JP2009279033A - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
JP2009279033A
JP2009279033A JP2008131131A JP2008131131A JP2009279033A JP 2009279033 A JP2009279033 A JP 2009279033A JP 2008131131 A JP2008131131 A JP 2008131131A JP 2008131131 A JP2008131131 A JP 2008131131A JP 2009279033 A JP2009279033 A JP 2009279033A
Authority
JP
Japan
Prior art keywords
ultrasonic
unit
correlation
signal
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008131131A
Other languages
English (en)
Other versions
JP5092890B2 (ja
Inventor
Yuji Hosoi
勇治 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2008131131A priority Critical patent/JP5092890B2/ja
Publication of JP2009279033A publication Critical patent/JP2009279033A/ja
Application granted granted Critical
Publication of JP5092890B2 publication Critical patent/JP5092890B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】3次以上の高調波成分をより高いS/N比で取得し、高分解能の画像を得る。
【解決手段】本発明の超音波診断装置Sは、超音波探触子2と、被検体内に超音波探触子2から第1超音波信号を送信するための送信部12と、超音波探触子2で超音波を受信するための受信部13と、受信部13で受信された第2超音波信号に基づいて被検体内の画像を形成する画像処理部15とを備える超音波診断装置において、受信部13の出力と予め設定された参照信号との相関処理を行うことによって3次以上の高調波成分を抽出する相関部14をさらに備え、前記超音波探触子2における受信素子を、容量性微細加工超音波トランスデューサー(cMUT)から構成し、前記相関部14を、CCD原理に基づくアナログ積和演算デバイスから構成する。したがって、微弱な3次以上の高調波成分をより高いS/N比で取得でき、高い鮮鋭性(分解能)を有する画像を得ることができる。
【選択図】図2

Description

本発明は、被検体内に第1超音波信号を送信し前記第1超音波信号に基づく前記被検体内から来た第2超音波信号を受信して前記第2超音波信号に基づいて前記被検体内の画像を形成する超音波診断装置に関し、特に、第1超音波信号の周波数を基本周波数とした場合に第2超音波信号の高調波成分に基づいて前記被検体内の画像を形成する超音波診断装置に関する。
超音波は、通常、16000Hz以上の音波をいい、非破壊、無害および略リアルタイムでその内部を調べることが可能なことから、欠陥の検査や疾患の診断等の様々な分野に応用されている。その一つに、被検体内を超音波で走査し、被検体内から来た超音波の反射波(エコー)から生成した受信信号に基づいて当該被検体内の内部状態を画像化する超音波診断装置がある。この超音波診断装置は、医療用では、他の医療用画像装置に較べて小型で安価であり、そしてX線等の放射線被爆が無く安全性が高いこと、また、ドップラ効果を応用した血流表示が可能であること等の様々な特長を有している。このため、超音波診断装置は、循環器系(例えば心臓の冠動脈等)、消化器系(例えば胃腸等)、内科系(例えば肝臓、膵臓および脾臓等)、泌尿器系(例えば腎臓および膀胱等)および産婦人科系等で広く利用されている。
この超音波診断装置には、被検体に対して超音波(超音波信号)を送受信する超音波探触子が用いられている。この超音波探触子は、圧電現象を利用することによって、送信の電気信号に基づいて機械振動して超音波(超音波信号)を発生し、被検体内部で音響インピーダンスの不整合によって生じる超音波(超音波信号)の反射波を受けて受信の電気信号を生成する複数の圧電素子を備え、これら複数の圧電素子が例えばアレイ状に2次元配列されて構成されている(例えば、特許文献1参照)。
また、近年では、超音波探触子から被検体内へ送信された超音波の周波数(基本周波数)成分ではなく、その高調波周波数成分によって被検体内の内部状態の画像を形成するハーモニックイメージング(Harmonic Imaging)技術が研究、開発されている。このハーモニックイメージング技術は、基本周波数成分のレベルに比較してサイドローブレベルが小さく、S/N比(signal to noise ratio)が良くなってコントラスト分解能が向上すること、周波数が高くなることによってビーム幅が細くなって横方向分解能が向上すること、近距離では音圧が小さくて音圧の変動が少ないために多重反射が抑制されること、および、焦点以遠の減衰が基本波並みであり高周波を基本波とする場合に較べて深速度を大きく取れること等の様々な利点を有している。
このハーモニックイメージング技術には、大別すると、フィルタ法と位相反転法(パルスインバージョン法)との2つの方法がある。前記フィルタ法は、高調波検出フィルタにより基本波成分と高調波成分とを分離し、高調波成分だけを抽出し、この高調波成分から超音波画像を生成する方法である。また、前記位相反転法は、同一方向に続けて互いに位相が反転している第1および第2送信信号を送信し、これら第1および第2送信信号に対応する第1および第2受信信号を加算することによって高調波成分を抽出し、この高調波成分から超音波画像を生成する方法である。第1および第2受信信号における基本波成分は、位相が反転しているが、高調波の例えば2次高調波成分は、同相となるため、第1および第2受信信号を加算することによってこの2次高調波成分が抽出される(例えば、特許文献2参照)。
特開2004−088056号公報 特開2001−286472号公報
ところで、生体内での高調波の減衰率は振動数が増大するにつれ、加速度的に大きくなり、実用に耐える信号強度を得られるハーモニックイメージングには、前記のように2次高調波を利用しているのが実状である。
本発明の目的は、生体からの超音波反射信号から、高画質が期待できる3次以上の高調波を高いS/N比で抽出することで、高い鮮鋭性(分解能)を有する画像を得ることができる超音波診断装置を提供することである。
本発明の超音波診断装置は、超音波探触子と、被検体内に前記超音波探触子から第1超音波信号を送信するための送信部と、前記超音波探触子で超音波を受信するための受信部と、前記受信部で受信された、前記第1超音波信号の前記被検体内での反射による第2超音波信号の受信結果に基づいて前記被検体内の画像を形成する画像処理部とを備える超音波診断装置において、前記超音波探触子における受信素子は、容量性微細加工超音波トランスデューサー(cMUT)から成り、CCD原理に基づくアナログ積和演算デバイスを用いて、前記第2超音波信号として、前記受信部の出力と、前記被検体の診断部位および診断深度に応じて予め設定された参照信号との相関処理を行うことによって、前記受信部の出力の中から3次以上の高調波を抽出する相関部をさらに備えることを特徴とする。
上記の構成によれば、前記超音波探触子における受信素子が、たとえば送信される第1超音波信号の周波数をf0としたときに、f0/11以上、11・f0以下の広い受信帯域を有する圧電材料である容量性微細加工超音波トランスデューサー(cMUT)から成るとともに、CCD原理に基づくアナログ積和演算デバイスから成る相関部で、検出すべき3次以上の高調波の次数および前記被検体の診断部位および診断深度に応じて設定された参照信号を用いて、相関処理を行う。
したがって、より高いS/N比で3次以上の高調波成分を取得することが可能となり、高い鮮鋭性(分解能)を有する画像を得ることができる。
また、本発明の超音波診断装置では、前記相関部は、前記参照信号として、前記診断部位および診断深度から導かれる近似関数を用いて前記相関処理を行うことを特徴とする。
さらにまた、本発明の超音波診断装置は、前記診断部位および診断深度に応じて設定された複数の近似関数を記憶する参照信号記憶部をさらに備え、前記相関部は、前記診断部位および診断深度に応じて前記複数の近似関数から1つの近似関数を選択して前記相関処理を行うことを特徴とする。
この構成によれば、互いに異なる複数の近似関数が前記参照信号として参照信号記憶部に記憶され、相関部が、被検体の診断部位および診断深度に応じてこれら複数の近似関数から1つの近似関数を選択して相関処理を行うので、診断領域全体に亘ってより適切な近似関数が選択され、相関処理が行われる。このため、診断領域全体に亘って、より高いS/N比で高調波成分を取得することが可能となる。
また、本発明の超音波診断装置では、前記第1超音波信号は、周波数が時間経過に伴って変化するチャープ波であることを特徴とする。
この構成によれば、第1超音波信号が自然界に通常存在しないチャープ波であるので、その高調波成分を検出する場合に、ノイズ成分と区別し易い。このため、より高いSN比で高調波成分を取得することが可能となる。ここで、前記チャープ波の高周波部分の周波数は、高調波成分の周波数と重ならないように設定されることが好ましい。
また、好ましくは、前記参照信号は、その振幅がフォーカルポイント深度に応じて増減されていることを特徴とする。
本発明の超音波診断装置は、以上のように、超音波探触子における受信素子を広い受信帯域を有する圧電材料である容量性微細加工超音波トランスデューサー(cMUT)で構成するとともに、CCD原理に基づくアナログ積和演算デバイスから成り、検出すべき3次以上の高調波の次数および被検体の診断部位および診断深度に応じて設定された参照信号を用いて相関処理を行い、反射波から3次以上の高調波成分を抽出する相関部を設ける。
それゆえ、より高いS/N比で3次以上の高調波成分を取得することが可能となり、高い鮮鋭性(分解能)を有する画像を得ることができる。
以下、本発明に係る実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。また、本明細書において、適宜、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
図1は実施形態における超音波診断装置Sの外観構成を示す図であり、図2は実施形態における超音波診断装置Sの電気的な構成を示すブロック図である。超音波診断装置Sは、図1および図2に示すように、図略の生体等の被検体に対して超音波(第1超音波信号)を送信すると共に、この被検体で反射した超音波の反射波(エコー、第2超音波信号)を受信する超音波探触子2と、超音波探触子2とケーブル3を介して接続され、超音波探触子2へケーブル3を介して電気信号の送信信号を送信することによって超音波探触子2に被検体に対して第1超音波信号を送信させると共に、超音波探触子2で受信された被検体内からの反射波である第2超音波信号に基づいて、被検体内の内部状態を超音波画像として画像化する超音波診断装置本体1とを備えて構成される。
超音波診断装置本体1は、例えば、図2に示すように、操作入力部11と、送信部12と、受信部13と、相関部14と、画像処理部15と、表示部16と、制御部17と、参照信号記憶部18とを備えて構成されている。
操作入力部11は、例えば、診断開始を指示するコマンドや被検体の個人情報等のデータの入力や後述の参照信号の各重み付け係数g(n)を微調整する指示を受け付けるものであり、例えば、複数の入力スイッチを備えた操作パネルやキーボード等である。
送信部12は、制御部17の制御に従って、超音波探触子2へケーブル3を介して電気信号の送信信号を供給して超音波探触子2に第1超音波信号を発生させる回路である。第1超音波信号には、例えば、周波数を時間経過に伴って予め設定された割合で変化させるチャープ波が用いられる。前記変化は、後述の図5のように時間経過に伴って周波数が徐々に高くなるものと、徐々に低くなるものとのいずれであってもよい。
送信部12は、例えば、制御部17からの送信信号s(t)に応じて送信ビームを形成する送信ビームフォーマ回路122、および、送信ビームフォーマ回路122から後述の超音波探触子2の各圧電素子22を駆動するための駆動信号を生成する駆動信号生成回路121等を備えて構成される(図4参照)。受信部13は、制御部17の制御に従って、超音波探触子2からケーブル3を介して電気信号の受信信号を受信する回路であり、この受信信号を相関部14へ出力する。受信部13は、例えば、受信信号を予め設定された所定の増幅率で増幅する増幅器等を備えて構成される。
相関部14は、後述するようにして、受信部13の出力と予め設定された参照信号との相関処理を行うことで、受信部13の出力から第2超音波信号を検出するものである。この参照信号は、第1超音波信号の周波数を基本周波数とした場合における検出すべき3次以上の高調波の次数および被検体の診断部位および診断深度から導かれる近似関数である。
参照信号記憶部18は、例えば、ROMあるいはEEPROM等の記憶素子を備えて構成され、被検体における複数の各診断部位および診断深度に対応した近似関数を前記参照信号として記憶するものである。そして、上記相関部14は、被検体の診断部位および診断深度に応じて、前記参照信号記憶部18に記憶されている複数の参照信号(近似関数)の中から1つの参照信号を選択して相関処理を行う。前記診断部位および診断深度は、例えば、操作入力部11から入力される。
タイミング発生部19は、超音波診断装置本体1の各部の動作タイミングを生成し、動作タイミングの必要な各部へ出力するものである。
画像処理部15は、制御部17の制御に従って、相関部14で相関処理された受信信号に基づいて被検体内の内部状態の画像(超音波画像)を生成する回路である。画像処理部15は、例えば、後述の各相関処理部50−1、50−2、50−3、・・・、50−nからの各出力y−1、y−2、y−3、・・・、y−nに対し遅延時間を補正する遅延補正部151、および、遅延補正部151の出力を整相加算する整相加算部152等を備えて構成される(図4参照)。
表示部16は、制御部17の制御に従って、画像処理部15で生成された被検体の超音波画像を表示する装置である。表示部16は、例えば、CRTディスプレイ、LCD、有機ELディスプレイおよびプラズマディスプレイ等の表示装置やプリンタ等の印刷装置等である。
制御部17は、例えば、マイクロプロセッサ、記憶素子およびその周辺回路等を備えて構成され、これら操作入力部11、送信部12、受信部13、相関部14、参照信号記憶部18、画像処理部15および表示部16を当該機能に応じてそれぞれ制御することによって超音波診断装置Sの全体制御を行う回路である。
図3は、超音波探触子(超音波プローブ)2を構成する1素子分の圧電素子22の構造を模式的に示す断面図である。アレイ状に配列されるこの圧電素子22は、被検体側から、保護層221、音響整合層222、圧電振動層(前記圧電層と略す)223、およびダンパー層224から構成されている。前記圧電層223には、単位素子毎に電極225,226が形成され、それらの電極225,226は該圧電素子22の側部を引回される信号線227およびアース線228にそれぞれ接続される。
前記音響整合層222は、生体のインピーダンスと圧電層223のインピーダンスとの差を埋めるもので、たとえば酸化珪素膜から成る。
これに対して、前記圧電層223は、前後の電極225,226から印加される電界によって圧電振動を生じ、さらに注目すべきは、この圧電層223は、後述する容量性微細加工超音波トランスデューサー(cMUT)から成り、内部に音響増幅層となる空孔229を有することである。この空孔229を備えることで、該圧電層223で発生した前記圧電振動を増幅することができる。
前記空孔229の形態は、四角柱体(直方体、立方体)、紡錘体、球体、円柱体、六角柱体等から任意の形態を選択することができる。さらに該圧電層223中には、アレイ1素子に対して、少なくとも1個の空孔229を有し、該空孔229内に格子状の隔壁を多数配置して該空孔229を細分化してもよいが、アレイの最小単位である単位素子当り1個であることが最も好ましい。これによって、複数の各単位素子に共通に、高い圧電特性を得ることができる。また、該圧電層223の好ましい形態としての厚さtaは10μm〜5mmであり、空孔229の厚さは、該圧電層の厚さの0.1〜0.8倍の範囲である。これは、圧電層223の厚さが10μmより薄くなると壊れ易く、5mmを超えると圧電特性が悪くなるためである。また、前記空孔229部分の圧電層223の平均厚さtzは、5〜300μmに選ばれる。前記厚さtzが、5μmより薄くなると壊れ易くなり、300μmより厚くなると空孔229の感度に影響する効果が小さくなるためである。
ダンパー層224は、前記圧電層223の背面で圧電素子22全体を筐体に固定化する役割と、音響的に音圧緩衝作用によって前記圧電層223から反射される超音波パルス波形を劣化させない(エコーを戻してノイズにならないような)働きを担うものである。このダンパー層224の音響インピーダンスが、圧電層223の音響インピーダンスに近いと、広帯域になり、短い超音波パルスが得られる。前記広帯域に適した超音波探触子2のバッキング材に望まれる特性は、上述のように音響インピーダンスが振動子(圧電層223)のそれに近いこと、加えて、音響減衰量が大きいこと、電気的に絶縁物であること、誘電率、ヤング率、密度等の物理的特性が均一な材料であること、さらに加工性が良いことであり、たとえば前記酸化珪素膜が用いられる。
本発明の超音波探触子2について、前記圧電層223以外の構成、例えば、音響整合層222、ダンパー層224および図示しない音響レンズ等の材料や、該超音波探触子2の構造等については、上記以外にも、通常知られている方法、構成を用いることができる。例えば、非特許文献1、2、3に記載の内容を用いることができる(非特許文献1:改訂 医用超音波機器ハンドブック 社団法人 日本電子機械工業会 編集 出版 コロナ社、非特許文献2:超音波診断装置 伊東正安、望月 剛 共著、 出版 コロナ社、非特許文献3:超音波の基礎と装置 甲子及人 出版 ベクトルコア)。
このように構成される超音波探触子2において、本実施の形態の超音波探蝕子2は、送信超音波(第1超音波信号)の周波数をf0とすると、f0/11以上、11・f0以下の帯域の超音波(第2超音波信号)を受信することができるが、これは、f0/11の周波数での受信音圧が、基本周波数f0での音圧の−6.5dB以上で受信可能であり、11・f0の周波数での受信音圧が、基本周波数f0での音圧の−7dB以上で受信可能であることを示している。このような特性を有した圧電材料の中で本実施形態は、特に前記容量性の微細加工超音波トランスデューサ(cMUT)として知られる形式の超音波トランスデューサ(MUT)を用いる。前記cMUTは、受信される超音波信号の音声振動を静電容量の変調に変換する電極を備えた極めて小さなダイアフラム状デバイスである。送信については、容量性電荷を変調して、デバイスのダイアフラムを振動させ、これにより音波が伝送される。
前記cMUTの1つの利点は、これらが「微細加工」として分類される微細製造プロセスなどの半導体製造プロセスを用いて作製可能である点である。米国特許第6359367号においては、「微細加工とは、(A)パターン形成ツール(一般に投影アライナーまたはウェーハステッパーなどのリソグラフィ)と、(B)PVD(物理的蒸着)、CVD(化学気相蒸着)、LPCVD(低圧化学気相蒸着)、PECVD(プラズマ化学気相蒸着)などの蒸着ツールと、(C)湿式化学エッチング、プラズマエッチング、イオンミリング、スパッターエッチング、またはレーザーエッチングなどのエッチングツールとの組合せ、もしくはこれらの一部を使用した微細構造形成である。微細加工は、通常、シリコン、ガラス、サファイア、またはセラミックから作成された基板またはウェーハ上で行なわれる。これらの基板またはウェーハは、一般に極めて平坦且つ滑らかであり、横方向で数インチの大きさを有する。これらは通常、プロセスツール毎に移動しながらカセット中のグループとして処理される。各基板には、必ずしもそうとは限らないが、好適には、製品の多数のコピーを組み込むことができる。微細加工には2つの一般的なタイプがあり、すなわち、1)ウェーハまたは基板が形作られる厚みの大きな部分を有するバルク微細加工と、2)造形が一般に表面、特に表面上に堆積された薄いフィルムに限定される表面微細加工である。ここで使用される微細加工の定義には、シリコン、サファイア、全てのタイプのガラス材料、ポリマー(ポリイミド等)、ポリシリコン、シリコン窒化物、シリコン酸窒化物、またはアルミニウム合金、銅合金、タングステンなどの薄膜金属、もしくはスピン−オン−ガラス(SOG)、埋め込み可能または拡散型の添加物、またはシリコン酸化物および窒化物などの成長フィルムを含む、従来型のまたは既知の微細加工できる材料の使用が含まれる。」と説明されている。
微細加工の同様の定義が本明細書に取り入れられている。このような微細加工プロセスから結果として得られるシステムは、通常「微細加工電気機械式システム」(MEMS)と呼ばれる。cMUTは、通常、全体に広がる薄膜を有する六角形の構造である。この薄膜は印加されたバイアス電圧によって基板表面近くに保持されている。事前にバイアスがかけられたcMUTに振動性の信号を加えることによって薄膜を振動させることができ、従って薄膜が音響エネルギーを放射できるようになる。逆に、音波が薄膜に入射すると、その結果生じる振動をcMUTの電圧変化として検出することができる。1つの「cMUTセル」は、これらの六角形の「ドラム」構造の単一のものを表すために本明細書で使用される用語である。cMUTセルは極めて小さな構造とすることができる。典型的なセルの大きさは、六角形状の相互に平行な縁部から縁部までが、25〜50μmである。セルの大きさの決定には、設計された音響応答によって決定付けられる多くの方法がある。望ましい周波数応答および感度の観点で、更に適切に機能する上記より大きなセルを生成することは、不可能である可能性がある。
本実施形態の超音波探触子2は、上記cMUT技術に基づいて設計されている。1つの既知の設計においては、複数のcMUTセルが共にグループ化され、特定のグループのセルの電極が互いに配線されてより大きなトランスデューサ素子を形成する。あるものは、スイッチングネットワークを使用して素子(すなわち、いわゆる「部分素子」は配線されたcMUTセルのグループを含む)を互いに電気的に接続することによって、例えば直線状素子などのより大きな素子を形成することができる。より大きな素子は、スイッチングネットワークの状態を変えることによって再構成することができる。しかしながら、互いに全て配線されたcMUTセルのただ1つのセットから成る素子は再構成することはできない。
1つの提案されるアーキテクチャによれば、各素子は、互いに配線された薄膜上の電極を備えるハニカム状パターンで配列された複数の六角形MUTセルを含む。各素子のMUTセルの外側のリングは別の六角形を形成する。これらの素子は、スイッチングネットワークを使用してより大きな素子を形成するよう再構成することができる。このような小さな素子のアレイは、シリコンウェーハ上の従来型金属酸化物半導体(CMOS)スイッチおよびプリアンプ/バッファ回路と集積されて再構成可能なビームフォーミング素子を形成することができる。このMEMS技術によって、CMOS電子回路上にある2次元cMUTアレイの実現が可能となる。
既知の製造方法によれば、製造前CMOSウェーハは、cMUT製造プロセスを開始する前に平坦化される。CMOSウェーハは、各セルがその関連するcMUT素子に局所的に必要とされる機能を提供するために使用される回路素子から構成されるセルのアレイを含む。CMOSセルマトリックスの平面とcMUT素子アレイの平面との接続は、縦方向で実現することができる。
リソグラフィは通常、MEMSデバイスの製造において使用される。このプロセスは典型的には、選択された領域を光などの放射線源に露光することによる感光性材料へのパターン転写を含む。感光性材料は、放射線に露光されるとその物理的特性における変化を受ける。通常は、光を通過させ感光性材料の選択された領域にだけ光が当たるようにするマスクが使用される。微細加工のリソグラフィにおいては、感光性材料は通常、特定の波長の放射線に露光されたときに現像溶液に対する化学的耐性が変化する材料(すなわちフォトレジスト)である。現像溶液は2つの領域(露光された領域または露光されていない領域)の一方をエッチングするのに使用される。下にある層をエッチングするときの一時的なマスクとして感光性層を使用して、パターンを下にある層に転写することができる。感光性層はまた、堆積された材料をパターン形成するためのテンプレートとして使用してもよい。
図7は、上述のようなMEMS技術による圧電素子22の作成工程の具体的な一例を説明するための模式的な断面図である。先ず、図7(a)で示すように、電極225付きの音響整合層222のフィルムを用意し、それに保護層221を形成する。次いで、前記保護層221を付けた面とは反対側に、圧電層223となる膜を接着する。この膜に対して、図7(b)で示すように、空孔229のための窪み229aを形成する。
窪み229aの形成は、予め設定した大きさの凸の鋳型(ステンレス製)を押印加工して形成する。その際の温度は、前記凸の鋳型を100℃〜300℃の範囲で加熱しておき、材質に適した温度と時間との関係から、窪み229aの形成によい条件が適宜設定されればよい。窪み229aは、鋳型押印方式でなく、レーザアブレーション方式で形成されてもよい。レーザアブレーション方式の採用の場合には、それに適した樹脂を選択することで、最適に空孔229を形成することができる。レーザは、紫外線レーザ、赤外線レーザなどを利用することができる。
前記窪み229aのさらに別な形成方法としては、光硬化型樹脂を利用する方法もある。具体的には、保護層221が積層された音響整合層222およびを型枠内に嵌め込んで、前記音響整合層222上に前記光硬化型樹脂を流し込み、一方、前記空孔229の配置を決めた図面を元にマスク(ネガ)を作成しておき、キセノンランプや高圧水銀灯を使用して紫外線露光し、未硬化部分(空孔229部分)をアルカリや酸で除去する方法などを採用することができる。
前記窪み229aを形成した後は、図7(c)で示すように、その窪み229aを塞ぐフィルム223aを搭載する。さらに、図7(d)で示すように、電極226およびダンパー層224を積層する。このダンパー層14は、予め成膜しておいた膜が積層されてもよい。さらに図7(e)から図7(f)で示すように、前記電極225,226から信号線227およびアース線228をそれぞれ引出して該圧電素子22が完成する。こうしてcMUTタイプの広帯域トランスデューサーを作成し、常法(前述の非特許文献1の第2章および第3章参照)記載の方法により、超音波探触子2を作成した。
前記圧電素子22で取り出されたこの電気信号の受信信号は、ケーブル3を介して制御部17で制御される受信部13で受信される。受信部13は、この入力された受信信号を受信処理し、より具体的には、例えば増幅した後に相関部14へ出力する。そして、相関部14で相関処理を行うことで3次以上の高調波成分が取得され、画像処理部15へ出力される。なお、超音波探触子2は、被検体の表面上に当接して用いられてもよいし、被検体の内部に挿入して、例えば、生体の体腔内に挿入して用いられてもよい。
そして、画像処理部15は、制御部17の制御によって、受信部13で受信され相関部14で相関処理された受信信号に基づいて、送信から受信までの時間や受信強度等から被検体の超音波画像を生成し、表示部16は、制御部17の制御によって、画像処理部15で生成された被検体の超音波画像を表示する。
次に、相関処理に関し、より具体的に説明する。
図4は、相関処理の説明に当たって、実施形態にかかる超音波診断装置のより具体的な構成を示す図である。図5は、相関演算を説明するための図である。図6は、アナログ積和演算を説明するための図である。
アナログ信号をデジタル変換してから相関処理を行ったのでは、高調波成分が受信信号全体に占めるエネルギー量が微弱であるため、良質な超音波画像の形成に必要なダイナミックレンジが取れない。そのため、本実施形態における相関部14では、相関処理自体をアナログで行うものである。
具体的には、相関部14は、超音波探触子2の複数(n個)の圧電素子22ごとに複数の相関処理部50−1、50−2、50−3、・・・、50−nを備えて構成されており、各相関処理部50−1、50−2、50−3、・・・、50−nは、同様に構成されている。その一つについて説明すると、相関処理部50は、CCD原理に基づくアナログ積和演算を行うことによって受信部13の出力と参照信号との相関を演算する回路であり、例えば、サンプルホールド部51と、電荷転送部52と、重み設定部53と、デジタルアナログ乗算部54と、加算部55とを備えて構成される。
サンプルホールド部51は、タイミング発生部19からの動作タイミングに応じたサンプリング周期で、受信部13の出力を保持する回路である。サンプルホールド部51は、動作タイミングに応じたタイミングで、この保持した受信部13の出力に対応する電荷を電荷転送部52へ出力する。
電荷転送部52は、電荷を保持する複数の電荷保持部521−1、521−2、521−3、・・・、521−nを備えて構成されている。これら各電荷保持部521−1、521−2、521−3、・・・、521−nは、直列に接続されており、タイミング発生部19からの動作タイミングに応じたタイミングで自己の電荷保持部521で保持している電荷を順次に後段の電荷保持部521へ転送する。この点がCCD原理に基づいている。
デジタルアナログ乗算部54は、各電荷保持部521に対応して設けられた複数のデジタルアナログ乗算器(DA乗算器)541−1、541−2、541−3、・・・、541−nを備えて構成されている。DA乗算器541は、重み設定部53によって自機に設定されている重みで電荷保持部521からの出力値を乗算し(重み付けを行い)、この乗算結果を加算部55へ出力する。
重み設定部53は、参照信号記憶部18に記憶されている参照信号に基づいてデジタルアナログ乗算部54の各DA乗算器541−1、541−2、541−3、・・・、541−nに対し、重みを設定するものである。この重みは、操作入力部11の補正値入力部111から補正値が入力された場合には、この入力された補正値で補正される。
加算部55は、デジタルアナログ乗算部54の各DA乗算器541−1、541−2、541−3、・・・、541−nから入力された乗算結果を加算し、この加算結果を画像処理部15へ出力する回路である。
このような構成の相関部14(相関処理部50)では、次のように動作する。
アナログ相関処理では、CCDに用いられる電荷移送技術を用いて、2箇所以上の電荷を1つの容量素子にまとめあげることで加算を行い、これに対して1つの電荷を2分し、さらに2分することを繰り返すことで、1/2、1/4、1/8、1/16、・・・の電荷を用意し、乗数の2進表現に従い、取捨し、再度ひとつの電荷にまとめることで乗算を行うアナログ電荷積和遅延が行われる。この点が、アナログ積和演算である。ここで言う相関処理とは、2つの波形がどの程度似ているかを判定する処理であり、例えば、2つの数列xとyとがあった場合、次の式1で示されるzが大きいほど、2つの数列が似通っていることになる(通常、信号を検出すると図5のグラフのような急峻なピークを示す)。
z=Σx ・・・(1)
ただし、Σは、k=1からk=nまでの和を求める。
電荷転送部52の電荷保持部521の各ステージに蓄えられている電荷量Qkに参照信号(テンプレート)の対応する重み値を乗じ、和をとることで、ノイズの中に信号が存在するか否かを高いS/N比で計算することができる。
相関処理部50は、アナログ量である電荷量Qを用い、遅延、加算および乗算が可能なデバイスであり、これを用いることで、高分解能、高速かつ低消費電力に、相関処理などの演算処理が可能となる。実際のデバイスの構成としては、上述したようにCCD類似のデバイス形態となる。例えば、CCDでは、電荷移送を行う場合、ポテンシャル井戸の深さが転送方向に向かって深くなるように調節することによって行われる。図6(A)のように電荷を図上では左から右へ移動させていくことで信号の流れを制御する。加算を行う場合は、図6(B)に示すように、二つ以上のポテンシャル井戸が一つになるように、駆動電圧を制御する。乗算を行う場合は、例えば、一つのポテンシャル井戸を2分割するような駆動電圧を制御して(例えば上記加算器の逆)、電荷QをQ/2、Q/4、Q/8、Q/16、Q/32、Q/64、・・・というように分割し、それを乗数(デジタル値)のビットに応じて捨てたり残したりする。すなわち、ビットが0の場合には、捨て、ビットが1の場合には残す。その後に、残した電荷をすべて足し合わせることで、乗数Mが0≦M<1の乗算を行う。例えば、Q×0.36827(10進数)は、Q×0.01011110(2進数)となって、Q×(0+0/2+1/4+0/8+1/16+1/32+1/64+1/128+0/256)となる。これら絶対値電荷に加え、電荷量の正負を表す符号ビットを用いて積和演算を実現する。
また、相関処理とは、2つの波形がどの程度似ているかを判定する処理であり、例えば、上述したように、2つの数列xとyとがあった場合、上記式1で示されるzが判定基準の相関係数となる。
送信信号をs(t)とし、送信信号s(t)に雑音を含ませたものをz(t)とし、上記の式1からなる相関係数をzとすると、図5に波線で示すように、参照信号と受信信号とが重なる瞬間に急峻なピークが検出される。このピークが大きければ大きいほど、参照信号とよく類似した信号が受信されたことになる。ノイズ耐性を高めるためには、できるだけ冗長な、自然界に無い信号を送信信号(参照信号)s(t)に用いることが望ましい。このため、前記送信信号(参照信号)s(t)には、周波数が時間経過に伴って変化するチャープ波を用いる。
そして、実際の相関処理では、図4のように、受信部13が受信する連続信号s(t)を時間τでサンプリングホールドし、離散量f(t)、f(t−τ)、f(t−2τ)、f(t−3τ)、f(t−4τ)、・・・とする。これらに各々相当する重み係数g(1)〜g(n)をかけて総和をとることによって前記相関係数zを得ることができる(式2)。
z=Σf(t−kτ)g(k) ・・・(2)
ただし、Σは、k=1からk=nまでの和を求める。
この相関係数zがある閾値より大きい場合に、相関処理部50は、第2超音波信号の3次以上の高調波成分を該相関係数zに比例する強度で受信したとして、出力yとして画像処理部15へ出力する。画像処理部15では、この相関係数zから遅延時間や信号強度を求めて超音波画像を生成する。
例えば、3MHz〜5MHzのチャープ波を用いた送信信号を以下のようにする。
s(t)
=A・sin{2π[(f−B/2)t+(B/(2T))t]}・W(t)
・・・(3)
W(t)は、窓関数(本実施形態では例えばハミング窓を使用)であり、fは、チャープ波の中心周波数であり、Bは、チャープ波の掃引周波数であり、Tは、チャープ波の時間幅である。本実施形態においては、f=4MHz、B=2MHzとし、Tは、診断領域の面積により設定される。
相関処理によって検出する高調波の次数を3とすると、参照波形r(t)は、式4となる。
r(t)=f(d,3)・{s(t)}3 ・・・(4)
f(d、3)は、診断部位および診断深度によって決定される項であり、フォーカルポイントごとに用意された補正値入力部111の重み付けスライダ等によって、ユーザが出力画像を見つつ最適な値を選択してもよい。この関数r(t)を規定のサンプリング周波数でデジタル化したものが参照信号のg(1)〜g(n)に書き込まれる値として、診断部位および診断深度ごとに参照信号のデータとして参照信号記憶部18に記憶される。
制御部17がROIを基に指定するステアリング角度とフォーカルポイント深度とからビームフォーマの遅延が送信ビームフォーマ回路122で設定され、駆動信号生成回路121でPCMによって形成した上記チャープ波が、超音波探触子2の圧電素子22に印加され、電気音響変換(圧電現象)によって第1超音波信号が発生される。フォーカルポイントにて収束された超音波信号は、被検体内の組織界面で反射されるとともに音圧強度に依存した高調波が発生される。組織界面で反射し、被検体内を伝播した第2超音波信号は、超音波探触子2の圧電素子22によって受信され、受信部13で受信処理される。受信部13からの出力は、その受信波形をサンプルホールドすべく、各圧電素子22ごとに、サンプルホールド部51によって時間方向に離散化される。それらは、一定の動作タイミングのタイミング(制御クロック)によって、電荷転送部52に入力される。電荷転送部52では、x(1)〜x(n)のn段の電荷保持部521−1、521−2、521−3、・・・、521−nを持ち、動作タイイングごとにそれぞれの値が次の段に移動する。電荷転送部52の各電荷保持部521−1、521−2、521−3、・・・、521−nの各段x(1)〜x(n)は、それぞれ、保持する値を出力するDA乗算器541−1、541−2、541−3、・・・、541−nを有し、それぞれが対応するDA乗算器541へと接続されている。各DA乗算器541−1、541−2、541−3、・・・、541−nには、それぞれ相関処理のための重み係数g(1)〜g(n)が重み設定部53の設定によって保持されており、また、これら重み係数は、制御部17が重み設定部53を制御することで、書き換え可能とされている。制御部17は、検出するフォーカルポイント深度(診断部位および診断深度)等によって、最適な参照信号(テンプレート)のデータを参照信号記憶部18から選択し、重み設定部53を介して各DA乗算器541−1、541−2、541−3、・・・、541−nが保持する重み係数g(1)〜g(n)を書き込む。各DA乗算器541−1、541−2、541−3、・・・、541−nは、重み付け係数g(k)のビット数に比例する遅延を経て、x(k)×g(k)を出力し、これら出力が加算部55によって加算され、相関係数zが得られる。なお、添え字aは、超音波探触子2の複数の圧電素子22のうちのa番目の圧電素子22に関連していることを表している。超音波探触子2のアレイ状に配列された圧電素子22それぞれに対して相関係数zaが得られ、また相関係数zのピーク位置を基に遅延補正回路151で遅延補正を行った後、各圧電素子22の相関係数を整相加算回路152で整相加算することで、全体の相関係数z、すなわち相関処理された受信信号y(t)が得られ、これを基に超音波画像が形成される。
このように本実施形態の超音波診断装置Sでは、超音波探触子における受信素子を、たとえば送信される第1超音波信号の周波数をf0としたときに、f0/11以上、11・f0以下の広い受信帯域を有する圧電材料である容量性微細加工超音波トランスデューサー(cMUT)から構成するとともに、CCD原理に基づくアナログ積和演算デバイスから成る相関部14(相関処理部50)で、検出すべき3次以上の高調波の次数および被検体の診断部位および診断深度に応じて設定された参照信号を用いて、相関処理を行うので、より高いS/N比で3次以上の高調波成分を取得することが可能となり、高い鮮鋭性(分解能)を有する画像を得ることができる。
また、上述の超音波診断装置Sでは、前記診断部位および診断深度から導かれる互いに異なる複数の近似関数が参照信号として参照信号記憶部18に記憶され、相関部14が、被検体の診断部位および診断深度に応じてこれら複数の近似関数から1つの近似関数を選択して相関処理を行うので、診断領域全体に亘ってより適切な参照信号が選択され、相関処理が行われる。このため、診断領域全体に亘って、より高いS/N比で高調波成分を取得することが可能となる。
また、上述の超音波診断装置Sでは、第1超音波信号が自然界に通常存在しないチャープ波であるので、その高調波成分を検出する場合に、ノイズ成分と区別し易い。このため、より高いS/N比で高調波成分を取得することが可能となる。
また、上述の超音波診断装置Sでは、相関部14は、CCD原理に基づくアナログ積和演算装置を備えて構成される。このため、微弱な信号レベルである高調波成分でもより適切に相関処理を行うことが可能となる。
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。特に、図3では、圧電素子22が超音波の送信と受信とに共用されたが、送信と受信とに個別の圧電素子が設けられてもよい。
実施形態における超音波診断装置の外観構成を示す図である。 実施形態における超音波診断装置の電気的な構成を示すブロック図である。 実施形態の超音波診断装置における圧電素子の構成を示す断面図である。 相関処理の説明に当たって、実施形態にかかる超音波診断装置のより具体的な構成を示す図である。 相関演算を説明するための図である。 アナログ積和演算を説明するための図である。 圧電素子の作成工程の具体的な一例を説明するための模式的な断面図である。
符号の説明
S 超音波診断装置
T 治具
1 超音波診断装置本体
2 超音波探触子
14 相関部
18 参照信号記憶部
22 圧電素子
50 相関処理部
51 サンプルホールド部
52 電荷転送部
53 重み設定部
54 デジタルアナログ乗算器
55 加算部
221 保護層
222 音響整合層
223 圧電層
224 ダンパー層
225,226 電極
229 空孔

Claims (5)

  1. 超音波探触子と、被検体内に前記超音波探触子から第1超音波信号を送信するための送信部と、前記超音波探触子で超音波を受信するための受信部と、前記受信部で受信された、前記第1超音波信号の前記被検体内での反射による第2超音波信号の受信結果に基づいて前記被検体内の画像を形成する画像処理部とを備える超音波診断装置において、
    前記超音波探触子における受信素子は、容量性微細加工超音波トランスデューサーから成り、
    CCD原理に基づくアナログ積和演算デバイスを用いて、前記第2超音波信号として、前記受信部の出力と、前記被検体の診断部位および診断深度に応じて予め設定された参照信号との相関処理を行うことによって、前記受信部の出力の中から3次以上の高調波を抽出する相関部をさらに備えることを特徴とする超音波診断装置。
  2. 前記相関部は、前記参照信号として、前記診断部位および診断深度から導かれる近似関数を用いて前記相関処理を行うことを特徴とする請求項1記載の超音波診断装置。
  3. 前記診断部位および診断深度に応じて設定された複数の近似関数を記憶する参照信号記憶部をさらに備え、
    前記相関部は、前記診断部位および診断深度に応じて前記複数の近似関数から1つの近似関数を選択して前記相関処理を行うことを特徴とする請求項2記載の超音波診断装置。
  4. 前記第1超音波信号は、周波数が時間経過に伴って変化するチャープ波であることを特徴とする請求項1〜3のいずれか1項に記載の超音波診断装置。
  5. 前記参照信号は、その振幅がフォーカルポイント深度に応じて増減されていることを特徴とする請求項1〜4のいずれか1項に記載の超音波診断装置。
JP2008131131A 2008-05-19 2008-05-19 超音波診断装置 Expired - Fee Related JP5092890B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131131A JP5092890B2 (ja) 2008-05-19 2008-05-19 超音波診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131131A JP5092890B2 (ja) 2008-05-19 2008-05-19 超音波診断装置

Publications (2)

Publication Number Publication Date
JP2009279033A true JP2009279033A (ja) 2009-12-03
JP5092890B2 JP5092890B2 (ja) 2012-12-05

Family

ID=41450157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131131A Expired - Fee Related JP5092890B2 (ja) 2008-05-19 2008-05-19 超音波診断装置

Country Status (1)

Country Link
JP (1) JP5092890B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129326A1 (ja) * 2010-04-12 2011-10-20 オリンパスメディカルシステムズ株式会社 超音波診断装置
US10674999B2 (en) 2014-11-25 2020-06-09 Koninklijke Philips N.V. Ultrasound system and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155847A (ja) * 1989-11-10 1991-07-03 Olympus Optical Co Ltd 超音波観測装置
JPH10126266A (ja) * 1996-10-16 1998-05-15 G D S:Kk 電荷信号並列供給装置と、それを用いたフィルタリングadコンバータ
JP2001008933A (ja) * 1999-07-01 2001-01-16 Matsushita Electric Ind Co Ltd 超音波送受信方法および超音波診断装置
JP2001286472A (ja) * 2000-04-10 2001-10-16 Toshiba Corp 超音波診断装置
JP2003265466A (ja) * 2002-03-12 2003-09-24 Olympus Optical Co Ltd 超音波診断装置
JP2005102998A (ja) * 2003-09-30 2005-04-21 Samii Kk スロットマシン
WO2006126684A1 (ja) * 2005-05-27 2006-11-30 Hitachi Medical Corporation 超音波診断装置及び超音波画像表示方法
JP2009279034A (ja) * 2008-05-19 2009-12-03 Konica Minolta Medical & Graphic Inc 超音波診断装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155847A (ja) * 1989-11-10 1991-07-03 Olympus Optical Co Ltd 超音波観測装置
JPH10126266A (ja) * 1996-10-16 1998-05-15 G D S:Kk 電荷信号並列供給装置と、それを用いたフィルタリングadコンバータ
JP2001008933A (ja) * 1999-07-01 2001-01-16 Matsushita Electric Ind Co Ltd 超音波送受信方法および超音波診断装置
JP2001286472A (ja) * 2000-04-10 2001-10-16 Toshiba Corp 超音波診断装置
JP2003265466A (ja) * 2002-03-12 2003-09-24 Olympus Optical Co Ltd 超音波診断装置
JP2005102998A (ja) * 2003-09-30 2005-04-21 Samii Kk スロットマシン
WO2006126684A1 (ja) * 2005-05-27 2006-11-30 Hitachi Medical Corporation 超音波診断装置及び超音波画像表示方法
JP2009279034A (ja) * 2008-05-19 2009-12-03 Konica Minolta Medical & Graphic Inc 超音波診断装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129326A1 (ja) * 2010-04-12 2011-10-20 オリンパスメディカルシステムズ株式会社 超音波診断装置
JP4855558B2 (ja) * 2010-04-12 2012-01-18 オリンパスメディカルシステムズ株式会社 超音波診断装置
US8248889B2 (en) 2010-04-12 2012-08-21 Olympus Medical Systems Corp. Ultrasound diagnostic apparatus
US10674999B2 (en) 2014-11-25 2020-06-09 Koninklijke Philips N.V. Ultrasound system and method

Also Published As

Publication number Publication date
JP5092890B2 (ja) 2012-12-05

Similar Documents

Publication Publication Date Title
Demore et al. Real-time volume imaging using a crossed electrode array
JP4625145B2 (ja) 音響振動子及び画像生成装置
CN110063749B (zh) 超声波测定装置、超声波图像装置及超声波测定方法
JP5205110B2 (ja) 超音波撮像装置
JP2012005600A (ja) 超音波診断装置
JP2015202400A (ja) 超音波プローブ及び超音波画像装置並びにその制御方法
JP2010233224A (ja) アレイ型超音波振動子
JP2006319712A (ja) 静電容量型超音波振動子とその製造方法
JP2012217611A (ja) 超音波診断装置および超音波画像生成方法
CN104422931A (zh) 超声波测量装置、超声波图像装置及超声波测量方法
JP2017514556A (ja) Icダイ、超音波プローブ、超音波診断システム及び方法
JP2013123150A (ja) 圧電デバイスおよび超音波探触子
Liu et al. Fabrication and characterization of row-column addressed pMUT array with monocrystalline PZT thin film toward creating ultrasonic imager
Sadeghpour et al. Bendable piezoelectric micromachined ultrasound transducer (PMUT) arrays based on silicon-on-insulator (SOI) technology
JP5092890B2 (ja) 超音波診断装置
JP2010187825A (ja) 超音波診断装置及び受信フォーカス処理方法
JP2013146478A (ja) 超音波探触子および超音波診断装置
JP2013098724A (ja) 圧電デバイスおよび超音波探触子並びに圧電デバイスの製造方法
Manwar A BCB Diaphragm Based Adhesive Wafer Bonded CMUT Probe for Biomedical Application
JP4911000B2 (ja) 超音波探触子および超音波診断装置
JP5682762B2 (ja) 圧電デバイスおよび超音波探触子
JP5146101B2 (ja) 超音波診断装置
Elloian Design of a flexible ultrasound phased array with adaptive phasing for curvature
van Neer et al. Mode vibrations of a matrix transducer for three-dimensional second harmonic transesophageal echocardiography
JP2010213965A (ja) 超音波画像診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees