JP3681307B2 - Method for producing phenolic resin foam - Google Patents

Method for producing phenolic resin foam Download PDF

Info

Publication number
JP3681307B2
JP3681307B2 JP17946799A JP17946799A JP3681307B2 JP 3681307 B2 JP3681307 B2 JP 3681307B2 JP 17946799 A JP17946799 A JP 17946799A JP 17946799 A JP17946799 A JP 17946799A JP 3681307 B2 JP3681307 B2 JP 3681307B2
Authority
JP
Japan
Prior art keywords
weight
resin foam
foam
phenol resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17946799A
Other languages
Japanese (ja)
Other versions
JP2001011230A (en
Inventor
孝恭 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP17946799A priority Critical patent/JP3681307B2/en
Publication of JP2001011230A publication Critical patent/JP2001011230A/en
Application granted granted Critical
Publication of JP3681307B2 publication Critical patent/JP3681307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、天井材、壁材、屋根材等の各種建築用断熱材料、冷蔵倉庫用断熱材料等に有用であるフェノール樹脂発泡体の製造方法に関するものであり、特に微細なセル構造を有し、機械強度、断熱性能に優れたフェノール樹脂発泡体の製造方法を提供するものである。
【0002】
【従来の技術】
フェノール樹脂発泡体は、フェノールとホルマリンをアルカリ性触媒により縮合したレゾール型フェノール樹脂に界面活性剤、発泡剤、酸性硬化触媒を混合し、常温もしくは加熱して発泡硬化せしめて製造される。その発泡剤として、ジクロロフルオロエタン(HCFC−141b)、1−クロロ−1,1,−ジフルオロエタン(HCFC−142b)等の水素化クロロフルオロカーボン類(HCFC)、あるいは1,1,1,2,−テトラフルオロエタン(HFC−134a)、1,1−ジフルオロエタン(HFC−152a)等の水素化フルオロカーボン類(HFC)、あるいはペンタン、ブタン等の炭化水素類を用いることは公知である。
【0003】
かつては発泡剤として、トリクロロトリフルオロエタン(CFC−113)、トリクロロモノフルオロメタン(CFC−11)等の低沸点のクロロフルオロカーボン類(CFC)が用いられていたが、クロロフルオロカーボン発泡剤はオゾン層を破壊するという問題があるために、よりオゾン層破壊作用の少ない水素化クロロフルオロカーボン類(HCFC)に発泡剤の代替が進み、また、その水素化クロロフルオロカーボン類(HCFC)も西暦2010年頃までには使用が全面的に禁止される予定であり、近年ではオゾン層破壊作用の無い水素化フルオロカーボン類(HFC)への代替が進められている。ただし、水素化フルオロカーボン(HFC)には地球温暖化係数が高いという別の欠点があり、今後規制が強まっていくことが予想されており、HFCよりも環境上穏やかな発泡剤である炭化水素系の発泡剤を使用していく方向に進みつつある。
【0004】
そして、前述したCFCからHFC、あるいは炭化水素系の発泡剤へと転換を進める際に下記の問題点が生じている。
(a) HFCを発泡剤として用いて得られるフェノール樹脂発泡体は、CFCを発泡剤として得られるものに比較して粗大なセル構造のものであり、圧縮強度等の機械的強度、断熱性能(熱伝導率)に劣った発泡体となってしまう。
【0005】
(b) 炭化水素系発泡剤を用いて得られるフェノール樹脂発泡体は、HFCを発泡剤として得られるものと比較すればセル構造はやや微細であり、機械的強度、脆さに関しては、物性低下は小さいが、発泡ガス自体の熱伝導率が高いために断熱性(熱伝導率)に劣った発泡体となってしまう。上記の問題点に対して、例えば、特表平4−503829号公報では特定のフルオロアルカン(以下PFA)をHCFC、HFCあるいは炭化水素(アルカン、シクロアルカン)に混合して発泡剤として使用することにより熱伝導率、圧縮強度が改善されたフェノール樹脂発泡体が得られることを開示している。しかしながら、PFAも前述のHFC同様に地球温暖化係数が比較的に大きいことから使用の制限が懸念される。また、特開平3−231941号公報にはポリフルオロエーテル類を発泡剤として使用してフェノール樹脂発泡体を製造する方法が開示されている。しかしながら、ポリフルオロエーテル類は、単独あるいはHCFC、HFC、炭化水素類等の発泡剤と混合して使用された場合でも得られた発泡体における熱伝導率や圧縮強度に対する効果が十分でなく、不満足なものであった。特に、もともとセル径が比較的に微細な炭化水素系発泡剤に対してはポリフルオロエーテルを添加してもよりセル径を微細化する効果はほとんど無く、炭化水素系発泡剤を使用して得られるフェノール樹脂発泡体の問題点である熱伝導率が高くなってしまうという問題点は改善されない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、(従来のHFC、炭化水素系発泡剤を用いて製造したフェノール樹脂発泡体の課題であった)粗大なセル径を微細化するという極めて大きな効果を有し、熱伝導率、圧縮強度が大幅に改善されたフェノール樹脂発泡体の製造方法を提供するものである。
【0007】
【課題を解決するための手段】
すなわち本発明は、低沸点の炭化水素類、及び/または水素化フルオロカーボン類(HFC)を発泡剤として用いるフェノール樹脂発泡体の製造方法において、該発泡剤の低沸点の炭化水素類、及び/または水素化フルオロカーボン類(HFC)の合計100重量部に対して、三フッ化塩化エチレンの低重合物を0.1〜10重量部添加することを特徴とするフェノール樹脂発泡体の製造方法である。
【0008】
以下に本発明を詳細に説明する。まず、本発明が従来の技術と大きく異なる点は、低沸点の炭化水素類、水素化フルオロカーボン類(HFC)の発泡剤に、三フッ化塩化エチレンの低重合物を0.1〜10重量添加し用いた点である。本発明の発泡剤に用いられる三フッ化塩化エチレンの低重合物は、一般式(化1)で表わされ、平均分子量の程度により常温で油状のものからワックス状のものまで様々な種類がある。その平均分子量の範囲としては、約500〜1500程度であり、nの範囲としては4〜13程度である。したがって、揮発性は非常に低く、200Paの蒸気圧を示す温度は、油状のもので50℃程度、ワックス状のものでは200℃以上である。
【0009】
【化1】

Figure 0003681307
【0010】
従来、HFCあるいは飽和炭化水素系発泡剤に添加混合して用いられるペルフルオロペンタン(特表平4−503829号公報参照)の50℃における蒸気圧は220kPaであり、本発明の三フッ化塩化エチレンの低重合物に比較して1000倍以上高い蒸気圧を有する物質である。また、特開平3―231941号公報に記載のポリフルオロエーテル類は、沸点として−9〜96℃程度のものであるのに対し、本発明の三フッ化塩化エチレンの低重合物は100℃でも高々1000Paの蒸気圧の物質である。
【0011】
すなわち、従来、HFCあるいは飽和炭化水素系発泡剤に添加混合して用いられる物質は、あくまで発泡剤に相当する性質のもの同士の混合であったのに対して、本発明では、逸散性の極めて低い油状成分をごく僅か添加することによって従来に比べて大きな改良効果が得られるものであって、その基本的な発想を異にするものである。その大きな改良効果とは、まず発泡体のセル径が、従来技術によるものに比べて非常に小さくなることにある。従来技術でのフェノール樹脂発泡体のセル径は高々120μm程度のものが限度であったのに対し、本発明によるフェノール樹脂発泡体は、100μm以下のセル径であって、ボイドも少なく、そのため機械的な強度や脆さが改善されている。そして、セル径が小さいために、輻射熱に対する遮蔽効果が大きくなり、熱伝導率の低い、すなわち断熱性能に優れた発泡体になっていると考える。さらに、微細なセル径を有することは、発泡体を工業的に生産する場合において、発泡体の均質性や安定生産に対しても大きな効果を有すると推定される。
【0012】
次に、本発明によるフェノールフォームの製造方法について説明する。樹脂原料であるレゾール樹脂は、公知の方法によりフェノールとホルムアルデヒドを原料としてアルカリ触媒により40〜100℃の温度範囲で加熱して重合させて得られる。このレゾール樹脂には尿素、アミン類、アミド類、エポキシ化合物、単糖類、でんぷん類、ポバール樹脂、ポリビニルアルコール樹脂、ラクトン類等の各種改質剤を添加して使用しても良い。レゾール樹脂組成物は、水分量を調整することにより、適正な粘度にして使用される。樹脂組成物の好適な粘度範囲は、発泡条件により異なるが、40℃における粘度が1000〜50000cps(センチポアズ)であることが好ましく、2000〜30000cpsであることがさらに好ましい。適正な粘度に調整されたレゾール樹脂組成物と発泡剤、三フッ化塩化エチレンの低重合物、界面活性剤、硬化触媒を混合機に導入し、均一に攪拌混合して発泡性樹脂組成物を得る。その際に、界面活性剤はあらかじめレゾール樹脂組成物に混合しておいて、後に混合機に導入しても良いし、これらを別々に混合機に導入しても良い。
【0013】
また、三フッ化塩化エチレンの低重合物を混合する方法は、特に制限されるものではなく、前もってレゾール樹脂組成物と混合しておいて、樹脂組成物とともに混合機に導入する方法や、硬化触媒とともに混合機に導入する方法、あるいは単独で混合機に導入する方法等が考えられる。しかしながら、発泡剤である炭化水素類および/または水素化フルオロカーボン(HFC)にあらかじめ混合溶解せしめ、後に混合機へ導入する方法が少量の添加量で期待する効果が発現するのでより好ましい。
【0014】
発泡剤と混合する三フッ化塩化エチレンの低重合物の割合は、0.1〜10重量である。三フッ化塩化エチレンの低重合物の割合が0.1重量未満では、発泡体のセル径の微細化とそれにともなう圧縮強度の向上、熱伝導率の低下等の効果が十分ではなく、また10重量を超えて添加しても、効果はそれ程変わることはなく、製造コスト的に高価なものとなるので好ましくない。特に、三フッ化塩化エチレンの低重合物のより好ましい添加の割合は、発泡剤に対して0.5〜3.0重量である。
【0015】
前記の三フッ化塩化エチレンの低重合物の添加量(0.1〜10重量)は、得られるフェノール樹脂発泡体に対する割合としては0.01〜1重量%に相当する。また本発明のより好ましい実施の形態としては、発泡剤に気泡核剤として0.01〜5重量程度の窒素を混合溶解せしめて用いることが挙げられる。その混合溶解方法としては、発泡剤の保存容器において発泡剤に窒素を加圧して溶解させても良いし、発泡時に混合機の手前で発泡剤中に導入して混合溶解させても良い。
【0016】
本発明のフェノール樹脂発泡体の製造において、硬化触媒が予めレゾール樹脂組成物と混合されると発泡前に硬化反応が進行し良好な発泡体が得られないので、混合機でレゾール樹脂組成物と硬化触媒とを混合することが望ましい。混合機で混合して得られた発泡性組成物を型枠などに流し込み、加熱処理により発泡硬化を完了させ、本発明のフェノール樹脂発泡体を得ることができる。
【0017】
本発明に用いる硬化触媒としてはトルエンスルホン酸、キシレンスルホン酸、ベンゼンスルホン酸、フェノールスルホン酸などの芳香族スルホン酸を単独または2種類以上混合して使用できる。また、硬化助剤としてレゾルシノール、クレゾール、サリニゲン(o−メチロールフェノール)、p−メチロールフェノールなどを添加しても良い。また、これらの硬化触媒をジエチレングリコール、エチレングリコールなどの溶媒で希釈して用いても良い。本発明で使用する界面活性剤は、フェノール樹脂発泡体製造に使用される周知のものを使用することができる。なかでも非イオン系界面活性剤が有効であり、例えばエチレンオキサイドとプロピレンオキサイドとのブロック共重合体、アルキレンオキサイドとヒマシ油の縮合物、アルキレンオキサイドとノニルフェノール、ドデシルフェノール等のアルキルフェノールとの縮合生成物、ポリオキシエチレン脂肪酸エステル等の脂肪酸エステル類、ポリジメチルシロキサン等のシリコーン系化合物を挙げることができる。これらの界面活性剤は、一種類で用いても良いし、また二種類以上を組み合わせて用いても良い。その使用量についても、特に制限はないが、レゾール樹脂組成物100重量部に対して0.5〜10重量部の範囲で添加して使用される。
【0018】
次に、本発明におけるフェノール樹脂発泡体の組織、構造、特性の評価方法について説明する。フェノール樹脂発泡体の独立気泡率は、ASTM D2856に従い、次のようにして測定した。まず、発泡体からバンドソーを用いて切り出した巾、長さ、高さそれぞれ各約25mmの立方体試料を、空気比較式比重計1000型(東京サイエンス社製)の標準使用方法により試料容積を測定する。フェノール樹脂発泡体の独立気泡率は、その試料容積から、試料重量と樹脂密度から計算した気泡壁の容積を差し引いた値を、試料の外寸から計算した見かけの容積で割った値である。なお、本発明では、フェノール樹脂の密度は1.27g/cm3とした。
【0019】
本発明におけるフェノール樹脂発泡体の平均気泡径とは、発泡体断面の50倍拡大写真上に9cmの長さの直線を4本引き、各直線が横切った気泡の数の平均値で1800μmを割った値であり、JISK6402に準じて測定したセル数より計算した平均値である。本発明におけるフェノール樹脂発泡体の熱伝導率は、フェノール樹脂発泡体試料を厚み40mm×巾200mm×長さ200mmの大きさに切り出して、低温板5℃、高温板35℃でJISA1412の平板熱流計法に従い測定した。本発明におけるフェノール樹脂発泡体の密度は、30cm角のフェノール樹脂発泡体を試料とし、この試料の面材を取り除いて重量と見かけ容積を測定して求めた値であり、JISK7222に従い測定した。脆性試験の試験片は、一つの面に表面材を剥がした後の成形スキン面を含むように一辺25±1.5mmの立方体12個を切り出して試料とした。室温乾燥した比重0.65、一辺が19±0.8mmの樫製の立方体24個と試験片12個を、埃が箱の外へ出ないように密閉できる内寸191×197×197mmの樫製の木箱に入れ、毎分60±2回転の速度で600±3回転させる。回転終了後、箱の中身を呼び寸法9.5mmの網に移し、ふるい分けをして小片を取り除き、残った試験片の重量を測定し、試験前の試験片重量からの減少率を計算した値が脆性であり、JISA9511に従い測定した。
【0020】
本発明におけるフェノール樹脂発泡体のフェノール樹脂発泡体の圧縮強さは、JIS K7220に従い、規定ひずみを0.05として測定した。本発明におけるフェノール樹脂発泡体中の三フッ化塩化エチレンの低重合物含有量の確認は、次のようにして行える。50×50×厚みmmの試験片をJISK 7100に規定する標準温度状態3級(温度23±5℃)及び標準湿度状態3級(相対湿度40〜70%)に16時間以上保持したのち、表面材を取り除き重量を精秤する。その試験片を気密性の容器中でピリジンまたはトルエンまたはDMF等から選んだ溶媒と粉砕し、発泡剤及び三フッ化塩化エチレンの低重合物を抽出し、ガスクロマトグラフィー又は液体クロマトグラフィーにより定量する。必要に応じて、ガスクロマトグラフィーにより分離した成分を質量分析機に導入して分子構造を確認してもよい。あるいは、LC−IR(液体クロマトグラフィー−赤外吸収スペクトルメーター)により連続的に抽出成分を同定してもよい。
【0021】
【発明の実施の形態】
次に実施例および比較例によって本発明をさらに詳細に説明する。
(A) レゾール樹脂の合成
まず反応器に37%ホルマリン(和光純薬社製,試薬特級)5000gと99%フェノール(和光純薬社製,試薬特級)3000gを仕込み、プロペラ回転式の撹拌機により撹拌し、温調機により反応器内部液温度を40℃に調整する。次いで、50%水酸化ナトリウム水溶液を60g加え、反応液を40℃から85℃に上昇させ110分間保持した。その後、反応液を5℃まで冷却する。これをレゾール樹脂A−1とする。一方、別の反応器に37%ホルマリン1080gと水1000gと50%水酸化ナトリウム水溶液を78g加え、尿素(和光純薬社製,試薬特級)1600gを仕込み、プロペラ回転式の撹拌機により撹拌し、温調機により反応器内部液温度を40℃に調整する。次いで、反応液を40℃から70℃に上昇させ60分間保持した。これを、メチロール尿素Uとする。次に、レゾール樹脂A−1にメチロール尿素Uを1350g混合して液温度を60℃に上昇させ1時間保持した。次いで反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50%水溶液でpHが6になるまで中和した。この反応液を60℃で脱水処理して粘度を測定したところ、40℃における粘度は6700cpsであった。これを、レゾール樹脂Aとする。
【0022】
【実施例1】
まず、レゾール樹脂Aにペインタッド32(ダウコーニングアジア株式会社製の界面活性剤)を3.5重量部の割合で溶解せしめレゾール樹脂組成物を得た。次に、発泡剤としてのイソペンタン(和光純薬社製、純度99%以上)100重量部に三フッ化塩化エチレンの低重合物、ダイフロイル#10(ダイキン工業株式会社製、平均分子量約900)2.0重量部と、気泡核剤として窒素を0.3重量部溶解させたもの使用した。硬化触媒としては、パラトルエンスルホン酸一水和物60重量%(和光純薬社製、純度95%以上)とジエチレングリコール40重量%(和光純薬社製、純度98%以上)を混合したものを用いた。上記のレゾール樹脂組成物100重量部と、発泡剤6重量部,硬化触媒13重量部をそれぞれ温調ジャケット付きピンミキサーに供給した。ミキサーから出てきた混合物を、所定量、80℃に予熱しておいた厚み50mm×巾300mm×長さ300mmの箱状型枠内に流し込み、80℃のオーブンに入れ5時間保持して発泡硬化させてブロック状発泡体を成型し、フェノール樹脂発泡体を製造した。型枠の内側には、予め、表面材として、スパンボンド法ポリエステル製不織布(旭化成工業株式会社製エルタスE1040)を貼り付けておき、発泡硬化後に発泡体を容易に型枠から取り出せるようにしておいた。
【0023】
【実施例2】
発泡剤として、イソペンタン100重量部に三フッ化塩化エチレンの低重合物ダイフロイル#100(ダイキン工業株式会社製、平均分子量約1300)0.1重量部と、気泡核剤として窒素を0.3重量部溶解させたものを使用したことの他は、実施例1と同じ事を繰り返してフェノール樹脂発泡体を製造した。
【実施例3】
発泡剤として、イソペンタン/1,1,1,2−テトラフルオロエタン(HFC−134a)=80/20(重量比)の混合物100重量部に,三フッ化塩化エチレンの低重合物、ダイフロイル#1(ダイキン工業株式会社製、平均分子量約500)2.0重量部と、気泡核剤として窒素を0.3重量部溶解させたものを使用したことの他は、実施例1と同じ事を繰り返してフェノール樹脂発泡体を製造した。
【0024】
【実施例4】
発泡剤として、イソペンタン100重量部に三フッ化塩化エチレンの低重合物ダイフロイル#10(ダイキン工業株式会社製、平均分子量約900)10.0重量部と、気泡核剤として窒素を0.3重量部溶解させたものを使用し、レゾール樹脂組成物100重量部に対して発泡剤量を10重量部としたことの他は実施例1と同じ事を繰り返してフェノール樹脂発泡体を製造した。
【比較例1】
発泡剤としてイソペンタン100重量部に、気泡核剤として窒素を0.3重量部溶解させたものを使用したことの他は実施例1と同じ事を繰り返してフェノール樹脂発泡体を製造した。
【0025】
【比較例2】
発泡剤として、イソペンタン/1,1,1,2−テトラフルオロエタン(HFC−134a)=80/20(重量比)の混合物100重量部に、気泡核剤として窒素を0.3重量部溶解させたものを使用したことの他は、実施例1と同じ事を繰り返してフェノール樹脂発泡体を製造した。以上の実施例、比較例のフェノール樹脂発泡体の製造条件をまとめたものを表1に示す。また、発泡体中の三フッ化塩化エチレンの低重合物含有量、平均気泡径、熱伝導率、独立気泡率、密度、圧縮強度、脆性を表2に示す。
【0026】
【表1】
Figure 0003681307
【0027】
【表2】
Figure 0003681307
【0028】
【発明の効果】
本発明によれば、微細化されたセル構造を有し、断熱性能及び圧縮強度等の機械的強度に優れ、脆性が改善されたフェノール樹脂発泡体が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a phenolic resin foam that is useful for various heat insulating materials for buildings, such as ceiling materials, wall materials, and roof materials, and heat insulating materials for refrigerated warehouses, and has a particularly fine cell structure. The present invention provides a method for producing a phenol resin foam excellent in mechanical strength and heat insulation performance.
[0002]
[Prior art]
A phenol resin foam is produced by mixing a resol type phenol resin obtained by condensing phenol and formalin with an alkaline catalyst, a surfactant, a foaming agent, and an acidic curing catalyst, and foaming and curing at room temperature or heating. As the blowing agent, hydrogenated chlorofluorocarbons (HCFC) such as dichlorofluoroethane (HCFC-141b), 1-chloro-1,1, -difluoroethane (HCFC-142b), or 1,1,1,2,- It is known to use hydrogenated fluorocarbons (HFC) such as tetrafluoroethane (HFC-134a) and 1,1-difluoroethane (HFC-152a), or hydrocarbons such as pentane and butane.
[0003]
In the past, low-boiling chlorofluorocarbons (CFC) such as trichlorotrifluoroethane (CFC-113) and trichloromonofluoromethane (CFC-11) have been used as foaming agents. As a result of the problem of destroying the ozone layer, replacement of blowing agents has progressed to hydrogenated chlorofluorocarbons (HCFCs) that have less destructive action on the ozone layer, and the hydrogenated chlorofluorocarbons (HCFCs) will also be developed by around 2010 CE Is scheduled to be completely banned, and in recent years, replacement with hydrogenated fluorocarbons (HFC) having no ozone depleting action has been promoted. However, hydrogenated fluorocarbons (HFCs) have another drawback of a high global warming potential, and regulations are expected to increase in the future. Hydrocarbons, which are environmentally milder blowing agents than HFCs. It is progressing in the direction of using the foaming agent.
[0004]
The following problems arise when the conversion from the above-described CFC to HFC or hydrocarbon-based blowing agent is advanced.
(A) A phenolic resin foam obtained using HFC as a foaming agent has a coarse cell structure compared to that obtained using CFC as a foaming agent, and has mechanical strength such as compressive strength, heat insulation performance ( The foam is inferior in thermal conductivity.
[0005]
(B) The phenol resin foam obtained by using a hydrocarbon-based foaming agent has a slightly fine cell structure compared to that obtained using HFC as a foaming agent, and the physical properties are reduced with respect to mechanical strength and brittleness. Although it is small, since the thermal conductivity of the foaming gas itself is high, the foam is inferior in heat insulating properties (thermal conductivity). In response to the above problems, for example, in Japanese Patent Publication No. 4-503829, a specific fluoroalkane (hereinafter referred to as PFA) is mixed with HCFC, HFC or hydrocarbon (alkane, cycloalkane) and used as a foaming agent. Discloses that a phenolic resin foam having improved thermal conductivity and compressive strength can be obtained. However, PFA has a relatively large global warming potential similar to the above-mentioned HFC, and there is a concern that its use is limited. Japanese Patent Laid-Open No. 3-231941 discloses a method for producing a phenol resin foam using polyfluoroethers as a foaming agent. However, polyfluoroethers are unsatisfactory because they do not have sufficient effects on the thermal conductivity and compressive strength of the resulting foam even when used alone or mixed with foaming agents such as HCFC, HFC, and hydrocarbons. It was something. In particular, for hydrocarbon-based blowing agents with a relatively fine cell diameter, the addition of polyfluoroether has almost no effect of further reducing the cell diameter. The problem that the thermal conductivity which is a problem of the phenol resin foam to be obtained becomes high is not improved.
[0006]
[Problems to be solved by the invention]
The object of the present invention has a very large effect of miniaturizing a coarse cell diameter (which was a problem of a phenol resin foam produced using a conventional HFC or hydrocarbon-based foaming agent), and has a thermal conductivity. The present invention provides a method for producing a phenolic resin foam with greatly improved compressive strength.
[0007]
[Means for Solving the Problems]
That is, the present invention relates to a method for producing a phenol resin foam using low-boiling hydrocarbons and / or hydrogenated fluorocarbons (HFC) as a blowing agent, and low-boiling hydrocarbons of the blowing agent, and / or This is a method for producing a phenol resin foam, wherein 0.1 to 10 parts by weight of a low polymer of ethylene trifluoride chloride is added to 100 parts by weight of hydrogenated fluorocarbons (HFC).
[0008]
The present invention is described in detail below. First, the present invention is greatly different from the prior art in that 0.1 to 10 parts by weight of low-boiling hydrocarbons and hydrogenated fluorocarbons (HFC) are added to a low polymer of ethylene trifluoride chloride as a foaming agent. It was added, in that used. The low polymer of ethylene trifluoride chloride used in the foaming agent of the present invention is represented by the general formula (Chemical Formula 1), and there are various types from oily to waxy at normal temperature depending on the degree of average molecular weight. is there. The range of the average molecular weight is about 500-1500, and the range of n is about 4-13. Therefore, the volatility is very low, and the temperature showing a vapor pressure of 200 Pa is about 50 ° C. for oily materials and 200 ° C. or more for waxy materials.
[0009]
[Chemical 1]
Figure 0003681307
[0010]
Conventionally, the vapor pressure at 50 ° C. of perfluoropentane (see Japanese Patent Publication No. 4-503829) used by being added to and mixed with HFC or a saturated hydrocarbon-based blowing agent is 220 kPa. It is a substance having a vapor pressure that is 1000 times higher than that of a low polymer. The polyfluoroethers described in JP-A-3-2311941 have a boiling point of about -9 to 96 ° C, whereas the low polymer of ethylene trifluoride chloride of the present invention is 100 ° C. It is a substance with a vapor pressure of at most 1000 Pa.
[0011]
That is, conventionally, substances used by being added to and mixed with HFC or saturated hydrocarbon-based foaming agents are a mixture of properties corresponding to foaming agents, whereas in the present invention, dissipative properties are used. By adding a very small amount of an oily component, a significant improvement effect can be obtained as compared with the prior art, and the basic idea is different. The great improvement effect is that the cell diameter of the foam is very small compared to that of the prior art. The cell diameter of the phenol resin foam in the prior art is limited to about 120 μm at most, whereas the phenol resin foam according to the present invention has a cell diameter of 100 μm or less and few voids. Strength and brittleness are improved. And since the cell diameter is small, the shielding effect with respect to radiant heat becomes large, and it is considered that it is a foam having low thermal conductivity, that is, excellent heat insulating performance. Furthermore, it is estimated that having a fine cell diameter has a great effect on the homogeneity and stable production of the foam when the foam is industrially produced.
[0012]
Next, the manufacturing method of the phenol foam by this invention is demonstrated. The resol resin, which is a resin raw material, can be obtained by a known method by heating and polymerizing phenol and formaldehyde as raw materials with an alkali catalyst in a temperature range of 40 to 100 ° C. Various kinds of modifiers such as urea, amines, amides, epoxy compounds, monosaccharides, starches, poval resins, polyvinyl alcohol resins and lactones may be added to the resol resin. The resol resin composition is used with an appropriate viscosity by adjusting the water content. Although the suitable viscosity range of a resin composition changes with foaming conditions, it is preferable that the viscosity in 40 degreeC is 1000-50000 cps (centipoise), and it is further more preferable that it is 2000-30000 cps. A resole resin composition adjusted to an appropriate viscosity, a foaming agent, a low polymer of ethylene trifluorochloride, a surfactant, and a curing catalyst are introduced into a mixer, and the foamed resin composition is uniformly stirred and mixed. obtain. At that time, the surfactant may be mixed with the resol resin composition in advance and then introduced into the mixer, or these may be introduced separately into the mixer.
[0013]
In addition, the method of mixing the low polymer of ethylene trifluoride chloride is not particularly limited, and is mixed with the resol resin composition in advance and introduced into the mixer together with the resin composition, or curing. A method of introducing it into the mixer together with the catalyst, a method of introducing it into the mixer alone, or the like can be considered. However, a method of mixing and dissolving in advance in hydrocarbons and / or hydrogenated fluorocarbon (HFC) , which are blowing agents, and then introducing the mixture into a mixer is more preferable because the expected effect can be obtained with a small addition amount.
[0014]
The ratio of the low polymer of ethylene trifluoride chloride mixed with the foaming agent is 0.1 to 10 parts by weight. If the proportion of the low polymer of ethylene trifluoride chloride is less than 0.1 parts by weight, the effect of miniaturizing the cell diameter of the foam and improving the compressive strength and reducing the thermal conductivity is not sufficient. Even if it is added in an amount exceeding 10 parts by weight, the effect does not change so much, and the production cost becomes expensive, which is not preferable. In particular, the more preferable addition ratio of the low polymer of ethylene trifluoride chloride is 0.5 to 3.0 parts by weight with respect to the foaming agent.
[0015]
The addition amount (0.1 to 10 parts by weight) of the low polymer of ethylene trifluoride chloride corresponds to 0.01 to 1% by weight with respect to the obtained phenol resin foam. As a more preferred embodiment of the present invention, it is mentioned that about 0.01 to 5 parts by weight of nitrogen is mixed and dissolved in a foaming agent as a cell nucleating agent. As the mixing and dissolving method, nitrogen may be pressurized and dissolved in the foaming agent in the foaming agent storage container, or it may be introduced into the foaming agent before mixing at the time of foaming and mixed and dissolved.
[0016]
In the production of the phenol resin foam of the present invention, if the curing catalyst is mixed with the resole resin composition in advance, the curing reaction proceeds before foaming and a good foam cannot be obtained. It is desirable to mix with a curing catalyst. The foamable composition obtained by mixing with a mixer is poured into a mold or the like, and the foam curing is completed by heat treatment, whereby the phenol resin foam of the present invention can be obtained.
[0017]
As the curing catalyst used in the present invention, aromatic sulfonic acids such as toluene sulfonic acid, xylene sulfonic acid, benzene sulfonic acid, and phenol sulfonic acid can be used alone or in admixture of two or more. Further, resorcinol, cresol, salinigen (o-methylolphenol), p-methylolphenol and the like may be added as a curing aid. These curing catalysts may be diluted with a solvent such as diethylene glycol or ethylene glycol. As the surfactant used in the present invention, a well-known one used for producing a phenol resin foam can be used. Among them, nonionic surfactants are effective, for example, block copolymers of ethylene oxide and propylene oxide, condensation products of alkylene oxide and castor oil, condensation products of alkylene oxide and alkylphenols such as nonylphenol and dodecylphenol. And fatty acid esters such as polyoxyethylene fatty acid ester and silicone compounds such as polydimethylsiloxane. These surfactants may be used alone or in combination of two or more. Although there is no restriction | limiting in particular also about the usage-amount, It adds and uses in the range of 0.5-10 weight part with respect to 100 weight part of resole resin compositions.
[0018]
Next, a method for evaluating the structure, structure, and characteristics of the phenol resin foam in the present invention will be described. The closed cell ratio of the phenol resin foam was measured in accordance with ASTM D2856 as follows. First, the sample volume of a cube sample having a width, length, and height of about 25 mm each cut from a foam using a band saw is measured by a standard usage method of an air comparison type hydrometer 1000 type (manufactured by Tokyo Science). . The closed cell ratio of the phenol resin foam is a value obtained by subtracting the volume of the bubble wall calculated from the sample weight and the resin density from the sample volume and dividing the value by the apparent volume calculated from the outer dimensions of the sample. In the present invention, the density of the phenol resin is 1.27 g / cm 3 .
[0019]
In the present invention, the average cell diameter of the phenolic resin foam is obtained by drawing four straight lines of 9 cm on a 50 times enlarged photograph of the cross section of the foam, and dividing the average value of the number of cells crossed by each straight line by 1800 μm. The average value calculated from the number of cells measured according to JISK6402. The thermal conductivity of the phenol resin foam in the present invention is obtained by cutting a phenol resin foam sample into a size of thickness 40 mm × width 200 mm × length 200 mm, a flat plate heat flow meter of JISA1412 at a low temperature plate 5 ° C. and a high temperature plate 35 ° C. Measured according to the method. The density of the phenol resin foam in the present invention is a value obtained by measuring the weight and the apparent volume by removing a face material of a 30 cm square phenol resin foam as a sample, and was measured according to JISK7222. A test piece for the brittleness test was prepared by cutting out 12 cubes each having a side of 25 ± 1.5 mm so as to include the molded skin surface after peeling the surface material on one surface. Room size 191 x 197 x 197 mm jar that can be sealed to prevent dust from coming out of the box with 24 smoked cubes with a specific gravity of 0.65 dried at room temperature and a side of 19 ± 0.8 mm and 12 test pieces Put in a wooden box and make 600 ± 3 rotations at a rate of 60 ± 2 rotations per minute. After completion of rotation, the contents of the box are transferred to a net with a size of 9.5 mm, screened to remove small pieces, the weight of the remaining specimen is measured, and the rate of decrease from the specimen weight before the test is calculated. Is brittle and measured according to JIS A9511.
[0020]
The compressive strength of the phenol resin foam of the phenol resin foam in the present invention was measured according to JIS K7220 with a specified strain of 0.05. The low polymer content of ethylene trifluoride chloride in the phenolic resin foam in the present invention can be confirmed as follows. After holding a test piece of 50 × 50 × thickness mm in standard temperature state class 3 (temperature 23 ± 5 ° C.) and standard humidity state class 3 (relative humidity 40-70%) specified in JISK 7100 for 16 hours or more, surface Remove material and weigh accurately. The test piece is pulverized with a solvent selected from pyridine, toluene, DMF or the like in an airtight container, and a low-polymerized product of a blowing agent and ethylene trifluoride chloride is extracted and quantified by gas chromatography or liquid chromatography. . If necessary, components separated by gas chromatography may be introduced into a mass spectrometer to confirm the molecular structure. Or you may identify an extraction component continuously by LC-IR (liquid chromatography-infrared absorption spectrum meter).
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.
(A) Synthesis of resole resin First, 5000 g of 37% formalin (manufactured by Wako Pure Chemical Industries, special grade of reagent) and 3000 g of 99% phenol (made by Wako Pure Chemical Industries, special grade of reagent) are charged into a reactor, and a propeller rotating stirrer is used. Stir and adjust the temperature of the liquid inside the reactor to 40 ° C. with a temperature controller. Next, 60 g of a 50% aqueous sodium hydroxide solution was added, and the reaction solution was raised from 40 ° C. to 85 ° C. and held for 110 minutes. Thereafter, the reaction solution is cooled to 5 ° C. This is designated as resole resin A-1. On the other hand, 1080 g of 37% formalin, 1000 g of water and 78 g of 50% aqueous sodium hydroxide solution were added to another reactor, and 1600 g of urea (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) was charged and stirred with a propeller rotating stirrer. The temperature inside the reactor is adjusted to 40 ° C. using a temperature controller. Subsequently, the reaction liquid was raised from 40 ° C. to 70 ° C. and held for 60 minutes. This is methylol urea U. Next, 1350 g of methylolurea U was mixed with the resole resin A-1 and the liquid temperature was raised to 60 ° C. and held for 1 hour. The reaction solution was then cooled to 30 ° C. and neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until the pH reached 6. When the reaction solution was dehydrated at 60 ° C. and the viscosity was measured, the viscosity at 40 ° C. was 6700 cps. This is designated as resole resin A.
[0022]
[Example 1]
First, Paintad 32 (a surfactant manufactured by Dow Corning Asia Co., Ltd.) was dissolved in resol resin A at a ratio of 3.5 parts by weight to obtain a resol resin composition. Next, 100 parts by weight of isopentane as a foaming agent (manufactured by Wako Pure Chemical Industries, Ltd., purity 99% or more) and a low polymer of ethylene trifluoride chloride, Daifloil # 10 (manufactured by Daikin Industries, Ltd., average molecular weight of about 900) 2 0.0 parts by weight and 0.3 parts by weight of nitrogen dissolved as a cell nucleating agent were used. As a curing catalyst, a mixture of 60% by weight of paratoluenesulfonic acid monohydrate (manufactured by Wako Pure Chemical Industries, purity 95% or more) and 40% by weight of diethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., purity 98% or more) Using. 100 parts by weight of the above-mentioned resol resin composition, 6 parts by weight of a foaming agent, and 13 parts by weight of a curing catalyst were each supplied to a pin mixer with a temperature control jacket. The mixture coming out of the mixer is poured into a box-shaped form of thickness 50 mm × width 300 mm × length 300 mm preheated to a predetermined amount and 80 ° C., put in an oven at 80 ° C. and held for 5 hours, and then foam-cured. Then, a block-shaped foam was molded to produce a phenol resin foam. A spunbond polyester non-woven fabric (ELTAS E1040 manufactured by Asahi Kasei Kogyo Co., Ltd.) is pasted on the inside of the mold as a surface material in advance so that the foam can be easily taken out of the mold after the foam is cured. It was.
[0023]
[Example 2]
As a foaming agent, 100 parts by weight of isopentane, 0.1 part by weight of low-polymerized difluoroyl # 100 (manufactured by Daikin Industries, Ltd., average molecular weight of about 1300) of ethylene trifluoride chloride, and 0.3 weight of nitrogen as a cell nucleating agent The phenol resin foam was manufactured by repeating the same thing as Example 1 except having used the partially dissolved thing.
[Example 3]
As a blowing agent, 100 parts by weight of a mixture of isopentane / 1,1,1,1,2-tetrafluoroethane (HFC-134a) = 80/20 (weight ratio), a low polymer of ethylene trifluoride chloride, Daifroyl # 1 (Daikin Kogyo Co., Ltd., average molecular weight of about 500) The same as Example 1 was repeated except that 2.0 parts by weight and 0.3 parts by weight of nitrogen dissolved as a cell nucleating agent were used. Thus, a phenol resin foam was produced.
[0024]
[Example 4]
As a foaming agent, 100 parts by weight of isopentane, 10.0 parts by weight of a low polymerized difluoroyl # 10 (manufactured by Daikin Industries, Ltd., average molecular weight of about 900) of ethylene trifluoride chloride, and 0.3 parts by weight of nitrogen as a cell nucleating agent A phenol resin foam was produced by repeating the same procedure as in Example 1 except that the part dissolved was used and the amount of the foaming agent was 10 parts by weight with respect to 100 parts by weight of the resole resin composition.
[Comparative Example 1]
A phenol resin foam was produced by repeating the same procedure as in Example 1 except that 100 parts by weight of isopentane was used as the foaming agent and 0.3 parts by weight of nitrogen was dissolved as the cell nucleating agent.
[0025]
[Comparative Example 2]
As a foaming agent, 0.3 part by weight of nitrogen as a cell nucleating agent was dissolved in 100 parts by weight of a mixture of isopentane / 1,1,1,2-tetrafluoroethane (HFC-134a) = 80/20 (weight ratio). The phenol resin foam was manufactured by repeating the same thing as Example 1 except having used the thing. Table 1 shows a summary of the production conditions of the phenol resin foams of the above Examples and Comparative Examples. Table 2 shows the low polymer content of ethylene trifluoride chloride, the average cell diameter, the thermal conductivity, the closed cell rate, the density, the compressive strength, and the brittleness in the foam.
[0026]
[Table 1]
Figure 0003681307
[0027]
[Table 2]
Figure 0003681307
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the phenol resin foam which has the refined cell structure, was excellent in mechanical strength, such as heat insulation performance and compressive strength, and was improved in brittleness.

Claims (1)

低沸点の炭化水素類、及び/または水素化フルオロカーボン類(HFC)を発泡剤として用いるフェノール樹脂発泡体の製造方法において、該発泡剤の低沸点の炭化水素類、及び/または水素化フルオロカーボン類(HFC)の合計100重量部に対して、三フッ化塩化エチレンの低重合物を0.1〜10重量部添加することを特徴とするフェノール樹脂発泡体の製造方法。In the method for producing a phenol resin foam using low-boiling hydrocarbons and / or hydrogenated fluorocarbons (HFC) as a blowing agent, the low-boiling hydrocarbons and / or hydrogenated fluorocarbons of the blowing agent ( A method for producing a phenol resin foam, wherein 0.1 to 10 parts by weight of a low polymer of ethylene trifluoride chloride is added to 100 parts by weight of HFC) .
JP17946799A 1999-06-25 1999-06-25 Method for producing phenolic resin foam Expired - Fee Related JP3681307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17946799A JP3681307B2 (en) 1999-06-25 1999-06-25 Method for producing phenolic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17946799A JP3681307B2 (en) 1999-06-25 1999-06-25 Method for producing phenolic resin foam

Publications (2)

Publication Number Publication Date
JP2001011230A JP2001011230A (en) 2001-01-16
JP3681307B2 true JP3681307B2 (en) 2005-08-10

Family

ID=16066369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17946799A Expired - Fee Related JP3681307B2 (en) 1999-06-25 1999-06-25 Method for producing phenolic resin foam

Country Status (1)

Country Link
JP (1) JP3681307B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841584B2 (en) 2002-03-18 2005-01-11 University Of Southern California Reinforced phenolic foam
US6864297B2 (en) 2002-07-22 2005-03-08 University Of Southern California Composite foam made from polymer microspheres reinforced with long fibers
JP5058480B2 (en) * 2005-11-14 2012-10-24 旭化成建材株式会社 Method for producing phenolic resin foam
EP2883673B1 (en) 2006-01-30 2020-05-06 Kingspan Holdings (IRL) Limited Method for manufacturing a phenolic foam body
JP6145209B1 (en) * 2016-12-20 2017-06-07 積水化学工業株式会社 Phenol resin foam and method for producing phenol resin foam

Also Published As

Publication number Publication date
JP2001011230A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
JP6647343B2 (en) Cis-1,1,1,4,4,4-hexafluoro-2-butene foam molding compositions and use of the compositions in the production of polyisocyanate-based foams
JP6518729B2 (en) Phenolic resin foam and method for producing the same
KR100429437B1 (en) Phenolic foam
JP2009293033A (en) Phenolic resin foam
KR20170099964A (en) Phenol resin foam and method for producing same
US20160083547A1 (en) Mixed tannin-phenolic foams
JPH10225993A (en) Manufacture of phenol resin foam
JPH11140216A (en) Phenolic resin foam
JP3681307B2 (en) Method for producing phenolic resin foam
WO1995033789A1 (en) Non-cfc foam produced using perfluoroalkanes
EP1040157B1 (en) Phenol foam
JP2007131803A (en) Method for producing phenolic resin foam
JP4868653B2 (en) Phenolic resin foam
AU614162B2 (en) A process for producing phenolic foams
US6586484B1 (en) Phenol foam
JP2003183439A (en) Phenolic resin foam
JP2007131801A (en) Method for producing phenolic resin foam
JP2000230070A (en) Phenol resin foam
JP2002309031A (en) Phenol resin foam for fine foam
JP2001114922A (en) Phenol resin foam
JPH11140217A (en) Phenolic foam
JP5058480B2 (en) Method for producing phenolic resin foam
WO1998036021A1 (en) Phenolic resin foam
JP2005523362A (en) Composition of pentafluoropropane, pentafluorobutane and water
JPH11181140A (en) Foamed phenol resin thermal insulant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3681307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees