JP2009270485A - Cooling water circuit of stationary engine - Google Patents

Cooling water circuit of stationary engine Download PDF

Info

Publication number
JP2009270485A
JP2009270485A JP2008121521A JP2008121521A JP2009270485A JP 2009270485 A JP2009270485 A JP 2009270485A JP 2008121521 A JP2008121521 A JP 2008121521A JP 2008121521 A JP2008121521 A JP 2008121521A JP 2009270485 A JP2009270485 A JP 2009270485A
Authority
JP
Japan
Prior art keywords
cooling water
engine
tank
exhaust heat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008121521A
Other languages
Japanese (ja)
Other versions
JP5191792B2 (en
Inventor
Hirotoshi Onihara
宏年 鬼原
Shohei Amakawa
章平 天川
Hisayuki Hayashi
寿幸 林
Shojiro Matsumura
章二朗 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Yanmar Co Ltd
Original Assignee
Osaka Gas Co Ltd
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008121521A priority Critical patent/JP5191792B2/en
Application filed by Osaka Gas Co Ltd, Yanmar Co Ltd filed Critical Osaka Gas Co Ltd
Priority to PCT/JP2009/058148 priority patent/WO2009136554A2/en
Priority to CN200980116269.3A priority patent/CN102016258B/en
Priority to AU2009245230A priority patent/AU2009245230B2/en
Priority to EP09742678A priority patent/EP2287454A1/en
Priority to US12/736,752 priority patent/US20110061833A1/en
Priority to EA201071276A priority patent/EA020099B1/en
Publication of JP2009270485A publication Critical patent/JP2009270485A/en
Application granted granted Critical
Publication of JP5191792B2 publication Critical patent/JP5191792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0285Venting devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To adjust pressure of a cooling water pump suction part becoming minimum pressure in a circuit to optional pressure of head pressure or less when necessary, for setting pressure in a cooling water circuit such as an exhaust gas heat exchanger to predetermined pressure, in an engine cooling water circuit having an exhaust heat recovery unit. <P>SOLUTION: This cooling water circuit includes the exhaust heat recovery unit 37 for supplying engine exhaust heat via engine cooling water, a radiator 18 for radiating the engine exhaust heat via the engine cooling water, the exhaust gas heat exchanger 33 for supplying the engine exhaust heat to the engine cooling water from exhaust gas, and a cooling water pump 32 for circulating the engine cooling water. A pressure loss apparatus 34 is arranged upstream of a cooling water pump suction part 32b, and an orifice is arranged in a communicating passage 50 between the cooling water pump suction part and an atmospheric opening part 20, and the upstream side of the pressure loss apparatus is communicated with the atmospheric opening part, and the atmospheric opening part can be always communicated with the atmosphere. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、コージェネレーションシステムやGHP(ガスヒートポンプ)に採用される排熱回収器を有する定置式エンジンの冷却水回路に関する。   The present invention relates to a cooling water circuit for a stationary engine having an exhaust heat recovery unit employed in a cogeneration system or a GHP (gas heat pump).

従来、排熱回収器を有する定置式エンジンの冷却水回路として、排熱回収器を有するエンジン冷却水回路において、冷却水ポンプ吸引部を大気開放部と連通する構成が開示されている(例えば、特許文献1参照)。   Conventionally, as a cooling water circuit for a stationary engine having an exhaust heat recovery device, an engine cooling water circuit having an exhaust heat recovery device has been disclosed in which a cooling water pump suction portion is communicated with an air release portion (for example, Patent Document 1).

すなわち、特許文献1に記載のエンジンの冷却水回路は、ラジエータが室外熱交換器と接触して構成された排熱回収器を備える。また、冷却水ポンプの吸入部側は、リザーブタンクと接続されており、冷却水ポンプ吸引部は、リザーブタンクに設けられた通気口を介して大気と連通している。
特開平09−88602号公報
That is, the engine coolant circuit described in Patent Document 1 includes an exhaust heat recovery unit in which a radiator is configured in contact with an outdoor heat exchanger. Moreover, the suction part side of the cooling water pump is connected to a reserve tank, and the cooling water pump suction part communicates with the atmosphere via a vent hole provided in the reserve tank.
JP 09-88602 A

前記特許文献1のエンジンの冷却水回路構成では、冷却水ポンプ吸引部の圧力はリザーブタンクのヘッド圧と略等しくなり、冷却水ポンプをリザーブタンクより高い場所に配置しない限り、ポンプ吸引部の圧力をヘッド圧以下に設定することができない。   In the cooling water circuit configuration of the engine of Patent Document 1, the pressure of the cooling water pump suction part is substantially equal to the head pressure of the reserve tank, and the pressure of the pump suction part is not provided unless the cooling water pump is arranged at a location higher than the reserve tank. Cannot be set below the head pressure.

一方で、排熱回収器を有するエンジン冷却水回路は、排熱回収器でエンジン冷却水を介してエンジン排熱を供給するのに先立って、エンジン冷却水が排気ガスからエンジン排熱を吸収するために排気ガス熱交換器を備えている。この排気ガス熱交換器は
、エンジン冷却水を加熱するため、ボイラーの一種として取扱われるおそれがある。このように、排気ガス熱交換器がボイラーとして取扱われる場合には、そのエンジン冷却水の圧力をできるだけ低圧に保ちたいという要請がある。
On the other hand, the engine coolant circuit having the exhaust heat recovery device absorbs the engine exhaust heat from the exhaust gas before supplying the engine exhaust heat through the engine coolant with the exhaust heat recovery device. For this purpose, an exhaust gas heat exchanger is provided. Since this exhaust gas heat exchanger heats engine cooling water, it may be handled as a kind of boiler. Thus, when the exhaust gas heat exchanger is handled as a boiler, there is a demand to keep the pressure of the engine coolant as low as possible.

そこで、本願は排熱回収器を有するエンジン冷却水回路において、排気ガス熱交換器等の冷却水回路内圧力を所定圧力に設定するために回路内で最低圧力となる冷却水ポンプ吸引部の圧力を必要に応じてヘッド圧以下の任意の圧力に調整できるようにすることを課題とする。   Therefore, in the engine cooling water circuit having the exhaust heat recovery device, the present application sets the pressure of the cooling water pump suction portion that is the lowest pressure in the circuit in order to set the pressure in the cooling water circuit such as the exhaust gas heat exchanger to a predetermined pressure. It is an object to make it possible to adjust the pressure to an arbitrary pressure below the head pressure as necessary.

本発明は、前記課題を解決するためになされたもので、エンジン冷却水を介してエンジン排熱を供給する排熱回収器と、エンジン冷却水を介してエンジン排熱を放熱するラジエータと、排気ガスからエンジン冷却水へエンジン排熱を供給する排気ガス熱交換器と、エンジン冷却水を循環させる冷却水ポンプとを有する定置式エンジンの冷却水回路において、冷却水ポンプ吸引部と大気開放部を連通し、前記圧損機器の上流と前記大気開放部を連通し、前記圧損機器の上流と前記大気開放部との連通経路に絞りを配置し、前記大気開放部を大気と常時連通可能な構成としたことにある。   The present invention has been made to solve the above-described problems, and is an exhaust heat recovery device that supplies engine exhaust heat through engine cooling water, a radiator that radiates engine exhaust heat through engine cooling water, and an exhaust gas. In a cooling water circuit of a stationary engine having an exhaust gas heat exchanger for supplying engine exhaust heat from gas to engine cooling water and a cooling water pump for circulating engine cooling water, a cooling water pump suction part and an atmosphere opening part are provided. Communicating, upstream of the pressure-loss device and the atmosphere opening portion, arranged in a communication path between the upstream of the pressure-loss device and the atmosphere opening portion, and configured to always communicate the atmosphere opening portion with the atmosphere It is to have done.

かかる本発明は、圧損機器の圧損によって冷却水ポンプ吸引部の圧力をヘッド圧よりも低くできる。そして、大気開放部と連通する経路の絞りでの流量を調整することにより、大気圧未満の負圧から大気開放部のヘッド圧までの間の任意の圧力に調整できることとなる。このため、冷却水回路内圧力を「ポンプ吸引部圧+ポンプ吐出圧+計測箇所までの圧損」としてエンジン冷却水量を維持しながら所定圧力に設定できる。   According to the present invention, the pressure of the cooling water pump suction portion can be made lower than the head pressure due to the pressure loss of the pressure loss device. Then, by adjusting the flow rate at the throttle of the path communicating with the atmosphere opening portion, the pressure can be adjusted to any pressure between the negative pressure less than atmospheric pressure and the head pressure of the atmosphere opening portion. For this reason, the pressure in the cooling water circuit can be set to a predetermined pressure while maintaining the amount of engine cooling water as “pump suction part pressure + pump discharge pressure + pressure loss up to the measurement location”.

前記本発明の排気ガス熱交換器を前記冷却水ポンプ吐出側で且つ前記エンジン下流に配置する。かかる本発明は、排気ガス熱交換器入口圧力を「ポンプ吸引部圧+ポンプ吐出圧+エンジン内部の流路圧損」として「ポンプ吸引部圧+ポンプ吐出圧」よりも「エンジン内部の流路圧損」分だけ低圧にできる。   The exhaust gas heat exchanger of the present invention is disposed on the cooling water pump discharge side and downstream of the engine. In the present invention, the exhaust gas heat exchanger inlet pressure is “pump suction part pressure + pump discharge pressure + flow path pressure loss inside the engine” and “pump suction part pressure + pump discharge pressure” "It can be low pressure for only minutes.

前記本発明のラジエータ下流経路と排熱回収器下流経路の合流部に、開度調整可能な電動三方弁を配置する。かかる本発明は、エンジン冷却水回路において冷却水温が最も低い箇所に電動三方弁を配置したので、電動三方弁の耐熱性が向上する。なお、電動三方弁が前記圧損機器の一つに該当する。   An electric three-way valve whose opening degree can be adjusted is disposed at the junction of the radiator downstream path and the exhaust heat recovery apparatus downstream path of the present invention. In the present invention, since the electric three-way valve is disposed at a position where the cooling water temperature is lowest in the engine cooling water circuit, the heat resistance of the electric three-way valve is improved. An electric three-way valve corresponds to one of the pressure loss devices.

前記本発明の冷却水ポンプ吐出側にサーモスタットを配置し、該サーモスタットの高温側経路に前記排熱回収器を配置し、前記排熱回収器下流にラジエータを配置する。かかる本発明は、エンジン冷却水温がサーモスタット設定温度以上では冷却水全量が排熱回収器へ流れる。このため、エンジン冷却水からの供給熱量を演算するのに当って、排熱回収器とラジエータとに分流制御する構成に比し、エンジン冷却水の分流比率を考慮する必要が無い分だけ演算が簡易となる。   A thermostat is arranged on the discharge side of the cooling water pump of the present invention, the exhaust heat recovery unit is arranged on the high temperature side path of the thermostat, and a radiator is arranged downstream of the exhaust heat recovery unit. In the present invention, when the engine coolant temperature is equal to or higher than the thermostat set temperature, the entire amount of coolant flows to the exhaust heat recovery unit. For this reason, in calculating the amount of heat supplied from the engine cooling water, the calculation is performed only to the extent that it is not necessary to consider the diversion ratio of the engine cooling water compared to the configuration in which the diversion control is performed for the exhaust heat recovery unit and the radiator. It becomes simple.

前記本発明の大気開放部を冷却水タンクの上部に通気管を設ける構成とし、前記排気ガス熱交換器または前記ラジエータのうちで少なくともいずれか一つの機器及び前記冷却水ポンプ吸引部を、前記冷却水タンクの水封部と連通する。かかる本発明は、冷却水回路でエア溜りが発生する可能性の高い箇所を、水封部を介して大気開放するので水泡から気水分離を確実に行って、エンジン冷却水のみ回路内へ戻すことができる。   The air release part of the present invention has a structure in which a ventilation pipe is provided in the upper part of the cooling water tank, and at least one of the exhaust gas heat exchanger and the radiator and the cooling water pump suction part are cooled. It communicates with the water seal of the water tank. In the present invention, since a place where air accumulation is likely to occur in the cooling water circuit is opened to the atmosphere through the water seal portion, air / water separation is reliably performed from the water bubbles, and only the engine cooling water is returned into the circuit. be able to.

前記本発明の冷却水タンクを2つ設ける構成とし、一方のタンクに前記通気管を設け、且つ一方のタンクと他方のタンクの空気溜り部を連通し、前記排気ガス熱交換器または前記ラジエータの少なくともいずれか一つの機器及び前記冷却水ポンプ吸引部を、他方のタンクの水封部と連通し、一方のタンクと他方のタンクの水封部を連通し、通気管を設けた一方のタンク底面を、他方のタンク底面と同一高さまたは高所に配置する。かかる本発明は、タンクを2つ設ける構成としたので、一方はリザーブ用として他方は回路内から上がってくる高温水泡の気水分離用として機能分離が可能となり、気水分離によるリザーブ用水温の上昇を防止できる。   Two cooling water tanks of the present invention are provided, the one of the tanks is provided with the vent pipe, and the air reservoir of one tank and the other tank is communicated, and the exhaust gas heat exchanger or the radiator At least one device and the cooling water pump suction part communicate with the water seal part of the other tank, the one tank and the water seal part of the other tank communicate with each other, and one tank bottom surface provided with a vent pipe Is arranged at the same height or height as the bottom surface of the other tank. In the present invention, since two tanks are provided, functional separation is possible for the one for the reserve and the other for the separation of the hot water bubbles rising from the circuit. The rise can be prevented.

本発明は、絞りの開度調整および圧損機器の圧損によって冷却水ポンプ吸引部の圧力をヘッド圧以下の任意の圧力に調整可能となるので、必要に応じて大気圧以下にも設定出来る。   In the present invention, the pressure of the cooling water pump suction portion can be adjusted to an arbitrary pressure equal to or lower than the head pressure by adjusting the opening of the throttle and the pressure loss of the pressure loss device.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施の形態は、本発明をコージェネレーション装置1に採用した場合について説明する。なお、コージェネレーション装置1とは、電力消費機器(負荷)への送電系統に、外部商用電源の商用電力系統と、発電機の発電電力系統とを接続し、該負荷の需要電力を賄うとともに、発電に伴い生じる排熱を回収し、該回収熱を利用するシステムである。   In the present embodiment, the case where the present invention is adopted in the cogeneration apparatus 1 will be described. The cogeneration apparatus 1 connects the commercial power system of the external commercial power source and the generated power system of the generator to the power transmission system to the power consuming device (load) to cover the demand power of the load, This is a system that recovers exhaust heat generated by power generation and uses the recovered heat.

図1はコージェネレーション装置のエンジン冷却水回路の回路図を示し、図2は同装置の正面斜視図、図3は同装置の背面斜視図を示す。   FIG. 1 shows a circuit diagram of an engine coolant circuit of a cogeneration apparatus, FIG. 2 shows a front perspective view of the apparatus, and FIG. 3 shows a rear perspective view of the apparatus.

図2および図3に示すように、本実施形態に係るコージェネレーション装置1は、筺体としてのパッケージ2を備えている。このパッケージ2の内部は、上下に2分割されており、下側はエンジン室3および機器収納室5が構成され、上側はラジエータ室7、吸気室8および排気室9が構成されている。   As shown in FIGS. 2 and 3, the cogeneration apparatus 1 according to the present embodiment includes a package 2 as a housing. The interior of the package 2 is divided into two parts, the engine room 3 and the equipment storage room 5 on the lower side, and the radiator room 7, the intake room 8 and the exhaust room 9 on the upper side.

前記エンジン室3内には、エンジン10、このエンジン10により駆動される発電機11および潤滑油を貯留しているオイルタンク12等が配置されている。   In the engine chamber 3, an engine 10, a generator 11 driven by the engine 10, an oil tank 12 storing lubricating oil, and the like are disposed.

前記機器収納室5は、エンジン室3の側方(図2に示す右側)に配置されている。機器収納室5内には、エンジン駆動系機器等を制御する制御装置16を備えるコントロールボックス17とインバータ14とが配置されている。   The equipment storage chamber 5 is disposed on the side of the engine chamber 3 (the right side shown in FIG. 2). In the equipment storage chamber 5, a control box 17 including a control device 16 for controlling engine drive system equipment and the like and an inverter 14 are arranged.

前記ラジエータ室7は、機器収納室5の上方に配置されており、このラジエータ室7には、ラジエータ18と冷却水タンク20が配置される。ラジエータ室7の上方には、前記制御装置16により駆動制御される放熱用のラジエータファン19が配置されている。   The radiator chamber 7 is disposed above the equipment storage chamber 5, and a radiator 18 and a cooling water tank 20 are disposed in the radiator chamber 7. A radiator fan 19 for heat dissipation that is driven and controlled by the control device 16 is arranged above the radiator chamber 7.

吸気室8には、エアクリーナ22および吸気サイレンサ23がそれぞれ配置されている。排気室9には、排気サイレンサ24が配置されている。   An air cleaner 22 and an intake silencer 23 are arranged in the intake chamber 8. An exhaust silencer 24 is disposed in the exhaust chamber 9.

次に、エンジン冷却水回路について、図1を参照しながら説明する。このエンジン冷却水回路30は、エンジン冷却水を循環させるための駆動源となる冷却水ポンプ32を備えている。この冷却水ポンプ32の吐出側(冷却水ポンプ吐出部32a)から下流側に向けて順に、エンジン10内の冷却水通路(ウォータジャケット)、排気ガス熱交換器33、サーモスタット35が接続されている。   Next, the engine coolant circuit will be described with reference to FIG. The engine coolant circuit 30 includes a coolant pump 32 serving as a drive source for circulating the engine coolant. A cooling water passage (water jacket), an exhaust gas heat exchanger 33, and a thermostat 35 in the engine 10 are connected in order from the discharge side (cooling water pump discharge portion 32a) of the cooling water pump 32 toward the downstream side. .

エンジン10は都市ガス等を燃料とする定置式ガスエンジンであり、その排気系は上記排気ガス熱交換器33及び前記排気サイレンサ24を備えている。そして、エンジン10を通過したエンジン冷却水は、排気ガス熱交換器33に送られ、排気ガス熱交換器33において排気ガスの熱を奪った後に、経路31を介してサーモスタット35に流入するようになっている。   The engine 10 is a stationary gas engine using city gas or the like as fuel, and the exhaust system thereof includes the exhaust gas heat exchanger 33 and the exhaust silencer 24. Then, the engine cooling water that has passed through the engine 10 is sent to the exhaust gas heat exchanger 33 so that the exhaust gas heat exchanger 33 takes heat of the exhaust gas and then flows into the thermostat 35 through the path 31. It has become.

サーモスタット35は、低温側経路35aと高温側経路35bとを備えており、低温側経路35aの下流端は、冷却水ポンプ32の吸入側(冷却水ポンプ吸引部32b)に接続されている。また、高温側経路35bの下流端は、排熱回収器としての水/水熱交換器37に接続されている。   The thermostat 35 includes a low temperature side path 35a and a high temperature side path 35b, and the downstream end of the low temperature side path 35a is connected to the suction side (cooling water pump suction portion 32b) of the cooling water pump 32. Moreover, the downstream end of the high temperature side path | route 35b is connected to the water / water heat exchanger 37 as an exhaust heat recovery device.

サーモスタット35は、エンジン冷却水の温度が所定温度未満のとき(例えばエンジン始動初期時)には、低温側経路35aへエンジン冷却水を流し、エンジン冷却水が所定温度以上に達すると、高温側経路35bおよび水/水熱交換器37へエンジン冷却水を流すようになっている。   The thermostat 35 causes the engine cooling water to flow to the low temperature side path 35a when the temperature of the engine cooling water is lower than a predetermined temperature (for example, at the start of the engine start), and when the engine cooling water reaches a predetermined temperature or higher, Engine cooling water is allowed to flow through 35b and the water / water heat exchanger 37.

水/水熱交換器37は、エンジン冷却水から奪った熱を外部に供給するもので、例えば給湯用の2次水側38を流れる水に熱を供給する。水/水熱交換器37の上下流位置には、エンジン冷却水の温度を検出するための温度センサ43、44がそれぞれ設けられている。   The water / water heat exchanger 37 supplies heat taken from the engine cooling water to the outside. For example, the water / water heat exchanger 37 supplies heat to water flowing on the secondary water side 38 for hot water supply. Temperature sensors 43 and 44 for detecting the temperature of the engine cooling water are provided at upstream and downstream positions of the water / water heat exchanger 37, respectively.

水/水熱交換器37を通過したエンジン冷却水は、ラジエータ18と電動三方弁34とに流れるようになっている。すなわち、電動三方弁34は、前記制御装置16により制御されるモータバルブからなり、第1冷却水入口34aと第2冷却水入口34bと冷却水出口34cとの三つのポートを有している。   The engine coolant that has passed through the water / water heat exchanger 37 flows to the radiator 18 and the electric three-way valve 34. That is, the electric three-way valve 34 is composed of a motor valve controlled by the control device 16, and has three ports of a first cooling water inlet 34a, a second cooling water inlet 34b, and a cooling water outlet 34c.

そして、第1冷却水入口34aは、水/水熱交換器37から延設された排熱回収器下流経路39の下流端が接続されている。また、第2冷却水入口34bは、ラジエータ18から延設されたラジエータ下流経路40の下流端が接続されている。従って、排熱回収器下流経路39とラジエータ下流経路40の合流部に、三方弁34が配置されている。なお、排熱回収器下流経路39は、経路42を介してラジエータ18と接続されている。   The first cooling water inlet 34 a is connected to the downstream end of the exhaust heat recovery device downstream path 39 extending from the water / water heat exchanger 37. The second cooling water inlet 34 b is connected to the downstream end of the radiator downstream path 40 extending from the radiator 18. Therefore, the three-way valve 34 is disposed at the junction of the exhaust heat recovery device downstream path 39 and the radiator downstream path 40. The exhaust heat recovery device downstream path 39 is connected to the radiator 18 via a path 42.

また、冷却水出口34cは、冷却水供給管41を介して前記低温側経路35aに接続されている。   The cooling water outlet 34c is connected to the low temperature side path 35a via the cooling water supply pipe 41.

電動三方弁34は、第1冷却水入口34aと第2冷却水入口34bとの開度比率を変更(開度調整)可能であり、水/水熱交換器37での熱交量に応じて開度比率が定まる。具体的には、水/水熱交換器37での熱交換量が多い場合、すなわち、エンジン冷却水の放熱量が多い場合は、第1冷却水入口34aへの開度が大きくなり、水/水熱交換器37での熱交換量が少ない場合、すなわち、エンジン冷却水の放熱量が少ない場合は、第2冷却水入口34bへの開度が大きくなる。   The electric three-way valve 34 can change the opening ratio of the first cooling water inlet 34 a and the second cooling water inlet 34 b (opening adjustment), and according to the heat exchange amount in the water / water heat exchanger 37. Opening ratio is determined. Specifically, when the amount of heat exchange in the water / water heat exchanger 37 is large, that is, when the amount of heat released from the engine cooling water is large, the opening degree to the first cooling water inlet 34a increases, When the amount of heat exchange in the water heat exchanger 37 is small, that is, when the heat dissipation amount of the engine cooling water is small, the opening degree to the second cooling water inlet 34b is large.

前記冷却水タンク20は、合成樹脂製の一方のタンク(リザーブタンク)20aと、金属製の他方のタンク(気水分離タンク)20bとの2つから構成されている。一方のタンク20aには、常時大気に連通可能な通気管48が接続されている。通気管48を設けた一方のタンク冷却水底面は、他方のタンク底面と同一高さまたは高所に配置され、しかも、一方のタンク20aと他方のタンク20bとのそれぞれの空気溜り部は、連通管46で連通されている。しかも、両方のタンク20a、20bの水封部(エンジン冷却水の貯留される部分)は、それぞれのタンク下部まで延設された連通管47を介して連通されている。   The cooling water tank 20 includes two tanks: a synthetic resin tank (reserve tank) 20a and a metal tank (air / water separation tank) 20b. One tank 20a is connected to a vent pipe 48 that can communicate with the atmosphere at all times. The bottom surface of one tank cooling water provided with the vent pipe 48 is disposed at the same height or height as the bottom surface of the other tank, and the air reservoirs of the one tank 20a and the other tank 20b communicate with each other. The pipe 46 communicates. Moreover, the water seal portions (portions where engine cooling water is stored) of both tanks 20a and 20b are communicated with each other via a communication pipe 47 extending to the lower portion of each tank.

他方のタンク20bの下部は、連通管45を介してラジエータ18の上部18aと接続されている。また、他方のタンク20bの下部と、排気ガス熱交換器33内で且つエンジン冷却水が流れる配管(図示省略)との間には、連通管49が接続されている。ラジエータ18や排気ガス熱交換器33は、エンジン10よりも高所に配置され、冷却水回路内においてエア溜りが発生し易いからである。このように、エア溜りが懸念される場所に気水分離タンクへのエア抜き回路を設置することにより、気水分離を行い冷却水ポンプ32の吸入に際して、エンジン冷却水のみ戻すようになっている。   The lower part of the other tank 20 b is connected to the upper part 18 a of the radiator 18 through the communication pipe 45. A communication pipe 49 is connected between the lower part of the other tank 20b and a pipe (not shown) through which the engine cooling water flows in the exhaust gas heat exchanger 33. This is because the radiator 18 and the exhaust gas heat exchanger 33 are arranged at a higher position than the engine 10 and air accumulation is likely to occur in the cooling water circuit. In this way, by installing an air vent circuit to the air / water separation tank in a place where air accumulation is a concern, air / water separation is performed, and only the engine cooling water is returned when the cooling water pump 32 is sucked. .

なお、連通管45と49へ過剰にエンジン冷却水が流る事を防止すると共に、冷却水ポンプ32の吸入側の圧力をヘッド圧以下の任意の圧力に調整する為に絞り60および61が配置されている。   In addition, the throttles 60 and 61 are arranged to prevent the engine coolant from flowing excessively into the communication pipes 45 and 49 and to adjust the pressure on the suction side of the coolant pump 32 to an arbitrary pressure below the head pressure. Has been.

ただし、冷却水ポンプ吸入部32bの圧力を極端に下げる必要がある場合には、絞り61、60の径を大きくする、又は、連通管45、49からは絞りを取り外し、連通経路50に絞り51を配置する事により回路内の圧力をより低圧に調整する事が可能である。   However, when it is necessary to extremely reduce the pressure of the cooling water pump suction portion 32b, the diameters of the throttles 61 and 60 are increased, or the throttles are removed from the communication pipes 45 and 49, and the throttle 51 is connected to the communication path 50. It is possible to adjust the pressure in the circuit to a lower pressure by arranging.

本実施の形態のコージェネレーション装置1は以上の構成からなり、次に、冷却水回路における循環動作について説明する。   The cogeneration apparatus 1 according to the present embodiment has the above configuration, and next, a circulation operation in the cooling water circuit will be described.

冷却水ポンプ32を作動させると、冷却水ポンプ32から吐出されるエンジン冷却水が、エンジン10に供給され、エンジン10内を通過する間にシリンダ等各所を冷却することにより温度が上昇し、さらに、排気ガス熱交換器36を通過してサーモスタット35に至る。サーモスタット35では、冷却水温度が所定の温度未満の時には、エンジン冷却水を冷却水ポンプ32に戻す。   When the cooling water pump 32 is operated, the engine cooling water discharged from the cooling water pump 32 is supplied to the engine 10, and the temperature rises by cooling various parts such as a cylinder while passing through the engine 10. Then, it passes through the exhaust gas heat exchanger 36 and reaches the thermostat 35. In the thermostat 35, the engine coolant is returned to the coolant pump 32 when the coolant temperature is lower than a predetermined temperature.

そして、エンジン冷却水が所定温度以上に達すると、サーモスタット35は、エンジン冷却水を水/水熱交換器37に流す。ここで、給湯の要求があれば、水/水熱交換器37において、エンジン冷却水の熱は、給湯用の2次水側38を流れる水を加熱して外部に取り出されることとなる。そして、水/水熱交換器37での熱交換量に応じてエンジン冷却水のラジエータ18への流量が調整される。熱交換量が多い場合は、電動三方弁34の第1冷却水入口34aの開度が第2冷却水入口34bの開度よりも大きくなり、排熱回収器下流経路39を流れてラジエータ18をバイパスする流量が多くなる。   When the engine cooling water reaches a predetermined temperature or higher, the thermostat 35 causes the engine cooling water to flow through the water / water heat exchanger 37. Here, if there is a request for hot water supply, in the water / water heat exchanger 37, the heat of the engine cooling water is taken out by heating the water flowing on the secondary water side 38 for hot water supply. Then, the flow rate of the engine cooling water to the radiator 18 is adjusted according to the heat exchange amount in the water / water heat exchanger 37. When the amount of heat exchange is large, the opening degree of the first cooling water inlet 34a of the electric three-way valve 34 becomes larger than the opening degree of the second cooling water inlet 34b, and the radiator 18 flows through the exhaust heat recovery device downstream path 39. The flow rate to bypass increases.

熱交換量が少ない場合は、電動三方弁34の第2冷却水入口34bの開度が第2冷却水入口34aの開度よりも大きくなり、ラジエータ18への流量が多くなる。   When the heat exchange amount is small, the opening degree of the second cooling water inlet 34b of the electric three-way valve 34 is larger than the opening degree of the second cooling water inlet 34a, and the flow rate to the radiator 18 is increased.

また、冷却水ポンプ吸引部32bから連通経路50、冷却水タンク20を経て通気管48へ至る経路が大気開放ラインとなるが、冷却水ポンプ吸引部32bより回路内圧力が高いラジエータ18からの連通管45と排気ガス熱交換器33からの連通管49も絞り61、60を経て冷却水タンク20へ合流している事から、冷却水ポンプ吸引部32bの圧力をヘッド圧以下にする事ができる。   In addition, the passage from the cooling water pump suction part 32b to the communication pipe 50 and the cooling water tank 20 to the vent pipe 48 is an air release line, but the communication from the radiator 18 having a higher circuit pressure than the cooling water pump suction part 32b. Since the communication pipe 49 from the pipe 45 and the exhaust gas heat exchanger 33 is also joined to the cooling water tank 20 through the throttles 61 and 60, the pressure of the cooling water pump suction part 32b can be reduced to the head pressure or less. .

また、エンジン10の下流に排気ガス熱交換器33を設置することにより、エンジン10の分の圧損低下により、排気ガス熱交換器33に作用する圧力を低下させることが可能となる。   Further, by installing the exhaust gas heat exchanger 33 downstream of the engine 10, it is possible to reduce the pressure acting on the exhaust gas heat exchanger 33 due to the pressure loss reduction of the engine 10.

電動三方弁34を冷却水回路内において、一番温度が低い場所であるポンプの吸引場所に設置することにより、電動三方弁34の部品としての信頼性が向上する。しかも、信頼性の向上に伴い、電動三方弁34を長期にわたって使用できコストの削減を図ることもできる。   By installing the electric three-way valve 34 in the suction area of the pump, which is the place where the temperature is the lowest, in the cooling water circuit, the reliability of the electric three-way valve 34 as a component is improved. Moreover, as the reliability is improved, the electric three-way valve 34 can be used over a long period of time, and the cost can be reduced.

エンジン冷却水の温度が上がり、サーモスタット35が高温側に開く状態になっていると、常に全量が水/水熱交換器37を通るため、水/水熱交換器37での熱交換量を水/水熱交換器37の入口側の温度センサ43と出口側の温度センサ44で水温変化を検知すれば演算することが可能となる。そのため、ラジエータ18と水/水熱交換器37を並列に配置して場合と比較すると、熱交換量の算定に当って水/水熱交換器37への経路に流量計が不要となるため、コストの削減が可能となる。或いは、電動三方弁34の水/水熱交換器37との開口比率を使用して水/水熱交換器37への流量を演算する場合と比べて演算負荷を軽減できる。   When the temperature of the engine cooling water rises and the thermostat 35 is open to the high temperature side, the entire amount always passes through the water / water heat exchanger 37. Therefore, the heat exchange amount in the water / water heat exchanger 37 is reduced to water. / Calculation is possible if the temperature sensor 43 on the inlet side and the temperature sensor 44 on the outlet side of the water heat exchanger 37 detect changes in the water temperature. Therefore, compared to the case where the radiator 18 and the water / water heat exchanger 37 are arranged in parallel, a flow meter is not required in the path to the water / water heat exchanger 37 in calculating the heat exchange amount. Cost can be reduced. Alternatively, the calculation load can be reduced as compared with the case where the flow rate to the water / water heat exchanger 37 is calculated using the opening ratio of the electric three-way valve 34 to the water / water heat exchanger 37.

さらに、排気ガス熱交換器33およびラジエータ18のようにエア溜りが懸念される場所に気水分離タンクへのエア抜き回路を設置している。このため、排気ガス熱交換器33およびラジエータ18のエンジン冷却水に混在する気泡は、図4に示すように、連通管49および連通管45を介して、他方のタンク20bに流入する。そして、エアのみが連通管46を介して一方のタンク20aに入り、エアは通気管48を通って大気に放出される。このように、気水分離を行い、エンジン冷却水のみ回路内に戻す構成であるため、ラジエータ18のサイズを小さくできるとともに、冷却水ポンプ32のエアがみも防止できる。なお、一方のタンク20a内のエンジン冷却水は、連通管47を介して他方のタンク20b内に適宜移動する。   Further, an air vent circuit for the steam-water separation tank is installed at a place where there is a concern about air accumulation such as the exhaust gas heat exchanger 33 and the radiator 18. For this reason, the air bubbles mixed in the engine coolant of the exhaust gas heat exchanger 33 and the radiator 18 flow into the other tank 20b through the communication pipe 49 and the communication pipe 45 as shown in FIG. Then, only air enters one tank 20 a through the communication pipe 46, and the air is released to the atmosphere through the vent pipe 48. Thus, since it is the structure which performs air-water separation and returns only engine cooling water in a circuit, while being able to make the size of the radiator 18 small, the air of the cooling water pump 32 can also be prevented. Note that the engine coolant in one tank 20a appropriately moves into the other tank 20b via the communication pipe 47.

高温水泡の気水分離を一方のタンク(リザーブタンク)20aとは別の他方のタンク(気水分離タンク)20bで行うことで、リザーブタンクの水温の上昇を防止できる。しかも、リザーブタンクは、水温の上昇を防止できることから、合成樹脂で容易且つ安価に製造することができる。   By performing the steam-water separation of the high-temperature water bubbles in the other tank (air-water separation tank) 20b different from the one tank (reserve tank) 20a, it is possible to prevent an increase in the water temperature of the reserve tank. In addition, since the reserve tank can prevent an increase in water temperature, it can be easily and inexpensively manufactured from a synthetic resin.

本発明は、前記実施の形態に限定されるものではない。例えば、図1に仮想線で示すように、通気管48を設けた一方のタンク冷却水底面は、他方のタンク底面よりも高所に配置することも可能である。かかる場合には、一方のタンク20a内のエンジン冷却水は、連通管47を介して他方のタンク20b内に容易に移動させることができる。   The present invention is not limited to the embodiment described above. For example, as indicated by a virtual line in FIG. 1, the bottom surface of one tank cooling water provided with the vent pipe 48 can be disposed higher than the bottom surface of the other tank. In such a case, the engine coolant in one tank 20a can be easily moved into the other tank 20b via the communication pipe 47.

また、本発明は、エンジン駆動式ヒートポンプに採用することも可能である。   The present invention can also be employed in an engine-driven heat pump.

本発明の一実施の形態に係るコージェネレーション装置のエンジン冷却水回路を示す回路図である。It is a circuit diagram which shows the engine cooling water circuit of the cogeneration apparatus which concerns on one embodiment of this invention. 同コージェネレーション装置の全体を示す正面斜視図である。It is a front perspective view which shows the whole cogeneration apparatus. 同コージェネレーション装置の全体を示す背面斜視図である。It is a back perspective view showing the whole cogeneration apparatus. 冷却水タンクの概略図である。It is the schematic of a cooling water tank.

符号の説明Explanation of symbols

1 コージェネレーション装置
2 パッケージ
10 エンジン
18 ラジエータ
20 冷却水タンク
20a 一方のタンク
20b 他方のタンク
30 エンジン冷却水回路
32 冷却水ポンプ
32a 冷却水ポンプ吐出部
32b 冷却水ポンプ吸引部
33 排気ガス熱交換器
34 電動三方弁
35 サーモスタット
37 水/水熱交換器(排熱回収器)
39 排熱回収器下流経路経
40 ラジエータ下流経路
41 冷却水供給管
42 経路
43 温度センサ
44 温度センサ
45 連通管
46 連通管
47 連通管
48 通気管
49 連通管
50 連通経路
51 絞り
60 絞り
61 絞り
DESCRIPTION OF SYMBOLS 1 Cogeneration apparatus 2 Package 10 Engine 18 Radiator 20 Cooling water tank 20a One tank 20b The other tank 30 Engine cooling water circuit 32 Cooling water pump 32a Cooling water pump discharge part 32b Cooling water pump suction part 33 Exhaust gas heat exchanger 34 Electric three-way valve 35 Thermostat 37 Water / water heat exchanger (exhaust heat recovery device)
39 Waste heat recovery device downstream path 40 Radiator downstream path 41 Cooling water supply pipe 42 Path 43 Temperature sensor 44 Temperature sensor 45 Communication pipe 46 Communication pipe 47 Communication pipe 48 Ventilation pipe 49 Communication pipe 50 Communication path 51 Restriction 60 Restriction 61 Restriction

Claims (6)

エンジン冷却水を介してエンジン排熱を供給する排熱回収器と、エンジン冷却水を介してエンジン排熱を放熱するラジエータと、排気ガスからエンジン冷却水へエンジン排熱を供給する排気ガス熱交換器と、エンジン冷却水を循環させる冷却水ポンプとを有する定置式エンジンの冷却水回路において、
冷却水ポンプ吸引部の上流に圧損機器を配置し、冷却水ポンプ吸引部と大気開放部を連通し、前記圧損機器の上流と前記大気開放部を連通し、前記圧損機器の上流と前記大気開放部との連通経路に絞りを配置し、前記大気開放部を大気と常時連通可能な構成としたことを特徴とする定置式エンジンの冷却水回路。
Exhaust heat recovery unit that supplies engine exhaust heat via engine cooling water, radiator that radiates engine exhaust heat via engine cooling water, and exhaust gas heat exchange that supplies engine exhaust heat from exhaust gas to engine cooling water And a stationary engine cooling water circuit having a cooling water pump for circulating the engine cooling water,
A pressure loss device is arranged upstream of the cooling water pump suction part, the cooling water pump suction part and the atmosphere release part are communicated, and the upstream of the pressure loss device and the atmosphere release part are communicated, and the upstream of the pressure loss device and the atmosphere release. A cooling water circuit for a stationary engine, characterized in that a throttle is disposed in a communication path with the section, and the atmosphere opening section is configured to always communicate with the atmosphere.
前記請求項1に記載の定置式エンジンの冷却水回路において、前記排気ガス熱交換器を前記冷却水ポンプ吐出側で且つ前記エンジン下流に配置したことを特徴とする定置式エンジンの冷却水回路。   The cooling water circuit for a stationary engine according to claim 1, wherein the exhaust gas heat exchanger is disposed on the discharge side of the cooling water pump and downstream of the engine. 前記請求項1記載の定置式エンジンの冷却水回路において、ラジエータ下流経路と排熱回収器下流経路の合流部に、開度調整可能な電動三方弁を配置したことを特徴とする定置式エンジンの冷却水回路。   The cooling water circuit of the stationary engine according to claim 1, wherein an electric three-way valve whose opening degree can be adjusted is disposed at a junction of the radiator downstream path and the exhaust heat recovery apparatus downstream path. Cooling water circuit. 前記請求項1記載の定置式エンジンの冷却水回路において、前記冷却水ポンプ吐出側にサーモスタットを配置し、該サーモスタットの高温側経路に前記排熱回収器を配置し、前記排熱回収器下流にラジエータを配置したことを特徴とする定置式エンジンの冷却水回路。   The cooling water circuit of the stationary engine according to claim 1, wherein a thermostat is disposed on a discharge side of the cooling water pump, the exhaust heat recovery device is disposed on a high temperature side path of the thermostat, and the downstream of the exhaust heat recovery device. A cooling water circuit for a stationary engine, wherein a radiator is arranged. 前記請求項1記載の定置式エンジンの冷却水回路において、前記大気開放部を冷却水タンクの上部に通気管を設ける構成とし、前記排気ガス熱交換器または前記ラジエータのうちで少なくともいずれか一つの機器及び前記冷却水ポンプ吸引部を、前記冷却水タンクの水封部と連通したことを特徴とする排熱回収器を有する定置式エンジンの冷却水回路。   The cooling water circuit of the stationary engine according to claim 1, wherein the atmosphere opening portion is provided with a vent pipe at an upper portion of a cooling water tank, and at least one of the exhaust gas heat exchanger and the radiator. A stationary engine cooling water circuit having an exhaust heat recovery device, wherein the device and the cooling water pump suction portion are communicated with a water sealing portion of the cooling water tank. 前記請求項5記載の定置式エンジンの冷却水回路において、前記冷却水タンクを2つ設ける構成とし、一方のタンクに通気管を設け、且つ一方のタンクと他方のタンクの空気溜り部を連通し、前記排気ガス熱交換器または前記ラジエータのうちで少なくともいずれか一つの機器及び前記冷却水ポンプ吸引部を、他方のタンクの水封部と連通し、一方のタンクと他方のタンクの水封部を連通し、通気管を設けた一方のタンク底面を他方のタンク底面と同一高さまたは高所に配置したことを特徴とする排熱回収器を有する定置式エンジンの冷却水回路。   6. A cooling water circuit for a stationary engine according to claim 5, wherein two cooling water tanks are provided, a vent pipe is provided in one tank, and an air reservoir portion of one tank communicates with the other tank. , At least one of the exhaust gas heat exchanger and the radiator and the cooling water pump suction part are communicated with the water seal part of the other tank, and the water seal part of one tank and the other tank A stationary engine cooling water circuit having an exhaust heat recovery device, wherein the bottom surface of one tank provided with a vent pipe is disposed at the same height or height as the bottom surface of the other tank.
JP2008121521A 2008-05-07 2008-05-07 Cooling water circuit for stationary engine Expired - Fee Related JP5191792B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008121521A JP5191792B2 (en) 2008-05-07 2008-05-07 Cooling water circuit for stationary engine
CN200980116269.3A CN102016258B (en) 2008-05-07 2009-04-24 Cooling water circuit for stationary engine
AU2009245230A AU2009245230B2 (en) 2008-05-07 2009-04-24 Cooling water circuit for stationary engine
EP09742678A EP2287454A1 (en) 2008-05-07 2009-04-24 Cooling water circuit for stationary engine
PCT/JP2009/058148 WO2009136554A2 (en) 2008-05-07 2009-04-24 Cooling water circuit for stationary engine
US12/736,752 US20110061833A1 (en) 2008-05-07 2009-04-24 Stationary engine coolant circuit
EA201071276A EA020099B1 (en) 2008-05-07 2009-04-24 Cooling water circuit for stationary engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008121521A JP5191792B2 (en) 2008-05-07 2008-05-07 Cooling water circuit for stationary engine

Publications (2)

Publication Number Publication Date
JP2009270485A true JP2009270485A (en) 2009-11-19
JP5191792B2 JP5191792B2 (en) 2013-05-08

Family

ID=41265122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121521A Expired - Fee Related JP5191792B2 (en) 2008-05-07 2008-05-07 Cooling water circuit for stationary engine

Country Status (6)

Country Link
US (1) US20110061833A1 (en)
EP (1) EP2287454A1 (en)
JP (1) JP5191792B2 (en)
CN (1) CN102016258B (en)
EA (1) EA020099B1 (en)
WO (1) WO2009136554A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002459A1 (en) * 2012-06-26 2014-01-03 日野自動車株式会社 Cooling water circulation device
JP2015183658A (en) * 2014-03-26 2015-10-22 ヤンマー株式会社 Package storage-type engine generator
JP2016075162A (en) * 2014-10-02 2016-05-12 三菱重工業株式会社 Cooling system and cogeneration equipment

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6066953B2 (en) * 2014-03-26 2017-01-25 ヤンマー株式会社 Engine coolant circuit
CN103885557A (en) * 2014-04-15 2014-06-25 吴江市赛纳电子科技有限公司 Self-cooling-type computer case
CN105201615A (en) * 2015-10-21 2015-12-30 无锡惠山泵业有限公司 Novel engine heat dissipation device
JP6992668B2 (en) * 2018-04-25 2022-01-13 トヨタ自動車株式会社 Vehicle drive system cooling system
CN109469543B (en) * 2018-11-01 2020-04-14 安徽双桦热交换系统有限公司 Radiator working state monitoring system
RU2707787C1 (en) * 2019-04-10 2019-11-29 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Cooling system of stationary internal combustion engine
DE102020101295A1 (en) 2020-01-21 2021-07-22 Audi Aktiengesellschaft Method for controlling the complete venting of a cooling circuit containing a cooling liquid, a cooling circuit as well as a fuel cell device and a motor vehicle with such
RU2742158C1 (en) * 2020-06-30 2021-02-02 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Automated installation for testing fuels and oils under various engine operating conditions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676622U (en) * 1993-04-07 1994-10-28 日産ディーゼル工業株式会社 Cooling device for internal combustion engine supercharger
JPH0988602A (en) * 1995-09-19 1997-03-31 Mitsubishi Heavy Ind Ltd Engine-driven air conditioner
JPH11132041A (en) * 1997-08-28 1999-05-18 Toyota Motor Corp Water cooling type cooling device for internal combustion engine

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1426185A1 (en) * 1962-07-31 1969-01-23 Daimler Benz Ag Cooling circuit of an internal combustion engine
US3447511A (en) * 1967-08-31 1969-06-03 Franklin Beard Fuel generator
US3499481A (en) * 1969-03-24 1970-03-10 Saf Gard Products Inc Pressurized liquid cooling system
US3601181A (en) * 1970-03-09 1971-08-24 Saf Gard Products Inc Method and apparatus for purging air from internal combustion engine cooling systems
DE2529376C3 (en) * 1975-07-02 1979-04-19 Audi Nsu Auto Union Ag, 7107 Neckarsulm Internal combustion engine with device for heating the cooling fluid circuit
US3981279A (en) * 1975-08-26 1976-09-21 General Motors Corporation Internal combustion engine system
GB1587696A (en) * 1977-07-29 1981-04-08 Fiat Spa Self-contained unit for the combined production of electrical energy and heat
US4245593A (en) * 1979-09-04 1981-01-20 Kim Hotstart Manufacturing Co., Inc. Liquid heating and circulating system
US4249491A (en) * 1979-09-04 1981-02-10 Kim Hotstart Manufacturing Co., Inc. Multiple liquid heating and circulating system
US4338891A (en) * 1980-01-28 1982-07-13 Blitz James E Temperature control system for automotive storage components
US4346757A (en) * 1980-09-10 1982-08-31 Borg-Warner Corporation Automotive cooling system using a non-pressurized reservoir bottle
JPS60122223A (en) * 1983-12-02 1985-06-29 Nissan Motor Co Ltd Evaporative cooler of internal-combustion engine
US4907738A (en) * 1984-09-20 1990-03-13 Conserve, Inc. Heat pump
US4736111A (en) * 1984-10-03 1988-04-05 Linden Craig L Cogeneration system
US4556024A (en) * 1985-01-07 1985-12-03 Ford Motor Company Engine lubrication system
JPS61275522A (en) * 1985-05-30 1986-12-05 Nissan Motor Co Ltd Evaporative cooling device for engine
US4705214A (en) * 1985-06-04 1987-11-10 Navistar International Transportation Corp. Independent exhaust gas heat system
US4739824A (en) * 1987-01-08 1988-04-26 Susan E. Lund Hermetically sealed, relatively low pressure cooling system for internal combustion engines and method therefor
US4861187A (en) * 1987-04-14 1989-08-29 Tana Jyra Ky Method for arranging the cooling in a compactor and a cooling system for the realization of the method
US4901531A (en) * 1988-01-29 1990-02-20 Cummins Engine Company, Inc. Rankine-diesel integrated system
US4976464A (en) * 1989-03-10 1990-12-11 Consolidated Natural Gas Service Company, Inc. Fuel-fired heat pump system
US5611392A (en) * 1991-03-08 1997-03-18 Arctic Fox Heaters, Inc. Power fluid heating system
US5249742A (en) * 1992-07-24 1993-10-05 Gas Research Institute Coolant circulation system for engine heat pump
US5435485A (en) * 1992-07-24 1995-07-25 Gas Research Institute Automatic purge system for gas engine heat pump
US5577661A (en) * 1995-08-21 1996-11-26 Anser, Inc. Pool water heating and circulating system
RU2109148C1 (en) * 1996-07-16 1998-04-20 Акционерное общество закрытого типа "Зил-КАР" Combination system of automatic control and regulation of internal combustion engine thermal conditions
DE19637817A1 (en) * 1996-09-17 1998-03-19 Laengerer & Reich Gmbh & Co Device and method for cooling and preheating
US6109346A (en) * 1998-01-20 2000-08-29 Hill; Gary G. Waste heat auxiliary tank system method and apparatus
CN2377353Y (en) * 1999-05-14 2000-05-10 邹昌文 water make-up device for radiator
RU2165027C1 (en) * 1999-09-13 2001-04-10 Чувашский государственный университет им. И.Н. Ульянова Internal combustion engine cooling-heating system
US6464027B1 (en) * 2000-02-02 2002-10-15 Visteon Global Technologies, Inc. Method of thermal management for a hybrid vehicle
US6364010B1 (en) * 2000-06-02 2002-04-02 The Consortium For Technology Licensing, Ltd. Device to provide heated washer fluid
JP3871193B2 (en) * 2001-07-03 2007-01-24 本田技研工業株式会社 Engine exhaust heat recovery device
JP2003075019A (en) * 2001-08-31 2003-03-12 Mitsubishi Heavy Ind Ltd Gas heat pump type air conditioning device and combustion device for heating exhaust gas
JP2003075018A (en) * 2001-08-31 2003-03-12 Mitsubishi Heavy Ind Ltd Gas heat pump type air conditioning device
JP5030344B2 (en) * 2001-08-31 2012-09-19 三菱重工業株式会社 Gas heat pump type air conditioner, engine cooling water heating device, and operation method of gas heat pump type air conditioner
US6609484B2 (en) * 2001-12-11 2003-08-26 Caterpillar Inc Engine cooling system
KR101192899B1 (en) * 2002-11-13 2012-10-18 데카 프로덕츠 리미티드 파트너쉽 Pressurized vapor cycle liquid distillation
US7284709B2 (en) * 2003-11-07 2007-10-23 Climate Energy, Llc System and method for hydronic space heating with electrical power generation
DE102004056704A1 (en) * 2004-11-24 2006-06-01 Mtu Aero Engines Gmbh Device for removing and returning cooling streams
US8032979B2 (en) * 2005-09-17 2011-10-11 Hydramaster North America, Inc. Heat exchanger
US8371251B2 (en) * 2006-04-24 2013-02-12 Phoenix Caliente Llc Methods and apparatuses for heating, concentrating and evaporating fluid
US7614367B1 (en) * 2006-05-15 2009-11-10 F. Alan Frick Method and apparatus for heating, concentrating and evaporating fluid
KR101270614B1 (en) * 2006-07-25 2013-06-07 엘지전자 주식회사 Co-generation
KR101270616B1 (en) * 2006-07-27 2013-06-07 엘지전자 주식회사 Co-generation
JP4970022B2 (en) * 2006-08-02 2012-07-04 カルソニックカンセイ株式会社 Combined heat exchanger and combined heat exchanger system
US7503184B2 (en) * 2006-08-11 2009-03-17 Southwest Gas Corporation Gas engine driven heat pump system with integrated heat recovery and energy saving subsystems
US8205427B2 (en) * 2006-11-09 2012-06-26 United Technologies Corporation Interdependent lubrication systems in a turbine engine
GB2444944A (en) * 2006-12-20 2008-06-25 Microgen Energy Ltd Storage combination boiler
JP4432979B2 (en) * 2007-02-08 2010-03-17 株式会社デンソー Exhaust heat recovery system
JP2009103112A (en) * 2007-10-25 2009-05-14 Honda Motor Co Ltd Cogeneration system
US7673591B2 (en) * 2008-06-10 2010-03-09 Deere & Company Nucleate boiling cooling system and method
US20100155046A1 (en) * 2008-12-18 2010-06-24 Eric Surawski Temperature control system for an on board inert gas generation systems
US10207567B2 (en) * 2012-10-19 2019-02-19 Ford Global Technologies, Llc Heater core isolation valve position detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676622U (en) * 1993-04-07 1994-10-28 日産ディーゼル工業株式会社 Cooling device for internal combustion engine supercharger
JPH0988602A (en) * 1995-09-19 1997-03-31 Mitsubishi Heavy Ind Ltd Engine-driven air conditioner
JPH11132041A (en) * 1997-08-28 1999-05-18 Toyota Motor Corp Water cooling type cooling device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002459A1 (en) * 2012-06-26 2014-01-03 日野自動車株式会社 Cooling water circulation device
JP2014005786A (en) * 2012-06-26 2014-01-16 Hino Motors Ltd Cooling water circulating device
US9541335B2 (en) 2012-06-26 2017-01-10 Hino Motors, Ltd. Cooling water circulation device
JP2015183658A (en) * 2014-03-26 2015-10-22 ヤンマー株式会社 Package storage-type engine generator
JP2016075162A (en) * 2014-10-02 2016-05-12 三菱重工業株式会社 Cooling system and cogeneration equipment

Also Published As

Publication number Publication date
EA020099B1 (en) 2014-08-29
JP5191792B2 (en) 2013-05-08
CN102016258A (en) 2011-04-13
US20110061833A1 (en) 2011-03-17
EA201071276A1 (en) 2011-10-31
CN102016258B (en) 2013-01-09
AU2009245230A1 (en) 2009-11-12
EP2287454A1 (en) 2011-02-23
WO2009136554A2 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5191792B2 (en) Cooling water circuit for stationary engine
JP5303183B2 (en) Engine storage package
RU2384713C2 (en) Optimised oil cooling system for internal combustion engine
JP4875573B2 (en) Engine coolant passage structure
JP2007141780A (en) Fuel cell system
JP2004332744A (en) Cooling system of hybrid electric car
JP4628995B2 (en) Oil temperature control device for engine test
JP2008530429A (en) Thermal control device for recirculation gas of internal combustion engine
JP5069490B2 (en) Open air heat storage device
US20190154304A1 (en) Heating and hot water supply device
US10800668B2 (en) Integrated thermal management and water purification system
JP4833707B2 (en) Waste heat recovery device
JP5628097B2 (en) Mold cooling system
JP2011257130A (en) Apparatus for recovering exhaust heat
KR100405537B1 (en) an apparatus for air removal and coolant replenishment in a cooling system of vehicles
GB2581478A (en) Motor vehicle counterflow radiator, engine cooling circuit, vehicle and method of cooling an engine
KR20200134901A (en) Cabinet cooling system with sea water
WO2017090548A1 (en) Engine cooling device
JP5302232B2 (en) Hybrid hot water storage system
JP5387710B2 (en) Fuel cell system
CN209744603U (en) Air conditioning system
JP7204593B2 (en) Method of operating Rankine cycle system and waste heat recovery device
CN205779199U (en) Cooling system of vehicle and vehicle
JP2009215903A (en) Circulation device for cooling water in internal combustion engine
CN210014499U (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130130

R150 Certificate of patent or registration of utility model

Ref document number: 5191792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees