JP2009280141A - バンパステイ及びバンパ構造体 - Google Patents
バンパステイ及びバンパ構造体 Download PDFInfo
- Publication number
- JP2009280141A JP2009280141A JP2008135766A JP2008135766A JP2009280141A JP 2009280141 A JP2009280141 A JP 2009280141A JP 2008135766 A JP2008135766 A JP 2008135766A JP 2008135766 A JP2008135766 A JP 2008135766A JP 2009280141 A JP2009280141 A JP 2009280141A
- Authority
- JP
- Japan
- Prior art keywords
- ribs
- rib
- bumper
- deformation
- flange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Body Structure For Vehicles (AREA)
Abstract
【課題】前後フランジ4,5と複数個のリブ6〜8からなるアルミニウム合金押出形材製の横圧壊型のバンパステイにおいて、衝突時の初期最大荷重が過大になるのを抑制し、最大荷重後の変形荷重の低下を抑制する。
【解決手段】外リブ6,7にそれぞれ折れ部11,12が形成され、中リブ8に外リブ6の折れ部11に向き合う折れ部13と、外リブ7の折れ部12に向き合う折れ部14が形成されている。前フランジに衝突荷重が作用してこのバンパステイが圧壊変形するとき、外リブ6,7は曲げの凸面を中リブ8側に向けて曲げ変形を開始し、中リブ8は曲げの凸面をそれぞれ外リブ6側及び外リブ7側に向けて2カ所で逆向きに曲げ変形を開始し、かつ圧壊変形の過程で外リブ6と中リブ8及び外リブ7と中リブ8の曲げ変形部同士が互いに接触する。
【選択図】図1
【解決手段】外リブ6,7にそれぞれ折れ部11,12が形成され、中リブ8に外リブ6の折れ部11に向き合う折れ部13と、外リブ7の折れ部12に向き合う折れ部14が形成されている。前フランジに衝突荷重が作用してこのバンパステイが圧壊変形するとき、外リブ6,7は曲げの凸面を中リブ8側に向けて曲げ変形を開始し、中リブ8は曲げの凸面をそれぞれ外リブ6側及び外リブ7側に向けて2カ所で逆向きに曲げ変形を開始し、かつ圧壊変形の過程で外リブ6と中リブ8及び外リブ7と中リブ8の曲げ変形部同士が互いに接触する。
【選択図】図1
Description
本発明は、自動車体のバンパ補強材とサイドメンバとの間に配置される、アルミニウム合金押出形材製のバンパステイであって、主としてオフセットバリア衝突時を想定したステイの最大荷重やエネルギ吸収特性などの特性の調整が可能なバンパステイ、及びこのバンパステイを配置したバンパ構造体に関する。
自動車などの車体の前端 (フロント) 及び後端 (リア) に取り付けられているバンパの内部には、強度補強材としてのバンパ補強材 (バンパリインフォースメントあるいはバンパアマチャアなどともいう) が設けられている。
車体の衝突時の乗員への衝撃を緩和するために、車体のバンパ補強材と、車体側のサイドメンバ(サイドフレーム)との間に、塑性変形可能なクラッシュボックス(衝撃エネルギ吸収体)として、バンパステイを介在させた例が、従来から提案されている。このバンパステイは、元々バンパ補強材の後面からの支持部材 (車体連結用部材) としても役割を持つ。
車体の衝突時の乗員への衝撃を緩和するために、車体のバンパ補強材と、車体側のサイドメンバ(サイドフレーム)との間に、塑性変形可能なクラッシュボックス(衝撃エネルギ吸収体)として、バンパステイを介在させた例が、従来から提案されている。このバンパステイは、元々バンパ補強材の後面からの支持部材 (車体連結用部材) としても役割を持つ。
従来から、軽量化のために、鋼製に代わるアルミニウム合金製バンパステイとして、中空断面を有する押出形材などを用いたバンパステイが種々提案、採用されている。このアルミニウム合金押出形材からなるバンパステイは、以下の2つのタイプに大別される。
1.車体前後方向(車体長手方向)を押出方向とし、押出形材の押出方向に縦圧壊するバンパステイ(以下、縦圧壊型ステイという)
2.車体左右方向(車体幅方向)あるいは車体上下方向を押出方向とし、押出形材の断面方向に横圧壊するバンパステイ(以下、横圧壊型ステイという)
1.車体前後方向(車体長手方向)を押出方向とし、押出形材の押出方向に縦圧壊するバンパステイ(以下、縦圧壊型ステイという)
2.車体左右方向(車体幅方向)あるいは車体上下方向を押出方向とし、押出形材の断面方向に横圧壊するバンパステイ(以下、横圧壊型ステイという)
上記縦圧壊型ステイは、衝突方向に直交する断面を閉断面構造にすることが可能であり、同一強度を得ることを考えれば、横圧壊型ステイに比べて軽量化が可能である。しかし、バンパ補強材の後面(背面)あるいはサイドメンバと接合するための取付フランジを、別途溶接などによりバンパステイ本体の押出形材に接合する必要がある。このため、バンパステイ自体の製造コストが高くなるという問題がある。
これに対して、上記横圧壊型ステイは、取り付け面に合わせたフランジをバンパステイ本体の形材とともに、予め一体に押し出して形成することができる。また、バンパ端部の湾曲面や、後面のサイドメンバ形状などに合わせた形状を、押出加工により一体に形成できる。そして、この押し出された形材を長手方向に一定長さに切断することで、所定のバンパステイ形状を得ることが可能であり、縦圧壊型ステイに比して、より低コストな製品を得ることができる。
上記横圧壊型ステイとして、従来から、バンパステイの本体(中空部)の断面形状を略口型、田型、日型、目型等の中空断面形状とし、これに他部品との取り付けに合わせた形の突出フランジを付与したバンパステイが種々提案されている(特許文献1〜4参照)。
近年の衝突安全基準の強化に従い、自動車用バンパステイにも、高いエネルギ吸収性能が要求されるようになってきた。特に、オフセットバリア衝突では、バンパ乃至バンパ補強材の片側に偏心して衝突荷重が加わる。このため、中空断面を有するアルミニウム合金押出形材からなるバンパステイについても、オフセットバリア衝突に対応しうるように、バンパ補強材の裏面(背面)に取り付けられた各々片側のバンパステイの強度やエネルギ吸収などの特性の調整が必要となる。
この強度やエネルギ吸収特性の調整とは、所定の荷重制限以下で変形し、かつ、限られた変形ストロークの中で効率よく衝突エネルギを吸収することである。即ち、最も理想的にエネルギを吸収する構造体として、圧壊時の最大荷重が、制限荷重を超過せず、かつ荷重変動が少なく(荷重が低下せずに)圧壊変形が進行することが求められている。
なお、バンパステイの変形荷重が荷重制限を超過した場合(圧壊時の最大荷重が高過ぎる場合)には、バンパステイよりも車体を構成するサイドメンバなどの部品が先に変形する。また、限られたストローク内でエネルギを吸収できない場合にも、当然その後方に位置するラジエータ、エンジン、サイドメンバなどの部品が破損するという問題が生じる。
なお、バンパステイの変形荷重が荷重制限を超過した場合(圧壊時の最大荷重が高過ぎる場合)には、バンパステイよりも車体を構成するサイドメンバなどの部品が先に変形する。また、限られたストローク内でエネルギを吸収できない場合にも、当然その後方に位置するラジエータ、エンジン、サイドメンバなどの部品が破損するという問題が生じる。
前記特許文献2に開示されたバンパステイは車幅方向内側のリブ(リブ7)が折れ曲がり部を有し、特許文献3に開示されたバンパステイは中空断面内に屈曲したリブ(屈曲リブ32)を有するから、衝突荷重が加わったとき、初期最大荷重が過大になるのを押さえることができる。しかし、同時に、最大荷重以降の変形荷重が大きく低下するおそれがある。
一方、特許文献4に開示されたバンパステイは、左右一対の外リブ(側壁6a,6b)が外向き又は内向きに湾曲し、中空断面内に中リブ(8a,8b)が対角線状に配置され、この中リブも湾曲しているから、衝突荷重が加わったとき、最大荷重が抑制されるとともに、圧壊変形の過程で外リブと中リブが互いに接触し、これにより互いの圧壊が妨害されて、最大荷重以降も変形荷重の極端な低下が防止されることで効率よく衝突エネルギを吸収できる利点がある。しかし、このバンパステイは前後のフランジと外リブ及び中リブの交点が4重点となり、その交差角度も45度以下の鋭角となるため、特に6000系あるいは7000系のアルミニウム合金の中でも高強度材を用いる場合に、押出加工性が低下する。また、サイドメンバとのボルト締結位置が、後壁(5b)の張り出しフランジ部(4c,4d)に限定される。これはボルト締結位置を外リブの内側に設定すると、中リブに締結用の作業穴を形成する必要があり、ステイとしての特性の劣化及びコストアップの原因となるからである。
この点に鑑み、本発明は、衝突時に(特にオフセットバリア衝突時に),中空断面を有するアルミニウム合金押出形材からなる横圧壊型バンパステイの初期最大荷重が過大になるのを抑制でき、かつ初期最大荷重以降の変形荷重の低下を抑制でき、押出加工性の低下も特になく、サイドメンバへの取り付けの自由度が高いバンパステイ、及びこのバンパステイを配置したバンパ構造体を提供することを目的とする。
請求項1の発明は、自動車車体のバンパ補強材とサイドメンバとの間に配置され、車体上下方向を押出方向とする中空断面を有するアルミニウム合金押出形材からなり、バンパ補強材側に位置する前フランジと、サイドメンバ側に位置する後フランジと、前後方向に延在して前記前フランジ及び後フランジをつなぐ2個以上のリブから構成され、前記前フランジがバンパ補強材に、前記後フランジがサイドメンバにそれぞれ接合されるバンパステイにおいて、前記リブのうち少なくとも1組の隣接するリブのそれぞれに、互いに向き合う凸の折れ部が形成され、前フランジに衝突荷重が作用して圧壊変形するとき、前記1組の隣接するリブ同士が互いに曲げの凸面を相手側に向けて曲げ変形し、かつ圧壊変形の過程で互いに接触することを特徴とする。この発明においてリブが3個以上の場合、前記1組の隣接するリブ以外のリブに折れ部を形成することは必須ではない。
請求項2の発明は、自動車車体のバンパ補強材とサイドメンバとの間に配置され、車体上下方向を押出方向とする中空断面を有するアルミニウム合金押出形材からなり、バンパ補強材側に位置する前フランジと、サイドメンバ側に位置する後フランジと、前後方向に延在して前記前フランジ及び後フランジをつなぐ3個以上のリブから構成され、前記前フランジがバンパ補強材に、前記後フランジがサイドメンバにそれぞれ接合されるバンパステイにおいて(前提部分は請求項1の発明と同じ)、前記リブのうち少なくとも1組のリブのそれぞれに、互いに向き合う凸の折れ部が形成され、前記1組のリブの間に1個以上のリブが配置され、前フランジに衝突荷重が作用して圧壊変形するとき、前記1組のリブ及びその間に配置された前記1個以上のリブのうち少なくとも1組の隣接するリブ同士が互いに曲げの凸面を相手側に向けて曲げ変形し、かつ圧壊変形の過程で互いに接触することを特徴とする。この発明において、前記1組のリブの間に配置されたリブ及びそれ以外のリブに折れ部を形成することは必須ではない。
請求項3の発明は、自動車車体のバンパ補強材とサイドメンバとの間に配置され、車体上下方向を押出方向とする中空断面を有するアルミニウム合金押出形材からなり、バンパー補強材側に位置する前フランジと、サイドメンバ側に位置する後フランジと、前後方向に延在して前記前フランジ及び後フランジをつなぐ2個以上のリブから構成され、前記前フランジがバンパ補強材に、前記後フランジがサイドメンバにそれぞれ接合されるバンパステイにおいて(前提部分は請求項1の発明と同じ)、前記リブのうち任意に1個のリブを選んだとき、選んだどのリブにもそれぞれ隣接する1又は2個のリブに向いて凸の折れ部が形成され、かつ前記選んだリブに隣接する1又は2個のリブにも前記折れ部に向き合う折れ部が形成されていて、前フランジに衝突荷重が作用して圧壊変形するとき、互いに向き合う折れ部を有する隣接するリブ同士が互いに曲げの凸面を相手側に向けて曲げ変形し、かつ圧壊変形の過程で互いに接触することを特徴とする。この発明では、リブの全てに折れ部が形成され、かつリブの全てが圧壊変形の過程で隣接する1又は2個のリブと接触する。
この発明に係るバンパステイにおいて、例えばリブが2つの場合、各リブに隣接するリブは1つだけである。例えばリブが3つ以上の場合、外リブに隣接するリブは1つだけだが、中リブ(一対の外リブの間に配置されたリブ)には隣接するリブが2つある。従って、この中リブには、隣接する2つのリブのうち、いずれか一方のリブに向いて凸の折れ部が形成される場合と、両方のリブに向いて凸の折れ部が形成される場合がある。これは適宜選択すればよい。
この発明に係るバンパステイにおいて、例えばリブが2つの場合、各リブに隣接するリブは1つだけである。例えばリブが3つ以上の場合、外リブに隣接するリブは1つだけだが、中リブ(一対の外リブの間に配置されたリブ)には隣接するリブが2つある。従って、この中リブには、隣接する2つのリブのうち、いずれか一方のリブに向いて凸の折れ部が形成される場合と、両方のリブに向いて凸の折れ部が形成される場合がある。これは適宜選択すればよい。
請求項4の発明は、請求項3の発明の特殊な形態であり、前記2個以上のリブが、左右一対のリブ(外リブ)と、その間で前後方向に延在して前フランジ及び後フランジをつなぐ1個の中リブからなる。この場合、外リブにはそれぞれ中空断面内側に向いて凸の折れ部が形成され、中リブには前記一対の外リブの各折れ部に向き合う折れ部(すなわち一方の外リブの折れ部に向き合う折れ部と、他方の外リブの折れ部に向き合う折れ部の両方)が形成される。前フランジに衝突荷重が作用してバンパステイが圧壊変形するとき、互いに向き合う折れ部を有する隣接するリブ同士(一方の外リブと中リブ、及び他方の外リブと中リブ)が互いに曲げの凸面を相手側に向けて(つまり相手側に向けて張り出すように)曲げ変形し、かつ圧壊変形の過程で互いに接触する。いいかえれば、外リブはいずれも曲げの凸面を中リブ側(中空断面内側)に向けて曲げ変形し、中リブは一方の曲げの凸面を一方の外リブの側に向け、他方の曲げの凸面を他方の外リブの側に向けて曲げ変形する。
なお、この発明では外リブと中リブを区別したが、特に区別しない場合又はする必要がない場合、本願明細書では単にリブという。
なお、この発明では外リブと中リブを区別したが、特に区別しない場合又はする必要がない場合、本願明細書では単にリブという。
本発明に係るバンパ構造体は、前記バンパステイを、バンパ補強材とサイドメンバの間に配置したもので、前記バンパステイと、バンパステイの前フランジが接合されたバンパ補強材と、バンパステイの後フランジが接合された自動車車体のサイドメンバからなる。
本発明に係るバンパステイでは、衝突荷重が付加された際には、折れ部を形成したリブに曲げ変形が生じやすくなり、初期最大荷重が過大になるのを抑制できる。
また、前フランジに衝突荷重が作用してバンパステイが圧壊変形するとき、少なくとも1組の隣接するリブが、互いに曲げの凸面を相手側に向けて曲げ変形を開始し、かつ圧壊変形の過程で互いに接触する。本発明では、2個以上のリブに前記[課題を解決するための手段]に記載した形態で適宜折れ部を形成したことで、この変形形態が確実に得られる。そして接触したリブ同士は、一方のリブの曲げ変形を他方のリブが妨害するような、バンパステイの圧壊変形を阻害する特徴的な変形モードとなり、その結果、初期最大荷重以降の変形荷重の低下が抑制できる。
また、前フランジに衝突荷重が作用してバンパステイが圧壊変形するとき、少なくとも1組の隣接するリブが、互いに曲げの凸面を相手側に向けて曲げ変形を開始し、かつ圧壊変形の過程で互いに接触する。本発明では、2個以上のリブに前記[課題を解決するための手段]に記載した形態で適宜折れ部を形成したことで、この変形形態が確実に得られる。そして接触したリブ同士は、一方のリブの曲げ変形を他方のリブが妨害するような、バンパステイの圧壊変形を阻害する特徴的な変形モードとなり、その結果、初期最大荷重以降の変形荷重の低下が抑制できる。
このような特徴的な変形モードは、バンパステイの前後フランジ及びリブの肉厚を増加させることなく達成可能である。このため、本発明によれば、コストや重量を増加させることなく、初期最大荷重が過大になるのを抑制し、かつ最大荷重後の変形荷重の低下も抑制できる。そして、さらに重要なことは、このような特徴的な変形モードは、バンパステイの前後フランジ及びリブの肉厚や材料強度を変えても、あまり変わらないという点である。従って、オフセットバリア衝突等に対応して、このような特徴的な変形モードを維持したままで、最大荷重やエネルギ吸収量の特性調整が、肉厚や材料強度の調整によって、自由に可能となる。
さらに、フランジとリブの交点に4重点がなく、かつフランジとリブの交差角度も略90度であるから、押出加工性の低下も特に生じない。また、バンパ補強材又は/及びサイドメンバとのボルト締結位置を、張り出しフランジ部(外リブの外側)ではなく、外リブの内側に設定することもでき、バンパ構造体の設計上の自由度が増す。
さらに、フランジとリブの交点に4重点がなく、かつフランジとリブの交差角度も略90度であるから、押出加工性の低下も特に生じない。また、バンパ補強材又は/及びサイドメンバとのボルト締結位置を、張り出しフランジ部(外リブの外側)ではなく、外リブの内側に設定することもでき、バンパ構造体の設計上の自由度が増す。
以下、図1〜11を参照して、本発明に係るバンパステイについて具体的に説明する。
まず、図1に本発明に係るバンパステイの一例を示す。バンパステイ1は中空断面のアルミニウム合金押出形材からなり、図2に示すように、車体上下方向を押出方向とし、バンパ補強材2と自動車車体のサイドメンバ3との間に配置される。
バンパステイ1は、バンパー補強材2側に位置する前フランジ4と、サイドメンバ3側に位置する後フランジ5と、車体前後方向に延在して前フランジ4及び後フランジ5をつなぐ左右一対の外リブ6,7と、外リブ6,7の間で外リブ6,7とは車幅方向に間隔を置いて配置され、同じく前後方向に延在して前フランジ4及び後フランジ5をつなぐ中リブ8から構成され、前フランジ4と後フランジ5は、外リブ6,7との交点から左右に張り出す張り出しフランジ部4a,4b,5a,5bを有する。これらはいずれも均一な板厚を有する。前フランジ4がバンパ補強材2の背面に、後フランジ5がサイドメンバ4の先端に、それぞれ張り出しフランジ部4a,4b,5a,5bにおいてボルト・ナット又は溶接等により接合され、これによりバンパ構造体9が構成される。この例では、バンパ補強材2は両端部が後方側に屈曲して斜めとなり、この斜めの部分にバンパステイ1の前フランジ4が接合されている。
まず、図1に本発明に係るバンパステイの一例を示す。バンパステイ1は中空断面のアルミニウム合金押出形材からなり、図2に示すように、車体上下方向を押出方向とし、バンパ補強材2と自動車車体のサイドメンバ3との間に配置される。
バンパステイ1は、バンパー補強材2側に位置する前フランジ4と、サイドメンバ3側に位置する後フランジ5と、車体前後方向に延在して前フランジ4及び後フランジ5をつなぐ左右一対の外リブ6,7と、外リブ6,7の間で外リブ6,7とは車幅方向に間隔を置いて配置され、同じく前後方向に延在して前フランジ4及び後フランジ5をつなぐ中リブ8から構成され、前フランジ4と後フランジ5は、外リブ6,7との交点から左右に張り出す張り出しフランジ部4a,4b,5a,5bを有する。これらはいずれも均一な板厚を有する。前フランジ4がバンパ補強材2の背面に、後フランジ5がサイドメンバ4の先端に、それぞれ張り出しフランジ部4a,4b,5a,5bにおいてボルト・ナット又は溶接等により接合され、これによりバンパ構造体9が構成される。この例では、バンパ補強材2は両端部が後方側に屈曲して斜めとなり、この斜めの部分にバンパステイ1の前フランジ4が接合されている。
なお、バンパ補強材2又は/及びサイドメンバ4とのボルト締結位置は、外リブ6,7の外側(張り出しフランジ部4a,4b,5a,5b)ではなく、外リブ6,7の内側の位置(外リブ6と中リブ8の間及び外リブ7と中リブ8の間の位置)に設定することもできる。この場合、張り出しフランジ部4a,4b,5a,5bの形成は必須ではない。このボルト締結位置は、後述する他のバンパステイにおいても適用される。
外リブ6,7には、中空断面内側に向く(中リブ8に向く)凸の折れ部11,12がそれぞれ形成され、中リブ8には外リブ6の折れ部11に向き合う折れ部13と、外リブ7の折れ部12に向き合う折れ部14が計2つ形成されている。このバンパステイ1では、互いに向き合う凸の折れ部が形成された隣接するリブの組が2組構成されているということもできる。すなわち、折れ部11が形成された外リブ6と折れ部11に向き合う折れ部13が形成された中リブ8からなる組、及び折れ部12が形成された外リブ7と折れ部12に向き合う折れ部14が形成された中リブ8からなる組である。あるいは、1組のリブ(外リブ6,7)のそれぞれに互いに向き合う折れ部が形成され、その間に1個のリブ(中リブ8)が配置されている、ということもできる。
前フランジ4に衝突荷重が作用してこのバンパステイ1が圧壊変形するとき、折れ部11〜14が外リブ6,7及び中リブ8の曲げ変形の起点となる。外リブ6,7は前記折れ部11,12が形成されていることで、曲げの凸面を中空断面内側方向に向けて(中リブ8に向けて)張り出すように曲げ変形を開始し、中リブ8は前記折れ部13,14が形成されていることで、曲げの凸面をそれぞれ外リブ6と外リブ7に向けて曲げ変形を開始する(外リブ6側に張り出す部分と外リブ7側に張り出す部分ができる)。隣接するリブの組(外リブ6と中リブ8の組、及び外リブ7と中リブ8の組)に着目すると、それぞれの組においてリブ同士が互いに曲げの凸面を相手側に向けて曲げ変形する。そして、圧壊変形の過程で、隣接する外リブ6と中リブ8の曲げ変形部同士、及び外リブ7と中リブ8の曲げ変形部同士が互いに接触する。なお、圧壊変形の過程で隣接するリブ同士を接触させるには、外リブ6,7及び中リブ8の前後方向長さ及びリブ同士の間隔を適宜設定する必要があることはいうまでもない。
このバンパステイ1は、請求項1〜4の規定の全てに該当する。
このバンパステイ1は、請求項1〜4の規定の全てに該当する。
衝突荷重が作用してバンパステイ1が圧壊変形するとき、上記のような特定の変形モードで曲げ変形が進行する。この変形モードについて、さらに詳細に説明する。
バンパステイ1について、変形モード及びエネルギ吸収特性をFEM解析で求めた。
解析対象としたバンパステイは、図3(a)の上段に示す本発明モデル、及び図3(b),(c)の上段に示す比較例モデルである。本発明モデル(図3(a))は、図2に示すバンパステイ1であり、比較例モデル(図3(b),(c))は、前フランジ4、後フランジ5及びリブ6〜8からなる点で本発明モデル(図3(a))と同じであるが、リブ6〜8に折れ部が形成されていない(直線的)。本発明モデル(図3(a))と比較例モデル(図3(b),(c))の違いは、リブ6〜8に折れ部が形成されているかいないかだけである。また、いずれのモデルも0.2%耐力σ0.2が310MPaの7000系アルミニウム合金の押出形材からなるものとし、前フランジ4、後フランジ5及びリブ6〜8の厚みを4.0mm、車体高さ方向の大きさを100mm、車体幅方向の大きさを150mm、車体前後方向の大きさを120mm(最大値)に設定した。
バンパステイ1について、変形モード及びエネルギ吸収特性をFEM解析で求めた。
解析対象としたバンパステイは、図3(a)の上段に示す本発明モデル、及び図3(b),(c)の上段に示す比較例モデルである。本発明モデル(図3(a))は、図2に示すバンパステイ1であり、比較例モデル(図3(b),(c))は、前フランジ4、後フランジ5及びリブ6〜8からなる点で本発明モデル(図3(a))と同じであるが、リブ6〜8に折れ部が形成されていない(直線的)。本発明モデル(図3(a))と比較例モデル(図3(b),(c))の違いは、リブ6〜8に折れ部が形成されているかいないかだけである。また、いずれのモデルも0.2%耐力σ0.2が310MPaの7000系アルミニウム合金の押出形材からなるものとし、前フランジ4、後フランジ5及びリブ6〜8の厚みを4.0mm、車体高さ方向の大きさを100mm、車体幅方向の大きさを150mm、車体前後方向の大きさを120mm(最大値)に設定した。
FEM解析には、汎用の有限要素法解析ソフトLS−DYNAを用いた。また、解析条件として、バンパステイの前面側及び後面側に、バンパ補強材及びサイドメンバに代わり剛体15,16を設けた態様とした。衝突はオフセットバリア衝突を想定し、バンパ補強材の片側に偏心して、片側のバンパステイの前面側から矢印のように衝突荷重が負荷される態様とした。
図3(a)〜(c)の中段及び下段に、本発明モデル及び比較例モデルの変形モード(それぞれ変位25mm,50mmの時点)を示す。また、図4にこれらの解析モデルの荷重−変位グラフを示す。図4のグラフにおいて、太い実線が図3(a)の本発明モデル、細い実線が図3(b)の比較例モデル、細い破線が図3(c)の比較例モデルのものである。
図4のグラフから求めた初期最大(ピーク)荷重,最大荷重、エネルギー吸収量及びエネルギー吸収効率を表1に示す。
図3(a)〜(c)の中段及び下段に、本発明モデル及び比較例モデルの変形モード(それぞれ変位25mm,50mmの時点)を示す。また、図4にこれらの解析モデルの荷重−変位グラフを示す。図4のグラフにおいて、太い実線が図3(a)の本発明モデル、細い実線が図3(b)の比較例モデル、細い破線が図3(c)の比較例モデルのものである。
図4のグラフから求めた初期最大(ピーク)荷重,最大荷重、エネルギー吸収量及びエネルギー吸収効率を表1に示す。
本発明モデル(図3(a))では、図4及び表1に示すように、変形初期の最大荷重が小さく抑制され、また初期最大荷重後の変形荷重低下も抑制されているためエネルギー吸収量が多く、エネルギー吸収効率が高い。本発明モデル(図3(a))において変形初期の最大荷重が小さく抑制されるのは、外リブ6,7及び中リブ8が折れ部11〜14を有するためである。前フランジ4に衝突荷重が作用してこのバンパステイ1が圧壊変形するとき、隣接するリブの組(外リブ6と中リブ8の組、及び外リブ7と中リブ8の組)の各々において、リブ同士(外リブ6と中リブ8、及び外リブ7と中リブ8)が互いに曲げの凸面を相手側に向けて曲げ変形を開始し、図3(a)の中段及び下段に示すように、圧壊変形の進行に伴い外リブ6と中リブ8及び外リブ7と中リブ8の曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、初期最大荷重後の変形荷重の低下が抑制される。図4の太い実線に示すように、本発明モデル(図3(a))では初期最大荷重後の変形荷重の低下が抑制され、さらに変形荷重が再度上昇するような変形モードとなっている。
なお、図3(a)に示す本発明モデルは、外リブ6,7や中リブ8の厚みを厚くする、あるいは材料強度を上げるなどの簡単な設計変更によって、エネルギー吸収量を調整することが可能である。また、外リブ6,7や中リブ8の厚みを薄くする。あるいは材料強度などを下げるなどの設計変更によって、同様に、荷重−変位曲線をそのままの形で降下させることもできる。
なお、図3(a)に示す本発明モデルは、外リブ6,7や中リブ8の厚みを厚くする、あるいは材料強度を上げるなどの簡単な設計変更によって、エネルギー吸収量を調整することが可能である。また、外リブ6,7や中リブ8の厚みを薄くする。あるいは材料強度などを下げるなどの設計変更によって、同様に、荷重−変位曲線をそのままの形で降下させることもできる。
これに対し、比較例モデル(図3(b))では、表1及び図4の細い実線に示すように、変形初期の最大荷重が大きく、また初期最大荷重後に変形荷重が大きく低下している。ただし、比較例モデル(図3(b))では、隣接する1組のリブ(リブ6,8)が曲げの凸面を相手側に向けて曲げ変形を開始し、図3(b)の中段及び下段に示すように、圧壊変形の進行に伴い曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害されるため、次に述べる比較例モデル(図3(c))に比べて最大荷重後の変形荷重の低下が小さく、変形荷重が再度上昇する局面もみられ、そのためエネルギー吸収量が比較例モデル(図3(c))に比べて多い。
比較例モデル(図3(c))では、表1及び図4の細い破線に示すように、変形初期の最大荷重が大きく、また最大荷重後に変形荷重が大きく低下している。比較例モデル(図3(c))では、図3(c)の中段及び下段に示すように、曲げの凸面を相手側に向けて曲げ変形するリブの組がないため、比較例モデル(図3(b))と異なり、圧壊変形の進行に伴い曲げ変形部同士が接触して干渉し合い、互いの圧壊変形を妨害することがなく、比較例モデル(図3(b))に比べて最大荷重後の変形荷重の低下が大きい。
なお、比較例モデル(図3(b))では、たまたま1組のリブ(リブ6,7)が曲げの凸面を相手側に向けて曲げ変形を開始したため、上記の変形モードとなったが、各リブに折れ部が形成されていない場合、この変形モードは再現性に欠ける。
なお、比較例モデル(図3(b))では、たまたま1組のリブ(リブ6,7)が曲げの凸面を相手側に向けて曲げ変形を開始したため、上記の変形モードとなったが、各リブに折れ部が形成されていない場合、この変形モードは再現性に欠ける。
図3に示す本発明モデルと比較例モデルの変形モードの比較から、折れ部の形成が初期最大荷重の抑制に寄与することが理解でき、さらに、全部のリブに折れ部が形成されていなくても、折れ部が形成されたリブの数に応じて(本発明では2つ以上)、初期最大荷重が抑制されることが推測できる。
また、図3に示す2つの比較例モデルの変形モードの比較から、曲げの凸面を相手側に向けて曲げ変形する隣接するリブの組が1組でもある場合、それがない場合に比べて、初期最大荷重後の変形荷重の低下が抑制されることが理解できる。
また、図3に示す2つの比較例モデルの変形モードの比較から、曲げの凸面を相手側に向けて曲げ変形する隣接するリブの組が1組でもある場合、それがない場合に比べて、初期最大荷重後の変形荷重の低下が抑制されることが理解できる。
図5に、本発明に係るバンパステイ(3個のリブを有するタイプ)の他の断面形態の例を示す。図5に示すバンパステイ1A〜1Cは、いずれも前フランジ4、後フランジ5及びリブ6〜8からなる。
図5(a)に示すバンパステイ1Aは、1組のリブ(外リブ6,7)に互いに向き合う凸の折れ部11,12が形成され、該1組のリブ(外リブ6,7)の間に折れ部を有しない直線的な中リブ8が配置されている。前フランジ4に衝突荷重が作用してこのバンパステイ1Aが圧壊変形するとき、外リブ6,7はいずれも曲げの凸面を中リブ8に向けて曲げ変形を開始するので、中リブ8が外リブ6,7のどちらに凸面を向けて曲げ変形しても、曲げの凸面を相手側に向けて曲げ変形する隣接するリブの組が必ず1組(外リブ6と中リブ8の組、又は外リブ7と中リブ8の組)形成され得る。圧壊変形の進行に伴いこの隣接するリブの組の曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、バンパステイ1Aは、初期最大荷重が抑制され、初期最大荷重後の変形荷重の低下が抑制される。バンパステイ1Aは、請求項2の規定に該当する。
図5(a)に示すバンパステイ1Aは、1組のリブ(外リブ6,7)に互いに向き合う凸の折れ部11,12が形成され、該1組のリブ(外リブ6,7)の間に折れ部を有しない直線的な中リブ8が配置されている。前フランジ4に衝突荷重が作用してこのバンパステイ1Aが圧壊変形するとき、外リブ6,7はいずれも曲げの凸面を中リブ8に向けて曲げ変形を開始するので、中リブ8が外リブ6,7のどちらに凸面を向けて曲げ変形しても、曲げの凸面を相手側に向けて曲げ変形する隣接するリブの組が必ず1組(外リブ6と中リブ8の組、又は外リブ7と中リブ8の組)形成され得る。圧壊変形の進行に伴いこの隣接するリブの組の曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、バンパステイ1Aは、初期最大荷重が抑制され、初期最大荷重後の変形荷重の低下が抑制される。バンパステイ1Aは、請求項2の規定に該当する。
図5(b)に示すバンパステイ1Bは、1組の隣接するリブ(外リブ7,中リブ8)に互いに向き合う凸の折れ部12,14が形成され、外リブ6は折れ部を有さず直線的である。前フランジ4に衝突荷重が作用してこのバンパステイ1Bが圧壊変形するとき、前記隣接するリブ同士(外リブ7,中リブ8)は互いに曲げの凸面を相手側に向けて曲げ変形を開始し、圧壊変形の進行に伴いこの隣接するリブの曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、バンパステイ1Bは、初期最大荷重が抑制され、初期最大荷重後の変形荷重の低下が抑制される。バンパステイ1Bは、請求項1の規定に該当する。
図5(c)に示すバンパステイ1Cは、1組の隣接するリブ(外リブ7,中リブ8)に互いに向き合う凸の折れ部12,14が形成され、外リブ6も折れ部を有する。前フランジ4に衝突荷重が作用してこのバンパステイ1Cが圧壊変形するとき、前記隣接するリブ同士(外リブ7,中リブ8)は互いに曲げの凸面を相手側に向けて曲げ変形を開始し(外リブ6は曲げの凸面を中空断面外側に向けて曲げ変形を開始する)、圧壊変形の進行に伴いこの隣接するリブの曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、バンパステイ1Cは、初期最大荷重が抑制され、初期最大荷重後の変形荷重の低下が抑制される。バンパステイ1Cは、請求項1の規定に該当する。
図6に、本発明に係るバンパステイの別の形態を示す(バンパステイの各部位の番号は図2に示すバンパステイ1のものを大部分踏襲している)。バンパステイ31は、バンパステイ1と同じく中空断面を有するアルミニウム合金押出形材からなり、前フランジ4と、後フランジ5と、車体前後方向に延在して前フランジ4及び後フランジ5をつなぐ左右一対の外リブ6,7と、外リブ6,7の間で同じく前後方向に延在し前フランジ4及び後フランジ5をつなぐ中リブ32,33から構成され、前フランジ4及び後フランジ5は、外リブ6,7と交点から左右に張り出す張り出しフランジ部4a,4b,5a,5bを有する。バンパステイ1と同じく、前フランジ4がバンパ補強材の背面に、後フランジ5がサイドメンバの先端にそれぞれ接合され、これによりバンパ構造体が構成される。
バンパステイ31の外リブ6,7には、中空断面内側に向く(中リブ32,33に向く)凸の折れ部11,12がそれぞれ形成され、中リブ32には外リブ6の折れ部11に向き合う折れ部34が、中リブ33には外リブ7の折れ部12に向き合う折れ部35が形成されている。このバンパステイ31では、互いに向き合う折れ部が形成された隣接するリブの組が2組構成されているということもできる。すなわち、折れ部11が形成された外リブ6と折れ部11に向き合う折れ部34が形成された中リブ32からなる組、及び折れ部12が形成された外リブ7と折れ部12に向き合う折れ部35が形成された中リブ33からなる組である。あるいは、1組のリブ(外リブ6,7)のそれぞれに互いに向き合う折れ部が形成され、その間に2個のリブ(中リブ32,33)が配置されている、ということもできる。
前フランジ4に衝突荷重が作用してこのバンパステイ31が圧壊変形するとき、折れ部11,12,34,35が外リブ6,7及び中リブ32,33の曲げ変形の起点となる。外リブ6,7は前記折れ部11,12が形成されていることで、曲げの凸面を中空断面内側方向に向けて(外リブ6は中リブ32に向けて、外リブ7は中リブ33に向けて)張り出すように曲げ変形を開始し、中リブ32は前記折れ部34が形成されていることで、曲げの凸面を外リブ6に向けて(外リブ6に向けて張り出すように)曲げ変形を開始し、中リブ33は前記折れ部35が形成されていることで、曲げの凸面を外リブ7に向けて(外リブ7に向けて張り出すように)曲げ変形を開始する。隣接するリブの組(外リブ6と中リブ32の組、及び外リブ7と中リブ33の組)に着目すると、それぞれの組においてリブ同士が互いに曲げの凸面を相手側に向けて曲げ変形する。そして、圧壊変形の過程で、隣接する外リブ6と中リブ32の曲げ変形部同士、及び外リブ7と中リブ33の曲げ変形部同士が互いに接触する。なお、圧壊変形の過程で隣接するリブ同士を接触させるには、外リブ6,7及び中リブ32,33の前後方向長さ及びリブ同士の間隔を適宜設定する必要があることはいうまでもない。
このバンパステイ31は、請求項1〜4の規定の全てに該当する。
このバンパステイ31は、請求項1〜4の規定の全てに該当する。
衝突荷重が作用してバンパステイ31が圧壊変形するとき、上記のような特定の変形モードで曲げ変形が進行する。この変形モードについて、さらに詳細に説明する。
バンパステイ31について、変形モード及びエネルギ吸収特性をFEM解析で求めた。
解析対象としたバンパステイは、図7(a)の上段に示す本発明モデル、及び図7(b),(c)の上段に示す比較例モデルである。本発明モデル(図7(a))は、図6に示すバンパステイ31であり、比較例モデル(図7(b),(c))は、前フランジ4、後フランジ5及びリブ7,8,32,33からなる点で本発明モデル(図7(a))と同じであるが、リブ7,8,32,33に折れ部が形成されていない(直線的なリブ)。本発明モデル(図7(a))と比較例モデル(図7(b),(c))の違いは、リブ6,7,32,33に折れ部が形成されているかいないかだけである。FEM解析の他の条件は、図3のものと同じとした。
バンパステイ31について、変形モード及びエネルギ吸収特性をFEM解析で求めた。
解析対象としたバンパステイは、図7(a)の上段に示す本発明モデル、及び図7(b),(c)の上段に示す比較例モデルである。本発明モデル(図7(a))は、図6に示すバンパステイ31であり、比較例モデル(図7(b),(c))は、前フランジ4、後フランジ5及びリブ7,8,32,33からなる点で本発明モデル(図7(a))と同じであるが、リブ7,8,32,33に折れ部が形成されていない(直線的なリブ)。本発明モデル(図7(a))と比較例モデル(図7(b),(c))の違いは、リブ6,7,32,33に折れ部が形成されているかいないかだけである。FEM解析の他の条件は、図3のものと同じとした。
図7(a)〜(c)の中段及び下段に、本発明モデル及び比較例モデルの変形モード(それぞれ変位25mm,50mmの時点)を示す。また、図8にこれらの解析モデルの荷重−変位グラフを示す。太い実線が図7(a)の本発明モデル、細い実線が図7(b)の比較例モデル、細い破線が図3(c)の比較例モデルのものである。
図4のグラフから求めた初期最大(ピーク)荷重,最大荷重、エネルギー吸収量及びエネルギー吸収効率を表2に示す。
図4のグラフから求めた初期最大(ピーク)荷重,最大荷重、エネルギー吸収量及びエネルギー吸収効率を表2に示す。
本発明モデル(図7(a))では、図8及び表2に示すように、変形初期の最大荷重が小さく抑制され、また最大荷重後の変形荷重低下も抑制されているため、エネルギー吸収量が多く、エネルギー吸収効率が高い。本発明モデル(図7(a))において変形初期の最大荷重が小さく抑制されるのは、外リブ6,7及び中リブ32,33が折れ部11,12,34,35を有するためである。前フランジ4に衝突荷重が作用してこのバンパステイ31が圧壊変形するとき、隣接するリブの組(外リブ6と中リブ32の組、及び外リブ7と中リブ33の組)の各々において、リブ同士(外リブ6と中リブ32、及び外リブ7と中リブ33)が互いに曲げの凸面を相手側に向けて曲げ変形を開始し、図7(a)の中段及び下段に示すように、圧壊変形の進行に伴い外リブ6と中リブ32及び外リブ7と中リブ33の曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、最大荷重後の変形荷重の低下が抑制される。図8の太い実線に示すように、本発明モデル(図7(a))では初期最大荷重後に変形荷重が上昇してピークを付け、最大荷重後の変形荷重の低下が抑制され、さらに変形荷重が再度上昇するような変形モードとなっている。
なお、図7(a)に示す本発明モデルにおいても、変形荷重やエネルギ吸収量の調整等は、図3(a)に示す本発明モデルと同様に行うことができる。
なお、図7(a)に示す本発明モデルにおいても、変形荷重やエネルギ吸収量の調整等は、図3(a)に示す本発明モデルと同様に行うことができる。
これに対し、比較例モデル(図7(b))では、表2及び図8の細い実線に示すように、変形初期の最大荷重が大きい。ただし、比較例モデル(図7(b))では、隣接する1組のリブ(リブ6,32)が曲げの凸面を相手側に向けて曲げ変形を開始し、図7(b)の中段及び下段に示すように、圧壊変形の進行に伴い曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害されるため、初期最大荷重後に変形荷重が上昇して小さいピークを付け、さらに変形荷重が再度上昇する局面もみられ、全体として次に述べる比較例モデル(図7(c))と比べて最大荷重後の変形荷重の低下が小さく、最大荷重後の変形モードは本発明モデル(図7(a))に類似している。
比較例モデル(図7(c))では、表2及び図8の細い破線に示すように、変形初期の最大荷重が大きく、また最大荷重後に変形荷重が大きく低下している。比較例モデル(図3(c))では、図3(c)の中段及び下段に示すように、曲げの凸面を相手側に向けて曲げ変形するリブの組がなく、比較例モデル(図3(b))と異なり、圧壊変形の進行に伴い曲げ変形部同士が接触して干渉し合い、互いの圧壊変形を妨害することがなかったため、変形荷重の再上昇もなく、比較例モデル(図3(b))に比べて最大荷重後の変形荷重の低下が大きい。
なお、比較例モデル(図3(b))では、たまたま1組のリブ(リブ6,31)が曲げの凸面を相手側に向けて曲げ変形を開始したことで、上記の変形モードとなったが、各リブに折れ部が形成されていないから、この変形モードは再現性に欠ける。
なお、比較例モデル(図3(b))では、たまたま1組のリブ(リブ6,31)が曲げの凸面を相手側に向けて曲げ変形を開始したことで、上記の変形モードとなったが、各リブに折れ部が形成されていないから、この変形モードは再現性に欠ける。
図7に示す本発明モデルと比較例モデルの変形モードの比較から、折れ部の形成が初期最大荷重の抑制に寄与することが理解でき、さらに、全部のリブに折れ部が形成されていなくても、折れ部が形成されたリブの数に応じて(本発明では2つ以上)、初期最大荷重が抑制されることが推測できる。
また、図7に示す2つの比較例モデルの変形モードの比較から、曲げの凸面を相手側に向けて曲げ変形する隣接するリブの組が1つでもある場合、それがない場合に比べて、初期最大荷重後の変形荷重の低下が抑制されることが理解できる。
また、図7に示す2つの比較例モデルの変形モードの比較から、曲げの凸面を相手側に向けて曲げ変形する隣接するリブの組が1つでもある場合、それがない場合に比べて、初期最大荷重後の変形荷重の低下が抑制されることが理解できる。
図9に、本発明に係るバンパステイ(4個のリブを有するタイプ)の他の断面形態の例を示す。図9に示すバンパステイ31A〜31Fは、いずれも前フランジ4、後フランジ5及びリブ6,7,32,33からなる。
図5(a)に示すバンパステイ31Aは、中リブ32,33にそれぞれ2つの折れ部34,44,35,45が形成されている点でバンパステイ31と異なる。
これにより、バンパステイ31Aでは、外リブ6に形成された折れ部11が中リブ32に形成された折れ部34と向き合い、外リブ7に形成された折れ部11が中リブ33に形成された折れ部35と向き合うだけでなく、中リブ32に形成された折れ部44と中リブ33に形成された折れ部45が向き合っている。従って、このバンパステイ31Bでは、互いに向き合う折れ部が形成された隣接するリブの組が3組構成されているということもできる。すなわち、折れ部11が形成された外リブ6と折れ部34が形成された中リブ32からなる組、折れ部12が形成された外リブ7と折れ部35が形成された中リブ33からなる組、及び折れ部44が形成された中リブ32と折れ部45が形成された中リブ33からなる中リブ同士の組である。あるいは、バンパステイ31と同様に、1組のリブ(外リブ6,7)のそれぞれに互いに向き合う折れ部が形成され、その間に2個のリブ(中リブ32,33)が配置されている、ということもできる。
図5(a)に示すバンパステイ31Aは、中リブ32,33にそれぞれ2つの折れ部34,44,35,45が形成されている点でバンパステイ31と異なる。
これにより、バンパステイ31Aでは、外リブ6に形成された折れ部11が中リブ32に形成された折れ部34と向き合い、外リブ7に形成された折れ部11が中リブ33に形成された折れ部35と向き合うだけでなく、中リブ32に形成された折れ部44と中リブ33に形成された折れ部45が向き合っている。従って、このバンパステイ31Bでは、互いに向き合う折れ部が形成された隣接するリブの組が3組構成されているということもできる。すなわち、折れ部11が形成された外リブ6と折れ部34が形成された中リブ32からなる組、折れ部12が形成された外リブ7と折れ部35が形成された中リブ33からなる組、及び折れ部44が形成された中リブ32と折れ部45が形成された中リブ33からなる中リブ同士の組である。あるいは、バンパステイ31と同様に、1組のリブ(外リブ6,7)のそれぞれに互いに向き合う折れ部が形成され、その間に2個のリブ(中リブ32,33)が配置されている、ということもできる。
前フランジ4に衝突荷重が作用してこのバンパステイ31Aが圧壊変形するとき、外リブ6,7は前記折れ部11,12が形成されていることで、曲げの凸面を中空断面内側方向に向けて曲げ変形を開始し、中リブ32は前記折れ部34,44が形成されていることで、曲げの凸面を外リブ6と中リブ33に向けて曲げ変形を開始し(逆方向に向く2つの曲げの凸面ができる)、中リブ33は前記折れ部35,45が形成されていることで、曲げの凸面を外リブ7と中リブ32に向けて曲げ変形を開始する(逆方向に向く2つの曲げの凸面ができる)。このように、隣接するリブの組(外リブ6と中リブ32、外リブ7と中リブ33、及び中リブ32と中リブ33)において、リブ同士が互いに曲げの凸面を相手側に向けて曲げ変形を開始する。圧壊変形が進行するのに伴い、隣接するリブの組においてリブ同士が互いに接触し、リブの曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害され、これにより、最大荷重後の変形荷重の低下が抑制される。バンパステイ31Aは、請求項1〜3の規定に該当する。
図9(b)に示すバンパステイ31Bは、1組の隣接するリブ(中リブ32,33)に互いに向き合う凸の折れ部34,35が形成され、外リブ6,7は折れ部を有さず直線的である。前フランジ4に衝突荷重が作用してこのバンパステイ31Bが圧壊変形するとき、前記隣接するリブ同士(中リブ32,33)は互いに曲げの凸面を相手側に向けて曲げ変形を開始し、圧壊変形の進行に伴いこの隣接するリブの曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、バンパステイ31Bは、初期最大荷重が抑制され、初期最大荷重後の変形荷重の低下が抑制される。バンパステイ31Bは、請求項1の規定に該当する。
図9(c)に示すバンパステイ31Cは、1組の隣接するリブ(外リブ7,中リブ33)に互いに向き合う凸の折れ部12,35が形成され、外リブ6及び中リブ32は折れ部を有さず直線的である。前フランジ4に衝突荷重が作用してこのバンパステイ31Cが圧壊変形するとき、前記隣接するリブ同士(外リブ7,中リブ33)は互いに曲げの凸面を相手側に向けて曲げ変形を開始し、圧壊変形の進行に伴いこの隣接するリブの曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、バンパステイ31Cは、初期最大荷重が抑制され、初期最大荷重後の変形荷重の低下が抑制される。バンパステイ31Cは、請求項1の規定に該当する。
図9(d)に示すバンパステイ31Dは、全てのリブ6,7,32,33に1つずつの折れ部11,12,34,35が形成され、1組の隣接するリブ(中リブ32,33)に互いに向き合う凸の折れ部34,35が形成されている。あるいは、1組のリブ(外リブ7,中リブ32)にそれぞれ互いに向き合う凸の折れ部が形成され、その間に中リブ33が配置されているともいえる。前フランジ4に衝突荷重が作用してこのバンパステイ31Dが圧壊変形するとき、前記隣接するリブ同士(外リブ7,中リブ33)は互いに曲げの凸面を相手側に向けて曲げ変形を開始し、圧壊変形の進行に伴いこの隣接するリブの曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、バンパステイ31Dは、初期最大荷重が抑制され、初期最大荷重後の変形荷重の低下が抑制される。バンパステイ31Dは、請求項1,2の規定に該当する。
図9(e)に示すバンパステイ31Eは、1組のリブ(外リブ6,7)に互いに向き合う凸の折れ部11,12が形成され、その間に2個の折れ部を有しない中リブ32,33が配置されている。前フランジ4に衝突荷重が作用してこのバンパステイ31Eが圧壊変形するとき、外リブ6,7はいずれも曲げの凸面を中リブ32,33に向けて曲げ変形を開始するので、中リブ32,33が左右どちらに凸面を向けて曲げ変形しても、曲げの凸面を相手側に向けて曲げ変形する隣接するリブの組が、少なくとも1組(外リブ6と中リブ32の組、中リブ32と中リブ33の組、外リブ7と中リブ33の組のいずれか1組又は2組)形成され得る。圧壊変形の進行に伴いこの隣接するリブの曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、バンパステイ31Eは、初期最大荷重が抑制され、初期最大荷重後の変形荷重の低下が抑制される。バンパステイ31Eは、請求項2の規定に該当する。
図9(f)に示すバンパステイ31Fは、1組のリブ(外リブ7,中リブ32)に互いに向き合う凸の折れ部12,34が形成され、その間に1個の折れ部を有しない中リブ33が配置され、外リブ6も折れ部を有していない。前フランジ4に衝突荷重が作用してこのバンパステイ31Fが圧壊変形するとき、外リブ7,中リブ32はいずれも曲げの凸面を中リブ33に向けて曲げ変形を開始するので、中リブ33が左右どちらに凸面を向けて曲げ変形しても、曲げの凸面を相手側に向けて曲げ変形する隣接するリブの組が必ず1組(外リブ7と中リブ33の組、又は中リブ32と中リブ33の組)形成され得る。圧壊変形の進行に伴いこの隣接するリブの曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、バンパステイ31Fは、初期最大荷重が抑制され、初期最大荷重後の変形荷重の低下が抑制される。バンパステイ31Fは、請求項2の規定に該当する。
図10に、本発明に係るバンパステイの他の例を示す(バンパステイの各部位の番号は図1に示すバンパステイ1のものを踏襲している)。バンパステイ51は、バンパステイ1と同じく中空断面を有するアルミニウム合金押出形材からなり、前フランジ4と、後フランジ5と、車体前後方向に延在して前フランジ4及び後フランジ5をつなぐ左右一対のリブ6,7から構成され、前フランジ4と後フランジ5は、リブ6,7との交点から左右に張り出す張り出しフランジ部4a,4b,5a,5bを有する。バンパステイ1と同じく、前フランジ4がバンパ補強材の背面に、後フランジ5がサイドメンバの先端にそれぞれ接合され、これによりバンパ構造体が構成される。
バンパステイ51のリブ6,7には、中空断面内側に向く凸の折れ部11,12がそれぞれ形成されている。このバンパステイ51では、互いに向き合う凸の折れ部が形成された隣接するリブの組が1組構成されているということもできる。
前フランジ4に衝突荷重が作用してこのバンパステイ51が圧壊変形するとき、折れ部11,12がリブ6,7の曲げ変形の起点となり、リブ6,7は曲げの凸面を中空断面内側方向に向けて(互いに相手側に向けて)張り出すように曲げ変形を開始する。そして、圧壊変形の過程で隣接するリブ6,7の曲げ変形部同士が互いに接触する。なお、圧壊変形の過程で隣接するリブ同士を接触させるには、リブ6,7の前後方向長さ及びリブ同士の間隔を適宜設定する必要があることはいうまでもない。
このバンパステイ51は、請求項1,3の規定に該当する。
前フランジ4に衝突荷重が作用してこのバンパステイ51が圧壊変形するとき、折れ部11,12がリブ6,7の曲げ変形の起点となり、リブ6,7は曲げの凸面を中空断面内側方向に向けて(互いに相手側に向けて)張り出すように曲げ変形を開始する。そして、圧壊変形の過程で隣接するリブ6,7の曲げ変形部同士が互いに接触する。なお、圧壊変形の過程で隣接するリブ同士を接触させるには、リブ6,7の前後方向長さ及びリブ同士の間隔を適宜設定する必要があることはいうまでもない。
このバンパステイ51は、請求項1,3の規定に該当する。
衝突荷重が作用してバンパステイ51が圧壊変形するとき、上記のような特定の変形モードで曲げ変形が進行する。この変形モードについて、さらに詳細に説明する。
バンパステイ51について、変形モード及びエネルギ吸収特性をFEM解析で求めた。
解析対象としたバンパステイは、図11(a)の上段に示す本発明モデル、図11(b)の上段に示す比較例モデルである。本発明モデル(図11(a))は、図10に示すバンパステイ51であり、比較例モデル(図11(b))は、2つのリブを直線としたもので、両者の違いは両リブ6,7に折れ部が形成されているかいないかだけである。FEM解析の他の条件は、図3のものと同じとした。
バンパステイ51について、変形モード及びエネルギ吸収特性をFEM解析で求めた。
解析対象としたバンパステイは、図11(a)の上段に示す本発明モデル、図11(b)の上段に示す比較例モデルである。本発明モデル(図11(a))は、図10に示すバンパステイ51であり、比較例モデル(図11(b))は、2つのリブを直線としたもので、両者の違いは両リブ6,7に折れ部が形成されているかいないかだけである。FEM解析の他の条件は、図3のものと同じとした。
図11(a),(b)の下段に、本発明モデル及び比較例モデルの変形モードを示す。
本発明モデル(図11(a))では、変形初期の最大荷重が小さく抑制され、また最大荷重後の変形荷重低下も抑制される。本発明モデル(図11(a))において変形初期の最大荷重が小さく抑制されるのは、リブ6,7が折れ部11,12を有するためである。前フランジ4に衝突荷重が作用してこのバンパステイ51が圧壊変形するとき、隣接するリブの組(リブ6とリブ7の組)において、リブ同士(リブ6とリブ7)が互いに曲げの凸面を相手側に向けて曲げ変形を開始し、図11(a)の下段に示すように、圧壊変形の進行に伴いリブ6とリブ7の曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、最大荷重後の変形荷重の低下が抑制され、また、図3(a)に示す本発明モデルと同様に、荷重が再度上昇するような変形モードとなる。
なお、図11(a)に示す本発明モデルにおいても、変形荷重やエネルギ吸収量の調整等は、図3(a)に示す本発明モデルと同様に行うことができる。
本発明モデル(図11(a))では、変形初期の最大荷重が小さく抑制され、また最大荷重後の変形荷重低下も抑制される。本発明モデル(図11(a))において変形初期の最大荷重が小さく抑制されるのは、リブ6,7が折れ部11,12を有するためである。前フランジ4に衝突荷重が作用してこのバンパステイ51が圧壊変形するとき、隣接するリブの組(リブ6とリブ7の組)において、リブ同士(リブ6とリブ7)が互いに曲げの凸面を相手側に向けて曲げ変形を開始し、図11(a)の下段に示すように、圧壊変形の進行に伴いリブ6とリブ7の曲げ変形部同士が接触して干渉し合い、互いの圧壊変形が妨害される。これにより、最大荷重後の変形荷重の低下が抑制され、また、図3(a)に示す本発明モデルと同様に、荷重が再度上昇するような変形モードとなる。
なお、図11(a)に示す本発明モデルにおいても、変形荷重やエネルギ吸収量の調整等は、図3(a)に示す本発明モデルと同様に行うことができる。
これに対し、比較例モデル(図11(b))では、変形初期の最大荷重が大きく、また最大荷重後に変形荷重が大きく低下する。なお、比較例モデル(図11(b))でも、本発明モデル(図11(a))のようにリブ6,7が曲げの凸面を中空断面の内側に向けて曲げ変形することがないとはいえないが、各リブに折れ部が形成されていないから、再現性に欠ける。
1,31,51 バンパステイ
2 バンパ補強材
3 サイドメンバ
4 前フランジ
5 後フランジ
6,7 外リブ又はリブ
8,32,33 中リブ
11〜13,34,35,44,45 折れ部
2 バンパ補強材
3 サイドメンバ
4 前フランジ
5 後フランジ
6,7 外リブ又はリブ
8,32,33 中リブ
11〜13,34,35,44,45 折れ部
Claims (5)
- 自動車車体のバンパ補強材とサイドメンバとの間に配置され、車体上下方向を押出方向とする中空断面を有するアルミニウム合金押出形材からなり、バンパ補強材側に位置する前フランジと、サイドメンバ側に位置する後フランジと、前後方向に延在して前記前フランジ及び後フランジをつなぐ2個以上のリブから構成され、前記前フランジがバンパ補強材に、前記後フランジがサイドメンバにそれぞれ接合されるバンパステイにおいて、前記リブのうち少なくとも1組の隣接するリブのそれぞれに、互いに向き合う凸の折れ部が形成され、前フランジに衝突荷重が作用して圧壊変形するとき、前記1組の隣接するリブ同士が互いに曲げの凸面を相手側に向けて曲げ変形し、かつ圧壊変形の過程で互いに接触することを特徴とするバンパステイ。
- 自動車車体のバンパ補強材とサイドメンバとの間に配置され、車体上下方向を押出方向とする中空断面を有するアルミニウム合金押出形材からなり、バンパ補強材側に位置する前フランジと、サイドメンバ側に位置する後フランジと、前後方向に延在して前記前フランジ及び後フランジをつなぐ3個以上のリブから構成され、前記前フランジがバンパ補強材に、前記後フランジがサイドメンバにそれぞれ接合されるバンパステイにおいて、前記リブのうち少なくとも1組のリブのそれぞれに、互いに向き合う凸の折れ部が形成され、前記1組のリブの間に1個以上のリブが配置され、前フランジに衝突荷重が作用して圧壊変形するとき、前記1組のリブ及びその間に配置された前記1個以上のリブのうち少なくとも1組の隣接するリブ同士が互いに曲げの凸面を相手側に向けて曲げ変形し、かつ圧壊変形の過程で互いに接触することを特徴とするバンパステイ。
- 自動車車体のバンパ補強材とサイドメンバとの間に配置され、車体上下方向を押出方向とする中空断面を有するアルミニウム合金押出形材からなり、バンパ補強材側に位置する前フランジと、サイドメンバ側に位置する後フランジと、前後方向に延在して前記前フランジ及び後フランジをつなぐ2個以上のリブから構成され、前記前フランジがバンパ補強材に、前記後フランジがサイドメンバにそれぞれ接合されるバンパステイにおいて、前記リブのうち任意に1個のリブを選んだとき、選んだどのリブにもそれぞれ隣接する1又は2個のリブに向いて凸の折れ部が形成され、かつ前記選んだリブに隣接する1又は2個のリブにも前記折れ部に向き合う折れ部が形成されていて、前フランジに衝突荷重が作用して圧壊変形するとき、互いに向き合う折れ部を有する隣接するリブ同士が互いに曲げの凸面を相手側に向けて曲げ変形し、かつ圧壊変形の過程で互いに接触することを特徴とするバンパステイ。
- 自動車車体のバンパ補強材とサイドメンバとの間に配置され、車体上下方向を押出方向とする中空断面を有するアルミニウム合金押出形材からなり、バンパ補強材側に位置する前フランジと、サイドメンバ側に位置する後フランジと、前後方向に延在して前記前フランジ及び後フランジをつなぐ左右一対の外リブと、前記外リブの間で前後方向に延在して前記前フランジ及び後フランジをつなぐ1個の中リブから構成され、前記前フランジがバンパ補強材に、前記後フランジがサイドメンバにそれぞれ接合されるバンパステイにおいて、前記一対の外リブにそれぞれ互いに向き合う凸の折れ部が形成され、前記中リブに前記一対の外リブの各折れ部に向き合う折れ部が形成され、前記前フランジに衝突荷重が作用して圧壊変形するとき、互いに向き合う折れ部を有する隣接するリブ同士が互いに曲げの凸面を相手側に向けて曲げ変形し、かつ圧壊変形の過程で互いに接触することを特徴とするバンパステイ。
- 請求項1〜4のいずれかに記載されたバンパステイと、バンパステイの前フランジが接合されたバンパ補強材と、バンパステイの後フランジが接合された自動車車体のサイドメンバからなるバンパ構造体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008135766A JP2009280141A (ja) | 2008-05-23 | 2008-05-23 | バンパステイ及びバンパ構造体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008135766A JP2009280141A (ja) | 2008-05-23 | 2008-05-23 | バンパステイ及びバンパ構造体 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009280141A true JP2009280141A (ja) | 2009-12-03 |
Family
ID=41451072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008135766A Pending JP2009280141A (ja) | 2008-05-23 | 2008-05-23 | バンパステイ及びバンパ構造体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009280141A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102485547A (zh) * | 2010-12-06 | 2012-06-06 | 现代自动车株式会社 | 用于车辆保险杠的撞击箱 |
KR101198603B1 (ko) | 2011-03-07 | 2012-11-07 | 주식회사 성우하이텍 | 차량용 크래쉬 박스 |
WO2018097781A1 (en) * | 2016-11-22 | 2018-05-31 | Gestamp Hardtech Ab | Lightweight bumper beam |
JP2019189022A (ja) * | 2018-04-25 | 2019-10-31 | 株式会社神戸製鋼所 | バンパー部材 |
WO2022006861A1 (zh) * | 2020-07-10 | 2022-01-13 | 宁波吉利汽车研究开发有限公司 | 一种可溃缩式后保险杠中支架、后保险杠和车辆 |
-
2008
- 2008-05-23 JP JP2008135766A patent/JP2009280141A/ja active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102485547A (zh) * | 2010-12-06 | 2012-06-06 | 现代自动车株式会社 | 用于车辆保险杠的撞击箱 |
US8590952B2 (en) | 2010-12-06 | 2013-11-26 | Hyundai Motor Company | Crash box of bumper for vehicle |
DE102011051352B4 (de) * | 2010-12-06 | 2017-11-09 | Hyundai Motor Co. | Prallbox eines Stoßfängers eines Fahrzeuges |
KR101198603B1 (ko) | 2011-03-07 | 2012-11-07 | 주식회사 성우하이텍 | 차량용 크래쉬 박스 |
WO2018097781A1 (en) * | 2016-11-22 | 2018-05-31 | Gestamp Hardtech Ab | Lightweight bumper beam |
JP2019535582A (ja) * | 2016-11-22 | 2019-12-12 | イェスタムプ・ハードテック・アクチエボラーグ | 軽量バンパビーム |
US11155223B2 (en) | 2016-11-22 | 2021-10-26 | Gestamp Hardtech Ab | Lightweight bumper beam |
JP2019189022A (ja) * | 2018-04-25 | 2019-10-31 | 株式会社神戸製鋼所 | バンパー部材 |
JP7068911B2 (ja) | 2018-04-25 | 2022-05-17 | 株式会社神戸製鋼所 | バンパー部材 |
WO2022006861A1 (zh) * | 2020-07-10 | 2022-01-13 | 宁波吉利汽车研究开发有限公司 | 一种可溃缩式后保险杠中支架、后保险杠和车辆 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6170895B2 (ja) | 自動車用耐衝突部品 | |
JP5177397B2 (ja) | バンパー構造体 | |
US20090267368A1 (en) | Bumper system for vehicle | |
JP2006335241A (ja) | バンパステイおよびバンパ装置 | |
JP2009280141A (ja) | バンパステイ及びバンパ構造体 | |
JP5235007B2 (ja) | クラッシュボックス | |
JP5106073B2 (ja) | 自動車用バンパー補強材 | |
JP5311762B2 (ja) | エネルギー吸収部材 | |
EP1209039A2 (en) | Shock absorbing member and bumper comprising the same | |
JP5094544B2 (ja) | バンパー構造体 | |
JP4956081B2 (ja) | 車体バンパービームおよび車体用衝撃緩衝部材 | |
JP2004051065A (ja) | 車体構造材および耐衝突補強材 | |
JP2002225652A (ja) | オフセット衝突性に優れたバンパー補強材 | |
JP4766422B2 (ja) | クラッシュボックス | |
JP5723258B2 (ja) | エネルギ吸収部材およびエネルギ吸収部材の断面変形制御方法 | |
JP2010089783A (ja) | 乗用車用バンパー構造体 | |
JP4297810B2 (ja) | バンパーステイ及びバンパー構造体 | |
JP2009096225A (ja) | エネルギー吸収部材 | |
JP2005067527A (ja) | 自動車用バンパ装置 | |
JP2005104235A (ja) | 自動車用バンパ装置 | |
JP4198000B2 (ja) | 横圧壊型バンパーステイ及びバンパー構造体 | |
JP5237252B2 (ja) | 自動車のバンパー構造体 | |
JP4737757B2 (ja) | バンパー構造体 | |
JP4904334B2 (ja) | 自動車用エネルギ吸収部材 | |
JP4678161B2 (ja) | 自動車用バンパスティ構造 |