の合成 (A ) ]  [Synthesis of resole resin (A)]
反応機に、 3 7 %ホルムアルデヒド (和光純薬社製、 試薬特級) 5 3 8 0 gと 9 9 %フエノール (和光純薬社製、 試薬特級) 3 0 0 0 gを仕込み、 プロペラ回 転式の撹拌機により撹拌し、 温調機により反応機内部液温度を 4 0 °Cに調整する 。 次いで、 5 0 %水酸化ナトリウム水溶液を 3 9 g加え、 反応液を 4 0 °Cから 8 5 °Cに上昇させ 8 5 °Cで 2時間保持した。 その後、 反応液を 5 °Cまで冷却する。 これを、 レゾール樹脂 A— 1 とする。  In a reactor, 37% formaldehyde (Wako Pure Chemical Industries, special grade reagent) 5380 g and 99% phenol (Wako Pure Chemical Co., special grade reagent) 300 g were charged, and the propeller was rotated. Then, the temperature inside the reactor is adjusted to 40 ° C by a temperature controller. Next, 39 g of a 50% aqueous sodium hydroxide solution was added, and the reaction solution was heated from 40 ° C to 85 ° C and kept at 85 ° C for 2 hours. Then, cool the reaction solution to 5 ° C. This is designated as resol resin A-1.
別に、 反応機に 3 7 %ホルムアルデヒド 5 4 0 gと水 5 0 0 gと 5 0 %水酸化 ナトリウム水溶液を 3 9 g加え、 尿素 (和光純薬社製、 試薬特級) 8 0 0 gを仕 込み、 プロペラ回転式の撹拌機により撹拌し、 温調機により反応機内部液温度を 4 0 °Cに調整する。 次いで、 反応液を 4 0 °Cから 7 0 °Cに上昇させ 6 0分間保持 した。 これを、 メチロール尿素 A— 2とする。  Separately, 39 g of 37% formaldehyde, 540 g of water, 500 g of water and 39 g of a 50% aqueous sodium hydroxide solution were added to the reactor, and 800 g of urea (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was prepared. Stir with a propeller rotary stirrer, and adjust the temperature inside the reactor to 40 ° C with a temperature controller. Next, the reaction solution was heated from 40 ° C. to 70 ° C. and held for 60 minutes. This is referred to as methylol urea A-2.
次に、 得られたレゾール樹脂 A— iとメチロール尿素 A— 2を各々全量混合し て液温度を 6 0 °Cに上昇させ一時間保持した。 次いで反応液を 3 0 °Cまで冷却し 、 パラ トルエンスルホン酸一水和物の 5 0 %水溶液で p Hが 5になるまで中和し た。 この反応液を、 6 0°Cで脱水処理して、 粘度を測定したら 4 0°Cにおける粘 度は 5 8 0 0 c p sであった。 これを、 レゾ一ル樹脂 Aとする。 Next, the resulting resole resin Ai and methylol urea A-2 were all mixed together, and the liquid temperature was raised to 60 ° C. and maintained for one hour. The reaction was then cooled to 30 ° C. The mixture was neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until the pH reached 5. The reaction solution was dehydrated at 60 ° C., and the viscosity was measured. The viscosity at 40 ° C. was 580 cps. This is referred to as Resin Resin A.
[レゾ一ル樹脂の合成 (B) ]  [Synthesis of Resin Resin (B)]
レゾ一ル樹脂 Bの合成は、 レゾ一ル樹脂 Aにおける A— 1に対する A— 2の重 量比率を 0. 0 5に変更した以外はレゾ一ル樹脂 Aと同様に行いレゾール樹脂 B を得た。  Resin B was synthesized in the same manner as Resin A except that the weight ratio of A-2 to A-1 in Resin A was changed to 0.05. Was.
[レゾ一ル樹脂の合成 (C) ]  [Synthesis of Resin Resin (C)]
レゾ一ル樹脂 Cの合成は、 レゾ一ル樹脂 Aにおける A— 1に対する A— 2の重 量比率を 0. 4 9に変更した以外はレゾ一ル樹脂 Aと同様に行いレゾール樹脂 C を得た。  Resin Resin C was synthesized in the same manner as Resin Resin A except that the weight ratio of A-2 to A-1 in Resin Resin A was changed to 0.49. Was.
[レゾ一ル樹脂の合成 (D) ]  [Synthesis of Resin Resin (D)]
反応機に、 3 7 %ホルムアルデヒ ド 4 3 5 0 gと 9 9 %フヱノール 3 0 0 0 g を仕込み、 プロペラ回転式の撹拌機により撹拌し、 温調機により反応機内部液温 度を 5 0°Cに調整する。 次いで、 5 0 %水酸化ナトリウム水溶液を 6 0 g加え、 反応液を 2 0分間 5 0°Cから 5 5 °Cに温度を保持した。 その後温度を 8 5°Cに上 げ、 温度が 8 5°Cに達してから 1 3 0分保持した。 その後、 反応液を 5°Cまで冷 却した。 これを、 レゾ一ル樹脂 D— 1とする。  A reactor was charged with 37% formaldehyde 43,050 g and 99% ethanol 300,000 g, stirred with a propeller rotary stirrer, and the temperature inside the reactor was adjusted to 50 with a temperature controller. Adjust to ° C. Next, 60 g of a 50% aqueous sodium hydroxide solution was added, and the temperature of the reaction solution was kept at 50 ° C. to 55 ° C. for 20 minutes. Thereafter, the temperature was raised to 85 ° C, and after the temperature reached 85 ° C, the temperature was maintained for 130 minutes. Thereafter, the reaction solution was cooled to 5 ° C. This is referred to as Resin Resin D-1.
レゾ一ル樹脂 Dの合成は、 レゾール樹脂 Aの合成におけるレゾ一ル樹脂 A— 1 を D— 1に変更した以外はレゾール樹脂 Aと同様に行いレゾール樹脂 Dを得た。  Resole resin D was synthesized in the same manner as resole resin A except that resole resin A-1 in the synthesis of resole resin A was changed to D-1.
[レゾール樹脂の合成 (E) ]  [Synthesis of resole resin (E)]
反応機に、 3 7 %ホルムアルデヒ ド 2 6 1 3 gと 9 9 %フヱノール 1 8 3 6 g を仕込み、 プロペラ回転式の撹拌機により撹拌し、 温調機により反応機内部液温 度を 5 0°Cに調整する。 次いで、 5 0 %水酸化ナトリウム水溶液を 3 6. 3 g加 え、 反応液を 2 0分間 5 0°Cから 5 5 °Cの範囲に温度を保持した。 その後温度を 8 5°Cに上げ、 温度が 8 5°Cに達してから 1 3 0分保持した。 その後、 反応液を A reactor was charged with 37% formaldehyde 26 13 g and 99% ethanol 18 36 g, stirred with a propeller rotary stirrer, and the temperature inside the reactor was adjusted to 50 with a temperature controller. Adjust to ° C. Then, 36.3 g of a 50% aqueous sodium hydroxide solution was added, and the reaction solution was kept at a temperature in the range of 50 ° C to 55 ° C for 20 minutes. Thereafter, the temperature was raised to 85 ° C, and was maintained for 130 minutes after the temperature reached 85 ° C. Then, the reaction solution is
3 0°Cまで冷却し、 パラ トルエンスルホン酸一水和物の 5 0 %水溶液で が5 になるまで中和した。 この反応液を、 6 0°Cで脱水処理して、 粘度を測定したらThe mixture was cooled to 30 ° C. and neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until the value became 5. After dehydrating the reaction solution at 60 ° C and measuring the viscosity,
4 0°Cにおける粘度は 2 7 0 0 c p sであった。 これを、 レゾ一ル樹脂 Eとする c [レゾ一ル樹脂の合成 (F) ] The viscosity at 40 ° C. was 270 cps. This is called resin resin E c [Synthesis of Resin Resin (F)]
反応機に、 3 7 %ホルムアルデヒド 3 1 7 4 gと 9 9 %フエノール 1 6 0 0 g を仕込み、 プロペラ回転式の撹拌機により撹拌し、 温調機により反応機内部液温 度を 5 0°Cに調整する。 次いで、 5 0 %水酸化ナトリウム水溶液を 3 4. 1 g加 え、 反応液を 2 0分間 5 0°Cから 5 5 °Cの範囲に温度を保持した。 その後温度を 8 5°Cに上げ、 温度が 8 5°Cに達してから 1 0 5分保持した。 その後、 反応液を A reactor was charged with 37% formaldehyde (317.4 g) and 99% phenol (1600 g), stirred by a propeller rotary stirrer, and the temperature inside the reactor was adjusted to 50 ° by a temperature controller. Adjust to C. Next, 34.1 g of a 50% aqueous sodium hydroxide solution was added, and the reaction solution was maintained at a temperature in the range of 50 ° C to 55 ° C for 20 minutes. Thereafter, the temperature was raised to 85 ° C, and was held for 105 minutes after the temperature reached 85 ° C. Then, the reaction solution is
3 0°Cまで冷却し、 パラ トルエンスルホン酸一水和物の 5 0 %水溶液で ^1が5 になるまで中和した。 この反応液を、 6 0°Cで脱水処理して、 粘度を測定したらThe mixture was cooled to 30 ° C and neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until ^ 1 became 5. After dehydrating the reaction solution at 60 ° C and measuring the viscosity,
4 0°Cにおける粘度は 1 3 0 0 c p sであった。 これを、 レゾ一ル樹脂 Fとする。 The viscosity at 40 ° C. was 1300 cps. This is designated as Resin Resin F.
[レゾ一ル樹脂の合成 (G) ]  [Synthesis of Resin Resin (G)]
レゾ一ル樹脂 Gの合成はレゾ一ル樹脂 Aにおける A_ 1に対する A— 2の重量 比率を 0. 0 1に変更した以外はレゾール樹脂 Aと同様にして行いレゾ一ル樹脂 Gを得た。  Resin Resin G was synthesized in the same manner as Resole Resin A except that the weight ratio of A-2 to A_1 in Resin Resin A was changed to 0.01.
[レゾ一ル樹脂の合成 (H) ]  [Synthesis of Resin Resin (H)]
反応機に、 3 7 %ホルムアルデヒド 3 3 3 0 gと 9 9 %フヱノール 3 0 0 0 g を仕込み、 プロペラ回転式の撹拌機により撹拌し、 温調機により反応機内部液温 度を 4 0 °Cに調整する。 次いで、 5 0 %水酸化ナ卜リウム水溶液を 5 7 g加え、 反応液を 4 0°Cから 8 5 °Cに上昇させ 2時間 3 0分保持した。 その後、 反応液を 5°Cまで冷却する。 これを、 レゾ一ル樹脂 H— 1とする。  A reactor was charged with 33% formaldehyde 333.3 g and 99% ethanol 300 g, stirred by a propeller rotary stirrer, and the temperature inside the reactor was adjusted to 40 ° by a temperature controller. Adjust to C. Next, 57 g of a 50% aqueous sodium hydroxide solution was added, and the reaction solution was heated from 40 ° C. to 85 ° C. and held for 2 hours and 30 minutes. Then, cool the reaction solution to 5 ° C. This is designated as Resin Resin H-1.
レゾ一ル樹脂 Hの合成はレゾ一ル樹脂 Aにおけるレゾール樹脂 A— 1をレゾ一 ル樹脂 H— 1に変更した以外はレゾール樹脂 Aと同様に行いレゾ一ル樹脂 Hを得 た。  Resin resin H was synthesized in the same manner as resole resin A except that resole resin A-1 in resole resin A was changed to resole resin H-1.
[レゾ一ル樹脂の合成 ( I ) ]  [Synthesis of Resin Resin (I)]
レゾ一ル樹脂 Iの合成は、 レゾール樹脂 Dにおけるレゾール樹脂 D— 1に対す るメチロール尿素 A— 2の重量比率を 0. 0 1 2に変更した以外はレゾ一ル樹脂 Dと同様に行いレゾール樹脂 Iを得た。  Resin Resin I was synthesized in the same manner as Resin Resin D except that the weight ratio of methylol urea A-2 to Resole Resin D-1 was changed to 0.012. Resin I was obtained.
[レゾール樹脂の合成 (J) ]  [Synthesis of resole resin (J)]
反応器に、 3 7 %ホルムアルデヒド 3 1 7 4 gと 9 9 %フエノール 1 6 0 0 g を仕込み、 プロペラ回転式の撹拌機により撹拌し、 温調機により反応器内部液温 JP 8 度を 5 0°Cに調整する。 次いで、 5 0 %水酸化ナトリウム水溶液を 3 4. 1 g加 え、 反応液を 2 0分間 5 0°Cから 5 5 °Cに保持した。 その後温度を 8 5°Cに上げ 、 温度が 8 5°Cに達してから 1 5 5分保持した。 その後、 反応液を 5°Cまで冷却 する。 これをレゾ一ル樹脂 J— 1とする。 A reactor was charged with 37% formaldehyde (317.4 g) and 99% phenol (1600 g), and stirred with a propeller rotary stirrer. Adjust JP 8 degrees to 50 ° C. Next, 34.1 g of a 50% aqueous sodium hydroxide solution was added, and the reaction solution was kept at 50 ° C. to 55 ° C. for 20 minutes. Thereafter, the temperature was raised to 85 ° C, and after the temperature reached 85 ° C, the temperature was maintained for 150 minutes. Then, cool the reaction solution to 5 ° C. This is referred to as Resin Resin J-1.
レゾ一ル樹脂 Jの合成は、 レゾール樹脂 Aにおけるレゾ一ル樹脂 A— iを J一 1に変更し、 メチロール尿素 A— 2の重量比率を 0. 9 6に変更した以外はレゾ —ル樹脂 Aと同様に行いレゾ一ル樹脂 Jを得た。  In the synthesis of Resole Resin J, Resole Resin A was changed to Resin Resin A-i to J-11, and the weight ratio of methylol urea A-2 was changed to 0.96. In the same manner as in A, a resin resin J was obtained.
(実施例 1 )  (Example 1)
レゾ一ル樹脂 Aにポリシロキサン系非ィォン界面活性剤 S H— 1 9 3 (東レシ リコーン株式会社製) をレゾール樹脂 1 0 0 gに対して 3. 5 gの割合で溶解す る。 この、 レゾール樹脂混合物と、 発泡剤として HF C— 1 3 4 a (ダイキンェ 業株式会社製) 9 9. 5重量%、 窒素 0. 5重量%の混合物と、 硬化触媒として パラ トルエンスルホン酸一水和物 5 0 % (和光純薬 9 5 + ) とジエチレングリ コール 5 0 % (和光純薬 9 8 +%) の混合物をそれぞれ、 樹脂混合物 1 0 0部、 発泡剤 1 7部、 硬化触媒 1 5部の割合で温調ジャケッ ト付きピンミキサーに供給 した。 このとき、 ミキサージャケッ トは 4 0°Cに調整し、 ミキサー内圧は 1 5 k gZcm」 であった。 ミキサーから出てきた混合物をスパンボンド E 1 0 4 0 ( 旭化成工業株式会社製) を敷いた型枠に流し込み、 8 5°Cのオーブンに人れ 5時 間保持してフェノール樹脂発泡体を得た。  Dissolve the polysiloxane-based non-ionic surfactant SH-193 (manufactured by Toray Silicone Co., Ltd.) in Resole Resin A at a ratio of 3.5 g to 100 g of Resole Resin. A mixture of the resole resin mixture, HF C-134a (manufactured by Daikin Industries, Ltd.) 99.5% by weight and nitrogen 0.5% by weight as a foaming agent, and para-toluenesulfonic acid monohydrate as a curing catalyst A mixture of 50% Japanese product (95% pure Wako Pure Chemicals) and 50% diethylene glycol (98% pure Wako Pure Chemicals), 100 parts resin mixture, 17 parts foaming agent, 17 parts curing catalyst Five parts were supplied to a pin mixer equipped with a temperature control jacket. At this time, the mixer jacket was adjusted to 40 ° C and the internal pressure of the mixer was 15 kgZcm. The mixture coming out of the mixer is poured into a formwork laid with Spunbond E 104 (made by Asahi Kasei Corporation), and then put in an oven at 85 ° C for 5 hours to obtain a phenol resin foam. Was.
得られたフヱノール樹脂発泡体の熱分解ガスクロマトグラフィ一のパイ口グラ ムのトリメチルフヱノ一ルの割合 Aと分解生成物のフヱノ一ルの割合 Bとの比 C と尿素架橋由来の成分 Dとフエノール誘導体成分 Eの比 F、 および独立気泡率、 平均気泡径、 密度、 熱伝導率、 脆性、 圧縮強度などの測定結果を表 1 に示す。  The ratio of trimethylphenol in the piezogram in the pyrolysis gas chromatography of the obtained phenol resin foam to the ratio of trimethylphenol A to the ratio of phenol in the decomposition product B, C, the component derived from urea crosslinking D, and the phenol derivative Table 1 shows the ratio F of component E and the measurement results of the closed cell ratio, average cell diameter, density, thermal conductivity, brittleness, and compressive strength.
(実施例 2 )  (Example 2)
硬化触媒としてパラ トルエンスルホン酸一水和物 2 0 %とジエチレングリコ一 ノレ 5 0 %、 レゾルシノール 3 0 %の混合物を樹脂 1 0 0部に対し i 2部の割合に 変更した以外は実施例 1と同様にしてフ ノール樹脂発泡体を製造した。 得られ たフニノ—ル樹脂発泡体の測定結果を表 1に示す。  Example 1 was repeated except that a mixture of 20% of paratoluenesulfonic acid monohydrate, 50% of diethyleneglycol monoole, and 30% of resorcinol was used as a curing catalyst in a ratio of i 2 parts to 100 parts of resin. In the same manner, a phenol resin foam was produced. Table 1 shows the measurement results of the obtained funinol resin foam.
(実施例 3 ) 発泡剤として H F C— 1 3 4 aに P F— 5 0 5 0 ( 3 M社製パーフルォロペン タン) 3重量%添加したものに変更した以外は実施例 1と同様にしてフヱノール 樹脂発泡体を製造した。 (Example 3) A phenolic resin foam was produced in the same manner as in Example 1, except that 3% by weight of PF-5500 (3M Perfluoropentane) was added to HFC-134a as a foaming agent.
得られたフェノ一ル樹脂発泡体の測定結果を表 1に示す。  Table 1 shows the measurement results of the obtained phenol resin foam.
(比較例 1 )  (Comparative Example 1)
レゾ一ル樹脂 Aをレゾ一ル樹脂 Eに変更した以外は実施例 1と同様にしてフエ ノール樹脂発泡体を製造した。  A phenol resin foam was produced in the same manner as in Example 1 except that the resin A was changed to the resin E.
得られたフェノ一ル樹脂発泡体の測定結果を表 1に示す。  Table 1 shows the measurement results of the obtained phenol resin foam.
(比較例 2 )  (Comparative Example 2)
レゾ一ル樹脂 Aをレゾール樹脂 Eに変更して、 樹脂 1 0 0重量部に対して尿素 5重量部を添加した以外は実施例 1 と同様にしてフニノ一ル樹脂発泡体を製造し た。 この様な場合には、 硬化した時点で発泡剤が殆ど抜けてしまい発泡体になら なかった。  A phenol resin foam was produced in the same manner as in Example 1 except that the resin A was changed to the resin E and 5 parts by weight of urea was added to 100 parts by weight of the resin. In such a case, almost no foaming agent was removed at the time of curing, and the foam was not formed.
得られたフエノ一ル樹脂発泡体の測定結果を表 1に示す。  Table 1 shows the measurement results of the obtained phenol resin foam.
(比較例 3 )  (Comparative Example 3)
レゾ一ル樹脂 Aをレゾ一ル樹脂 Fに変更した以外は実施例 1と同様にしてフエ ノ一ル樹脂発泡体を製造した。  A phenolic resin foam was produced in the same manner as in Example 1 except that the resin A was changed to the resin F.
得られたフエノール樹脂発泡体の測定結果を表 1に示す。  Table 1 shows the measurement results of the obtained phenol resin foam.
(比較例 4 )  (Comparative Example 4)
レゾ一ル樹脂 Aをレゾール樹脂 Fに変更して、 樹脂 1 0 0重量部に対して尿素 1 0重量部添加して、 硬化剤を樹脂 1 0 0重量部に対して 2 5重量部に変更した 以外は実施例 1 と同様にしてフ ノール樹脂発泡体を製造した。  Changed resin resin A to resole resin F, added 100 parts by weight of urea to 100 parts by weight of resin, and changed the curing agent to 25 parts by weight with respect to 100 parts by weight of resin A phenolic resin foam was produced in the same manner as in Example 1 except for the above.
得られたフェノ一ル樹脂発泡体の測定結果を表 1に示す。 Table 1 shows the measurement results of the obtained phenol resin foam.
(実施例 4〜6、 比較例 5〜8 )  (Examples 4-6, Comparative Examples 5-8)
実施例 4〜 6、 比較例 5〜 8は実施例 1から比較例 4までと同様に、 レゾ一ル 樹脂として表 1に示す樹脂を用い、 触媒部数を調整しながら、 実施例 1に習って フエノ一ル樹脂発泡体を製造した。  In Examples 4 to 6 and Comparative Examples 5 to 8, as in Examples 1 to 4, the resin shown in Table 1 was used as the resin, and the number of catalyst parts was adjusted. A phenolic resin foam was produced.
各実施例、 比較例で得られたフェノール樹脂発泡体サンプルの、 熱分解ガスク ロマトグラフィ一のパイログラムのトリメチルフヱノールの割合 Aと分解生成物 のフエノールの割合 Bとの比 C値と、 尿素架橋由来の成分 Dとフエノール誘導体 成分 Eの比 F値及び発泡体の独立気泡率、 平均気泡径、 密度、 熱伝導率、 脆性、 圧縮強度を表 1に示す。 In the phenolic resin foam samples obtained in each Example and Comparative Example, the ratio A of trimethylphenol in the pyrogram of pyrolysis gas chromatography and the decomposition products Ratio of phenol to B Ratio of C to urea crosslinking component D to phenol derivative Component E Ratio of F value and closed cell rate of foam, average cell diameter, density, thermal conductivity, brittleness and compressive strength See Table 1.
表 1 table 1
Figure imgf000018_0001
Figure imgf000018_0001
ただし、 C値:熱分解 物中のトリメチルフヱノール Αのフ . ノール Βに対する面積比(C = AZB ) However, C value: area ratio of trimethylphenol in the pyrolyzate to phenol (C = AZB)
F値:熱分解 物中の尿素架橋由来の成分 Dのフヱ . 一ル誘導体成分 Eに财る面積比 ( F = D Z E ) F value: Area ratio of component D derived from urea cross-linking in pyrolyzate to cellulose derivative component E (F = DZE)
産業上の利用可能性 Industrial applicability
本発明の発泡体は、 優れた断熱性能を有し、 圧縮強度等の機械的強度に優れ、 表面脆性が改善されているため建築用断熱材として好適であり、 オゾン層破壊の 恐れのない発泡剤を使用しているため、 地球環境に適合している。  The foam of the present invention has excellent heat insulation performance, is excellent in mechanical strength such as compressive strength, and has improved surface brittleness, so that it is suitable as a heat insulating material for buildings, and has a foam that does not cause ozone layer destruction. It is compatible with the global environment because of the use of chemicals.

Claims

請求の範囲 The scope of the claims
1. 独立気泡率 7 0 %以上、 平均気泡径 1 0 a m以上 4 0 0 m以下、 密度 1 0 k g/m3 以上 7 0 k g/m3 以下であり、 独立気泡中にフルォロ炭化水素を 含有し、 尿素架橋構造を有するフェノール樹脂構造から成ることを特徴とするフ ェノール樹脂発泡体。 1. closed cell ratio 70% or more, the average cell diameter 1 0 am or 4 0 0 m or less, or less density 1 0 kg / m 3 or more 7 0 kg / m 3, containing Furuoro hydrocarbon in closed cells A phenolic resin foam having a phenolic resin structure having a urea crosslinked structure.
2. フヱノ一ル樹脂構造が、 フヱノ一ル樹脂の熱分解ガスクロマトグラフィー の熱分解パターンにおいて、 熱分解生成物のトリメチルフヱノールの割合 Aの熱 分解生成物のフエノールの割合 Bに対する比 C = A/Bが、 0. 2以上 4. 0以 下であり、 熱分解生成物の尿素架橋由来の成分 Dのフエノール誘導体成分 Eに対 する比 F = D/E力 \ 0. 0 3以上 0. 3以下であることを特徴とする請求項 1 記載のフエノール樹脂発泡体。  2. In the pyrolysis pattern of pyrolysis gas chromatography of the phenolic resin, the ratio of the trimethylphenol of the pyrolysis product A to the ratio of the phenol to the phenol B of the pyrolysis product = A / B is not less than 0.2 and not more than 4.0, and the ratio of component D derived from urea crosslinking of thermal decomposition product to phenol derivative component E is F = D / E force \ 0.03 or more 2. The phenolic resin foam according to claim 1, wherein the phenolic resin foam is at most 0.3.
3. 熱伝導率が 0. 0 1 8 k c a 1 Zmh r °C以下、 脆性が 3 0 %以下である ことを特徴とする請求項 1又は 2記載のフェノ一ル樹脂発泡体。  3. The phenolic resin foam according to claim 1 or 2, wherein the thermal conductivity is 0.018 kca1 Zmhr r ° C or less, and the brittleness is 30% or less.
4. フルォロ炭化水素が 1, 1, 1, 2—テトラフルォロェタン又は、 1, 1 —ジフルォロェタン又は、 1, 1, 1, 2, 2—ペンタフルォロェタンの内の少 なくとも 1種類であることを特徴とする請求項 1ないし 3のいずれか 1項に記載 のフエノール樹脂発泡体。  4. The fluorocarbon is at least one of 1,1,1,2-tetrafluoroethane or 1,1-difluoroethane, or 1,1,1,2,2-pentafluoroethane. 4. The phenolic resin foam according to claim 1, wherein the phenolic resin foam is of a type.
5. レゾ一ル樹脂とメチロール化尿素から成るレゾール樹脂組成物をフルォロ 炭化水素を発泡剤とし、 発泡、 硬化させ、 尿素架橋構造を形成させて成り、 独立 気泡率 8 0 %以上、 平均気泡径 2 0 //m以上 3 0 0 m以下、 密度 2 0 k g/m 3 以上 5 0 k g/m3 以下、 熱伝導率 0. 0 1 8 k c a 1/mh r °C以下、 脆性 3 0 %以下であることを特徴とするフ二ノール樹脂発泡体。 5. A resole resin composition consisting of a resole resin and methylolated urea is foamed and cured using fluorocarbon as a foaming agent to form a urea crosslinked structure. The closed cell rate is 80% or more, and the average cell diameter is 2 0 // m or more 3 0 0 m or less, density 20 kg / m 3 or more 50 kg / m 3 or less, thermal conductivity 0.0 1 8 kca 1 / mh r ° C or less, brittleness 30% or less A fuminol resin foam, characterized in that:
PCT/JP1998/000622 1997-02-17 1998-02-16 Phenolic resin foam WO1998036021A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU58809/98A AU5880998A (en) 1997-02-17 1998-02-16 Phenolic resin foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4697197 1997-02-17
JP9/46971 1997-02-17

Publications (1)

Publication Number Publication Date
WO1998036021A1 true WO1998036021A1 (en) 1998-08-20

Family

ID=12762149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000622 WO1998036021A1 (en) 1997-02-17 1998-02-16 Phenolic resin foam

Country Status (3)

Country Link
KR (1) KR100311437B1 (en)
AU (1) AU5880998A (en)
WO (1) WO1998036021A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139316A (en) * 2005-06-24 2014-07-31 Honeywell Internatl Inc Foaming agent and composition containing fluorine substituted olefin and foaming method
CN110982219A (en) * 2019-12-25 2020-04-10 江阴市威腾铝箔合成材料有限公司 Neutral phenolic foam material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230265A (en) * 1992-02-21 1993-09-07 Asahi Glass Co Ltd Production of phenol resin foam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230265A (en) * 1992-02-21 1993-09-07 Asahi Glass Co Ltd Production of phenol resin foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139316A (en) * 2005-06-24 2014-07-31 Honeywell Internatl Inc Foaming agent and composition containing fluorine substituted olefin and foaming method
CN110982219A (en) * 2019-12-25 2020-04-10 江阴市威腾铝箔合成材料有限公司 Neutral phenolic foam material and preparation method thereof

Also Published As

Publication number Publication date
KR100311437B1 (en) 2001-10-18
AU5880998A (en) 1998-09-08
KR20000070241A (en) 2000-11-25

Similar Documents

Publication Publication Date Title
JP3934552B2 (en) Foaming agent composition comprising hydrofluorocarbon and low boiling alcohol and / or low boiling carbonyl compound
JP2017171945A (en) Phenol resin foam and manufacturing method therefor
KR20170129155A (en) Process for producing phenolic resin foam and phenolic resin foam
JP2009293033A (en) Phenolic resin foam
WO2000001761A1 (en) Phenolic foam
EP2714786B1 (en) Phenolic foams with blowing agent 1, 1, 1, 4, 4, 4-hexafluoro - 2 - butene
US20180334547A1 (en) Fluorinated Compounds Useful As Foam Expansion Agents
CA2452737C (en) Blowing agent blends
Son et al. Synthesis of polyurethane foam considering mixture blowing agents for application to cryogenic environments
WO1998036021A1 (en) Phenolic resin foam
JP3681307B2 (en) Method for producing phenolic resin foam
AU735521B2 (en) Phenol foam
US20230143428A1 (en) Phenolic foam and method of manufacture thereof
JP4868653B2 (en) Phenolic resin foam
Albouy et al. Development of HFC blowing agents. Part I: Polyurethane foams
US20040192796A1 (en) Polymer foam having improved fire performance
JP2002309031A (en) Phenol resin foam for fine foam
JP2001114922A (en) Phenol resin foam
Dournel et al. Optimization of formulations based on HFC-365mfc and blends thereof
JP2000230070A (en) Phenol resin foam
JPH11140217A (en) Phenolic foam
JPH11181140A (en) Foamed phenol resin thermal insulant
MXPA00005691A (en) Phenol foam

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019997006468

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1019997006468

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997006468

Country of ref document: KR