JP2004332744A - Cooling system of hybrid electric car - Google Patents

Cooling system of hybrid electric car Download PDF

Info

Publication number
JP2004332744A
JP2004332744A JP2004146236A JP2004146236A JP2004332744A JP 2004332744 A JP2004332744 A JP 2004332744A JP 2004146236 A JP2004146236 A JP 2004146236A JP 2004146236 A JP2004146236 A JP 2004146236A JP 2004332744 A JP2004332744 A JP 2004332744A
Authority
JP
Japan
Prior art keywords
cooling system
engine
motor
cooling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004146236A
Other languages
Japanese (ja)
Other versions
JP3722145B2 (en
Inventor
Hitoshi Shimonosono
均 下野園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004146236A priority Critical patent/JP3722145B2/en
Publication of JP2004332744A publication Critical patent/JP2004332744A/en
Application granted granted Critical
Publication of JP3722145B2 publication Critical patent/JP3722145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable efficient cooling to meet an operational condition of an engine and an electric motor. <P>SOLUTION: An engine cooling system 4 and a motor cooling system 5 are communicated with each other via circulation pipes 18 and 21, and a displacement type assist electric pump 19 with water shut-off function when stopping the pump is provided on the circulation pipes 18 and 21. Sensors 22 and 23 to sense the water temperature in the engine cooling system 4 and the water temperature in the motor cooling system 5 are provided, and an electric pump 15 and an assist electric pump 19 of the motor cooling system are driven according to signals of the sensors 22 and 23. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、電動モータにより走行を可能な車両であって、エンジンにより駆動される発電機と、発電された電気を蓄えるバッテリとを備えており、電動モータを冷却するモータ用冷却システムと、エンジンを冷却するエンジン用冷却システムとを備えているハイブリッド電気自動車の冷却システムにおいて、冷却ファン等の冷却系の消費電力を低減させると共に、熱交換器のサイズを小さくして重量軽減を図り、燃費を改善する技術に関する。   The present invention is a vehicle capable of traveling by an electric motor, comprising a generator driven by an engine, and a battery for storing generated electricity, a motor cooling system for cooling the electric motor, and an engine. In a cooling system for a hybrid electric vehicle that includes a cooling system for an engine that cools the vehicle, the power consumption of a cooling system such as a cooling fan is reduced, and the size of the heat exchanger is reduced to reduce the weight, thereby improving fuel efficiency. Regarding technology to improve.

従来から排気エミッションを改善するため、エンジンと電動モータを組み合わせたハイブリッド電気自動車が知られている。   2. Description of the Related Art Conventionally, a hybrid electric vehicle that combines an engine and an electric motor to improve exhaust emission has been known.

このようなハイブリッド電気自動車では、エンジンにより駆動される発電機と、発電された電気を蓄えるバッテリとを備えて、電動モータにより走行が可能であるが、そのエンジンの冷却系と電動モータの冷却系とは制御温度が大きく異なっており、通常は電動モータの定格等からモータの冷却系が低めの設定となっている。したがって、両者の冷却系統を共有することは単純にはできず、それぞれ個別のラジエータ、送風手段を必要としている。そのため、これら複数の熱交換器への通水をうまく切換えることによって、共有化することが重要となっている。   Such a hybrid electric vehicle includes a generator driven by an engine, and a battery for storing the generated electricity, and can be driven by an electric motor. A cooling system for the engine and a cooling system for the electric motor are provided. The control temperature is greatly different from that of the electric motor, and the cooling system of the motor is usually set lower due to the rating of the electric motor. Therefore, it is not possible to simply share the two cooling systems, and each requires a separate radiator and a separate blower. Therefore, it is important to share water by properly switching the flow of water to the plurality of heat exchangers.

図15は冷却システムの例を示すもので、エンジン50の水冷システムとエンジンの吸気を冷却するインタークーラ51の水冷システムとを組み合わせたものである。この例では、エンジン冷却用のラジエータ52とインタークーラ用のラジエータ53に加えて、切換弁54により各水冷システムと選択的に連通される第3のラジエータ55とを備え、エンジン50の冷却能力が必要なときは、第3のラジエータ55をエンジン冷却系統と連通させ、インタークーラ51の冷却能力が必要なときは、第3のラジエータ55をインタークーラ冷却系統と連通させることにより、エンジン用ラジエータの余剰冷却能力を、他の水冷システムの放熱に利用し、冷却水放熱システムを小型化させている(例えば、特許文献1)。
特開平6ー81648号
FIG. 15 shows an example of a cooling system, which is a combination of a water cooling system of the engine 50 and a water cooling system of an intercooler 51 for cooling the intake air of the engine. In this example, in addition to a radiator 52 for engine cooling and a radiator 53 for intercooler, a third radiator 55 selectively connected to each water cooling system by a switching valve 54 is provided. When necessary, the third radiator 55 is communicated with the engine cooling system, and when the cooling capacity of the intercooler 51 is required, the third radiator 55 is communicated with the intercooler cooling system. The surplus cooling capacity is used for heat radiation of another water cooling system to reduce the size of the cooling water heat radiation system (for example, Patent Document 1).
JP-A-6-81648

しかしながら、このような冷却システムにあっては、一方の冷却系の水温によって第3のラジエータを切換えるようになっていたため、両冷却系の水温差が大きいときに、水温ハンチングが発生する心配があり、また前記ハイブリッド電気自動車のエンジンおよび電動モータの冷却系に適用した場合、運転条件に合った効率の良い冷却を行えない。また、各熱交換器のレイアウト自由度が無く、冷却系がエンジンルームからの熱気の影響を受ける。   However, in such a cooling system, since the third radiator is switched according to the water temperature of one of the cooling systems, there is a concern that water temperature hunting may occur when the water temperature difference between the two cooling systems is large. In addition, when the present invention is applied to a cooling system for an engine and an electric motor of the hybrid electric vehicle, efficient cooling suitable for operating conditions cannot be performed. Further, there is no layout freedom of each heat exchanger, and the cooling system is affected by hot air from the engine room.

この発明は、ハイブリッド電気自動車のエンジンおよび電動モータの冷却系に最適な冷却システムを提供することを目的としている。   An object of the present invention is to provide a cooling system optimal for a cooling system of an engine and an electric motor of a hybrid electric vehicle.

第1の発明は、電動モータにより走行を可能な車両であって、エンジンにより駆動される発電機と、発電された電気を蓄えるバッテリとを備えており、前記電動モータを冷却するモータ用冷却システムと、前記エンジンを冷却するエンジン用冷却システムとを備えているハイブリッド電気自動車の冷却システムにおいて、前記エンジン用冷却システムはエンジン駆動のメカニカルポンプで冷却水を循環可能に形成されると共に、ラジエータへの通水を制御するサーモスタットを備えており、前記モータ用冷却システムは停止時に通水遮断機能を持つ容積型の電動ポンプにより冷却水を循環可能に形成されており、このエンジン用冷却系とモータ用冷却系とを循環用配管を介して連通させると共に、その循環用配管に停止時に通水遮断機能を持つ容積型のアシスト電動ポンプを設け、このエンジン用冷却系内の水温とモータ用冷却系内の水温とをそれぞれ検知するセンサを設け、これらのセンサの信号に応じて前記電動ポンプおよびアシスト電動ポンプを駆動するようにする。   A first invention is a vehicle capable of traveling by an electric motor, comprising a generator driven by an engine, and a battery for storing generated electricity, and a motor cooling system for cooling the electric motor. And a cooling system for a hybrid electric vehicle including an engine cooling system for cooling the engine, wherein the engine cooling system is formed so that cooling water can be circulated by an engine-driven mechanical pump, and A thermostat for controlling water flow is provided, and the cooling system for the motor is formed so that cooling water can be circulated by a positive displacement type electric pump having a function of shutting off water when stopped. Communicates with the cooling system via a circulation pipe and has a water cutoff function when the circulation pipe is stopped. A displacement assist electric pump is provided, and sensors for detecting a water temperature in the engine cooling system and a water temperature in the motor cooling system are provided. The electric pump and the assist electric pump are provided in accordance with signals from these sensors. Drive it.

第2の発明は、第1の発明において、エンジン用冷却系内の水温が所定値より低く、サーモスタットが閉じており、モータ用冷却系内の水温が所定値よりも高い条件では、電動ポンプおよびアシスト電動ポンプを作動させ、エンジン用冷却系内とモータ用冷却系内との間で冷却水のやり取りを行うようにする。   According to a second aspect, in the first aspect, when the water temperature in the engine cooling system is lower than a predetermined value, the thermostat is closed, and the water temperature in the motor cooling system is higher than the predetermined value, the electric pump and The assist electric pump is operated to exchange cooling water between the engine cooling system and the motor cooling system.

第3の発明は、第1の発明において、エンジン用冷却系内の水温が所定値より高く、サーモスタットが開いており、モータ用冷却系内の水温が所定値よりも低い条件では、アシスト電動ポンプを作動させると共に、電動ポンプを停止させ、エンジン用冷却系内とモータ用冷却系内との間で冷却水のやり取りを行うようにする。   According to a third aspect, in the first aspect, the assist electric pump is provided under the condition that the water temperature in the engine cooling system is higher than a predetermined value, the thermostat is open, and the water temperature in the motor cooling system is lower than the predetermined value. And the electric pump is stopped to exchange cooling water between the engine cooling system and the motor cooling system.

第4の発明は、第1の発明において、バッテリをエンジンルームから離れた部位に配置し、バッテリの側方を筐対で取り囲むと共に、エンジン用冷却系のラジエータを前記筐体の車両前方側に設置し、当該ラジエータを通過する冷却風によってバッテリを冷却するようにする。   In a fourth aspect based on the first aspect, the battery is disposed at a location away from the engine room, the sides of the battery are surrounded by a pair of casings, and a radiator of an engine cooling system is provided on a front side of the casing with respect to the vehicle. It is installed so that the battery is cooled by cooling air passing through the radiator.

第1の発明によれば、エンジン用冷却系内の水温とモータ用冷却系内の水温に応じて、両冷却系の間で冷却水のやり取りを行うことにより、エンジンおよび電動モータの高い冷却性能を確保できると共に、各冷却系での水温制御をきめ細かく行え、運転状態に合った効率の良い冷却を行うことができる。したがって、各冷却系の熱交換器の伝熱面積を有効に利用でき、冷却ファンの消費電力を低減でき、熱交換器面積、重量等の低減を図れる。   According to the first aspect, the cooling water is exchanged between the two cooling systems in accordance with the water temperature in the engine cooling system and the water temperature in the motor cooling system, thereby achieving high cooling performance of the engine and the electric motor. , And water temperature control in each cooling system can be finely performed, and efficient cooling suitable for the operation state can be performed. Therefore, the heat transfer area of the heat exchanger of each cooling system can be effectively used, the power consumption of the cooling fan can be reduced, and the area and weight of the heat exchanger can be reduced.

第2の発明によれば、電動モータの冷却性能が要求される領域にエンジン用冷却系を利用して、電動モータを効率良く的確に冷却できる。   According to the second aspect, the electric motor can be efficiently and accurately cooled by using the engine cooling system in a region where cooling performance of the electric motor is required.

第3の発明によれば、エンジンの冷却性能が要求される領域にモータ用冷却系をエンジン冷却に利用して、エンジンを効率良く的確に冷却できる。   According to the third aspect, the engine can be efficiently and accurately cooled by utilizing the motor cooling system for engine cooling in an area where engine cooling performance is required.

第4の発明によれば、エンジン用冷却系のラジエータの冷却と共にバッテリの冷却を同一の冷却ファンで行える。また、停車時に充電のため作動する可能性があるエンジン用冷却系のラジエータをエンジンルームから離れた部位に配置することにより、できるだけ車両後方の低温気流を吸引させて、そのエンジン用冷却系のラジエータの良好な放熱性能を確保できる。   According to the fourth aspect, the cooling of the battery can be performed by the same cooling fan together with the cooling of the radiator of the engine cooling system. In addition, the radiator of the engine cooling system, which may be activated for charging when the vehicle is stopped, is arranged at a location away from the engine room, so that the low-temperature airflow behind the vehicle can be sucked as much as possible, and the radiator of the engine cooling system Good heat radiation performance can be secured.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1において、1はエンジン、2はエンジン1により駆動される発電機、3は発電機2により発電された電気およびバッテリの電力により駆動される走行用に用いられる電動モータ、4はエンジン用冷却システム、5はモータ用冷却システムである。   In FIG. 1, 1 is an engine, 2 is a generator driven by the engine 1, 3 is an electric motor used for traveling driven by electricity generated by the generator 2 and electric power of a battery, and 4 is engine cooling. The system 5 is a motor cooling system.

エンジン用冷却システム4において、冷却水はエンジン1を冷却することによって受熱後、エンジン出口配管6、サーモスタット7、ラジエータ入口配管8を通り、エンジン用のラジエータ9に流入して放熱する。その後、ラジエータ出口配管10およびエンジン入口配管11を経由して、エンジン1により駆動されるメカニカルポンプとしてのウォータポンプ12に吸引され、エンジン1へ還流する。この場合、エンジン冷却水温がある所定値以下のときは、サーモスタット7がエンジン用のラジエータ9への通水を遮断し、エンジン出口配管6の冷却水はバイパス経路13を通って直ちにウォータポンプ12へ還流する。   In the engine cooling system 4, the cooling water receives heat by cooling the engine 1, passes through the engine outlet pipe 6, the thermostat 7, and the radiator inlet pipe 8, flows into the engine radiator 9, and radiates heat. Thereafter, the water is sucked by a water pump 12 as a mechanical pump driven by the engine 1 via a radiator outlet pipe 10 and an engine inlet pipe 11, and is returned to the engine 1. In this case, when the temperature of the engine cooling water is equal to or lower than a predetermined value, the thermostat 7 shuts off the flow of water to the radiator 9 for the engine, and the cooling water of the engine outlet pipe 6 immediately passes through the bypass passage 13 to the water pump 12. Reflux.

モータ用冷却システム5において、冷却系路14の冷却水は電動ポンプ(電動ウォータポンプ)15により電動モータ3、発電機2に送られ、これらを冷却すると共に、モータ用のラジエータ16を通り、放熱する。   In the motor cooling system 5, the cooling water in the cooling system path 14 is sent to the electric motor 3 and the generator 2 by an electric pump (electric water pump) 15, cools them, passes through a radiator 16 for the motor, and releases heat. I do.

そして、このエンジン用のラジエータ9のラジエータ出口配管10とモータ用のラジエータ16の冷却水入口部17とが循環用配管としての連通配管18により連通され、その連通配管18の途中にアシスト電動ポンプ(アシスト電動ウォータポンプ)19が設置される。また、モータ用のラジエータ16の冷却水出口部20とエンジン用のラジエータ9のラジエータ入口配管8とが循環用配管としての戻り配管21により連通される。   The radiator outlet pipe 10 of the radiator 9 for the engine and the cooling water inlet 17 of the radiator 16 for the motor are connected by a communication pipe 18 serving as a circulation pipe, and an assist electric pump ( An assist electric water pump 19 is installed. The cooling water outlet 20 of the radiator 16 for the motor and the radiator inlet pipe 8 of the radiator 9 for the engine are connected by a return pipe 21 as a circulation pipe.

電動ポンプ15およびアシスト電動ポンプ19には、例えばギアポンプのように停止時には通水を遮断する容積型のポンプが用いられる。   As the electric pump 15 and the assist electric pump 19, for example, a positive displacement pump that shuts off water when stopped, such as a gear pump, is used.

一方、エンジン用のラジエータ9内の冷却水温を検出するためのセンサ22およびモータ用のラジエータ16内の冷却水温を検出するためのセンサ23が設けられ、これらの検出信号は後述するセンサ37の検出信号と共にコントロールユニット26に入力される。   On the other hand, a sensor 22 for detecting the temperature of the cooling water in the radiator 9 for the engine and a sensor 23 for detecting the temperature of the cooling water in the radiator 16 for the motor are provided. These detection signals are detected by a sensor 37 described later. The signal is input to the control unit 26 together with the signal.

コントロールユニット26により、センサ22,23の検出信号に基づき、電動ポンプ15、アシスト電動ポンプ19の駆動が制御される。また、それぞれエンジン用のラジエータ9、モータ用のラジエータ16に冷却風を強制通風させる冷却ファン(電動ファン)24,25の駆動もコントロールユニット26により、制御される。   The drive of the electric pump 15 and the assist electric pump 19 is controlled by the control unit 26 based on the detection signals of the sensors 22 and 23. The control unit 26 also controls the driving of cooling fans (electric fans) 24 and 25 for forcing cooling air to flow through the radiator 9 for the engine and the radiator 16 for the motor, respectively.

図2は本システムの配置構成を示すもので、車両を床下から見た図である。エンジン1、発電機2、電動モータ3は、車両30の前側のエンジンルーム31に配置される。モータ用のラジエータ16はエンジンルーム31の前端にエアコンコンデンサ32と並んで配置される。   FIG. 2 shows the arrangement of the present system, and is a view of the vehicle as viewed from under the floor. The engine 1, the generator 2, and the electric motor 3 are arranged in an engine room 31 on the front side of the vehicle 30. The motor radiator 16 is arranged at the front end of the engine room 31 alongside the air conditioner condenser 32.

バッテリ33はエンジンルーム31から離れた車両30の床下中央部に配置され、側方(車両30の横方向)を筐体34により取り囲まれる。エンジン用のラジエータ9はその筐体34の車両30前方側に設置され、筐体34の車両30後方側には通風口35が形成される。   The battery 33 is arranged at a central portion under the floor of the vehicle 30 distant from the engine room 31, and is surrounded by a housing 34 on the side (lateral direction of the vehicle 30). The radiator 9 for the engine is installed on the front side of the casing 30 of the vehicle 30, and the ventilation port 35 is formed on the rear side of the casing 30 of the vehicle 30.

冷却ファン24により、エンジン用のラジエータ9の冷却と共に、バッテリ33の冷却も行われる。筐体34内のバッテリ33の雰囲気温度を検出するためのセンサ37が設けられ、コントロールユニット26により、そのセンサ37の検出信号によっても、冷却ファン24の駆動が制御される。   The cooling fan 24 not only cools the radiator 9 for the engine, but also cools the battery 33. A sensor 37 for detecting the ambient temperature of the battery 33 in the housing 34 is provided, and the control unit 26 controls the driving of the cooling fan 24 also by the detection signal of the sensor 37.

なお、冷却ファン24は2連式のもので、図中38はエアコンコンデンサ32の冷却ファンを示す。また、39はエンジン1の排気管、40は車輪である。   The cooling fan 24 is of a double type, and reference numeral 38 in the figure denotes a cooling fan for the air conditioner condenser 32. Reference numeral 39 denotes an exhaust pipe of the engine 1, and reference numeral 40 denotes wheels.

次に、コントロールユニット26による制御内容を図3の制御マップ、図4〜図9のフローチャートに基づいて説明する。   Next, the control contents of the control unit 26 will be described based on the control map of FIG. 3 and the flowcharts of FIGS.

前述した通り、エンジン冷却系とモータ冷却系とでは目標制御水温が異なる。この目標制御水温は、エンジンやモータの種類により異なるが、ここでは説明のため、エンジンの最高目標水温を110℃、モータの最高目標水温を60℃と仮おきして説明する。図3はモータ水温とエンジン水温の制御マップを示す。ここに示す(a)〜(g)までの領域それぞれにおいて、図1に示した通水系を切換えて行う。   As described above, the target control water temperature differs between the engine cooling system and the motor cooling system. The target control water temperature differs depending on the type of the engine and the motor, but for the sake of explanation, the following description will be made on the assumption that the maximum target water temperature of the engine is 110 ° C and the maximum target water temperature of the motor is 60 ° C. FIG. 3 shows a control map of the motor water temperature and the engine water temperature. In each of the regions (a) to (g) shown here, the operation is performed by switching the water flow system shown in FIG.

図4のステップ1ではバッテリ33の雰囲気温度が50℃以上かどうかを判定し,50℃以上であれば、後述のルーチンにかかわらず、ステップ2でエンジン用ラジエータ9の冷却ファン24をオンする。   In step 1 of FIG. 4, it is determined whether or not the ambient temperature of the battery 33 is 50 ° C. or higher. If it is 50 ° C. or higher, the cooling fan 24 of the engine radiator 9 is turned on in step 2 regardless of a routine described later.

ステップ3ではモータ水温(センサ22の検出水温)が50℃以上かどうかを判定し、50℃未満であれば、ステップ4でエンジン水温(センサ23の検出水温)が80℃以上かどうかを判定し、80℃未満であれば、A(図5)のフローに進み、80℃以上であれば、D(図8)のフローに進む。   In step 3, it is determined whether the motor water temperature (water temperature detected by the sensor 22) is 50 ° C. or higher. If it is lower than 50 ° C., in step 4, it is determined whether the engine water temperature (water temperature detected by the sensor 23) is 80 ° C. or higher. , 80 ° C., the flow proceeds to A (FIG. 5), and if it is 80 ° C. or more, the flow proceeds to D (FIG. 8).

ステップ3でモータ水温が50℃以上であれば、ステップ5でエンジン水温が80℃以上かどうかを判定し、80℃以上であれば、E(図9)のフローに進み、また80℃未満であれば、ステップ6でエンジン水温が55℃以下かつモータ水温が55℃以上かどうかを判定し、Noであれば、B(図6)のフローに進み、Yesであれば、C(図7)のフローに進む。   If the motor water temperature is equal to or higher than 50 ° C. in step 3, it is determined in step 5 whether the engine water temperature is equal to or higher than 80 ° C. If the motor water temperature is equal to or higher than 80 ° C., the flow proceeds to E (FIG. 9). If so, it is determined in step 6 whether the engine water temperature is 55 ° C. or lower and the motor water temperature is 55 ° C. or higher. If No, the flow proceeds to B (FIG. 6); if Yes, C (FIG. 7) Proceed to flow.

図5(図3の(a)の領域の制御)のステップ11では、電動ポンプ15、アシスト電動ポンプ19をオフし、エンジン用ラジエータ9、モータ用ラジエータ16の冷却ファン24,25を共にオフする。   In step 11 of FIG. 5 (control in the area of FIG. 3A), the electric pump 15 and the assist electric pump 19 are turned off, and both the cooling fans 24 and 25 of the engine radiator 9 and the motor radiator 16 are turned off. .

図6(図3の(b)の領域の制御)のステップ21では、電動ポンプ15をオン、アシスト電動ポンプ19をオフする。ステップ22ではモータ水温が58℃以上かどうかを判定し、58℃未満であれば、ステップ23でエンジン用ラジエータ9、モータ用ラジエータ16の冷却ファン24,25を共にオフし、58℃以上であれば、ステップ24でエンジン用ラジエータ9の冷却ファン24をオフし、モータ用ラジエータ16の冷却ファン25をオンする。   In step 21 of FIG. 6 (control in the region of FIG. 3B), the electric pump 15 is turned on and the assist electric pump 19 is turned off. In step 22, it is determined whether or not the motor water temperature is 58 ° C. or higher. If it is lower than 58 ° C., in step 23, both the cooling fans 24 and 25 of the engine radiator 9 and the motor radiator 16 are turned off. For example, in step 24, the cooling fan 24 of the engine radiator 9 is turned off, and the cooling fan 25 of the motor radiator 16 is turned on.

図7(図3の(c)の領域の制御)のステップ31では、電動ポンプ15、アシスト電動ポンプ19をオンする。ステップ32ではモータ水温が58℃以上かどうかを判定し、58℃未満であれば、ステップ33でエンジン用ラジエータ9、モータ用ラジエータ16の冷却ファン24,25を共にオフし、58℃以上であれば、ステップ34でエンジン用ラジエータ9の冷却ファン24をオフし、モータ用ラジエータ16の冷却ファン25をオンする。   In step 31 of FIG. 7 (control in the region of FIG. 3C), the electric pump 15 and the assist electric pump 19 are turned on. In step 32, it is determined whether or not the motor water temperature is 58 ° C. or higher. If it is lower than 58 ° C., in step 33, the cooling fans 24 and 25 of the engine radiator 9 and the motor radiator 16 are turned off. For example, in step 34, the cooling fan 24 of the engine radiator 9 is turned off, and the cooling fan 25 of the motor radiator 16 is turned on.

図8(図3の(d)の領域の制御)のステップ41では、電動ポンプ15をオン、アシスト電動ポンプ19をオフする。ステップ42ではエンジン水温が95℃以上かどうかを判定し、95℃未満であれば、ステップ43でエンジン用ラジエータ9、モータ用ラジエータ16の冷却ファン24,25を共にオフし、95℃以上であれば、ステップ44でエンジン用ラジエータ9の冷却ファン24をオンし、モータ用ラジエータ16の冷却ファン25をオフする。   In step 41 of FIG. 8 (control in the region of FIG. 3D), the electric pump 15 is turned on and the assist electric pump 19 is turned off. In step 42, it is determined whether or not the engine water temperature is 95 ° C. or higher. If the temperature is lower than 95 ° C., in step 43, both the cooling fans 24 and 25 of the engine radiator 9 and the motor radiator 16 are turned off. For example, in step 44, the cooling fan 24 of the engine radiator 9 is turned on, and the cooling fan 25 of the motor radiator 16 is turned off.

図9(図3の(e)の領域の制御)のステップ51では、電動ポンプ15をオン、アシスト電動ポンプ19をオフする。   In step 51 of FIG. 9 (control in the region of FIG. 3E), the electric pump 15 is turned on and the assist electric pump 19 is turned off.

ステップ52ではエンジン水温が95℃以上かどうかを判定し、95℃未満であれば、ステップ53でモータ水温が58℃以上かどうかを判定し、58℃未満であれば、ステップ54でエンジン用ラジエータ9、モータ用ラジエータ16の冷却ファン24,25を共にオフし、58℃以上であれば、ステップ55でエンジン用ラジエータ9の冷却ファン24をオフし、モータ用ラジエータ16の冷却ファン25をオンする。   In step 52, it is determined whether the engine water temperature is 95 ° C. or higher. If the temperature is lower than 95 ° C., it is determined in step 53 whether the motor water temperature is 58 ° C. or higher. 9. The cooling fans 24 and 25 of the motor radiator 16 are both turned off. If the temperature is 58 ° C. or more, the cooling fan 24 of the engine radiator 9 is turned off and the cooling fan 25 of the motor radiator 16 is turned on in step 55. .

ステップ52でエンジン水温が95℃以上であれば、ステップ56でモータ水温が58℃以上かどうかを判定し、58℃未満であれば、ステップ57でエンジン用ラジエータ9の冷却ファン24をオンし、モータ用ラジエータ16の冷却ファン25をオフし、58℃以上であれば、ステップ58でエンジン用ラジエータ9、モータ用ラジエータ16の冷却ファン24,25を共にオンする。   If the engine water temperature is equal to or higher than 95 ° C. in step 52, it is determined in step 56 whether the motor water temperature is equal to or higher than 58 ° C. If it is lower than 58 ° C., the cooling fan 24 of the engine radiator 9 is turned on in step 57, The cooling fan 25 of the motor radiator 16 is turned off. If the temperature is equal to or higher than 58 ° C., both the engine radiator 9 and the cooling fan 24 of the motor radiator 16 are turned on in step 58.

次に、各領域つまり図3の(a)〜(g)の領域の動作状態を説明する。
(a)の領域:[モータ水温もエンジン水温も十分低い]
この場合の通水状況を図10に示す。サーモスタット7はバイパス経路13側へ開となっており、エンジン用ラジエータ9へは通水しない。また、電動ポンプ15およびアシスト電動ポンプ19は作動せず、モータ用ラジエータ16へも通水しない。
(b)の領域:[エンジン水温は低いが、モータ水温が上昇した場合]
この場合の通水状況を図11に示す。モータ3で走行し、エンジン1はほとんど作動していない状況である。サーモスタット7はバイパス経路13側へ開となっており、エンジン用ラジエータ9へは通水しない。電動ポンプ15は作動し、モータ3および発電機2を冷却してモータ用ラジエータ16で放熱する。アシスト電動ポンプ19は作動させず、エンジン用冷却系とモータ用冷却系との冷却水のやり取りは行わない。
(c)の領域:[モータ水温が上昇し、エンジン水温がモータ水温よりも低い場合]
この場合の通水状況を図12に示す。エンジン水温が低いため、サーモスタット7はバイパス経路13側へ開となっており、エンジン用冷却系の冷却水はエンジン用ラジエータ9へは通水しない。電動ポンプ15は作動し、モータ3および発電機2を冷却してモータ用ラジエータ16で放熱する。ここで、アシスト電動ポンプ19を作動させ、エンジン用ラジエータ9で放熱済みの低温冷却水をモータ用ラジエータ16の冷却水入口部17へ流入させる。ここでモータ用冷却系内の高温冷却水と混合することにより、モータ水温を低下させる。流入させた冷却水はモータ用ラジエータ16で放熱後、戻り配管21によりエンジン用ラジエータ9のラジエータ入口配管8へ流入し、エンジン用ラジエータ9で更に放熱して低温となった後、連通配管18を通って再びモータ用冷却系へ流入する。すなわち、エンジン用ラジエータ9もモータ3の放熱に寄与していることになる。
(d)の領域:[モータ水温は低いが、エンジン水温が上昇した場合]
この場合の通水状況を図13に示す。エンジン水温が高いので、サーモスタット7はエンジン用ラジエータ9側へ開となる。一方、電動ポンプ15は作動せず、モータ用冷却系内の高温冷却水モータ3および発電機2へは通水しない。ここで、アシスト電動ポンプ19が作動し、エンジン用冷却系内の高温冷却水をモータ用冷却系内へ流入させ、モータ用ラジエータ16で放熱して、戻り配管21により再びエンジン用ラジエータ9のラジエータ入口配管8へ還流させ、ここでエンジン用冷却系内の冷却水と混合することにより、熱交換を行う。すなわち、モータ用ラジエータ16をエンジン冷却用に使用することになる。
(e)の領域:[モータ水温もエンジン水温も上昇した場合]
この場合の通水状況を図14に示す。エンジン水温が高いので、サーモスタット7はエンジン用ラジエータ9側へ開となる。電動ポンプ15は作動し、モータ3および発電機2を冷却してモータ用ラジエータ16で放熱する。ここで、アシスト電動ポンプ19は作動せず、エンジン用冷却系とモータ用冷却系はそれぞれ独立して冷却を行うことになる。
Next, the operation state of each area, that is, the areas of FIGS. 3A to 3G will be described.
Area (a): [Motor water temperature and engine water temperature are sufficiently low]
FIG. 10 shows the state of water flow in this case. The thermostat 7 is open to the bypass path 13 side, and does not flow water to the engine radiator 9. In addition, the electric pump 15 and the assist electric pump 19 do not operate, and do not flow water to the motor radiator 16.
Region (b): [When the engine water temperature is low but the motor water temperature rises]
FIG. 11 shows the state of water flow in this case. The vehicle runs with the motor 3 and the engine 1 is hardly operated. The thermostat 7 is open to the bypass path 13 side, and does not flow water to the engine radiator 9. The electric pump 15 operates, cools the motor 3 and the generator 2, and radiates heat with the motor radiator 16. The assist electric pump 19 is not operated, and exchange of cooling water between the engine cooling system and the motor cooling system is not performed.
Area (c): [Motor water temperature rises and engine water temperature is lower than motor water temperature]
FIG. 12 shows the state of water flow in this case. Since the engine water temperature is low, the thermostat 7 is open to the bypass path 13 side, and the cooling water of the engine cooling system does not flow to the engine radiator 9. The electric pump 15 operates, cools the motor 3 and the generator 2, and radiates heat with the motor radiator 16. Here, the assist electric pump 19 is operated, and the low-temperature cooling water radiated by the engine radiator 9 flows into the cooling water inlet 17 of the motor radiator 16. Here, by mixing with high-temperature cooling water in the motor cooling system, the motor water temperature is lowered. After flowing in the cooling water, the heat is radiated by the motor radiator 16, then flows into the radiator inlet pipe 8 of the engine radiator 9 by the return pipe 21, is further radiated by the engine radiator 9, and cools down. Then, it flows again into the motor cooling system. That is, the engine radiator 9 also contributes to the heat radiation of the motor 3.
Area (d): [Motor water temperature is low, but engine water temperature rises]
FIG. 13 shows the water passing state in this case. Since the engine water temperature is high, the thermostat 7 opens to the engine radiator 9 side. On the other hand, the electric pump 15 does not operate, and does not flow water to the high-temperature cooling water motor 3 and the generator 2 in the motor cooling system. At this time, the assist electric pump 19 is operated to cause high-temperature cooling water in the engine cooling system to flow into the motor cooling system, radiate heat by the motor radiator 16, and return to the radiator of the engine radiator 9 by the return pipe 21. The heat is exchanged by flowing back to the inlet pipe 8 and mixing with the cooling water in the engine cooling system. That is, the motor radiator 16 is used for cooling the engine.
Area (e): [When both the motor water temperature and the engine water temperature rise]
FIG. 14 shows the water passing state in this case. Since the engine water temperature is high, the thermostat 7 opens to the engine radiator 9 side. The electric pump 15 operates, cools the motor 3 and the generator 2, and radiates heat with the motor radiator 16. Here, the assist electric pump 19 does not operate, and the cooling system for the engine and the cooling system for the motor perform cooling independently of each other.

一方、冷却ファン24,25は、放熱がどうしても不足する場合(限界水温に近くなった場合)に作動させて、強制空冷を行って放熱量を確保する。冷却系で消費する電力の低減が目的であり、冷却ファン24,25はできるだけ作動させず、そのために電動ポンプ15、アシスト電動ポンプ19の制御により熱交換器面積の有効利用を果し、走行風や自然対流での放熱により賄うことを優先している。すなわち、エンジン用ラジエータ9の冷却ファン24は、エンジン水温が95℃を越えた場合、モータ用ラジエータ16の冷却ファン25は、モータ水温が58℃を越えた場合に、それぞれ作動する。   On the other hand, the cooling fans 24 and 25 are operated when the heat radiation is inevitably insufficient (when the water temperature approaches the limit water temperature) to perform forced air cooling to secure the heat radiation amount. The purpose is to reduce the power consumed by the cooling system, and the cooling fans 24 and 25 are not operated as much as possible. Therefore, the electric pump 15 and the assist electric pump 19 are controlled so that the area of the heat exchanger is effectively used. Priority is given to heat dissipation through natural convection. That is, the cooling fan 24 of the engine radiator 9 operates when the engine water temperature exceeds 95 ° C., and the cooling fan 25 of the motor radiator 16 operates when the motor water temperature exceeds 58 ° C.

このように、エンジン用冷却系とモータ用冷却系との間で冷却水のやり取りを可能にすると共に、エンジン水温とモータ水温とをモニタしながらその冷却水のやり取りを制御するので、モータ3の冷却性能が要求される領域ではエンジン用ラジエータ9をモータ冷却に使用して、またエンジン1の冷却性能が要求される領域ではモータ用ラジエータ16をエンジン冷却に使用して、高い冷却性能を確保することができ、例えばエンジン冷却を優先したためにモータ水温が規定値をオーバーしてしまうようなことはなく、各冷却系での水温制御をきめ細かく行え、運転状態に合った効率の良い冷却を行える。   Thus, the exchange of the cooling water between the engine cooling system and the motor cooling system is enabled, and the exchange of the cooling water is controlled while monitoring the engine water temperature and the motor water temperature. In a region where cooling performance is required, the engine radiator 9 is used for motor cooling, and in a region where cooling performance of the engine 1 is required, the motor radiator 16 is used for engine cooling to ensure high cooling performance. For example, the water temperature of the motor does not exceed the specified value due to the priority of the engine cooling, the water temperature in each cooling system can be finely controlled, and efficient cooling suitable for the operation state can be performed.

また、水温が異なるエンジン用冷却系とモータ用冷却系との間での冷却水のやり取りを各水温差に応じて制御できるので、そのやり取りを切換えたときの水温ハンチングを少なくすることができる。   Further, since the exchange of the cooling water between the engine cooling system and the motor cooling system having different water temperatures can be controlled according to the respective water temperature differences, the water temperature hunting when the exchange is switched can be reduced.

また、バッテリ33をエンジンルーム31から離れた車両30の床下中央部に配置すると共に、エンジン用ラジエータ9をそのバッテリ33を取り囲む筐体34の車両30前方側に設置したので、エンジン用ラジエータ9の冷却と共にバッテリ33の冷却を同一のファン24で行えることと合わせて、次の利点がある。   In addition, since the battery 33 is disposed in the center of the vehicle 30 under the floor away from the engine room 31 and the radiator 9 for the engine is installed on the front side of the vehicle 30 in the housing 34 surrounding the battery 33, the radiator 9 for the engine The following advantages are provided in addition to the fact that the cooling of the battery 33 can be performed by the same fan 24 together with the cooling.

すなわち、走行中は走行風が期待できるため、車両の前端に熱交換器を置くことが最も有効である。そのため、走行中に主に使用するモータ3用のラジエータ16をエンジンルーム31の前端部に配置している。一方、停車時にはエンジンルーム31内の熱気が回り込んで熱交換器に吸引されるいわゆる吹き返し現象が存在するため、熱交換器はエンジンルーム31からできるだけ離した方が良い。そこで、停車時に充電のため作動する可能性があるエンジン1用のラジエータ9をエンジンルーム31から離れた車両30の床下中央部に配置することにより、できるだけ車両後方の低温気流を吸引させて、そのエンジン用ラジエータ9の性能を確保するのである。これにより、エンジン用ラジエータ9、モータ用ラジエータ16の良好な放熱性能を確保でき、また前述の制御により、冷却性能が要求される条件において車両前方と床下中央部の条件でラジエータを作動させることができるため、あらゆる条件でエンジン用ラジエータ9、モータ用ラジエータ16の高い放熱性能を確保することができる。   That is, since traveling wind can be expected during traveling, it is most effective to place a heat exchanger at the front end of the vehicle. Therefore, the radiator 16 for the motor 3 mainly used during traveling is arranged at the front end of the engine room 31. On the other hand, when the vehicle stops, there is a so-called blow-back phenomenon in which hot air in the engine room 31 flows around and is sucked into the heat exchanger. Therefore, it is better to keep the heat exchanger as far away from the engine room 31 as possible. Therefore, by disposing the radiator 9 for the engine 1 which may be operated for charging when the vehicle is stopped in the central portion under the floor of the vehicle 30 away from the engine room 31, the low-temperature airflow as far as possible behind the vehicle is sucked. The performance of the engine radiator 9 is ensured. As a result, good heat radiation performance of the engine radiator 9 and the motor radiator 16 can be ensured, and the above-described control allows the radiator to operate under the conditions of the front of the vehicle and the center under the floor under the condition where the cooling performance is required. Therefore, high heat radiation performance of the engine radiator 9 and the motor radiator 16 can be ensured under all conditions.

このように各ラジエータ9,16の伝熱面積を有効に利用でき、冷却ファン24,25の消費電力を低減でき、したがってエンジン1およびモータ3の信頼性が向上すると共に、熱交換器面積、重量等の低減を達成でき、冷却系の消費電力を少なくできる結果、燃費を向上できる。   As described above, the heat transfer areas of the radiators 9 and 16 can be effectively used, the power consumption of the cooling fans 24 and 25 can be reduced, and thus the reliability of the engine 1 and the motor 3 can be improved, and the area and weight of the heat exchanger As a result, the fuel consumption can be improved.

実施の形態を示すシステムの構成図である。1 is a configuration diagram of a system according to an embodiment. 配置構成図である。It is an arrangement | positioning block diagram. 制御マップを示す特性図である。It is a characteristic view showing a control map. 制御内容を示すフローチャートである。It is a flowchart which shows the control content. 制御内容を示すフローチャートである。It is a flowchart which shows the control content. 制御内容を示すフローチャートである。It is a flowchart which shows the control content. 制御内容を示すフローチャートである。It is a flowchart which shows the control content. 制御内容を示すフローチャートである。It is a flowchart which shows the control content. 制御内容を示すフローチャートである。It is a flowchart which shows the control content. 通水状況の説明図である。It is explanatory drawing of a water flow situation. 通水状況の説明図である。It is explanatory drawing of a water flow situation. 通水状況の説明図である。It is explanatory drawing of a water flow situation. 通水状況の説明図である。It is explanatory drawing of a water flow situation. 通水状況の説明図である。It is explanatory drawing of a water flow situation. 従来例の構成図である。FIG. 9 is a configuration diagram of a conventional example.

符号の説明Explanation of reference numerals

1 エンジン
2 発電機
3 電動モータ
4 エンジン用冷却システム
5 モータ用冷却システム
6 エンジン出口配管6
7 サーモスタット
8 ラジエータ入口配管
9 ラジエータ
10 ラジエータ出口配管
11 エンジン入口配管
12 ウォータポンプ
13 バイパス経路
14 冷却系路
15 電動ポンプ
16 ラジエータ
17 冷却水入口部
18 連通配管
19 アシスト電動ポンプ
20 冷却水出口部
21 戻り配管
22,23 センサ
24,25 冷却ファン
26 コントロールユニット
30 車両
31 エンジンルーム
33 バッテリ
34 筐体
35 通風口
37 センサ
DESCRIPTION OF SYMBOLS 1 Engine 2 Generator 3 Electric motor 4 Engine cooling system 5 Motor cooling system 6 Engine outlet piping 6
Reference Signs List 7 Thermostat 8 Radiator inlet pipe 9 Radiator 10 Radiator outlet pipe 11 Engine inlet pipe 12 Water pump 13 Bypass path 14 Cooling system path 15 Electric pump 16 Radiator 17 Cooling water inlet 18 Communication pipe 19 Assist electric pump 20 Cooling water outlet 21 Return Piping 22, 23 Sensor 24, 25 Cooling fan 26 Control unit 30 Vehicle 31 Engine room 33 Battery 34 Housing 35 Ventilation hole 37 Sensor

Claims (4)

電動モータにより走行を可能な車両であって、エンジンにより駆動される発電機と、発電された電気を蓄えるバッテリとを備えており、前記電動モータを冷却するモータ用冷却システムと、前記エンジンを冷却するエンジン用冷却システムとを備えているハイブリッド電気自動車の冷却システムにおいて、
前記エンジン用冷却システムはエンジン駆動のメカニカルポンプで冷却水を循環可能に形成されると共に、ラジエータへの通水を制御するサーモスタットを備えており、
前記モータ用冷却システムは停止時に通水遮断機能を持つ容積型の電動ポンプにより冷却水を循環可能に形成されており、
このエンジン用冷却系とモータ用冷却系とを循環用配管を介して連通させると共に、その循環用配管に停止時に通水遮断機能を持つ容積型のアシスト電動ポンプを設け、
このエンジン用冷却系内の水温とモータ用冷却系内の水温とをそれぞれ検知するセンサを設け、
これらのセンサの信号に応じて前記電動ポンプおよびアシスト電動ポンプを駆動することを特徴とするハイブリッド電気自動車の冷却システム。
A vehicle capable of traveling by an electric motor, comprising: a generator driven by an engine; and a battery for storing generated electricity, a motor cooling system for cooling the electric motor, and cooling the engine. A cooling system for a hybrid electric vehicle, comprising:
The engine cooling system is formed so as to circulate cooling water by an engine-driven mechanical pump, and includes a thermostat that controls water flow to a radiator.
The cooling system for the motor is formed so that cooling water can be circulated by a positive displacement electric pump having a water cutoff function when stopped.
The engine cooling system and the motor cooling system are communicated with each other through a circulation pipe, and a positive displacement electric pump having a water cutoff function when the circulation pipe is stopped is provided in the circulation pipe,
A sensor is provided for detecting a water temperature in the engine cooling system and a water temperature in the motor cooling system, respectively.
A cooling system for a hybrid electric vehicle, wherein the electric pump and the assist electric pump are driven according to signals from these sensors.
エンジン用冷却系内の水温が所定値より低く、サーモスタットが閉じており、モータ用冷却系内の水温が所定値よりも高い条件では、電動ポンプおよびアシスト電動ポンプを作動させ、エンジン用冷却系内とモータ用冷却系内との間で冷却水のやり取りを行うようにした請求項1に記載のハイブリッド電気自動車の冷却システム。   Under the condition that the water temperature in the engine cooling system is lower than the predetermined value, the thermostat is closed, and the water temperature in the motor cooling system is higher than the predetermined value, the electric pump and the assist electric pump are operated and the engine cooling system is operated. 2. The cooling system for a hybrid electric vehicle according to claim 1, wherein cooling water is exchanged between the cooling water and the motor cooling system. 3. エンジン用冷却系内の水温が所定値より高く、サーモスタットが開いており、モータ用冷却系内の水温が所定値よりも低い条件では、アシスト電動ポンプを作動させると共に、電動ポンプを停止させ、エンジン用冷却系内とモータ用冷却系内との間で冷却水のやり取りを行うようにした請求項1に記載のハイブリッド電気自動車の冷却システム。   Under the condition that the water temperature in the engine cooling system is higher than a predetermined value, the thermostat is open, and the water temperature in the motor cooling system is lower than the predetermined value, the assist electric pump is operated, the electric pump is stopped, and the engine is stopped. The cooling system for a hybrid electric vehicle according to claim 1, wherein cooling water is exchanged between a cooling system for the motor and a cooling system for the motor. 前記バッテリをエンジンルームから離れた部位に配置し、バッテリの側方を筐対で取り囲むと共に、エンジン用冷却系のラジエータを前記筐体の車両前方側に設置し、当該ラジエータを通過する冷却風によってバッテリを冷却する請求項1に記載のハイブリッド電気自動車の冷却システム。   The battery is disposed at a position away from the engine room, the sides of the battery are surrounded by a pair of casings, and a radiator of an engine cooling system is installed on the vehicle front side of the casing, and cooling air passing through the radiator is used. The cooling system for a hybrid electric vehicle according to claim 1, wherein the battery is cooled.
JP2004146236A 2004-05-17 2004-05-17 Hybrid electric vehicle cooling system Expired - Fee Related JP3722145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146236A JP3722145B2 (en) 2004-05-17 2004-05-17 Hybrid electric vehicle cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146236A JP3722145B2 (en) 2004-05-17 2004-05-17 Hybrid electric vehicle cooling system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17443997A Division JP3817842B2 (en) 1997-06-30 1997-06-30 Hybrid electric vehicle cooling system

Publications (2)

Publication Number Publication Date
JP2004332744A true JP2004332744A (en) 2004-11-25
JP3722145B2 JP3722145B2 (en) 2005-11-30

Family

ID=33509251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146236A Expired - Fee Related JP3722145B2 (en) 2004-05-17 2004-05-17 Hybrid electric vehicle cooling system

Country Status (1)

Country Link
JP (1) JP3722145B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003881A1 (en) * 2005-01-24 2006-07-27 Volkswagen Ag Hybrid drive unit cooling controlling method for hybrid vehicle, involves controlling electrical input of coolant pump based on temperature of electrical engine and/or electronic devices formed in engine
WO2007049516A1 (en) * 2005-10-25 2007-05-03 Toyota Jidosha Kabushiki Kaisha Cooling system. method of controlling the cooling system, and automobile
DE102007005391A1 (en) * 2007-02-03 2008-08-07 Behr Gmbh & Co. Kg Radiator arrangement for a drive train of a motor vehicle
JP2010264876A (en) * 2009-05-14 2010-11-25 Toyota Motor Corp Cooling device
CN102029887A (en) * 2010-11-24 2011-04-27 奇瑞汽车股份有限公司 Hybrid vehicle power system, hybrid vehicle and cooling method thereof
JP2012096738A (en) * 2010-11-05 2012-05-24 Mitsubishi Motors Corp Cooling system
JP2013515195A (en) * 2009-12-22 2013-05-02 ルノー エス.ア.エス. Automotive cooling system
CN104859427A (en) * 2014-02-20 2015-08-26 光阳工业股份有限公司 Dual-power cooling system of vehicle
RU2566817C2 (en) * 2012-11-26 2015-10-27 Мицубиси Дзидося Когио Кабусика Кайся Construction of rotating electric machine
JP2017114298A (en) * 2015-12-24 2017-06-29 三菱自動車工業株式会社 Cooling system
US9827971B2 (en) 2007-08-24 2017-11-28 Toyota Jidosha Kabushiki Kaisha Vehicle with an energy source supply portion
JP2017226283A (en) * 2016-06-21 2017-12-28 株式会社クボタ Working machine
JP2018095127A (en) * 2016-12-14 2018-06-21 本田技研工業株式会社 Cooling device of vehicle
CN109578126A (en) * 2018-10-30 2019-04-05 中国北方发动机研究所(天津) High/low temperature dual cycle cooling system for hybrid vehicle
CN109681310A (en) * 2019-01-07 2019-04-26 南京协众汽车空调集团有限公司 A kind of mixed electrical automobile high-efficiency radiator
JP2020011676A (en) * 2018-07-20 2020-01-23 トヨタ自動車株式会社 Cooling device for vehicle drive system
WO2021092550A1 (en) * 2019-11-08 2021-05-14 Milwaukee Electric Tool Corporation Cooling arrangements for battery-powered stand-alone motor unit

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003881A1 (en) * 2005-01-24 2006-07-27 Volkswagen Ag Hybrid drive unit cooling controlling method for hybrid vehicle, involves controlling electrical input of coolant pump based on temperature of electrical engine and/or electronic devices formed in engine
US8151917B2 (en) 2005-10-25 2012-04-10 Toyota Jidosha Kabushiki Kaisha Cooling system, control method of cooling system, and vehicle equipped with cooling system
WO2007049516A1 (en) * 2005-10-25 2007-05-03 Toyota Jidosha Kabushiki Kaisha Cooling system. method of controlling the cooling system, and automobile
US20100170455A1 (en) * 2007-02-03 2010-07-08 Behr Gmbh & Co. Kg Cooler arrangement for a drive train in a motor vehicle
US8555826B2 (en) * 2007-02-03 2013-10-15 Behr Gmbh & Co. Kg Cooler arrangement for a drive train in a motor vehicle
DE102007005391A1 (en) * 2007-02-03 2008-08-07 Behr Gmbh & Co. Kg Radiator arrangement for a drive train of a motor vehicle
US9827971B2 (en) 2007-08-24 2017-11-28 Toyota Jidosha Kabushiki Kaisha Vehicle with an energy source supply portion
JP2010264876A (en) * 2009-05-14 2010-11-25 Toyota Motor Corp Cooling device
JP2013515195A (en) * 2009-12-22 2013-05-02 ルノー エス.ア.エス. Automotive cooling system
JP2012096738A (en) * 2010-11-05 2012-05-24 Mitsubishi Motors Corp Cooling system
RU2506174C2 (en) * 2010-11-05 2014-02-10 Мицубиси Дзидося Когио Кабусики Кайся Cooling system
EP2450217A3 (en) * 2010-11-05 2018-04-25 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cooling system
US9260007B2 (en) 2010-11-05 2016-02-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cooling system for cooling motor and generator in hybrid vehicle
CN102029887A (en) * 2010-11-24 2011-04-27 奇瑞汽车股份有限公司 Hybrid vehicle power system, hybrid vehicle and cooling method thereof
RU2566817C2 (en) * 2012-11-26 2015-10-27 Мицубиси Дзидося Когио Кабусика Кайся Construction of rotating electric machine
CN104859427A (en) * 2014-02-20 2015-08-26 光阳工业股份有限公司 Dual-power cooling system of vehicle
JP2017114298A (en) * 2015-12-24 2017-06-29 三菱自動車工業株式会社 Cooling system
JP2017226283A (en) * 2016-06-21 2017-12-28 株式会社クボタ Working machine
JP2018095127A (en) * 2016-12-14 2018-06-21 本田技研工業株式会社 Cooling device of vehicle
JP2020011676A (en) * 2018-07-20 2020-01-23 トヨタ自動車株式会社 Cooling device for vehicle drive system
CN109578126A (en) * 2018-10-30 2019-04-05 中国北方发动机研究所(天津) High/low temperature dual cycle cooling system for hybrid vehicle
CN109578126B (en) * 2018-10-30 2021-05-28 中国北方发动机研究所(天津) High and low temperature dual cycle cooling system for hybrid vehicle
CN109681310A (en) * 2019-01-07 2019-04-26 南京协众汽车空调集团有限公司 A kind of mixed electrical automobile high-efficiency radiator
WO2021092550A1 (en) * 2019-11-08 2021-05-14 Milwaukee Electric Tool Corporation Cooling arrangements for battery-powered stand-alone motor unit

Also Published As

Publication number Publication date
JP3722145B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP3817842B2 (en) Hybrid electric vehicle cooling system
US20210053415A1 (en) Integrated thermal management module for vehicle
JP6916600B2 (en) Vehicle battery cooling system
US11207947B2 (en) Cooling system for a motor vehicle and motor vehicle having such a cooling system
JP4384066B2 (en) Vehicle cooling system
KR101776751B1 (en) Betterly cooling system for vehicle
JP2004332744A (en) Cooling system of hybrid electric car
US9428032B2 (en) Electric vehicle and thermal management system therefor
US10384512B2 (en) HVAC system of electric vehicle
CN108054459B (en) Thermal management system and thermal management method for vehicle battery pack
US7484378B2 (en) Cooling system and method for cooling a heat producing system
JP2006082805A (en) Heat exchanger for automobile
KR20110134213A (en) Integrated heat management system of clean car
JP2002352867A (en) Battery temperature controller for electric vehicle
US20120125593A1 (en) Cooling system for vehicle
KR101575254B1 (en) Cooling and thermoelectric power generating system for vehicle
KR20140147365A (en) Integrated heat Management system in Vehicle
US10562367B2 (en) Heating, ventilation, and air conditioning system for vehicle
JP2010284045A (en) Heat supply device
EP2495118A2 (en) Vehicle air conditioner
CN108263233A (en) A kind of cooling system of vehicle and vehicle
US7000685B2 (en) Cooling system for vehicle
JP2011143911A (en) Vehicular air-conditioning unit and vehicular air-conditioning system
JPH11200858A (en) Cooling system of hybrid electric automobile
CN113733895B (en) Hybrid electric vehicle and thermal management system thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees