JP2009281062A - 建設機械 - Google Patents

建設機械 Download PDF

Info

Publication number
JP2009281062A
JP2009281062A JP2008134455A JP2008134455A JP2009281062A JP 2009281062 A JP2009281062 A JP 2009281062A JP 2008134455 A JP2008134455 A JP 2008134455A JP 2008134455 A JP2008134455 A JP 2008134455A JP 2009281062 A JP2009281062 A JP 2009281062A
Authority
JP
Japan
Prior art keywords
arm
boom
excavation
cylinder
height position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008134455A
Other languages
English (en)
Inventor
Hajime Okano
一 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2008134455A priority Critical patent/JP2009281062A/ja
Publication of JP2009281062A publication Critical patent/JP2009281062A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)

Abstract

【課題】 下側掘削作業での生産性を確保しつつ、上側掘削作業でジャッキアップ状態が発生するのを防止する。
【解決手段】 コントローラ36は、圧力スイッチ26,27からの操作信号Sam,Sbkを用いて、作業装置5の掘削動作を検出する。また、コントローラ36は、圧力センサ28,29による圧力検出信号を用いて、作業装置5の負荷状態を検出する。さらに、コントローラ36は、ブーム角検出器34、アーム角検出器35による角度検出信号を用いて、作業装置5の先端側の高さ位置Hを検出する。そして、コントローラ36は、高さ位置Hが高さ判定値Htよりも高いときには、掘削動作および負荷状態に応じて、減圧信号Jupを出力してブーム保持圧を低下させるのに対し、高さ位置Hが高さ判定値Htよりも低いときには、掘削動作および負荷状態に拘らず、減圧信号Jupを出力しない。
【選択図】 図2

Description

本発明は、掘削作業を行う油圧ショベル等の建設機械に関し、特に掘削作業において生じるジャッキアップによる揺動を防止する建設機械に関する。
一般に、油圧ショベル等の建設機械は、自走可能な下部走行体と、該下部走行体上に旋回可能に設けられた上部旋回体と、該上部旋回体に俯仰動可能に設けられブーム、アームおよびバケットが連結された作業装置と、該作業装置のブーム、アーム、バケットをそれぞれ駆動するブームシリンダ、アームシリンダ、バケットシリンダと、操作レバーの操作量に応じて該各シリンダに供給する圧油の流れを制御する制御弁とを備えている。
また、油圧ショベルの掘削作業において、アームシリンダおよびバケットシリンダを伸長させて掘削を行う場合、これらの各シリンダの出力が極めて大きくなる。このとき、ブームシリンダの保持圧が高いと、油圧ショベルの本体(下部走行体および上部旋回体)を持ち上げる状態(所謂ジャッキアップ状態)となり、油圧ショベルの本体前部が持ち上げられる。この状態で被掘削物が崩れてバケットの先端が被掘削物から離れる際に、それまで持ち上げられていた油圧ショベルの本体が地面に落下する。これにより、油圧ショベルに大きな衝撃を与えると共に、油圧ショベルに設けられた各種の構造物の寿命を低下させ、早期に亀裂を発生させる虞れがある。
特に、大型の油圧ショベルでは、生産性を向上させるために、一般的に連続稼動する場合が多い。このような大型の油圧ショベルにおいて、その構造物に亀裂が生じたときには、亀裂の発生度合いによっては油圧ショベルを長期間に亘って休止させなければならないことがあり、油圧ショベルによる掘削作業の生産性が大きく低下してしまう。
そこで、従来技術として、ジャッキアップ状態によって油圧ショベル本体が揺動するのを防止する構成も知られている(例えば、特許文献1参照)。この場合、特許文献1には、ブーム角、アーム角、バケット角をそれぞれ検出する角度検出器と、角度検出器の各検出値を油圧ショベルの重量に基づいてバケット先端の垂直荷重を求める第1の演算手段と、角度検出器の検出値と油圧シリンダの圧力を用いてバケット先端の掘削力の垂直成分を求める第2の演算手段と、第2の演算手段により得られた値が第1の演算手段により得られた値を超えたときにブームシリンダの保持圧を減少させる手段とを備えた構成が開示されている。
特開昭62−248724号公報
ところで、上述した特許文献1による建設機械では、油圧ショベルの全ての掘削範囲を対象として、バケット先端に過大な荷重が作用したときに、ブームシリンダの保持圧を減少させてジャッキアップ状態の発生を防止している。
ここで、例えば大型の油圧ショベルを鉱山等の作業現場で用いる場合には、地面よりも上側の被掘削物を下方に向けてかき落とす掘削作業(上側掘削作業)を行うことがある。この上側掘削作業では、ジャッキアップ状態に伴って各種の構造物の破損等が生じる可能性があるのに加えて、ブームシリンダの保持圧が高いと例えばバケットの上側から岩石等が落下してバケットシリンダのロッド部を破損する虞れもある。このため、これらの破損等を防止する観点から、バケット先端に大きな負荷が作用するときには、ブームシリンダの保持圧を低下させて油圧ショベル本体の揺動を抑制するのが好ましい。
一方、地面の下側を被掘削物を掘削する作業(下側掘削作業)でも、バケット先端に過大な荷重が作用したときには、油圧ショベルの本体後部が持ち上がってジャッキアップ状態となることがある。しかし、下側掘削状態では、上側掘削状態に比べてバケットシリンダのロッド部に岩石が衝突する可能性が低くなる。これに加えて、下側掘削作業は油圧ショベルの主要な掘削作業であるのに対し、この下側掘削作業においてブームシリンダの保持圧を減少させてしまうと、掘削力の低下によって被掘削物の生産量が低下するおそれがある。即ち、下側掘削作業では、ジャッキアップ状態による弊害よりも、生産性の低下の方が大きな問題となる。これに対し、従来技術による建設機械では、このような下側掘削作業での生産性の低下が考慮されていないという問題があった。
本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、下側掘削作業での生産性を確保しつつ、上側掘削作業でジャッキアップ状態が発生するのを防止することができる建設機械を提供することにある。
上述した課題を解決するために、本発明は、自走可能な下部走行体と、該下部走行体上に旋回可能に設けられた上部旋回体と、該上部旋回体に俯仰動可能に設けられブーム、アームおよびバケットが連結された作業装置と、該作業装置のブーム、アーム、バケットをそれぞれ駆動するブームシリンダ、アームシリンダ、バケットシリンダからなる油圧シリンダと、操作手段の操作量に応じて該各油圧シリンダに供給する圧油の流れを制御する制御弁とを有する建設機械に適用される。
そして、請求項1の発明が採用する構成の特徴は、前記操作手段の操作量に基づいて前記作業装置の掘削動作を検出する掘削動作検出手段と、前記油圧シリンダの圧力を用いて前記作業装置に負荷が作用した負荷状態を検出する負荷検出手段と、前記掘削動作検出手段によって掘削動作が検出され、かつ該負荷検出手段によって負荷状態が検出されたときに前記油圧シリンダの保持圧を減少させる保持圧減少手段と、前記作業装置の先端側の高さ位置を検出する高さ位置検出手段と、該高さ位置検出手段による高さ検出値が予め決められた所定高さ位置よりも高い上側掘削状態では前記保持圧減少手段を用いて掘削動作および負荷状態に応じて前記油圧シリンダの保持圧を減少させ、高さ検出値が所定高さ位置よりも低い下側掘削状態では前記保持圧減少手段を作動させずに前記油圧シリンダの保持圧を維持する上側掘削処理手段を備える構成としたことにある。
請求項2の発明では、前記掘削動作検出手段は、前記アームのクラウド方向への操作量を検出するアームクラウド操作検出手段と、前記バケットのクラウド方向への操作量を検出するバケットクラウド操作検出手段と、前記アームクラウド操作検出手段による検出操作量とバケットクラウド操作検出手段による検出操作量とのうち少なくともいずれか一方が予め決められた所定操作量を超えたときに掘削動作であると判定する掘削動作判定手段とによって構成している。
請求項3の発明では、前記高さ位置検出手段は、前記ブームの回転角度を検出するブーム回転角検出手段と、前記アームの回転角度を検出するアーム回転角検出手段と、前記ブーム回転角検出手段による検出ブーム角とアーム回転角検出手段による検出アーム角とに基づいて前記アームとバケットとの連結部の高さ位置を演算する高さ位置演算手段とによって構成している。
請求項4の発明では、前記高さ位置検出手段は、前記ブームシリンダの変位量を検出するブームシリンダ変位量検出手段と、前記アームシリンダの変位量を検出するアームシリンダ変位量検出手段と、前記ブームシリンダ変位量検出手段による検出変位量とアームシリンダ変位量検出手段による検出変位量とに基づいて前記アームとバケットとの連結部の高さ位置を演算する高さ位置演算手段とによって構成している。
上述の如く、請求項1に記載の発明によれば、掘削動作検出手段は、操作手段の操作量に基づいて作業装置の掘削動作を検出し、負荷検出手段は、油圧シリンダの圧力を用いて作業装置に負荷が作用する負荷状態を検出する。そして、上側掘削処理手段は、高さ位置検出手段による高さ検出値が予め決められた所定高さ位置よりも高い上側掘削状態と判定したときには、保持圧減少手段を用いて掘削動作および負荷状態に応じて油圧シリンダの保持圧を減少させる。これにより、地面よりも上側を掘削する上側掘削作業では、掘削動作時に作業装置に大きな負荷が作用すると、油圧シリンダの保持圧を低下させて下部走行体および上部旋回体が持ち上がるのを防止できると共に、作業装置の上側から岩石等が落下するのを防止することができる。
一方、上側掘削処理手段は、高さ検出値が所定高さ位置よりも低い下側掘削状態と判定したときには、保持圧減少手段を作動させずに油圧シリンダの保持圧を維持する。これにより、地面よりも下側を掘削する下側掘削作業では、掘削動作時に作業装置に大きな負荷が作用したときでも、油圧シリンダの保持圧を維持して掘削作業における生産性を高めることができる。
請求項2の発明によれば、掘削動作検出手段は、アームクラウド操作検出手段、バケットクラウド操作検出手段および掘削動作判定手段によって構成したから、掘削動作判定手段は、アームクラウド操作検出手段およびバケットクラウド操作検出手段による2つの検出操作量のうち少なくともいずれか一方が予め決められた所定操作量を超えたか否かに基づいて、掘削動作であるか否かを判別することができる。
請求項3の発明によれば、高さ位置検出手段は、ブーム回転角検出手段、アーム回転角検出手段および高さ位置演算手段によって構成した。このため、高さ位置演算手段は、例えばブーム回転角検出手段による検出ブーム角およびブームの長さ寸法を用いてブームとアームとの連結部の高さ位置を演算できると共に、この連結部の高さ位置に基づいて、アーム回転角検出手段による検出アーム角およびアームの長さ寸法を用いてアームとバケットとの連結部の高さ位置を演算することができる。
請求項4の発明によれば、高さ位置検出手段は、ブームシリンダ変位量検出手段、アームシリンダ変位量検出手段および高さ位置演算手段によって構成した。このとき、ブームシリンダ変位量検出手段による検出変位量によってブーム角を演算することができると共に、アームシリンダ変位量検出手段による検出変位量によってアーム角を演算することができる。このため、請求項3の発明と同様に、高さ位置演算手段は、例えばブームシリンダ変位量検出手段による検出変位量およびブームの長さ寸法を用いてブームとアームとの連結部の高さ位置を演算できると共に、この連結部の高さ位置に基づいて、アームシリンダ変位量検出手段による検出変位量およびアームの長さ寸法を用いてアームとバケットとの連結部の高さ位置を演算することができる。
以下、本発明の実施の形態による建設機械として油圧ショベルを例に挙げ、添付図面を参照しつつ詳細に説明する。
まず、図1ないし図6は第1の実施の形態を示している。図中、1は油圧ショベルの下部走行体を示し、該下部走行体1上には上部旋回体2が旋回可能に搭載されている。また、上部旋回体2には、運転室3、機械室4等が配設されている。
5は上部旋回体2の前部に俯仰動可能に取付けられた作業装置(フロント)で、該作業装置5はブーム6、アーム7、バケット8等によって構成され、ブーム6、アーム7、バケット8にはブームシリンダ9、アームシリンダ10、バケットシリンダ11等の油圧シリンダが取付けられている。
ここで、ブーム6の基端側は連結部6Aを介して上部旋回体2に回動可能に連結されると共に、ブーム6の先端側には連結部7Aを介してアーム7の基端側が回動可能に連結されている。また、アーム7の先端側には連結部8Aを介してバケット8の基端側が回動可能に連結されている。そして、土砂等の掘削作業時には、ブームシリンダ9等を伸縮させることにより、ブーム6およびアーム7を俯仰動させつつ、バケット8を回動させ、該バケット8の先端側で土砂等を掘削するものである。
次に、ブームシリンダ9およびアームシリンダ10を駆動するための油圧回路について図2ないし図4を参照しつつ説明する。
12は油圧源としての油圧ポンプで、該油圧ポンプ12は上部旋回体2の機械室4内にディーゼルエンジン等の原動機(図示せず)と共に設けられ、油圧ポンプ12は油路としての主管路13A,13Bを通じてブームシリンダ9に接続され、主管路14A,14Bを通じてアームシリンダ10に接続されると共に、主管路15A,15Bを通じてバケットシリンダ11に接続されている。
このとき、主管路13A,13Bは、ブームシリンダ9のロッド側油室9A、ボトム側油室9Bにそれぞれ接続されている。同様に、主管路14A,14Bは、アームシリンダ10のロッド側油室10A、ボトム側油室10Bにそれぞれ接続され、主管路15A,15Bは、バケットシリンダ11のロッド側油室11A、ボトム側油室11Bにそれぞれ接続されている。そして、油圧ポンプ12は、原動機によって回転駆動され、タンク16内の作動油を高圧の圧油として各シリンダ9〜11等に吐出させる。
17は主管路13A,13Bの途中に設けられ、油圧ポンプ12からブームシリンダ9に給排する圧油の方向を切換える方向切換弁(制御弁)で、該方向切換弁17は、例えば4ポート3位置の油圧パイロット式の方向切換弁によって構成されている。
また、方向切換弁17の各パイロット部には、一対のパイロット油路18A,18Bがそれぞれ接続されると共に、パイロット油路18A,18Bにはパイロット弁19が設けられている。そして、パイロット弁は、運転室3内のブーム用操作レバー19A(操作手段)を操作することによって、パイロット油路18A,18Bのいずれか一方にパイロット圧を発生させる。
このとき、方向切換弁17は、パイロット油路18Aからパイロット圧が供給されるときには、中立位置(a1)からブーム下げ位置(b1)に切換わる。これにより、ブームシリンダ9が縮小して、ブーム6は下側に向けて回動する。
一方、方向切換弁17は、パイロット油路18Bからパイロット圧が供給されるときには、中立位置(a1)からブーム上げ位置(c1)に切換わる。これにより、ブームシリンダ9が伸長して、ブーム6は上側に向けて回動する。
20は主管路14A,14Bの途中に設けられ、油圧ポンプ12からブームシリンダ10に給排する圧油の方向を切換える方向切換弁(制御弁)で、該方向切換弁20は、方向切換弁17とほぼ同様に、例えば4ポート3位置の油圧パイロット式の方向切換弁によって構成されている。
また、方向切換弁20の各パイロット部には一対のパイロット油路21A,21Bがそれぞれ接続されると共に、パイロット油路21A,21Bにはアーム操作用のパイロット弁22が設けられている。このとき、パイロット弁22は、運転室3内のアーム用操作レバー22A(操作手段)を操作することによって、パイロット油路21A,21Bのいずれか一方にパイロット圧を発生させる。
このとき、方向切換弁20は、パイロット油路21Aからパイロット圧が供給されるときには、中立位置(a2)からアームダンプ位置(b2)に切換わる。これにより、アームシリンダ10が縮小して、アーム7は土砂を落とすダンプ側(上側)に向けて回動する。
一方、方向切換弁20は、パイロット油路21Bからパイロット圧が供給されるときには、中立位置(a2)からアームクラウド位置(c2)に切換わる。これにより、アームシリンダ10が伸長して、アーム7は土砂をかき入れるクラウド側(下側)に向けて回動する。
23は主管路15A,15Bの途中に設けられ、油圧ポンプ12からバケットシリンダ11に給排する圧油の方向を切換える方向切換弁(制御弁)で、該方向切換弁23は、方向切換弁17とほぼ同様に、例えば4ポート3位置の油圧パイロット式の方向切換弁によって構成されている。
また、方向切換弁23の各パイロット部には一対のパイロット油路24A,24Bがそれぞれ接続されると共に、パイロット油路24A,24Bにはアーム操作用のパイロット弁25が設けられている。このとき、パイロット弁25は、運転室3内のバケット用操作レバー25A(操作手段)を操作することによって、パイロット油路24A,24Bのいずれか一方にパイロット圧を発生させる。
このとき、方向切換弁23は、パイロット油路24Aからパイロット圧が供給されるときには、中立位置(a3)からバケットダンプ位置(b3)に切換わる。これにより、バケットシリンダ11が縮小して、バケット8は土砂を落とすダンプ側に向けて回動する。
一方、方向切換弁23は、パイロット油路24Bからパイロット圧が供給されるときには、中立位置(a3)からバケットクラウド位置(c3)に切換わる。これにより、バケットシリンダ11が伸長して、バケット8は土砂をかき入れるクラウド側に向けて回動する。
26はパイロット油路21Bの途中に接続して設けられたアームクラウド操作検出手段としての圧力スイッチで、該圧力スイッチ26は、パイロット油路21Bにパイロット圧が発生したときに、ONに切換わる。これにより、圧力スイッチ26は、アーム用操作レバー22Aの操作によって方向切換弁20がアームクラウド位置(c2)に切換わるときに、操作信号Samを出力する。
27はパイロット油路24Bの途中に接続して設けられたバケットクラウド操作検出手段としての圧力スイッチで、該圧力スイッチ27は、パイロット油路24Bにパイロット圧が発生したときに、ONに切換わる。これにより、圧力スイッチ27は、バケット用操作レバー25Aの操作によって方向切換弁23がバケットクラウド位置(c3)に切換わるときに、操作信号Sbkを出力する。
28は主管路14Bの途中に接続して設けられた圧力センサで、該圧力センサ28は、アームシリンダ10のボトム側油室10Bの圧力Pamを検出し、この圧力Pamに応じた圧力検出信号を出力する。
29は主管路13Aの途中に接続して設けられた圧力センサで、該圧力センサ29は、ブームシリンダ9のロッド側油室9Aの圧力Pbmを検出し、この圧力Pbmに応じた圧力検出信号を出力する。
30は主管路13Aの途中に接続された保持圧減少手段としての圧力制御弁で、該圧力制御弁30は、例えば油圧パイロット式のリリーフ弁によって構成され、チェック弁31が並列に接続されている。また、圧力制御弁30の油圧パイロットには、油圧パイロット式の圧力制御切換弁32を介してブームシリンダ9のロッド側油室9Aの圧力Pbmが作用している。さらに、圧力制御切換弁32のパイロット部は、電磁弁33を介して油圧ポンプ12に接続されている。
そして、後述のコントローラ36から減圧信号Jupが出力されると、電磁弁33はONとなり、油圧ポンプ12からの圧油が圧力制御切換弁32のパイロット部に供給される。これにより、圧力制御切換弁32は、連通位置から遮断位置に切換わり、圧力制御弁30の油圧パイロットに作用していたブームシリンダ9のロッド側油室9Aからの油を遮断する。この結果、圧力制御弁30の設定圧が低下し、ブーム6を保持するためのブームシリンダ9のロッド側油室9A内の圧力Pbmであるブーム保持圧が低下する。
34はブーム6の傾斜角度(ブーム角α)を検出するブーム角検出器で、該ブーム角検出器34は、例えばブーム6と上部旋回体2との連結部6Aの周囲に設けられ、ブーム6が水平方向に対して傾斜した角度を検出し、このブーム角αに応じた角度検出信号を後述のコントローラ36に向けて出力する。
35はブーム6に対するアーム7の傾斜角度(アーム角β)を検出するアーム角検出器で、該アーム角検出器35は、例えばブーム6とアーム7との連結部7Aの周囲に設けられ、アーム7がブーム角α方向に対して傾斜した角度を検出し、このアーム角βに応じた角度検出信号を後述のコントローラ36に向けて出力する。
36は処理装置としてのコントローラで、該コントローラ36は、図4に示すように、種々の演算、処理を行う中央処理ユニット37(以下、CPU37という)、CPU37の処理プログラム等を格納する読出し専用メモリ38(以下、ROM38という)、CPU37の演算、制御の結果等を格納するランダムアクセスメモリ39(以下、RAM39という)、時刻信号を出力するタイマ40等によって構成されている。
ここで、ROM38には、上側掘削姿勢検出処理用のプログラムが格納されると共に、後述する操作信号Sam,Sbkの連続入力時間を判定するための時間判定値T、圧力Pam,Pbmを判定するための圧力判定値Pamt,Pbmt、高さ位置Hを判定するための所定高さ位置としての高さ判定値Ht、減圧信号Jupの出力を継続する時間ΔT(例えば、ΔT=5〜15秒)が格納されている。
このとき、時間判定値Tは、オペレータが操作レバー22A,25Aを操作していることを確実に判別するために必要な時間として、例えば0.1〜0.6秒程度の値に設定されている。圧力判定値Pamt,Pbmtは、下部走行体1、上部旋回体2等の重量を考慮しつつ、ジャッキアップ現象が発生する可能性がある圧力Pam,Pbmの値として、例えば15M〜25MPa程度の値に設定されている。高さ判定値Htは、地面よりも上側の掘削を行うことが明らかな高さ位置Hの値として、例えば0.5〜1.5m程度の値に設定されている。
また、コントローラ36は、入力インターフェイス41と出力インターフェイス42とを備えている。この入力インターフェイス41には、圧力スイッチ26,27、圧力センサ28,29、ブーム角検出器34、アーム角検出器35が接続されている。一方、出力インターフェイス42には、電磁弁33が接続されている。
そして、コントローラ36は、圧力スイッチ26,27の操作信号Sam,Sbkに基づいて作業装置5の掘削動作を検出すると共に、圧力センサ28,29の検出圧力信号に基づいて作業装置5に負荷が作用した負荷状態を検出する。また、コントローラ36は、ブーム角検出器34によって検出したブーム角αとアーム角検出器35によって検出したアーム角βとに基づいて、バケット8とアーム7との連結部8Aの高さ位置H(地面からの垂直距離)を演算する。
高さ位置Hが高さ判定値Htよりも高い(H>Ht)ときには、コントローラ36は、作業装置5が地面よりも上側を掘削する上側掘削状態にあると判定する。この場合、コントローラ36は、作業装置5の掘削動作および負荷状態に応じて減圧信号Jupを出力インターフェイス42から電磁弁33に向けて出力する。これにより、電磁弁33が切換わり、ブームシリンダ9の保持圧を減少させることができる。
一方、高さ位置Hが高さ判定値Htよりも低い(H≦Ht)ときには、コントローラ36は、作業装置5が地面よりも下側を掘削する下側掘削状態にあると判定する。この場合、コントローラ36は、作業装置5の掘削動作や負荷状態に関係なく、減圧信号Jupを出力しなくなる。これにより、ブームシリンダ9の保持圧が維持されるから、作業装置5は大きな掘削力をもって土砂等の掘削作業を行うことができる。
本実施の形態による油圧ショベルは上述の如き構成を有するもので、次にコントローラ36が実行する上側掘削姿勢検出処理について、図5を参照しつつ説明する。
まず、コントローラ36は、エンジンを始動させるエンジンスイッチ(いずれも図示せず)をONとすることによりスタートし、上側掘削姿勢検出処理を実行する。
ステップ1では、ブーム角検出器34およびアーム角検出器35の角度検出信号を用いて、ブーム角検出器34によって検出したブーム角αを読込むと共に、アーム角検出器35によって検出したアーム角βを読込む。
次に、ステップ2では、アーム7がクラウド状態にあることを示す圧力スイッチ26からの操作信号Samを読込むと共に、バケット8がクラウド状態にあることを示す圧力スイッチ27からの操作信号Sbkを読込む。
次に、ステップ3では、圧力センサ28による圧力検出信号を用いて、アームシリンダ10のボトム側油室10Bの圧力Pamを読込むと共に、圧力センサ29による圧力検出信号を用いて、ブームシリンダ9のロッド側油室9Aの圧力Pbmを読込む。
次に、ステップ4では、ブーム角α、アーム角βに基づいて、作業装置5の先端側としてバケット8とアーム7との連結部8Aの高さ位置Hを演算する。具体的には、ブーム6の連結部6Aの高さ位置H0、ブーム6の長さ寸法Lbm(連結部6A,7A間の距離寸法)およびブーム角αに基づいて、以下の数1の式に示すように、ブーム6の先端部(連結部7A)の高さ位置H1を演算する。
Figure 2009281062
次に、ブーム6の先端部(連結部7A)の高さ位置H1、アーム7の長さ寸法Lam(連結部7A,8A間の距離寸法)およびアーム角βに基づいて、以下の数2の式に示すように、アーム7の先端部(連結部8A)の高さ位置Hを演算する。これにより、バケット8の基端部としてアーム7とバケット8との連結部8Aの高さ位置Hを算出することができる。
Figure 2009281062
次に、ステップ5では、操作レバー22A,25Aの操作量に基づいて、作業装置5が掘削動作をしているか否かを判定する。具体的には、操作レバー22A,25Aの操作量として操作信号Sam,Sbkの連続入力時間Ta,Tbを計測し、これらの連続入力時間Ta,Tbのうち少なくともいずれか一方が所定操作量として例えば0.3秒程度の時間判定値T(T=0.3秒)よりも長時間か否かを判定する。そして、ステップ5で「NO」と判定したときには、アーム用操作レバー22Aおよびバケット用操作レバー25Aのいずれも操作されていないから、作業装置5は掘削動作を行っていないものと判定し、ステップ1に移行する。
一方、ステップ5で「YES」と判定したときには、アーム用操作レバー22Aおよびバケット用操作レバー25Aの片方または両方が時間判定値Tよりも長時間に亘って連続して操作されている。このため、操作信号Sam,Sbkはノイズ等ではなくオペレータの意志に基づいて出力されているもの、即ち作業装置5は掘削動作を行っているものと判定し、ステップ6に移行する。
次に、ステップ6では、アームシリンダ10のボトム側油室10Bの圧力Pamとブームシリンダ9のロッド側油室9Aの圧力Pbmとを用いて、作業装置5に負荷が作用した負荷状態か否かを判定する。具体的には、圧力Pam,Pbmのうち少なくともいずれか一方が例えば20MPa程度の圧力判定値Pamt,Pbmt(Pamt=Pbmt=20MPa)よりも高いか否かを判定する。そして、ステップ6で「NO」と判定したときには、アームシリンダ10の圧力Pamとブームシリンダ9の圧力Pbmのいずれも低圧となっているから、作業装置5には大きな負荷は作用していない。このため、非負荷状態と判定して、ステップ1に移行する。
一方、ステップ6で「YES」と判定したときには、圧力Pam,Pbmの片方または両方が圧力判定値Pamt,Pbmtよりも高圧となっているから、作業装置5にはジャッキアップ現象が生じる程度の大きな負荷が作用している。このため、負荷状態と判定して、ステップ7に移行する。
次に、ステップ7では、ステップ4で演算した高さ位置Hが例えば1m程度の高さ判定値Htよりも高いか否かを判定する。そして、ステップ7で「NO」と判定したときには、作業装置5の先端側の高さ位置Hが例えば1m程度の高さ判定値Htよりも低いから、バケット8が地面の下側を掘削する下側掘削状態であると判定し、ステップ1に移行する。
このとき、コントローラ36は、減圧信号Jupを出力しないから、圧力制御弁30の油圧パイロットには、ブームシリンダ9のロッド側油室9Aの圧力Pbmが作用する。これにより、ブーム保持圧は、作業装置5の掘削動作や負荷状態に拘らず、維持される。
一方、ステップ7で「YES」と判定したときには、作業装置5の先端側の高さ位置Hが高さ判定値Htよりも高い(H>Ht)から、バケット8が地面の上側を掘削する上側掘削状態であると判定し、ステップ8に移行する。
ここで、ステップ8に移行したときには、操作レバー22A,25Aによって掘削動作を行い、各シリンダ9,10が負荷状態となり、かつ作業装置5の先端側が地面の上側を掘削する上側掘削状態となっている。この場合、下部走行体1の前側が地面から持ち上がるジャッキアップ現象が発生する可能性があるのに加え、例えば作業装置5の上側から岩石等が落下してバケットシリンダ11のロッド部を破損する虞れがある。このため、ステップ8では、コントローラ36から電磁弁33に向けて減圧信号Jupを出力し、圧力制御切換弁32を連通位置から遮断位置に切換える。これにより、圧力制御弁30の設定圧を低下させて、ブームシリンダ9の保持圧を低下させることができる。
次に、ステップ9では、減圧信号Jupが出力を開始してから時間ΔTが経過したか否かを判定する。そして、ステップ9で「NO」と判定したときには、減圧信号Jupの出力開始から時間ΔTが経過していないから、ステップ8に戻って、減圧信号Jupの出力を継続する。
一方、ステップ9で「YES」と判定したときには、減圧信号Jupの出力開始から時間ΔTが経過したから、ブームシリンダ9の保持圧が十分に低下したと判断して、ステップ1以降の処理を繰り返す。
次に、上側掘削姿勢検出処理を行ったときの動作について具体的に説明する。
まず、オペレータが運転室3内で操作レバー22A,25Aを操作して作業装置5による掘削動作を行うと、図6に示すように、圧力スイッチ26,27から操作信号Sam,Sbkが出力される。
そして、バケット8が掘削対象に接触すると、作業装置5に負荷が作用する。このとき、アームシリンダ10のボトム側油室10Bの圧力Pamとブームシリンダ9のロッド側油室9Aの圧力Pbmは、作業装置5に作用する負荷に応じて、その値が変化する。即ち、負荷が大きいときには、圧力Pam,Pbmが上昇し、負荷が小さいときには、圧力Pam,Pbmが低下する。
そして、下部走行体1等が持ち上がるような大きな負荷が作用すると、圧力Pam,Pbmは、圧力判定値圧力Pamt,Pbmtを超えて上昇する。ここで、作業装置5の先端側が地面よりも上側に位置した上側掘削状態となっているときには、コントローラ36は、減圧信号Jupを出力する。これにより、図3に示すように、圧力制御弁30の油圧パイロットに対する圧油の供給が遮断されるから、圧力制御弁30の設定圧が低下して、ブームシリンダ9の保持圧が低下する。これにより、ブームシリンダ9のロッド側油室9Aの圧力Pbmが低下すると共に、作業装置5に作用する負荷も低下するから、アームシリンダ10のボトム側油室10Bの圧力Pamも、圧力Pbmに伴って低下する。
一方、作業装置5の先端側が地面よりも下側に位置した下側掘削状態となっているときには、圧力Pam,Pbmが圧力判定値圧力Pamt,Pbmtを超えて上昇しても、コントローラ36は減圧信号Jupを出力しない。このとき、図2に示すように、圧力制御弁30の油圧パイロットに対してブームシリンダ9のロッド側油室9Aの圧油が供給される。これにより、図6に示すように、ブームシリンダ9の保持圧(圧力Pbm)は維持されるから、作業装置5は大きな掘削力をもって土砂等の掘削を行うことができる。
最後に、土砂等の掘削が終了して、オペレータが操作レバー22A,25Aの操作を止めると、操作信号Sam,Sbkの出力も停止すると共に、圧力Pam,Pbmも低下する。
かくして、本実施の形態によれば、コントローラ36は、操作レバー22A,25Aの操作信号Sam,Sbkに基づいて作業装置5の掘削動作を検出し、アームシリンダ10のボトム側油室10Bの圧力Pamとブームシリンダ9のロッド側油室9Aの圧力Pbmを用いて作業装置5の負荷状態を検出する。そして、コントローラ36は、ブーム角α、アーム角βに基づいて演算した高さ位置Hが高さ判定値Htよりも高い(H>Ht)ときには、上側掘削状態と判定して、圧力制御弁30等を用いて掘削動作および負荷状態に応じてブームシリンダ9の保持圧を減少させる。これにより、地面よりも上側を掘削する上側掘削作業では、掘削動作時に作業装置5に大きな負荷が作用すると、ブームシリンダ9の保持圧を低下させて下部走行体1および上部旋回体2が持ち上がるジャッキアップ現象を防止できると共に、作業装置5の上側から岩石等が落下するのを防止することができる。
一方、コントローラ36は、高さ位置Hが高さ判定値Htよりも低い(H≦Ht)ときには、下側掘削状態と判定して、圧力制御弁30の油圧パイロットには、ブームシリンダ9のロッド側油室9Aの圧力Pbmが作用する。このとき、圧力制御弁30の設定圧は低下しないから、ブームシリンダ9の保持圧は維持される。これにより、地面よりも下側を掘削する下側掘削作業では、掘削動作時に作業装置5に大きな負荷が作用したときでも、ブームシリンダ9の保持圧を維持して掘削作業における生産性を高めることができる。
また、コントローラ36は、アーム用操作レバー22Aの操作信号Samとバケット用操作レバー25Aの操作信号Sbkとを用いて作業装置5が掘削動作を行っているか否かを判定する構成としたから、2つの操作信号Sam,Sbkのうち少なくともいずれか一方が時間判定値Tを超えて継続して出力されたか否かに基づいて、オペレータが掘削動作を行う意志があるか否かを判別することができる。
なお、上側掘削状態では、主としてバケット8およびアーム7の回動によって掘削動作を行い、バケット8を掘削対象に対向させるためにブーム6の下げ操作を徐々に行うことがある。この場合、ブーム用操作レバー19Aの操作状態を監視しても掘削動作を行うか否かが把握できないため、掘削動作の判定には操作レバー19Aの操作量は用いない。
また、コントローラ36は、ブーム角検出器34およびアーム角検出器35に接続する構成としたから、コントローラ36は、ブーム角αおよびブーム6の長さ寸法Lbmを用いてブーム6とアーム7との連結部7Aの高さ位置H1を演算できると共に、この連結部7Aの高さ位置H1に基づいて、アーム角検出器35によるアーム角βおよびアーム7の長さ寸法Lamを用いてアーム7とバケット8との連結部8Aの高さ位置Hを演算することができる。
次に、図7は本発明の第2の実施の形態を示し、本実施の形態の特徴は、ブームシリンダの変位量を検出するブームシリンダ変位量検出手段と、アームシリンダの変位量を検出するアームシリンダ変位量検出手段とを用いて、アームとバケットとの連結部の高さ位置を演算する構成としたことにある。なお、本実施の形態では、第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
51はブームシリンダ9の変位量を検出するブームシリンダ変位量検出手段としてのブーム側ストロークセンサで、該ブーム側ストロークセンサ51は、例えばブームシリンダ9が伸長、縮小するときに、ロッドまたはピストンの変位量を検出し、この変位量に応じた変位量信号Sαをコントローラ36に出力する。このとき、コントローラ36は、変位量信号Sαに基づいてブーム角αを演算する。
52はアームシリンダ10の変位量を検出するアームシリンダ変位量検出手段としてのアーム側ストロークセンサで、該アーム側ストロークセンサ52は、例えばアームシリンダ10が伸長、縮小するときに、ロッドまたはピストンの変位量を検出し、この変位量に応じた変位量信号Sβをコントローラ36に出力する。このとき、コントローラ36は、変位量信号Sβに基づいてアーム角βを演算する。
そして、コントローラ36は、演算したブーム角αおよびアーム角β等に基づいて、第1の実施の形態と同様に、アーム7とバケット8との連結部8Aの高さ位置Hを演算する。これにより、コントローラ36は、上側掘削姿勢検出処理を行うものである。
かくして、第2の実施の形態でも、第1の実施の形態とほぼ同様な作用効果を得ることができる。
なお、前記各実施の形態では、図5中のステップ6が負荷検出手段の具体例を示し、ステップ4が高さ位置検出手段の具体例を示している。また、図5中のステップ7〜9が上側掘削処理手段の具体例を示している。さらに、図5中のステップ5が掘削動作判定手段の具体例を示している。
本発明の第1の実施の形態による油圧ショベルを示す正面図である。 第1の実施の形態による上側掘削姿勢検出処理を行うための全体構成を示す油圧回路図である。 ブームシリンダの保持圧を低下させる状態で示す図2と同様な油圧回路図である。 図2中のコントローラを示すブロック図である。 コントローラによる上側掘削姿勢検出処理を示す流れ図である。 アームシリンダの圧力、バケットシリンダの圧力および操作信号の時間変化を示す特性線図である。 第2の実施の形態による上側掘削姿勢検出処理を行うための全体構成を示す油圧回路図である。
符号の説明
1 下部走行体
2 上部旋回体
5 作業装置
6 ブーム
7 アーム
8 バケット
9 ブームシリンダ
10 アームシリンダ
11 バケットシリンダ
17,20,23 方向切換弁(制御弁)
19A,22A,25A 操作レバー(操作手段)
26 圧力スイッチ(アームクラウド操作検出手段)
27 圧力スイッチ(バケットクラウド操作検出手段)
28,29 圧力センサ
30 圧力制御弁(保持圧減少手段)
34 ブーム角検出器(ブーム回転角検出手段)
35 アーム角検出器(アーム回転角検出手段)
36 コントローラ
51 ブーム側ストロークセンサ(ブームシリンダ変位量検出手段)
52 アーム側ストロークセンサ(アームシリンダ変位量検出手段)

Claims (4)

  1. 自走可能な下部走行体と、該下部走行体上に旋回可能に設けられた上部旋回体と、該上部旋回体に俯仰動可能に設けられブーム、アームおよびバケットが連結された作業装置と、該作業装置のブーム、アーム、バケットをそれぞれ駆動するブームシリンダ、アームシリンダ、バケットシリンダからなる油圧シリンダと、操作手段の操作量に応じて該各油圧シリンダに供給する圧油の流れを制御する制御弁とを有する建設機械において、
    前記操作手段の操作量に基づいて前記作業装置の掘削動作を検出する掘削動作検出手段と、
    前記油圧シリンダの圧力を用いて前記作業装置に負荷が作用した負荷状態を検出する負荷検出手段と、
    前記掘削動作検出手段によって掘削動作が検出され、かつ該負荷検出手段によって負荷状態が検出されたときに前記油圧シリンダの保持圧を減少させる保持圧減少手段と、
    前記作業装置の先端側の高さ位置を検出する高さ位置検出手段と、
    該高さ位置検出手段による高さ検出値が予め決められた所定高さ位置よりも高い上側掘削状態では前記保持圧減少手段を用いて掘削動作および負荷状態に応じて前記油圧シリンダの保持圧を減少させ、高さ検出値が所定高さ位置よりも低い下側掘削状態では前記保持圧減少手段を作動させずに前記油圧シリンダの保持圧を維持する上側掘削処理手段を備える構成としたことを特徴とする建設機械。
  2. 前記掘削動作検出手段は、前記アームのクラウド方向への操作量を検出するアームクラウド操作検出手段と、前記バケットのクラウド方向への操作量を検出するバケットクラウド操作検出手段と、前記アームクラウド操作検出手段による検出操作量とバケットクラウド操作検出手段による検出操作量とのうち少なくともいずれか一方が予め決められた所定操作量を超えたときに掘削動作であると判定する掘削動作判定手段とによって構成してなる請求項1に記載の建設機械。
  3. 前記高さ位置検出手段は、前記ブームの回転角度を検出するブーム回転角検出手段と、前記アームの回転角度を検出するアーム回転角検出手段と、前記ブーム回転角検出手段による検出ブーム角とアーム回転角検出手段による検出アーム角とに基づいて前記アームとバケットとの連結部の高さ位置を演算する高さ位置演算手段とによって構成してなる請求項1または2に記載の建設機械。
  4. 前記高さ位置検出手段は、前記ブームシリンダの変位量を検出するブームシリンダ変位量検出手段と、前記アームシリンダの変位量を検出するアームシリンダ変位量検出手段と、前記ブームシリンダ変位量検出手段による検出変位量とアームシリンダ変位量検出手段による検出変位量とに基づいて前記アームとバケットとの連結部の高さ位置を演算する高さ位置演算手段とによって構成してなる請求項1または2に記載の建設機械。
JP2008134455A 2008-05-22 2008-05-22 建設機械 Pending JP2009281062A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134455A JP2009281062A (ja) 2008-05-22 2008-05-22 建設機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134455A JP2009281062A (ja) 2008-05-22 2008-05-22 建設機械

Publications (1)

Publication Number Publication Date
JP2009281062A true JP2009281062A (ja) 2009-12-03

Family

ID=41451793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134455A Pending JP2009281062A (ja) 2008-05-22 2008-05-22 建設機械

Country Status (1)

Country Link
JP (1) JP2009281062A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174084A1 (ja) * 2017-03-21 2018-09-27 日立建機株式会社 建設機械
JP2019124049A (ja) * 2018-01-16 2019-07-25 住友建機株式会社 ショベル
CN113107046A (zh) * 2015-12-28 2021-07-13 住友建机株式会社 挖土机、挖土机用的系统、挖土机的控制装置及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113107046A (zh) * 2015-12-28 2021-07-13 住友建机株式会社 挖土机、挖土机用的系统、挖土机的控制装置及方法
CN113107046B (zh) * 2015-12-28 2022-09-13 住友建机株式会社 挖土机、挖土机用的系统、挖土机的控制装置及方法
WO2018174084A1 (ja) * 2017-03-21 2018-09-27 日立建機株式会社 建設機械
US10590623B2 (en) 2017-03-21 2020-03-17 Hitachi Construction Machinery Co., Ltd. Construction machine
JP2019124049A (ja) * 2018-01-16 2019-07-25 住友建機株式会社 ショベル
JP7062445B2 (ja) 2018-01-16 2022-05-06 住友建機株式会社 ショベル

Similar Documents

Publication Publication Date Title
JP5519414B2 (ja) 建設機械
JP4223893B2 (ja) 作業車両の作業機用油圧ポンプの制御方法と制御装置
KR20180102644A (ko) 작업 기계
JP2011085198A (ja) 作業機械の油圧システム
CN109983182A (zh) 作业机械
JP6740025B2 (ja) ショベル
CN108603359A (zh) 挖土机
WO2014054326A1 (ja) 建設機械の油圧回路
JP2007297873A (ja) 自動運転式ホイールローダ
EP3305995A1 (en) Hydraulic system of construction machine
JPWO2018164238A1 (ja) ショベル
JP4384977B2 (ja) 油圧駆動装置
WO2017061220A1 (ja) 建設機械
JP2014167334A (ja) 建設機械の油圧回路及びその制御方法
KR102460502B1 (ko) 쇼벨
JP2009281062A (ja) 建設機械
JP2012225084A (ja) 建設機械
KR102517099B1 (ko) 작업 기계
US9863120B2 (en) System and method for controlling a machine implement
JP2018135704A (ja) 油圧ショベル
JP7381768B2 (ja) 建設機械
JP7269411B2 (ja) 作業機械
JP5357073B2 (ja) 建設機械のポンプ制御装置
JP2008088776A (ja) 旋回作業機のスイングシリンダ制御装置
JP2006177402A (ja) 建設機械の油圧回路