JP2009283736A - 光半導体素子および光半導体素子を用いた光干渉断層画像装置 - Google Patents

光半導体素子および光半導体素子を用いた光干渉断層画像装置 Download PDF

Info

Publication number
JP2009283736A
JP2009283736A JP2008134983A JP2008134983A JP2009283736A JP 2009283736 A JP2009283736 A JP 2009283736A JP 2008134983 A JP2008134983 A JP 2008134983A JP 2008134983 A JP2008134983 A JP 2008134983A JP 2009283736 A JP2009283736 A JP 2009283736A
Authority
JP
Japan
Prior art keywords
light
optical
semiconductor element
quantum well
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008134983A
Other languages
English (en)
Inventor
Yoshikatsu Morishima
嘉克 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008134983A priority Critical patent/JP2009283736A/ja
Publication of JP2009283736A publication Critical patent/JP2009283736A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】0.9〜1.2μmの中心波長の光を発光する、高出力化可能な光半導体素子を得る。
【解決手段】 GaAs基板1と、該GaAs基板1の上方に設けられた、InGaAsからなる2層以上の量子井戸層を有する多重量子井戸構造5とを備えてなる、発光ストライプ幅が4μm以下の光半導体素子において、レーザ発振を抑制するレーザ発振抑制機構を有し、多重量子井戸構造5に、少なくとも、1.05μm以上の第1の中心波長の光を発光する量子井戸層5a1と、第1の中心波長とは異なる第2の中心波長の光を発光する量子井戸層5a2と、該量子井戸層間に設けられた、30nm以上、50nm以下の厚みの、GaAs基板に格子整合する組成の障壁層5bとを備える構成とする。
【選択図】図1

Description

本発明は、スーパールミネッセントダイオードおよび光増幅器を含む光半導体素子に関するものである。また、本発明は光半導体素子を用いた干渉断層画像装置に関するものである。
従来、生体組織の光断層画像を取得する際に、OCT(Optical Coherence Tomography)計測を利用した光断層画像取得装置が用いられることがある。この光断層画像取得装置は、光源から射出された低コヒーレント光を測定光と参照光とに分割した後、該測定光が測定対象に照射されたときの測定対象からの反射光と参照光とを合波し、該反射光と参照光との干渉光の強度に基づいて光断層画像を取得するものである。
このような光断層画像取得装置のなかには、参照光の光路長を変更することにより、測定対象に対する深さ方向の位置(以下、深さ位置という)を変更し光断層画像を取得するTD−OCT(Time Domain OCT)計測を利用した装置がある。
また、近年では、上述した参照光の光路長を変更することなく高速に光断層画像を取得するSD−OCT(Spectral Domain OCT)計測を利用したSD−OCT装置が提案されている(特許文献1)。このSD−OCT装置は、広帯域の低コヒーレント光をマイケルソン型干渉計等を用いて測定光と参照光とに分割した後、測定光を測定対象に照射させ、そのとき戻って来た反射光と参照光とを干渉させ、この干渉光を各周波数成分に分解したチャンネルドスペクトルをフーリエ変換することにより、深さ方向の走査を行わずに光断層画像を構成するようにしたものである。
さらに、参照光の光路長の変更を行うことなく高速に光断層画像を取得する装置として、SS−OCT(Swept Source OCT)計測による光断層画像取得装置が提案されている。このSS−OCT装置は、光源から射出されるレーザ光の周波数を掃引させて反射光と参照光とを各波長において干渉させ、一連の波長に対する干渉スペクトルをフーリエ変換することにより測定対象の深さ位置における反射光強度を検出し、これを用いて光断層画像を構成するようにしたものである。
さて、これらのOCT装置は内視鏡への応用を目指してさらに研究開発が進められており、光源波長としては、従来、主として0.8μm帯のものが用いられていた。この波長帯は、生体における吸収特性を主に考慮して選択されたものである。しかしながら、近年、OCT装置では、生体内部の後方散乱反射光を検出するため、散乱特性も計測深度を律速することが明らかにされた。生体組織での主な散乱はレーリー散乱であり、レーリー散乱では散乱強度は波長の4乗に逆比例する。OCT信号を取得する際の全損失は、吸収損失と散乱損失の和である。このような生体組織における光の全損失を考慮して、全損失が最小となる波長帯である、1.3μm帯の光を光源波長として用いることが提案され、1.3μm帯の光を用いたOCT装置の研究開発が進められている。
しかし、内視鏡へOCT装置を応用する場合、被測定部の多くは水分を多く含む物質に覆われている。例えば被測定部が胃壁であれば胃液や胃粘膜に覆われており、被測定部が大腸壁であれば粘液や腸粘膜に覆われており、さらに、被測定部が膀胱壁であれば腸あるいは測定のために用いる生理食塩水等に覆われている。これらの水分を多く含む物質に覆われている被測定部においては、水による吸収の影響が大きいため、1.3μm帯の光を用いた場合、所望の深度までの光断層画像が取得できない、あるいは取得した断層画像の信頼度が低下する恐れがある。
これに対し本出願人は、中心波長0.9μm〜1.2μmの帯域の低コヒーレンス光は、生体における吸収損失および散乱損失が少なく、かつ生体の主な構成物質である水による分散の影響を受けにくいため、中心波長0.9μm〜1.2μmの帯域の低コヒーレンス光が有効であることを見出している。
さらに、この低コヒーレント光の中心波長λcおよびそのスペクトル半値全幅(FWHM)Δλが、
λ 2/Δλ≦23 [μm]
λ+(Δλ/2)≦1.2 [μm]
λ−(Δλ/2)≧0.9 [μm]
を満たすことが好ましいことを見出している。
さらに、胃がんなどの早期診断を行うために、さらなる高分解能を求めた場合、
λ 2/Δλ≦15
を満たすことが好ましい。
また、システムの安定運用の観点から、10mW程度の出力で5000時間以上の信頼性を有する光源が望ましい。
低コヒーレント光を射出する光源としては、単一横モード発光が可能な化合物半導体素子からなるスーパールミネッセントダイオード(SLD:Super Luminescent Diode)や、同様の半導体素子からなる半導体光増幅器(SOA:Semiconductor Optical Amplifier)を利得媒質として用いる波長掃引レーザが考えられる。
SLDやSOAにおいて、スペクトル幅を広域化する方法としては、発光層に異なる波長で発光する多重量子井戸構造を備えることが考えられる。
特許文献2には、量子井戸層の厚みを変化させることによりスペクトル幅の広帯域化を図ることが記載されている。また、特許文献3には、井戸層の層数が5層以上の多重量子井戸構造を備え、障壁層の層厚が4nm以下のSLDが提案されている。特許文献3に記載されているように、量子井戸構造を備えた半導体レーザ(LD)においては、井戸層は通常4〜12nm程度で、障壁層は8〜12nmの厚さにするのが一般的であった。一方、非特許文献1ではGaAs基板上にInGaAs井戸層、GaAs障壁層からなる多重量子井戸構造を備えた、ストライプ幅100μmのLDにおいて、障壁層の層厚を100nmと大きくすることにより、結晶性が向上することが記載されている。他方、特許文献3においては、SLDとしての効率を向上させるために障壁層の層厚を4nm以下とすることが好ましい旨が述べられている。
特開平11−325849号公報 特開平2000−269600号公報 特開11−284223号公報 F. Bugge, Journal of Crystal Growth 298 (2007) pp.652-657
しかしながら、現状では、中心波長0.9μm〜1.2μmで発光する光半導体素子として、OCT計測による光断層画像取得装置に適する素子特性を持つものは市販されておらず、単一横モードの広いスペクトル幅の低コヒーレント光を射出可能な光半導体素子の実現が望まれている。
中心波長0.9μm〜1.2μmで発光する光半導体素子としては、GaAs基板上に作成された圧縮歪InGaAs活性層を用いたものが考えられるが、GaAs基板上に、GaAsよりも格子定数の大きいInGaAsを活性層として用いる場合、発振波長を長くしようとすればするほど、GaAs基板との格子定数差が大きくなるためにInGaAs活性層に大きな歪応力を加える必要が生じる。歪が大きくなりすぎると、結晶学的に良質な発光層(活性層)を有する光半導体素子を作成することが困難である。また、このような素子が作成できたとしても、結晶中に大きな歪が存在すると結晶として不安定であり、高出力化が達成できず、また、劣化しやすいため実用に耐えられない恐れが高い。
さらに、光源の発光帯域を広くするために、発光層に複数の量子井戸層を備えようとすると、量子井戸層の層厚の計が大きくなるために歪量が相対的に大きくなり、発光層にさらに負担がかかり、良質な結晶をもつデバイスを作製することがさらに困難となる。
特に、中心波長が1.05μmを超える量子井戸層を備える素子においては、その劣化が顕著であることが本発明者の実験により明らかになった。図11は、GaAs基板上にInGaAsからなる2層の井戸層を備えた素子について信頼性を調べた結果を示すものである。発光波長0.9μm、0.95μmのものは、それぞれ同一の組成比のInGaAs量子井戸層を2層備えたものであり、発光波長1μm以上として示している素子は、図11に示した各波長を発光する量子井戸層と発光波長は0.95μmの量子井戸層とを備えたものである。図11に示すように、中心波長が1.05μmを超えると急激に寿命が低下することが明らかになった。
本発明は上記の事情に鑑みて、GaAs基板の上方に、1.05μm以上の発光波長のInGaAs井戸層を含む多重量子井戸構造を備えてなる、レーザ発振を示さない光半導体素子において、単一横モードで高出力、かつ信頼性が高い光半導体素子を得ることを目的とするものである。
また、本発明は信頼性が高く、適切な素子特性を有する光半導体素子を用いた光断層画像取得装置を提供することを目的とするものである。
本発明の光半導体素子は、GaAs基板と、該GaAs基板の上方に設けられた、InGaAsからなる2層以上の量子井戸層を有する多重量子井戸構造とを備えてなる、発光ストライプ幅が4μm以下の光半導体素子であって、
レーザ発振を抑制するレーザ発振抑制機構を有し、
前記多重量子井戸構造に、少なくとも、1.05μm以上の第1の中心波長の光を発光する量子井戸層と、前記第1の中心波長とは異なる第2の中心波長の光を発光する量子井戸層と、該量子井戸層間に設けられた、30nm以上、50nm以下の厚みの、前記GaAs基板に格子整合する組成の障壁層とを備えていることを特徴とするものである。
「レーザ発振を抑制するレーザ発振抑制機構」とは、素子の端面間で光が共振することにより生じるレーザ発振を抑制し、端面間で光を共振させないための機構であり、具体的には、光出射端面に設けられた反射防止膜、端面に対して斜め方向に設けられた光導波路、一部が湾曲した光導波路などにより構成することができ、さらにそれらを組み合わせて構成してもよい。
本発明の光半導体素子は、光半導体素子はSLDあるいはSOAとして利用され得るものである。SOAは、入力された光を増幅するのみならず、光波長変換(光変調)や光スイッチング等の信号処理にも応用可能である。
ここで、「InGaAs」と表記した組成は、量子井戸層を構成する材料の元素の組合せを示すものであり、その組成比は、所望のエネルギーギャップ(発光波長)を有するように適宜定められる。InGaAsからなる量子井戸層はInとGaの組成比を調整することにより、0.9μmから1.2μmの中心波長を有する光を出力するものとすることができる。
なお、基板と多重井戸構造との間には、クラッド層、光ガイド層などの他の層が設けられていてもよい。量子井戸層は少なくとも2層備えればよく、3層以上であってもよい。
前記多重量子井戸構造からの発光スペクトルにおける中心波長をλ、該スペクトルの半値全幅をΔλとしたとき、
λ+(Δλ/2)≦1.2 [μm]
λ-(Δλ/2)≧0.9 [μm]
λ /Δλ≦15 [μm]
を満たすものであることが望ましい。
なお、ここで半値全幅Δλは、発光スペクトルの最大強度値の半値となる強度の波長間の距離であり(図4参照)、半値全幅の中心の波長を素子の中心波長λとする。
本発明の外部共振器型波長可変光源は、請求項1または2記載の光半導体素子と、該光半導体素子から出力された光の波長の一部を選択的に該光半導体素子に戻す波長選択手段とを備えたことを特徴とするものである。
本発明の光断層画像取得装置は、請求項2記載の光半導体素子を備えた光源ユニットと、
前記光源ユニットから射出された光を測定光と参照光に分割する光分割手段と、
前記測定光を測定対象に照射する照射光学系と、
前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
該合波手段により合波された前記反射光と前記参照光との干渉光に基づいて前記測定対象の光断層画像を取得する画像取得手段とを備えたことを特徴とするものである。
光断層画像取得装置としては、前記光源ユニットが、低コヒーレント光を射出するものであり、前記干渉光を周波数解析することにより前記測定対象の断層画像を取得するものとすることができる。
またさらに、前記光源ユニットが、前記光半導体素子から発光された光の波長を掃引する波長掃引手段を備え、波長を一定の周期で掃引したレーザ光を射出するものであり、前記干渉光を周波数解析することにより前記測定対象の断層画像を取得するものとすることもできる。
本発明の光半導体素子は、GaAs基板と、該GaAs基板の上方に設けられた、InGaAsからなる2層以上の量子井戸層を有する多重量子井戸構造とを備えてなる、発光ストライプ幅が4μm以下の光半導体素子において、互いに異なる2層の量子井戸層を備えたことにより、広帯域な発光スペクトルの出力光を得ることができ、量子井戸層間に30nm以上、50nm以下の厚みの、GaAs基板に格子整合する組成の障壁層を備えたことにより、1.05μm以上の中心波長の光発光する量子井戸層を備えている場合にも、信頼性の高い素子とすることができる。
本発明の光断層画像取得装置は、光源ユニットが、上述の本発明の光半導体素子のうち、特に多重量子井戸構造からの発光スペクトルにおける中心波長をλc、該スペクトルの半値全幅をΔλとしたとき、λ+(Δλ/2)≦1.2[μm]、λ-(Δλ/2)≧0.9[μm]、λ /Δλ≦15[μm]を満たす光半導体素子を備えており、これを光源、あるいは利得媒質として用いているため、生体における吸収損失および散乱損失が少なく、かつ生体の主な構成物質である水による分散の影響を受けにくいとされる中心波長0.9μm〜1.2μmで発光する、広帯域なスペクトル幅の光を測定光として用いることができるため、良好な画質の断層画像を取得することができる。
ここで、光源ユニットが、低コヒーレント光を射出するものであり、干渉光を周波数解析することにより測定対象の断層画像を取得するものであれば、SS−OCT計測を利用した装置とすることができ、参照光の光路長を変更することなく高速に断層画像を取得することができる。
またさらに、光源ユニットが、光半導体素子から発光された光の波長を掃引する波長掃引手段を備え、波長を一定の周期で掃引したレーザ光を射出するものであり、干渉光を周波数解析することにより測定対象の断層画像を取得するものであれば、SD−OCT計測を利用した装置とすることができ、参照光の光路長を変更することなく高速に断層画像を取得することができる。
以下、本発明の光半導体素子の実施の形態について図面を参照して説明する。
<光半導体素子の実施形態>
図1は本発明の実施形態に係る光半導体素子1を模式的に示す斜視図である。
本実施形態の光半導体素子20は、光半導体素子20はn型GaAs基板1上に、n型GaAsバッファ層2、n型下部クラッド層3、ノンドープGaAs下部光ガイド層、2層のInXGa1-XAs量子井戸層5a1、5a2とその井戸層間に挟まれた障壁層5bとを含む多重量子井戸活性層(多重量子井戸構造)5、ノンドープGaAs上部光ガイド層6、p型上部第1クラッド層7、p型エッチングストップ層8、メサストライプ状のp型上部第2クラッド層9と、その両脇に設けられたn型電流ブロック層10、第2クラッド層9および電流ブロック層10の上に設けられたp型上部第3クラッド層11、p型コンタクト層12が積層されてなり、さらに、基板裏面にn側電極13、コンタクト層12上にp側電極14を備えている。
多重量子井戸活性層5は膜厚が一定の2層の量子井戸層5a1と5a2および量子井戸間に設けられた障壁層5bとからなる。量子井戸層5a1と5a2とは、互い異なる遷移波長の組成で構成されており、少なくとも一方の量子井戸層、例えばここでは量子井戸層5a2が第1の中心波長である発振波長1.05μm以上の組成比のInGaAsから構成されている。障壁層5bは、30nm以上、50nm以下の厚みtの、GaAs基板1に格子整合する組成(一般にはGaAsあるいはInGaAsP)から構成される。
第2クラッド層9は素子端面18および19の法線方向に対して所定角度(例えば6度)傾いた方向に延びるメサストライプ状に設けられており、これにより光導波路が規定される。また、端面18および19には発光波長が反射するのを防止する反射防止膜を備えている。この反射防止膜と光導波路を端面の法線方向に所定角度傾けて形成することにより、両端面での光の共振を防止するレーザ共振抑制機構が構成されている。
また、メサストライプ状のクラッド層のメサ形状の下端(発光ストライプ幅)は4μm以下である。発光ストライプ幅を4μm以下とすることにより、発光光を単一横モードに制御することができる。
<製造方法および組成例>
図1から図3を参照して光半導体素子の製造方法および具体的な組成例について説明する。図2および図3は図1に示す光半導体発光素子の製造工程を示す斜視図である。
GaAs基板1上への各層の積層は、有機金属気相成長(MOCVD)法などを用いた結晶成長により行う。本実施形態においては、原料としてTEG(トリエチルガリウム)、TMA(トリメチルアルミニウム)、TMI(トリメチルインジウム)、TBA(ターシャルブチルアルシン)、AsH3(アルシン)、PH3(ホスフィン)、DMHz(ジメチルヒドラジン)、ドーパントとしてSiH4(シラン)、DEZ(ジエチル亜鉛)を用いる。
n型GaAs基板1上に、MOCVD法により成長温度550℃、気圧10.3kPaの条件下にてn型GaAsバッファ層(0.05μm厚、キャリア濃度7.0×1017cm-3)2、n型In0.49Ga0.51P下部クラッド層(2.0μm厚、キャリア濃度7.0×1017cm-3)3、ノンドープGaAs下部光ガイド層(0.034μm厚)4を順次成長させる。さらに、InXGa1-XAs/GaAs多重量子井戸活性層5を成長させる。活性層5は膜厚が一定の量子井戸層が2層構造になっていて、量子井戸層5a1、5a2として、それぞれIn組成xを0.15と0.25として成長させる。このとき、例えば、各層の発光波長がそれぞれ1.03μm、1.08μmとなるように設計する。また量子井戸間の障壁層の厚さは40nmとする。その後、ノンドープGaAs上部光ガイド層(0.034μm厚)6、p型In0.49Ga0.51P上部第1クラッド層(0.2μm厚、キャリア濃度7.0×1017cm-3)7、p型GaAsエッチングストップ層(10nm厚、キャリア濃度7.0×1017cm-3)8、p型In0.49Ga0.51P上部第2クラッド層(0.5μm厚、キャリア濃度7.0×1017cm-3)9およびp型GaAsキャップ層(0.1μm厚、キャリア濃度7.0×1017cm-3)21をこの順で1回目の成長により積層配置する。さらに、p型GaAsキャップ層21上の発光ストライプに対応する領域にSiO2などの誘電体膜22を形成する(図2参照。)。
この誘電体膜をマスクとして、図3に示すように、GaAsキャップ層21、p型In0.49Ga0.51P上部第2クラッド層9をエッチングして、メサストライプ状のリッジ構造を下端の幅Wが3μm、かつ光出射端面の法線Aに対し6度傾くように(図3中θ=6°となるように)形成する。
その後、選択成長法により上部第クラッド層9の両側のp型GaAsエッチングストップ層8上にn型In0.49(Al0.12Ga0.88)0.51P電流ブロック層(0.5μm厚、キャリア濃度1.0×1018cm-3)10を成長温度600℃で2回目の結晶成長により形成する。さらに、マスクとして用いた誘電体膜22とその下のGaAsキャップ層21を除去した後に、ストライプ状のクラッド層9および電流ブロック層10上にp型In0.49(Al0.12Ga0.88)0.51P上部第3クラッド層(1.3μm厚、キャリア濃度7.0×1017cm-3)11、p型GaAsコンタクト層(0.5μm厚、キャリア濃度1.0×1019cm-3)12を成長温度600℃で3回目の結晶成長により形成する。
その後、全体の厚みが100μm程度になるまでGaAs基板1の研磨を行い、基板1の裏面にn側電極を、コンタクト層12上にp側電極を蒸着および熱処理により形成する。そして、共振器長0.7mmとなるようにSLDバーを劈開により切り出し、素子端面となる劈開面に反射防止膜(AR膜)として素子自体からの発光波長に対して0.5%以下の反射率の膜をコ−ティングする。さらに劈開によりチップ化を行いSLDとしてヒートシンクに実装する。この際、SLDは、放熱効果を高めるため発光部のあるpn接合部を下にしてヒートシンクに実装することが望ましい。
本光半導体素子20においては、端面の法線に対して6度傾けて設けられたストライプ(光導波路)と両端面に設けられた反射防止膜によってレーザ発振抑制機構が構成されている。これにより、本素子20は単一横モードの低コヒーレント光を出力することができる。
図4に、上記製造方法で得られた上記組成の光半導体素子の発光スペクトルを示す。図4において光出力は、最大強度値で規格化している。本素子は、2つの量子井戸層のピーク波長はそれぞれ第1の中心波長λ1=1.08μm、第2の中心波長λ2=1.03μmであり、素子の発光スペクトルにおける中心波長λは1.062μm、半値全幅Δλは84nm(0.084μm)であった。このとき、λc2/Δλ=1.0622/0.084≒13.43である。
すなわち、本素子は、以下の関係式を満たすものとなっている。
λ+(Δλ/2)≦1.2 [μm]
λ-(Δλ/2)≧0.9 [μm]
λ /Δλ≦15 [μm]
上記式を満たす光半導体素子は、後述する光断層画像取得装置の光源に好適である。
なお、光半導体素子から出力されるコヒーレント光の中心波長λおよび半値全幅Δλは、2つの量子井戸層のInとGaとの組成比および/または井戸層の厚みを変化させることにより調整することができる。
上記実施形態においては、結晶成長方法としてMOCVD法を用いたが、分子線エピタキシー法など他の成長方法を用いてもよい。
また、光ガイド層の材料組成および層厚、電流ブロック層の材料組成および層厚、クラッド層の材料組成および層厚は発光波長が単一横モードで発光する条件の1例を示したものであり、本発明を前述の材料組成、層厚に限定するものではない。また上記では埋込型リッジストライプ構造による素子を例示したが、内部ストライプ構造など他の光導波路構造を備えるものであってもよい。
また、上記実施形態においては、量子井戸層の層数を2層としたが、本発明は、量子井戸層の数は2層に限るものではなく、3層以上の量子井戸層を備えた構成であってもよい。3層以上の量子井戸層を備える場合、量子井戸層間の障壁層はいずれも30nm以上、50nm以上とする。
<比較実験>
[実施例]
上述の作製方法で作製した光半導体素子20をSLDとして発光させたところ、駆動電流60mA時、21.2mWの出力で、発光ピークから−6dB以上の強度をもつ波長幅(半値全幅)は79.8nmであった。そして、環境温度70℃にて20mW出力時の信頼性加速試験を実施したところ、室温での20mW出力時の予想寿命は約9500時間であった。
[比較例]
量子井戸活性層5以外は上述の作製方法と全く同じ作製方法で光半導体素子を作製した。ここでは、障壁層の厚さを10nmとした。このとき、2つの量子井戸層の発光波長をそれぞれ1.03μmと1.08μmになるようにするためには、上記の作製方法における条件よりもTMIの投入量を増加させる必要があった。
本素子についてSLDとして発光させたところ、駆動電流60mA時、21mWの出力で最大強度の−6dB以上の強度をもつ波長幅(半値全幅)は78nmと実施例のものとほぼ同等であった。一方、同様にして信頼性加速試験を実施したところ、室温での20mW出力時の予想寿命は、約2200時間であった。
このように、本発明の実施例の素子は、障壁層の厚さが40nmの場合、障壁層の厚さが10nmの比較例の素子と比較して、寿命が格段に延び、高い信頼性が得られた。
なお、上記比較実験は、2つの量子井戸層の発光ピークの間隔(第1の中心波長と第2の中心波長の間隔)が50nmの素子を作製して行ったものについて説明したが、ピーク間隔を、75nm、100nmとした素子についても同様の結果を確認した。
<障壁層厚についての検討>
以下、本発明者による、障壁層の厚みについての検討について説明する。
まず、同一の製造方法(原料組成比も同一とした。)で障壁層の厚みのみ変化させて製造した光半導体素子についての、障壁層の厚みと発光波長との関係を調べた。図5は、障壁層の厚みと発光波長との関係を示すグラフである。
上記実施形態で説明した層構成の素子において、多重量子井戸活性層5の2つの量子井戸層5a1、5a2のIn組成xをそれぞれ0.15、0.25とし、いずれも10nmの層厚とした。単一量子井戸構造の光半導体素子の場合、In組成0.15、層厚10nmの量子井戸層の場合の発光波長は0.95μmであり、In組成0.25、層厚10nmの量子井戸層の場合の発光波長は1.05μmである。
図5に示すように、いずれの素子においてもIn組成0.15の量子井戸層は0.95μmの発光波長であるが、In組成0.25の量子井戸層は、障壁層が薄いほど発光波長が短波化し、厚くするにつれて長波化し、障壁層の厚みが30nm以上で単一量子井戸構造の場合の発光波長1.05μmを示すことがわかった。
次に、上記と同様に作製した、障壁層の厚みのみ異なる3つの光半導体素子についての信頼性実験として、環境温度70℃にて20mW出力時の信頼性加速試験を行った。図6は障壁層の厚みと推定寿命との関係を示すグラフである。
図6に示すように、障壁層の厚みが5nm、10nmの素子は寿命が2000時間前後である一方、障壁層の厚みが30nmの素子は寿命が9500時間であり、障壁層を厚くすることにより素子の寿命が飛躍的に延びた。
図5および図6に示した結果から、障壁層の厚みを30nm以上とすることにより、所望の波長を達成すると共に、信頼性を格段に向上させることができることが明らかになった。なお、図5に示すように、障壁層の厚みが30nm−50nmの範囲において、同様の発光スペクトルを得ることができた。一方、障壁層の厚みが50nm超となると、素子の抵抗値が増加し発熱等の影響があり、好ましくないと考えられる。
<光半導体素子を用いたる外部共振器型波長可変光源>
図7に本発明の光半導体素子を用いた外部共振器型波長可変光源の実施形態である波長可変レーザ装置70の構成例を示す。この波長可変レーザ装置70は、SOAして用いられる本発明の光半導体素子71と、光半導体素子71から出射された光の一部を選択的に光半導体素子71へ戻すグレーティングミラー72と、光半導体素子71から出射された光を平行光としてグレーティングミラー72へ導光するコリメートレンズ73とを備えている。光半導体素子71から射出した光は、コリメートレンズ73により平行光に変換され、グレーティングミラー72により空間的に波長分散され、この波長分散された光のうち、入射光軸方向へ分散された光が戻り光として光半導体素子71へ帰還する。ここでは、光半導体素子71の一方の端面71cと、グレーティングミラー72とにより共振器が構成されており、光半導体素子71の一方の端面71cからレーザ光Loutが射出される。このレーザ光Loutの波長は、グレーティングミラー72で決定された戻り光の波長である。レンズ73の光軸に対するグレーティングミラー72の格子面の角度を変化させると、戻し光の波長が変化し、結果として出力光Loutの波長を変化させることができる。なお、レンズ73の光軸に対する回折格子72の格子面の角度を周期的に変化させる手段(図示していない。)を備えることにより、戻り光の波長を一定の周期で変化させることができ、結果として、波長を一定の周期で掃引したレーザ光を射出する波長掃引レーザ装置として用いることができる。
ここで、用いる光半導体素子71は上述の第1実施形態の素子20と同様の層構成およびリッジストライプを有するものであり、0.95μmと1.08μmで発光する2つのInXGa1-XAs量子井戸層と、量子井戸層間に設けられた40nmの厚みの障壁層とからなる量子井戸活性層を備えたものである。
なお、上記構成の波長可変レーザ装置70について、グレーティングミラー72を調整して最大出力の−6dB以上の強度をもつ波長幅の合計を評価したところ130nmであった。
<光断層画像取得装置>
次に、本発明の光半導体素子を有する光源を用いて光断層画像を取得する光断層画像取得装置について説明する。
[第1の実施形態の光断層画像取得装置]
図8は、本発明の光断層画像取得装置の第1の実施形態の構成を示す図である。光断層画像取得装置100は、例えば、体腔内の生体組織や細胞等の測定対象の断層画像をSS−OCT計測により取得するものである。
光断層画像取得装置100は、光Lを射出する光源ユニット110と、光源ユニット110から射出された光Lを測定光L1と参照光L2とに分割する光分割手段118と、光分割手段118により分割された参照光L2の光路長を調整する光路長調整手段120と、光分割手段118により分割された測定光L1を測定対象Sまで導波し、測定光L1が測定対象Sに照射されたときの該測定対象Sからの反射光L3を導波するプローブ130と、反射光L3と参照光L2とを合波する合波手段138と、合波手段138により合波された反射光L3と参照光L2との干渉光L4を検出する干渉光検出手段140と、干渉光検出手段140により検出された干渉光L4を周波数解析することにより測定対象Sの断層画像を取得する画像取得手段150とを有している。
光源ユニット110は、周波数を一定の周期で掃引させながらレーザ光Lを射出するものであり、光結合用のレンズ111aおよび111bと、上述の本発明の光半導体素子71を備えた可変レーザ装置70、回折格子72の角度を周期的に変化させる手段(波長掃引手段)112とを有している。
波長掃引手段112により、回折格子72のレンズ73の光軸に対する角度が周期的に変化させられ、光半導体素子71への戻り光の波長が周期的に変化する。結果として、波長を一定の周期で掃引したレーザ光Lが光半導体素子71の光結合用のレンズ側の端面から射出されることになる。光半導体素子71から射出されたレーザ光Lは、レンズ111aにより平行光にされレンズ111bにより集光されて光ファイバPFB1に入射する。
光分割手段118は、たとえば2×2の光ファイバカプラから構成されており、光源ユニット110から光ファイバPFB1により光分割手段118まで導波された光Lを測定光L1と参照光L2に分割する。光分割手段118の分岐比はたとえば50:50である。光分割手段118は、2本の光ファイバPFB2、PFB3にそれぞれ光学的に接続されており、測定光L1は光ファイバPFB2によりプローブ130まで導波され、参照光L2は光ファイバPFB3により光路長調整手段120まで導波される。なお、本実施形態における光分割手段118は、合波手段138としても機能するものである。
光ファイバPFB2にはプローブ130が光学的に接続されており、測定光L1は光ファイバPFB2からプローブ130へ導波される。プローブ130は、たとえば鉗子口から鉗子チャンネルを介して体腔内に挿入されるものであって、光学コネクタ136により光ファイバPFB2に対して着脱可能に取り付けられている。
プローブ130は、先端が閉じられた円筒状のプローブ外筒131と、このプローブ外筒131の内部空間に、該外筒131の軸方向に延びる状態に配設されて測定光L1および反射光L3を導波する光ファイバ132と、光ファイバ132の先端から出射した測定光L1をプローブ外筒131の周方向に偏向させるプリズムミラー133と、光ファイバ132の先端から出射した測定光L1を、測定対象Sにおいて収束するように集光するロッドレンズ134と、光ファイバ132を該光ファイバ132の光軸を回転軸として回転させるモータ135とを備えている。なお、ロッドレンズ134およびプリズムミラー133は、光ファイバ132とともに回転するように配設されている。プリズムミラー133がモータ135により駆動されることにより、測定対象Sを走査して測定することができる。
一方、光ファイバPFB3における参照光L2の射出側には光路長調整手段120が配置されている。光路長調整手段120は、測定対象Sに対する断層画像の取得を開始する位置を調整するために、参照光L2の光路長を変更するものであって、光ファイバPFB3から射出された参照光L2を反射させる反射ミラー122と、反射ミラー122と光ファイバPFB3との間に配置された第1光学レンズ121aと、第1光学レンズ121aと反射ミラー122との間に配置された第2光学レンズ121bとを有している。
第1光学レンズ121aは、光ファイバPFB3のコアから射出された参照光L2を平行光にするとともに、反射ミラー122により反射された参照光L2を光ファイバPFB3のコアに集光する機能を有している。また、第2光学レンズ121bは、第1光学レンズ121aにより平行光にされた参照光L2を反射ミラー122上に集光するとともに、反射ミラー122により反射された参照光L2を平行光にする機能を有している。
したがって、光ファイバPFB3から射出した参照光L2は、第1光学レンズ121aにより平行光になり、第2光学レンズ121bにより反射ミラー122上に集光される。その後、反射ミラー122により反射された参照光L2は、第2光学レンズ121bにより平行光になり、第1光学レンズ121aにより光ファイバPFB3のコアに集光される。
さらに光路長調整手段120は、第2光学レンズ121bと反射ミラー122とを固定した可動ステージ123と、該可動ステージ123を第1光学レンズ121aの光軸方向に移動させるミラー移動手段124とを有している。そして可動ステージ123が矢印A方向に移動することにより、参照光L2の光路長が変更するよう構成されている。
合波手段138は、前述のとおり2×2の光ファイバカプラからなり、光路長調整手段120により光路長が変更された参照光L2と測定対象Sからの反射光L3とを合波しこれらの干渉光L4を導波する光ファイバPFB4を介して干渉光検出手段140側に射出するように構成されている。
干渉光検出手段140は、合波手段138により合波された反射光L3と参照光L2との干渉光L4を検出する。上記干渉光検出手段140は例えばパーソナルコンピュータ等のコンピュータシステムからなる画像取得手段150に接続され、画像取得手段150はCRTや液晶表示装置等からなる表示装置160に接続されている。画像取得手段150は、干渉光検出手段140により検出された干渉光L4を周波数解析することにより測定対象Sの各深さ位置における反射光L3の強度を検出し、測定対象Sの断層画像を取得する。この断層画像は表示装置160により表示される。
ここで、干渉光検出手段140および画像取得手段150における干渉光L4の検出および画像の生成について簡単に説明する。なお、この点の詳細については「武田 光夫、「光周波数走査スペクトル干渉顕微鏡」、光技術コンタクト、2003、Vol41、No7、p426−p432」に詳しい記載がなされている。
測定光L1が測定対象Sに照射されたとき、測定対象Sの各深さからの反射光L3と参照光L2とがいろいろな光路長差をもって干渉しあう際の各光路長差lに対する干渉縞の光強度をS(l)とすると、干渉光検出手段140において検出される光強度I(k)は
Figure 2009283736
で表される。ここで、kは波数、lは光路長差である。式(1)は波数kを変数とする光周波数領域のインターフェログラムとして与えられていると考えることができる。このため、画像取得手段150において、干渉光検出手段140が検出した干渉光をフーリエ変換にかけて周波数解析を行い、干渉光L4の光強度S(l)を決定することにより、測定対象Sの各深さ位置における反射情報を取得し、断層画像を生成することができる。そして、生成された断層画像は、表示装置160において表示される。
次に、上記構成を有する光断層画像取得装置100の動作例について説明する。まず、可動ステージ123が矢印A方向に移動することにより、測定可能領域内に測定対象Sが位置するように光路長の調整が行われる。その後、光源ユニット110から光Lが射出され、光Lは光分割手段118により測定光L1と参照光L2とに分割される。測定光L1はプローブ130により体腔内に導波され測定対象Sに照射される。そして、測定対象Sからの反射光L3が反射ミラー122において反射した参照光L2と合波手段138により合波され、反射光L3と参照光L2との干渉光L4が干渉光検出手段140により検出される。この検出された干渉光L4の信号が画像取得手段150において周波数解析されることにより断層画像が取得される。このように、SS−OCT計測により断層画像を取得する光断層画像取得装置100においては、干渉光L4の周波数および光強度に基づいて各深さ位置における画像情報を取得するようになっており、反射ミラー122の矢印A方向の移動は測定対象の深さ方向について断層画像信号を得る位置の調整に用いられる。
ここで、プローブ130のプリズムミラー133を駆動することにより、測定対象Sに対して測定光L1をX方向に走査させ、これと直交するY方向にプローブを移動させれば、この2次元走査領域の各部分において走査対象Sの深さ方向の情報が得られるので、この2次元領域内のX,Y双方向についての断層画像を取得することができる。
本実施形態の光断層画像取得装置100においては、光源ユニットとして、本発明の光半導体素子を備えた可変レーザ装置を用いることにより、生体における吸収損失および散乱損失が少なく、かつ生体の主な構成物質である水による分散の影響を受けにくい波長帯の低コヒーレンス光を測定光とすることができ、良好な画質の断層画像を取得することができる。本発明の光半導体素子は、複数の量子井戸層の組成比を互いに異なるものとすることにより、波長帯域を広帯域化することができるため、この素子を備えた光源ユニットを有することにより、分解能の高い光断層画像を取得することができる。
<第2の実施形態の光断層画像取得装置>
次に、本発明の第2の実施形態による光断層画像取得装置について図9を参照して説明する。なお、第2の実施形態である光断層画像取得装置200は、いわゆるSD−OCT計測を行うことにより断層画像を取得するSD−OCT装置であって、図8の光断層画像取得装置100と異なる点は光源ユニットおよび干渉光検出手段の構成である。図9の光断層画像取得装置200において図8の光断層画像取得装置100と同一の構成を有する部位には同一の符号を付してその説明を省略する。
光断層画像取得装置200が有する光源ユニット210は、図1に示した光半導体素子20と、この光半導体素子20から射出された低コヒーレンス光Lを光ファイバPFB1内に入射するための光学系212とを有している。光半導体素子20は中心波長1.2μmの光を発光するSLDとして機能する素子である。
一方、干渉光検出手段240は、合波手段138により合波された反射光L3と参照光L2との干渉光L4を検出するものであって、連続的で広帯域の発光波長スペクトルを有する干渉光L4を波長帯域毎に分光する分光手段242と、分光手段242により分光されたスペクトルの干渉光L4を検出するアレイ型の光検出手段244とを有している。この分光手段242はたとえば回折光学素子等により構成されており、光ファイバPFB4からコリメータレンズ241を介して入射される干渉光L4を分光し、光検出手段244側に射出するようになっている。
また、アレイ型の光検出手段244は、たとえば1次元あるいは2次元にCCD等の光センサを配置した構造を有し、光センサが光学レンズ243を介して入射される干渉光L4のスペクトルを検出するようになっている。ここで、干渉光検出手段240において、光源ユニット210のスペクトルに反射情報の関数をフーリエ変換したものを加えた干渉光L4が観測される。そして、干渉光検出手段240において検出された干渉光L4を画像取得手段150において周波数解析することにより、測定対象Sの各深さ位置における反射情報を取得し、断層画像を生成する。生成された断層画像は、表示装置160において表示される。
本実施形態の光断層画像取得装置200は、本発明の光半導体素子を備えた光源ユニットを有するものであり、生体における吸収損失および散乱損失が少なく、かつ生体の主な構成物質である水による分散の影響を受けにくい波長帯の低コヒーレンス光を測定光とすることができ、良好な画質の断層画像を取得することができる。本発明の光半導体素子は、容易に低コヒーレンス光の波長帯域を広帯域化することができるため、この素子を備えた光源ユニットを有することにより、分解能の高い光断層画像を取得することができる。
<第3の実施形態の光断層画像取得装置>
次に、本発明の第3の実施形態による光断層画像取得装置について図10を参照して説明する。なお、第3の実施形態である光断層画像取得装置300は、いわゆるTD−OCT計測を行うことにより断層画像を取得するTD−OCT装置であって、図9の光断層画像取得装置200と異なる点は光路長調整手段および干渉光検出手段の機能である。図10の光断層画像取得装置300において図9の光断層画像取得装置200と同一の構成を有する部位には同一の符号を付してその説明を省略する。
光断層画像取得装置300の光路長調整手段320は、光断層画像取得装置100の光路長調整手段120と同様の構成を有するが、測定対象S内の測定位置を深さ方向に変化させるために、参照光L2の光路長を変える機能を有している。さらに、光断層画像取得装置300では、参照光L2の光路中(光ファイバPFB3)に位相変調器325が配置されており、参照光L2に対しわずかな周波数シフトを与える機能を有している。そして、光路長調整手段320および位相変調器325により光路長の変更および周波数シフトがなされた参照光L2が合波手段138に導波されるようになっている。
また、光断層画像取得装置300の干渉光検出手段340は、たとえばヘテロダイン検波により干渉光L4の光強度を検出するようになっている。具体的には、測定光L1の全光路長と反射光L3の全光路長との合計が、参照光L2の全光路長と等しいときに、参照光L2と反射光L3との差周波数で強弱を繰り返すビート信号が発生する。光路長調整手段320により光路長が変更されていくにつれて、測定対象Sの測定位置(深さ)が変わっていき、干渉光検出手段340は各測定位置における複数のビート信号を検出するようになっている。なお、測定位置の情報は光路長調整手段320から画像取得手段150へ出力される。そして、干渉光検出手段340により検出されたビート信号と、ミラー移動手段24における測定位置の情報とに基づいて断層画像が生成される。生成された断層画像は、表示装置160において表示される。
ここで、第3の実施形態の光断層画像取得装置300は、第2の実施形態の光断層画像取得装置200と同様に、本発明の光半導体素子を備えた光源ユニットを有するものであり、同様の効果を得ることができる。
本発明の実施形態に係る光半導体素子を示す斜視図 実施形態に係る光半導体素子の製造工程を示す図(その1) 実施形態に係る光半導体素子の製造工程を示す図(その2) 実施形態に係る光半導体素子の発光スペクトルを示す図 障壁層の厚みと発光波長との関係を示す図 障壁層の厚みと推定寿命との関係を示す図 本発明の光半導体素子を備えた波長可変レーザの概略構成を示す図 本発明の光半導体素子を備えた光断層画像取得装置の概略構成を示す図 本発明の光半導体素子を備えた光断層画像取得装置の概略構成を示す図 本発明の光半導体素子を備えた光断層画像取得装置の概略構成を示す図 発光波長と推定寿命との関係を示す図
符号の説明
1 n型GaAs基板
2 n型GaAsバッファ層
3 n型下部クラッド層3
4 ノンドープGaAs下部光ガイド層
5 多重量子井戸活性層(多重量子井戸構造)
5a1、5a2 量子井戸層
6 ノンドープGaAs上部光ガイド層
7 p型上部第1クラッド層
8 p型エッチングストップ層
9 p型上部第2クラッド層
10 n型電流ブロック層
11 p型上部第3クラッド層
12 p型コンタクト層
13 n側電極
14 p側電極
18、19 素子端面
20、71 光半導体素子
70 波長可変レーザ装置

Claims (6)

  1. GaAs基板と、該GaAs基板の上方に設けられた、InGaAsからなる2層以上の量子井戸層を有する多重量子井戸構造とを備えてなる、発光ストライプ幅が4μm以下の光半導体素子であって、
    レーザ発振を抑制するレーザ発振抑制機構を有し、
    前記多重量子井戸構造に、少なくとも、1.05μm以上の第1の中心波長の光を発光する量子井戸層と、前記第1の中心波長とは異なる第2の中心波長の光を発光する量子井戸層と、該量子井戸層間に設けられた、30nm以上、50nm以下の厚みの、前記GaAs基板に格子整合する組成の障壁層とを備えていることを特徴とする光半導体素子。
  2. 前記多重量子井戸構造からの発光スペクトルにおける中心波長をλ、該スペクトルの半値全幅をΔλとしたとき、
    λ+(Δλ/2)≦1.2 [μm]
    λ-(Δλ/2)≧0.9 [μm]
    λ /Δλ≦15 [μm]
    を満たすものであることを特徴とする請求項1記載の光半導体素子。
  3. 請求項1または2記載の光半導体素子と、該光半導体素子から出力された光の波長の一部を選択的に該光半導体素子に戻す波長選択手段とを備えたことを特徴とする外部共振器型波長可変光源。
  4. 請求項2記載の光半導体素子を備えた光源ユニットと、
    前記光源ユニットから射出された光を測定光と参照光に分割する光分割手段と、
    前記測定光を測定対象に照射する照射光学系と、
    前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
    該合波手段により合波された前記反射光と前記参照光との干渉光に基づいて前記測定対象の光断層画像を取得する画像取得手段とを備えたことを特徴とする光断層画像取得装置。
  5. 前記光源ユニットが、低コヒーレント光を射出するものであり、
    前記画像取得手段が、前記干渉光を周波数解析することにより前記測定対象の光断層画像を取得するものであることを特徴とする請求項4記載の光断層画像取得装置。
  6. 前記光源ユニットが、前記光半導体素子から発光された光の波長を掃引する波長掃引手段を備え、波長を一定の周期で掃引したレーザ光を射出するものであり、
    前記干渉光を周波数解析することにより前記測定対象の断層画像を取得するものであることを特徴とする請求項4記載の光断層画像取得装置。
JP2008134983A 2008-05-23 2008-05-23 光半導体素子および光半導体素子を用いた光干渉断層画像装置 Withdrawn JP2009283736A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134983A JP2009283736A (ja) 2008-05-23 2008-05-23 光半導体素子および光半導体素子を用いた光干渉断層画像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134983A JP2009283736A (ja) 2008-05-23 2008-05-23 光半導体素子および光半導体素子を用いた光干渉断層画像装置

Publications (1)

Publication Number Publication Date
JP2009283736A true JP2009283736A (ja) 2009-12-03

Family

ID=41453874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134983A Withdrawn JP2009283736A (ja) 2008-05-23 2008-05-23 光半導体素子および光半導体素子を用いた光干渉断層画像装置

Country Status (1)

Country Link
JP (1) JP2009283736A (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141039A (ja) * 2008-12-10 2010-06-24 Hamamatsu Photonics Kk スーパールミネッセントダイオード
JP2011258855A (ja) * 2010-06-11 2011-12-22 Seiko Epson Corp 発光装置、およびプロジェクター
JP2011258854A (ja) * 2010-06-11 2011-12-22 Seiko Epson Corp 発光装置、およびプロジェクター
JP2012037292A (ja) * 2010-08-04 2012-02-23 Shimadzu Corp エッチングモニタリング装置
KR101144523B1 (ko) 2009-12-04 2012-05-11 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US8399948B2 (en) 2009-12-04 2013-03-19 Lg Innotek Co., Ltd. Light emitting device, light emitting device package and lighting system
WO2014051137A1 (en) * 2012-09-28 2014-04-03 Canon Kabushiki Kaisha Optical semiconductor device, driving method thereof, and optical coherence tomography apparatus having the optical semiconductor device
JP2014063933A (ja) * 2012-09-24 2014-04-10 Shimadzu Corp レーザ装置及びレーザ装置の製造方法
JP2014082485A (ja) * 2012-09-28 2014-05-08 Canon Inc 光源及び前記光源を用いた光干渉断層撮像装置
US9124070B2 (en) 2012-02-13 2015-09-01 Canon Kabushiki Kaisha Superluminescent diode and optical coherence tomography apparatus including the superluminescent diode
WO2015147334A1 (en) * 2014-03-27 2015-10-01 Canon Kabushiki Kaisha Light emitting device, light source system including the light emitting device, and optical coherence tomography including the light source system
EP2950354A1 (en) 2014-05-29 2015-12-02 Canon Kabushiki Kaisha Semiconductor light emitting element and optical coherence tomography apparatus
JP2016513889A (ja) * 2013-03-15 2016-05-16 プレビウム リサーチ インコーポレイテッド 広帯域可変掃引光源
WO2016098273A1 (ja) * 2014-12-19 2016-06-23 ソニー株式会社 活性層構造、半導体発光素子および表示装置
WO2017212700A1 (ja) * 2016-06-09 2017-12-14 ソニー株式会社 距離計測用光源及び内視鏡
JP2019071321A (ja) * 2017-10-06 2019-05-09 古河電気工業株式会社 半導体光増幅器の評価方法
US20200251610A1 (en) * 2019-01-31 2020-08-06 Exalos Ag Amplified Stimulated Emission Semiconductor Source

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141039A (ja) * 2008-12-10 2010-06-24 Hamamatsu Photonics Kk スーパールミネッセントダイオード
KR101144523B1 (ko) 2009-12-04 2012-05-11 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US8399948B2 (en) 2009-12-04 2013-03-19 Lg Innotek Co., Ltd. Light emitting device, light emitting device package and lighting system
JP2011258855A (ja) * 2010-06-11 2011-12-22 Seiko Epson Corp 発光装置、およびプロジェクター
JP2011258854A (ja) * 2010-06-11 2011-12-22 Seiko Epson Corp 発光装置、およびプロジェクター
JP2012037292A (ja) * 2010-08-04 2012-02-23 Shimadzu Corp エッチングモニタリング装置
US9124070B2 (en) 2012-02-13 2015-09-01 Canon Kabushiki Kaisha Superluminescent diode and optical coherence tomography apparatus including the superluminescent diode
JP2014063933A (ja) * 2012-09-24 2014-04-10 Shimadzu Corp レーザ装置及びレーザ装置の製造方法
CN104662677B (zh) * 2012-09-28 2018-09-04 佳能株式会社 光源和包括光源的光学相干层析成像装置
CN104662677A (zh) * 2012-09-28 2015-05-27 佳能株式会社 光源和包括光源的光学相干层析成像装置
JP2014082485A (ja) * 2012-09-28 2014-05-08 Canon Inc 光源及び前記光源を用いた光干渉断層撮像装置
US10109762B2 (en) 2012-09-28 2018-10-23 Canon Kabushiki Kaisha Light source and optical coherence tomography apparatus including the light source
WO2014051137A1 (en) * 2012-09-28 2014-04-03 Canon Kabushiki Kaisha Optical semiconductor device, driving method thereof, and optical coherence tomography apparatus having the optical semiconductor device
US20170373469A1 (en) 2013-03-15 2017-12-28 Praevium Research, Inc. Widely tunable swept source
JP2016513889A (ja) * 2013-03-15 2016-05-16 プレビウム リサーチ インコーポレイテッド 広帯域可変掃引光源
US10263394B2 (en) 2013-03-15 2019-04-16 Praevium Research, Inc. Widely tunable swept source
US9929307B2 (en) 2014-03-27 2018-03-27 Canon Kabushiki Kaisha Light emitting device, light source system including the light emitting device, and optical coherence tomography including the light source system
CN106165124A (zh) * 2014-03-27 2016-11-23 佳能株式会社 发光设备、包括发光设备的光源系统和包括光源系统的光学相干层析仪
JP2015195379A (ja) * 2014-03-27 2015-11-05 キヤノン株式会社 発光素子、前記発光素子を有する光源システム、及び前記光源システムを有する光干渉断層計
WO2015147334A1 (en) * 2014-03-27 2015-10-01 Canon Kabushiki Kaisha Light emitting device, light source system including the light emitting device, and optical coherence tomography including the light source system
EP2950354A1 (en) 2014-05-29 2015-12-02 Canon Kabushiki Kaisha Semiconductor light emitting element and optical coherence tomography apparatus
JPWO2016098273A1 (ja) * 2014-12-19 2017-09-28 ソニー株式会社 活性層構造、半導体発光素子および表示装置
WO2016098273A1 (ja) * 2014-12-19 2016-06-23 ソニー株式会社 活性層構造、半導体発光素子および表示装置
US10672944B2 (en) 2014-12-19 2020-06-02 Sony Corporation Active layer structure, semiconductor light emitting element, and display apparatus
WO2017212700A1 (ja) * 2016-06-09 2017-12-14 ソニー株式会社 距離計測用光源及び内視鏡
JP2019071321A (ja) * 2017-10-06 2019-05-09 古河電気工業株式会社 半導体光増幅器の評価方法
JP6998719B2 (ja) 2017-10-06 2022-01-18 古河電気工業株式会社 半導体光増幅器の評価方法
US20200251610A1 (en) * 2019-01-31 2020-08-06 Exalos Ag Amplified Stimulated Emission Semiconductor Source
US11791437B2 (en) * 2019-01-31 2023-10-17 Exalos Ag Amplified spontaneous emission semiconductor source

Similar Documents

Publication Publication Date Title
JP2009283736A (ja) 光半導体素子および光半導体素子を用いた光干渉断層画像装置
US7450242B2 (en) Optical tomography apparatus
US7864331B2 (en) Optical coherence tomographic imaging apparatus
USRE41633E1 (en) Light source for swept source optical coherence tomography based on cascaded distributed feedback lasers with engineered band gaps
EP1705476B1 (en) Optical tomography apparatus
US7944567B2 (en) Semiconductor light emitting element, light source using the semiconductor light emitting element, and optical tomography imaging apparatus
JP2006189424A (ja) 光断層画像化装置
JP2008145429A (ja) 光断層画像化装置
JP2009049123A (ja) 光半導体素子、該光半導体素子を用いた波長可変光源および光断層画像取得装置
JP2007184557A (ja) 半導体発光素子および該素子を備えた光源装置および光断層画像化装置
US20080140328A1 (en) Optical tomographic imaging apparatus
US20080117431A1 (en) Optical tomographic imaging apparatus
CN104662677A (zh) 光源和包括光源的光学相干层析成像装置
JP2008270585A (ja) 光半導体素子、該光半導体素子を用いた波長可変光源および光断層画像取得装置
US20150085295A1 (en) Light emitting device and optical coherence tomography apparatus including same as light source
JP6253326B2 (ja) 光源及び前記光源を用いた光干渉断層撮像装置
US20130242310A1 (en) Light source device including super luminescent diodes, method of driving the same, and optical tomography imaging apparatus
JP4818823B2 (ja) 光断層画像化装置
US20150263231A1 (en) Optical semiconductor device, driving method thereof, and optical coherence tomography apparatus having the optical semiconductor device
US20120327422A1 (en) Semiconductor optical integrated device and optical coherence tomographic imaging apparatus provided with the semiconductor optical integrated device
JP2012069770A (ja) 半導体発光素子および、該半導体発光素子による波長可変光源装置、sd−oct装置、ss−oct装置
JP2008192731A (ja) 半導体発光素子および該素子を備えた光断層画像化装置
JP2008128707A (ja) 断層画像処理方法、装置およびプログラムならびにこれを用いた光断層画像化システム
JP2009049122A (ja) 光半導体素子、該光半導体素子を用いた波長可変光源および光断層画像取得装置
WO2017188364A1 (ja) 光増幅器、それを備える光干渉断層計、及び光増幅器を用いた光増幅方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802