JP2009270247A - Composition for coating paper/fiber product, coating film, and paper/fiber product - Google Patents

Composition for coating paper/fiber product, coating film, and paper/fiber product Download PDF

Info

Publication number
JP2009270247A
JP2009270247A JP2009092405A JP2009092405A JP2009270247A JP 2009270247 A JP2009270247 A JP 2009270247A JP 2009092405 A JP2009092405 A JP 2009092405A JP 2009092405 A JP2009092405 A JP 2009092405A JP 2009270247 A JP2009270247 A JP 2009270247A
Authority
JP
Japan
Prior art keywords
polymer
paper
glass transition
meth
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009092405A
Other languages
Japanese (ja)
Inventor
Takuya Ishida
卓也 石田
Shinobu Yamamoto
忍 山本
Ikumasa Nasu
育雅 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konishi Co Ltd
Original Assignee
Konishi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konishi Co Ltd filed Critical Konishi Co Ltd
Priority to JP2009092405A priority Critical patent/JP2009270247A/en
Publication of JP2009270247A publication Critical patent/JP2009270247A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/20Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/22Polyalkenes, e.g. polystyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D193/00Coating compositions based on natural resins; Coating compositions based on derivatives thereof
    • C09D193/02Shellac
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/02Shellac

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Paper (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for coating paper/fiber products composed of an acrylic emulsion, excellent in blocking resistance and wet abrasion resistance of film and excellent in film formation properties at room temperature. <P>SOLUTION: The composition for coating paper/fiber products includes an acrylic emulsion comprising a polymer (A1) which is obtained by polymerizing a (meth)acrylic acid ester monomer alone or (meth)acrylic acid ester monomer with a styrene monomer and which has a ≥-70°C and ≤0°C glass transition temperature, a polymer (A2) having a ≥50°C and ≤100°C glass transition temperature and shellac, wherein the average glass transition temperature of the total of the polymer (A1) and the polymer (A2) is ≤20°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、紙製品や不織布等の繊維製品のコーティング用組成物、コーティング皮膜ならびに該コーティング用組成物で処理された紙・繊維製品に関するものである。   The present invention relates to a coating composition for fiber products such as paper products and nonwoven fabrics, a coating film, and a paper / textile product treated with the coating composition.

紙袋、バッグ、表紙、化粧箱、壁紙等の紙製品や不織布等の繊維製品においては、表面にコーティング剤を塗布し、紙・繊維製品自体及び紙・繊維製品の表面に施された印刷等を保護することが行われている。   For paper products such as paper bags, bags, covers, cosmetic boxes, wallpaper, and textile products such as non-woven fabric, a coating agent is applied to the surface, and printing applied to the surface of the paper / textile product itself and the paper / textile product etc. Protecting is done.

このようなコーティング剤には、一般に耐水性、耐摩擦性、耐ブロッキング性等の諸性能が求められるために、紙や繊維との密着性や塗工性に優れているアクリル系エマルジョンを用いたコーティング剤が知られている。   Since such coating agents generally require various performances such as water resistance, friction resistance, and blocking resistance, an acrylic emulsion having excellent adhesion to paper and fibers and coating properties was used. Coating agents are known.

例えば、特許文献1では、分子内にカルボキシル基を含有するエチレン性重合モノマー、エポキシシランカップリング剤およびその他のエチレン性重合モノマーを乳化重合して得られた水性樹脂エマルジョンと、フッ素系撥水撥油剤からなるフッ素樹脂含有水性樹脂エマルジョンが提案されている。しかし、特許文献1では、重合系内でカルボキシル基含有モノマーとエポキシシランカップリング剤を反応させるため、耐水性、耐摩擦性は得られるものの、未だ十分な耐湿摩擦性を得ることができないという問題があった。   For example, in Patent Document 1, an aqueous resin emulsion obtained by emulsion polymerization of an ethylenic polymerization monomer containing a carboxyl group in the molecule, an epoxy silane coupling agent and other ethylenic polymerization monomers, and a fluorine-based water-repellent and water-repellent agent are disclosed. A fluororesin-containing aqueous resin emulsion composed of an oil agent has been proposed. However, in Patent Document 1, since a carboxyl group-containing monomer and an epoxy silane coupling agent are reacted in a polymerization system, water resistance and friction resistance can be obtained, but sufficient moisture friction resistance cannot be obtained yet. was there.

また、特許文献2では、カルボニル基を有するα,β−エチレン性不飽和モノマーを10〜20重量%含有し、ガラス転移温度が60℃以上のアクリル樹脂粒子100重量部に対して、分子量174〜316のヒドラジン−アジピン酸縮合物5〜20重量部を含む水性オーバープリントワニス組成物が提案されている。これは、カルボニル基とヒドラジン−アジピン酸縮合物との反応によって、堅牢かつ光沢に優れた塗膜を形成するものであるが、実際には40℃で6時間程度の乾燥時間(反応時間)が必要であった。   Moreover, in patent document 2, 10-20 weight% of (alpha), (beta) -ethylenically unsaturated monomer which has a carbonyl group is contained, and molecular weight 174- is with respect to 100 weight part of acrylic resin particles whose glass transition temperature is 60 degreeC or more. An aqueous overprint varnish composition comprising 5 to 20 parts by weight of 316 hydrazine-adipic acid condensate has been proposed. This is to form a strong and glossy coating film by the reaction of a carbonyl group and a hydrazine-adipic acid condensate, but actually a drying time (reaction time) of about 6 hours at 40 ° C. It was necessary.

特開2005−179473号公報JP 2005-179473 A 特開平6−212094号公報Japanese Patent Laid-Open No. 6-212094

コーティング皮膜に耐湿摩擦性を付与するためには、皮膜物性を比較的柔らかくすればよく、そのためにはガラス転移温度が低いアクリル系エマルジョン用いればよい。しかし、ガラス転移温度が低いアクリル系エマルジョンから得られる皮膜は、常温で粘着性を発現するので、耐ブロッキング性が低下するという問題点がある。   In order to impart moisture friction resistance to the coating film, it is only necessary to make the film physical properties relatively soft. For this purpose, an acrylic emulsion having a low glass transition temperature may be used. However, since a film obtained from an acrylic emulsion having a low glass transition temperature exhibits tackiness at room temperature, there is a problem that the blocking resistance is lowered.

一方、耐ブロッキング性を得るために、比較的高いガラス転移温度を有するアクリル系エマルジョンを用いた場合には、皮膜の耐湿摩擦性が低下すると共に常温での成膜性も低下するという問題が発生する。   On the other hand, when an acrylic emulsion having a relatively high glass transition temperature is used to obtain blocking resistance, there is a problem in that the wet friction resistance of the film is lowered and the film formability at room temperature is also lowered. To do.

本発明は、上記のような問題点を解決するためになされたものであり、皮膜の耐ブロッキング性および耐湿摩擦性に優れ、かつ常温での成膜性に優れたアクリル系エマルジョンからなる紙・繊維製品のコーティング用組成物を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is a paper / paper made of an acrylic emulsion having excellent film blocking resistance and moisture rub resistance and excellent film formability at room temperature. An object is to provide a coating composition for textile products.

また、本発明は、上記の紙・繊維製品のコーティング用組成物からなるコーティング皮膜ならびに該コーティング用組成物で処理された紙・繊維製品を提供することを目的とする。   Another object of the present invention is to provide a coating film comprising the above-mentioned coating composition for paper and textile products, and a paper and textile product treated with the coating composition.

上記課題を解決するために、本発明者らは鋭意研究した結果、アクリル系エマルジョン中に異なるガラス転移温度を有する重合体からなる粒子を混在させ、かつセラックを配合することによって、皮膜の耐ブロッキング性および耐湿摩擦性に優れ、かつ常温での成膜性に優れるコーティング用組成物が得られることを見出し、本発明を完成させるに至った。   In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, by mixing particles made of polymers having different glass transition temperatures in an acrylic emulsion and blending shellac, the coating film has an anti-blocking property. The present inventors have found that a coating composition having excellent heat resistance and wet friction resistance and excellent film forming properties at room temperature can be obtained, and the present invention has been completed.

すなわち、本発明は、下記の重合体(A1)、重合体(A2)およびセラックを含有するアクリル系エマルジョンからなる紙・繊維製品のコーティング用組成物であって、前記重合体(A1)および重合体(A2)の合計の平均ガラス転移温度が20℃以下であることを特徴とする紙・繊維製品のコーティング用組成物である。   That is, the present invention is a coating composition for paper / textile products comprising an acrylic emulsion containing the following polymer (A1), polymer (A2) and shellac, wherein the polymer (A1) and The total average glass transition temperature of the combined (A2) is 20 ° C. or less, which is a coating composition for paper / fiber products.

重合体(A1):(メタ)アクリル酸エステルモノマー単独、または(メタ)アクリル酸エステルモノマー及びスチレンモノマーを重合して得られる、ガラス転移温度が−70℃以上0℃以下の範囲にある重合体。   Polymer (A1): (meth) acrylic acid ester monomer alone or a polymer obtained by polymerizing (meth) acrylic acid ester monomer and styrene monomer and having a glass transition temperature in the range of −70 ° C. or higher and 0 ° C. or lower. .

重合体(A2):(メタ)アクリル酸エステルモノマー単独、または(メタ)アクリル酸エステルモノマー及びスチレンモノマーを重合して得られる、ガラス転移温度が50℃以上100℃以下の範囲にある重合体。   Polymer (A2): A polymer having a glass transition temperature in the range of 50 ° C. or higher and 100 ° C. or lower obtained by polymerizing (meth) acrylic acid ester monomer alone or (meth) acrylic acid ester monomer and styrene monomer.

また、本発明は、上記の紙・繊維製品のコーティング用組成物から得られるコーティング皮膜であって、示差走査熱量測定によって測定されるガラス転移温度が、50℃以上100℃以下及び−70℃以上0℃以下の各領域にそれぞれ1つ以上あることを特徴とするコーティング皮膜である。   Further, the present invention is a coating film obtained from the above-mentioned coating composition for paper and textile products, and has a glass transition temperature measured by differential scanning calorimetry of 50 ° C. or higher and 100 ° C. or lower and −70 ° C. or higher. It is a coating film characterized by having one or more in each region of 0 ° C. or lower.

さらに、本発明は、上記の紙・繊維製品のコーティング用組成物によって表面処理されていることを特徴とする紙・繊維製品である。   Furthermore, the present invention is a paper / textile product which is surface-treated with the coating composition for paper / textile product described above.

本発明の紙・繊維製品のコーティング用組成物は、皮膜の耐ブロッキング性および耐湿摩擦性に優れ、かつ常温での成膜性に優れるという効果を奏する。
また、本発明のコーティング用組成物から得られるコーティング皮膜又は該コーティング用組成物によって表面処理された紙・繊維製品は、耐湿摩擦性及び耐ブロッキング性に優れるという効果を奏する。
The coating composition for paper / textile products of the present invention has an effect of being excellent in blocking resistance and moisture rub resistance of the film and excellent in film formability at room temperature.
In addition, a coating film obtained from the coating composition of the present invention or a paper / textile product surface-treated with the coating composition has an effect of being excellent in wet friction resistance and blocking resistance.

以下、本発明を実施するための最良の形態を、詳細に説明する。なお、本発明はこれらの例示にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加え得ることは勿論である。   Hereinafter, the best mode for carrying out the present invention will be described in detail. In addition, this invention is not limited only to these illustrations, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

本発明に係る紙・繊維製品のコーティング用組成物は、下記の重合体(A1)、重合体(A2)およびセラックを含有するアクリル系エマルジョンからなる紙・繊維製品のコーティング用組成物であって、前記重合体(A1)および重合体(A2)の合計の平均ガラス転移温度が20℃以下であることを特徴とする。   The coating composition for paper and textile products according to the present invention is a coating composition for paper and textile products comprising an acrylic emulsion containing the following polymer (A1), polymer (A2) and shellac. The total average glass transition temperature of the polymer (A1) and the polymer (A2) is 20 ° C. or less.

重合体(A1):(メタ)アクリル酸エステルモノマー単独、または(メタ)アクリル酸エステルモノマー及びスチレンモノマーを重合して得られる、ガラス転移温度が−70℃以上0℃以下の範囲にある重合体。   Polymer (A1): (meth) acrylic acid ester monomer alone or a polymer obtained by polymerizing (meth) acrylic acid ester monomer and styrene monomer and having a glass transition temperature in the range of −70 ° C. or higher and 0 ° C. or lower. .

重合体(A2):(メタ)アクリル酸エステルモノマー単独、または(メタ)アクリル酸エステルモノマー及びスチレンモノマーを重合して得られる、ガラス転移温度が50℃以上100℃以下の範囲にある重合体。   Polymer (A2): A polymer having a glass transition temperature in the range of 50 ° C. or higher and 100 ° C. or lower obtained by polymerizing (meth) acrylic acid ester monomer alone or (meth) acrylic acid ester monomer and styrene monomer.

本発明においては、アクリル系エマルジョン中に異なるガラス転移温度を有する重合体(A1)および重合体(A2)からなる粒子を混在させ、なおかつセラックを配合することによって、耐湿摩擦性、常温での成膜性と、紙・繊維製品の耐ブロッキング性という互いに相反する性能を発現させることができる。なお、本願においては、アクリル酸エステルとメタクリル酸エステルとをあわせて「(メタ)アクリル酸エステル」と表記する。   In the present invention, by mixing particles made of the polymer (A1) and the polymer (A2) having different glass transition temperatures in an acrylic emulsion and adding shellac, moisture friction resistance and formation at room temperature are achieved. The mutually contradictory performance of film property and blocking resistance of paper and textile products can be expressed. In the present application, acrylic acid ester and methacrylic acid ester are collectively referred to as “(meth) acrylic acid ester”.

本発明のコーティング用組成物は、前記セラックを含有する分散剤中で、(メタ)アクリル酸エステルモノマー単独、または(メタ)アクリル酸エステルモノマー及びスチレンモノマーを重合して得られる重合体(A1)および重合体(A2)を含有することが好ましい。セラックを含有する分散在中で、重合体(A1)および重合体(A2)の重合を行うことによって、さらに効果的に皮膜の耐湿摩擦性、常温での成膜性と、紙・繊維製品の耐ブロッキング性という互いに相反する性能を発現させることができる。   The coating composition of the present invention is a polymer (A1) obtained by polymerizing a (meth) acrylic acid ester monomer alone or a (meth) acrylic acid ester monomer and a styrene monomer in a dispersant containing the shellac. And a polymer (A2). By polymerizing the polymer (A1) and the polymer (A2) in a dispersion containing shellac, the film is more effectively resistant to wet friction and film formation at room temperature. The mutually contradictory performance of blocking resistance can be expressed.

また、本発明のコーティング用組成物は、前記重合体(A1)、重合体(A2)およびセラックを混合して得られる紙・繊維製品のコーティング用組成物が好ましい。   In addition, the coating composition of the present invention is preferably a coating composition for paper / fiber products obtained by mixing the polymer (A1), the polymer (A2) and shellac.

[アクリル系エマルジョンについて]
本発明におけるアクリル系エマルジョンは、(メタ)アクリル酸エステルモノマー単独、または(メタ)アクリル酸エステルモノマー及びスチレンモノマーを重合して得られる重合体(A1)と重合体(A2)、およびセラックを含有し、前記重合体(A1)および重合体(A2)の合計の平均ガラス転移温度が20℃以下であることを特徴とする。
[Acrylic emulsion]
The acrylic emulsion in the present invention contains a polymer (A1) and a polymer (A2) obtained by polymerizing a (meth) acrylic acid ester monomer alone or a (meth) acrylic acid ester monomer and a styrene monomer, and shellac. And the total average glass transition temperature of the said polymer (A1) and a polymer (A2) is 20 degrees C or less, It is characterized by the above-mentioned.

重合体(A1)はガラス転移温度が−70℃以上0℃以下の範囲にあるポリマー粒子(A1)であり、より好ましくは−50℃以上−20℃以下の範囲である。重合体(A2)はガラス転移温度が50℃以上100℃以下の範囲にあるポリマー粒子(A2)であり、より好ましくは70℃以上90℃以下である。   The polymer (A1) is a polymer particle (A1) having a glass transition temperature in the range of −70 ° C. or more and 0 ° C. or less, and more preferably in the range of −50 ° C. or more and −20 ° C. or less. The polymer (A2) is a polymer particle (A2) having a glass transition temperature in the range of 50 ° C. or higher and 100 ° C. or lower, more preferably 70 ° C. or higher and 90 ° C. or lower.

本発明においては、エマルジョン中にガラス転移温度が異なる粒子(A1)、(A2)が混在して存在することが必要である。その理由は定かではないが、本発明者らは以下のように推察している。このようなガラス転移温度が異なる粒子が混在するエマルジョンが成膜すると、その皮膜はミクロ的に高ガラス転移温度のポリマーがリッチな領域と、低ガラス転移温度のポリマーがリッチな領域とが混在する不均一構造となるものと考えられる。皮膜がミクロ的にこのような不均一構造をとることによって、耐湿摩擦性、常温での成膜性と、紙・繊維製品の耐ブロッキング性という互いに相反する性能を発現させることができるものと考える。   In the present invention, it is necessary that particles (A1) and (A2) having different glass transition temperatures be present in the emulsion. The reason for this is not clear, but the present inventors speculate as follows. When an emulsion containing such particles with different glass transition temperatures is formed, the film has a mixture of microscopically high glass transition temperature polymer rich regions and low glass transition temperature polymer rich regions. It is considered to be a non-uniform structure. It is thought that by having such a non-uniform structure of the film microscopically, it is possible to exhibit mutually contradictory performances such as moisture rub resistance, film formability at room temperature, and blocking resistance of paper and textile products. .

したがって、アクリル系エマルジョンを得るための方法としては、このような異なるガラス転移温度を有する粒子が混在する状態を生じさせる方法であれば特に制限されない。
例えば、ガラス転移温度の異なる2種の重合体(A1)および重合体(A2)を含有するエマルジョンを混合する方法が挙げられる。
Therefore, the method for obtaining the acrylic emulsion is not particularly limited as long as it is a method that produces a state in which particles having different glass transition temperatures are mixed.
For example, the method of mixing the emulsion containing 2 types of polymers (A1) and polymers (A2) from which a glass transition temperature differs is mentioned.

また、同一の重合装置で連続的に異なるモノマー組成からなる重合体(A1)および重合体(A2)を含有するエマルジョンを重合する方法でもよい。このような重合方法は一般的には多段重合法と呼ばれるが、多段重合を行う場合には前段の反応を完了させた後、後段の重合を行うことによって異なるガラス転移温度を有する粒子を混在させることが可能となる。混合方法と比較すると、同一の重合装置で製造できることから工程上のメリットが大きいため多段重合法がより好ましい。   Moreover, the method of superposing | polymerizing the emulsion containing the polymer (A1) and polymer (A2) which consist of continuously different monomer compositions with the same polymerization apparatus may be used. Such a polymerization method is generally called a multistage polymerization method. When multistage polymerization is performed, particles having different glass transition temperatures are mixed by performing the subsequent stage polymerization after completing the previous stage reaction. It becomes possible. Compared with the mixing method, the multi-stage polymerization method is more preferable because it can be produced in the same polymerization apparatus and has great process advantages.

[(メタ)アクリル酸エステルモノマー及びスチレンモノマーについて]
本発明においては、重合体(A1)および重合体(A2)を得るために、メタ)アクリル酸エステルモノマー単独、または(メタ)アクリル酸エステルモノマー及びスチレンモノマーを用いることができる。
[(Meth) acrylate monomer and styrene monomer]
In the present invention, in order to obtain the polymer (A1) and the polymer (A2), a meth) acrylic acid ester monomer alone, or a (meth) acrylic acid ester monomer and a styrene monomer can be used.

本発明で用いられる(メタ)アクリル酸エステルモノマーとしては、アクリル酸、メタクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸ドデシル、アクリル酸2−ヒドロキシエチルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ドデシル、メタクリル酸2−ヒドロキシエチルなどのメタクリル酸エステル;アクリル酸ジメチルアミノエチル、メタクリル酸ジメチルアミノエチルおよびこれらの四級化物など従来公知の化合物が挙げられる。これらの中では、得られた皮膜の親水度が低くなる結果として耐湿摩擦性により優れるため、疎水モノマーが特に好ましい。   Examples of the (meth) acrylic acid ester monomer used in the present invention include acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, 2-hydroxyethyl acrylate, and the like. Methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, 2-hydroxyethyl methacrylate; dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate And conventionally known compounds such as quaternized compounds thereof. Of these, hydrophobic monomers are particularly preferred because they are superior in wet friction resistance as a result of the reduced hydrophilicity of the resulting film.

また、上記(メタ)アクリル酸エステルモノマーとスチレンモノマーとを共重合させてもよい。スチレンモノマーの使用量は,平均ガラス転移温度の範囲内であれば、特に限定されない。   Moreover, you may copolymerize the said (meth) acrylic acid ester monomer and a styrene monomer. The amount of styrene monomer used is not particularly limited as long as it is within the range of the average glass transition temperature.

また、本発明においては、重合体(A1)および重合体(A2)が、(メタ)アクリル酸エステルモノマー単独または(メタ)アクリル酸エステルモノマー及びスチレンモノマーに、さらに本発明の効果を損なわない範囲で、それらのモノマーと共重合可能な他のビニル系重合性単量体を重合して得られる重合体であってもよい。   Further, in the present invention, the polymer (A1) and the polymer (A2) are within the range in which the effects of the present invention are not further impaired by the (meth) acrylic acid ester monomer alone or the (meth) acrylic acid ester monomer and the styrene monomer. Thus, it may be a polymer obtained by polymerizing other vinyl polymerizable monomers copolymerizable with these monomers.

(メタ)アクリル酸エステルモノマー、スチレンモノマーと共重合可能な他のビニル系重合性単量体としては、エチレン性不飽和単量体、ジエン系単量体等の単量体が挙げられる。これらの単量体の具体例としては、エチレン、プロピレン、イソブチレンなどのオレフィン;塩化ビニル、フッ化ビニル、ビニリデンクロリド、ビニリデンフルオリドなどのハロゲン化オレフィン;ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニルなどのビニルエステル;さらには、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N,N−ジメチルアクリルアミド、アクリルアミド−2−メチルプロパンスルホン酸およびそのナトリウム塩などのアクリルアミド系単量体;α−メチルスチレン、p−スチレンスルホン酸およびナトリウム、カリウム塩などの他のスチレン系単量体;その他N−ビニルピロリドンなど、また、ブタジエン、イソプレン、クロロプレンなどのジエン系単量体が挙げられる。これらの化合物は1種または2種以上の混合物であってもよい。   Examples of other vinyl polymerizable monomers copolymerizable with (meth) acrylic acid ester monomers and styrene monomers include monomers such as ethylenically unsaturated monomers and diene monomers. Specific examples of these monomers include olefins such as ethylene, propylene, and isobutylene; halogenated olefins such as vinyl chloride, vinyl fluoride, vinylidene chloride, and vinylidene fluoride; vinyl formate, vinyl acetate, vinyl propionate, and versatic. Vinyl esters such as vinyl acid; and acrylamide monomers such as acrylamide, methacrylamide, N-methylolacrylamide, N, N-dimethylacrylamide, acrylamide-2-methylpropanesulfonic acid and sodium salt thereof; α-methyl Styrene, p-styrenesulfonic acid and other styrene monomers such as sodium and potassium salts; other N-vinylpyrrolidone and the like, and diene monomers such as butadiene, isoprene and chloroprene That. These compounds may be one kind or a mixture of two or more kinds.

[ガラス転移温度について]
本発明におけるアクリル系エマルジョンに含有されている重合体(A1)および重合体(A2)のガラス転移温度は、重合体(A1)および重合体(A2)を得るために用いられる、それぞれの(メタ)アクリル酸エステルモノマー、スチレンモノマー、他のビニル系重合性単量体のホモポリマーのガラス転移温度から、以下のFOX(Gordon−Taylor)の式を用いて求められる。
[Glass transition temperature]
The glass transition temperatures of the polymer (A1) and the polymer (A2) contained in the acrylic emulsion in the present invention are the respective (meta) used to obtain the polymer (A1) and the polymer (A2). ) It can be determined from the glass transition temperature of homopolymers of acrylic acid ester monomers, styrene monomers and other vinyl polymerizable monomers using the following FOX (Gordon-Taylor) equation.

FOXの式: 1/Tg=(a/Tg)+・・・+(a/Tg
上記のFOXの式において、
Tg:ガラス転移温度(単位:K)、
Tg:第n番目の(メタ)アクリル酸エステルモノマー、スチレンモノマーまたは他のビニル系重合性単量体のホモポリマーのガラス転移温度(単位:K)、
:第n番目の((メタ)アクリル酸エステルモノマー、スチレンモノマーまたは他のビニル系重合性単量体の重量分率
n:モノマーの数
を表わす。
Formula of FOX: 1 / Tg = (a 1 / Tg 1 ) +... + (A n / Tg n )
In the FOX equation above,
Tg: glass transition temperature (unit: K),
Tg n : Glass transition temperature (unit: K) of homopolymer of n-th (meth) acrylic acid ester monomer, styrene monomer or other vinyl polymerizable monomer,
a n : Weight fraction of n-th ((meth) acrylic acid ester monomer, styrene monomer or other vinyl polymerizable monomer n: Number of monomers

また、ホモポリマーのガラス転移温度は、文献「T.G.Fox,Bulletin Am.Physics Sci.,1(3),123(1956).」に記載されている値から求められる。例えば、メタクリル酸メチルのホモポリマーガラス転移温度は105℃、メタクリル酸2−エチルヘキシルのホモポリマーのガラス転移温度は−70℃である。((株)高分子刊行会発行「合成ラテックスの応用」1993年7月10日第一版158ページ参照)。   Further, the glass transition temperature of the homopolymer can be determined from the values described in the document “TG Fox, Bulletin Am. Physics Sci., 1 (3), 123 (1956)”. For example, the homopolymer glass transition temperature of methyl methacrylate is 105 ° C., and the glass transition temperature of the homopolymer of 2-ethylhexyl methacrylate is −70 ° C. (See “Application of Synthetic Latex”, July 10, 1993, first edition, page 158, published by Kobunshi Publishing Co., Ltd.).

そして、重合体(A1)においては、FOXの式により算出されるガラス転移温度が−70℃以上0℃以下の範囲にある。重合体(A2)においては、FOXの式により算出されるガラス転移温度が50℃以上100℃以下の範囲にある。   And in a polymer (A1), the glass transition temperature computed by the formula of FOX exists in the range of -70 degreeC or more and 0 degrees C or less. In the polymer (A2), the glass transition temperature calculated by the formula of FOX is in the range of 50 ° C. or higher and 100 ° C. or lower.

また、アクリル系エマルジョン全体として、重合体(A1)および重合体(A2)の合計の平均ガラス転移温度が20℃以下である。即ち。FOXの式により算出される、使用されるモノマー総体の平均ガラス転移温度が20℃以下である。   Moreover, as a whole acrylic emulsion, the total average glass transition temperature of the polymer (A1) and the polymer (A2) is 20 ° C. or less. That is. The average glass transition temperature of the total monomer used, calculated by the formula of FOX, is 20 ° C. or lower.

本発明のアクリル系エマルジョンに含有される重合体(A1)および重合体(A2)の含有量は、重合体(A1)および重合体(A2)の合計の平均ガラス転移温度の範囲内であれば特に限定されない。   The content of the polymer (A1) and the polymer (A2) contained in the acrylic emulsion of the present invention is within the range of the total average glass transition temperature of the polymer (A1) and the polymer (A2). There is no particular limitation.

[セラックについて]
本発明におけるセラックは、南洋植物に寄生するラック貝殻虫の分泌する樹脂状物質を精製したものである。セラックは、例えばアレウリチン酸とジャラール酸又はラクシジャラール酸とがエステル結合した軟化樹脂やその軟化樹脂が数個結合したもの等、多数の樹脂酸の混合物を含有している。
[About Shellac]
The shellac in the present invention is obtained by purifying a resinous substance secreted by a shellfish parasite that parasitizes a southern sea plant. Shellac contains a mixture of a large number of resin acids, such as a softened resin in which aleuritic acid and jalaric acid or laxialaric acid are ester-bonded, or a combination of several softened resins.

このようなセラックは市販されており、例えば岐阜セラック(株)製の「N811」、日本シェラック(株)製の「NSC」等として商業的に入手することができる。
本発明においては市販のセラックを、水に溶解させるためにアルカリで中和したアルカリ塩として使用することが好ましい。セラックをアルカリで中和して使用する場合、セラックの中和度はセラックの全酸価に対し80%以上が好ましい。中和度が80%を下回ると水溶化しにくくなる。また、中和に用いるアルカリ物質は特に限定されるものではないが、アンモニア、トリエタノールアミン、モルホリン等の揮発性物質を用いることが好ましい。
Such shellac is commercially available, and can be commercially obtained, for example, “N811” manufactured by Gifu Shellac Co., Ltd., “NSC” manufactured by Nippon Shellac Co., Ltd.
In the present invention, commercially available shellac is preferably used as an alkali salt neutralized with an alkali in order to dissolve in water. When shellac is used after being neutralized with an alkali, the neutralization degree of shellac is preferably 80% or more with respect to the total acid value of shellac. When the degree of neutralization is less than 80%, it becomes difficult to make water soluble. Moreover, although the alkali substance used for neutralization is not specifically limited, it is preferable to use volatile substances, such as ammonia, a triethanolamine, a morpholine.

本発明において、セラックはエマルジョンを得た後に添加してもよい。また、セラック単独を分散剤として用いて、エマルジョンを重合してもよいし、セラックと他の分散剤とを併用してもよい。より効果的に皮膜の耐湿摩擦性、常温での成膜性と、紙・繊維製品の耐ブロッキング性を得るためには、セラックと分散剤とを併用して重合を行うのが特に好ましい。   In the present invention, shellac may be added after obtaining an emulsion. Further, the emulsion may be polymerized using shellac alone as a dispersant, or shellac and another dispersant may be used in combination. In order to more effectively obtain the moisture rub resistance of the film, the film formability at room temperature, and the blocking resistance of paper and textile products, it is particularly preferable to perform polymerization using shellac and a dispersant in combination.

本発明においてセラックは、コーティング用組成物の全固形分に対して2〜20質量%、好ましくは5〜15質量%含有される。2質量%を下回ると常温での耐湿摩擦性の観点で不具合が生じ、20質量%を超えると高コスト、高粘度となってしまい実使用が困難になるなどの不具合が生じる。   In the present invention, shellac is contained in an amount of 2 to 20% by mass, preferably 5 to 15% by mass, based on the total solid content of the coating composition. If the amount is less than 2% by mass, a problem occurs in terms of resistance to wet friction at room temperature. If the value exceeds 20% by mass, problems such as high cost and high viscosity become difficult.

[分散剤について]
本発明における他の分散剤は、上述の(メタ)アクリル酸エステルモノマー、スチレンモノマーをエマルジョン重合するに際して、これらのモノマーを水中に安定分散するための保護コロイド又は界面活性剤である。上述のようにセラックと分散剤とを併用するのが好ましい。
[About dispersant]
The other dispersant in the present invention is a protective colloid or a surfactant for stably dispersing these monomers in water when the above-mentioned (meth) acrylic acid ester monomer and styrene monomer are subjected to emulsion polymerization. As described above, shellac and a dispersant are preferably used in combination.

本発明で用いられる分散剤としては、保護コロイドとしては、ポリビニルアルコール、ポリアクリル酸、ヒドロキシエチルセルロース等の従来公知の水溶性高分子が挙げられる。界面活性剤としては、例えばアルキル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレン多環フェニルエーテル硫酸エステル塩、ポリオキシエチレンジスチレン化フェニルエーテル硫酸エステル塩などのアニオン性界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレンアルキルフェニルエーテルなどのノニオン性界面活性剤、脂肪族炭化水素基を有する第一級アミン塩、第二級アミン塩、第三級アミン塩、第四級アンモニウム塩、この第四級アンモニウム塩のカチオン性界面活性剤としてはラウリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライドなどのカチオン性界面活性剤が挙げられる。また、重合性のアリル基含有ポリオキシエチレンアルキルエーテル硫酸エステル塩、アリル基含有ポリオキシエチレンアルキルエーテル等のいわゆる反応性界面活性剤も用いることができる。他の分散剤の使用量は、使用する重合性モノマー100質量部に対して1〜10質量部が好ましい。   Examples of the dispersant used in the present invention include conventionally known water-soluble polymers such as polyvinyl alcohol, polyacrylic acid, and hydroxyethyl cellulose as the protective colloid. Surfactants include, for example, alkyl sulfates, polyoxyethylene alkyl ether sulfates, alkyl benzene sulfonates, alkyl naphthalene sulfonates, alkyl sulfosuccinates, alkyl diphenyl ether disulfonates, naphthalene sulfonic acid formalin condensates, poly Anionic surfactants such as oxyethylene polycyclic phenyl ether sulfate, polyoxyethylene distyrenated phenyl ether sulfate, polyoxyethylene alkyl ether, polyoxyalkylene alkyl ether, polyoxyethylene polycyclic phenyl ether, poly Nonionic surfactants such as oxyethylene distyrenated phenyl ether and polyoxyethylene alkyl phenyl ether, and those having aliphatic hydrocarbon groups Secondary amine salts, secondary amine salts, tertiary amine salts, quaternary ammonium salts, and cationic surfactants of this quaternary ammonium salt include lauryl trimethyl ammonium chloride, cetyl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride And other cationic surfactants. Also, so-called reactive surfactants such as polymerizable allyl group-containing polyoxyethylene alkyl ether sulfates and allyl group-containing polyoxyethylene alkyl ethers can be used. As for the usage-amount of another dispersing agent, 1-10 mass parts is preferable with respect to 100 mass parts of polymerizable monomers to be used.

乳化重合に用いられる重合開始剤は、例えば、ラジカル重合触媒、レドックス重合触媒の中から適宜選択して使用できる。重合開始剤の具体例を示すと、水溶性開始剤の例としては過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩が挙げられ、レドックス系開始剤としては過酸化水素、クメンヒドロパーオキサイド、t−ブチルパーオキサイド、過硫酸塩等の開始剤とグルコース、デキストロース、ホルムアルデヒドナトリウムスルホキシラート、亜硫酸水素ナトリウムなどの還元剤との組み合わせが挙げられる。油溶性開始剤としては、アゾビスイソブチロニトリルなどのアゾ化合物、ベンゾイルパーオキサイドなどの過硫酸物等が挙げられる。また、重合開始剤の使用量は、使用する重合性モノマー100質量部に対して0.01〜0.5質量部が好ましい。   The polymerization initiator used for emulsion polymerization can be appropriately selected from, for example, a radical polymerization catalyst and a redox polymerization catalyst. As specific examples of the polymerization initiator, examples of the water-soluble initiator include persulfates such as potassium persulfate and ammonium persulfate, and examples of the redox initiator include hydrogen peroxide, cumene hydroperoxide, t- A combination of an initiator such as butyl peroxide or persulfate and a reducing agent such as glucose, dextrose, sodium formaldehyde sulfoxylate, or sodium bisulfite is included. Examples of the oil-soluble initiator include azo compounds such as azobisisobutyronitrile, persulfates such as benzoyl peroxide, and the like. Moreover, the usage-amount of a polymerization initiator has preferable 0.01-0.5 mass part with respect to 100 mass parts of polymerizable monomers to be used.

[その他成分について]
また、その他の成分として、増粘剤、中和剤、安定剤、レベリング剤、可塑剤、消泡剤、防カビ剤、アルコール類などの添加剤、クレー、タルク、炭酸カルシウム、コロイダルシリカ、シリカのような無機充填剤が目的に応じて適宜配合されていてもよい。
特に、つや消しタイプのコーティング皮膜を得るためには、本発明のコーティング用組成物にシリカを配合する事が好ましい。シリカの種類としては特に限定されないが、未処理のものや表面を無機物や有機物等で処理を施したものを用いることもできる。つや消しに使用されるシリカとしては、平均粒子径が1〜10μmであるものが好ましい。なお、ここでいう平均粒子径とは、コールターカウンター法により測定されるものである。
本発明においてシリカの配合量は、つや消し等のコーティングとしての諸性能が損なわれない範囲内であれば特に限定されないが、例えばシリカを配合したコーティング用組成物の全固形分に対して1〜30質量%、好ましくは1〜20質量%が望ましい。
また、シリカの沈降防止剤として従来公知の界面活性剤、分散剤等を組み合わせて用いることができる。
[Other ingredients]
Other components include thickeners, neutralizers, stabilizers, leveling agents, plasticizers, antifoaming agents, fungicides, alcohols, clays, talc, calcium carbonate, colloidal silica, silica Such inorganic fillers may be appropriately blended depending on the purpose.
In particular, in order to obtain a matte type coating film, it is preferable to add silica to the coating composition of the present invention. Although it does not specifically limit as a kind of silica, The thing which processed the surface with an inorganic substance, an organic substance, etc. can also be used for an untreated thing. As the silica used for matting, those having an average particle diameter of 1 to 10 μm are preferable. The average particle diameter here is measured by a Coulter counter method.
In the present invention, the blending amount of silica is not particularly limited as long as various performances as a coating such as matte are not impaired, but for example, 1 to 30 based on the total solid content of the coating composition blended with silica. The mass%, preferably 1 to 20 mass% is desirable.
In addition, conventionally known surfactants, dispersants and the like can be used in combination as an anti-settling agent for silica.

[コーティング皮膜]
本発明のコーティング皮膜は、上記の紙・繊維製品のコーティング用組成物から得られるコーティング皮膜であって、示差走査熱量測定によって測定されるガラス転移温度が、50℃以上100℃以下及び−70℃以上0℃以下の各領域にそれぞれ1つ以上あることを特徴とする。
[Coating film]
The coating film of the present invention is a coating film obtained from the above-mentioned coating composition for paper and textile products, and has a glass transition temperature of 50 ° C. or higher and 100 ° C. or lower and −70 ° C. measured by differential scanning calorimetry. It is characterized in that there is one or more in each region of 0 ° C. or lower.

[示差走査熱量測定(DSC測定)について]
本発明におけるアクリル系エマルジョンは、下記条件で示差走査熱量測定(DSC測定)を行い、ガラス転移温度をJIS K7121に準拠して求めた際に、50℃以上100℃以下及び−70℃以上0℃以下の各領域内に、それぞれ1つ以上の補外ガラス転移開始温度(Tig)が測定される。なお、測定に際しては、コーティング用組成物を成膜してフィルム状にしたものを用いる。
[Differential scanning calorimetry (DSC measurement)]
The acrylic emulsion in the present invention is subjected to differential scanning calorimetry (DSC measurement) under the following conditions, and when the glass transition temperature is determined in accordance with JIS K7121, it is 50 ° C to 100 ° C and -70 ° C to 0 ° C. In each of the following regions, one or more extrapolated glass transition start temperatures (Tig) are measured. In the measurement, a coating composition formed into a film is used.

装置名 ; (株)島津製作所社製DSC−50
パン ; アルミパン(非気密型)
試料質量 ; 10mg
昇温開始温度 ; −80℃
昇温終了温度 ; 110℃
昇温速度 ; 10℃/min
雰囲気 ; 窒素
Device name: DSC-50 manufactured by Shimadzu Corporation
Pan : Aluminum pan (non-airtight)
Sample mass: 10 mg
Temperature rising start temperature; -80 ° C
Temperature rising end temperature: 110 ° C
Temperature rising rate: 10 ° C / min
Atmosphere: Nitrogen

[本発明のコーティング用組成物による紙・繊維の表面処理について]
本発明のコーティング用組成物を使用して紙・繊維等を表面処理して加工する方法としては公知の方法を使用できる。すなわち、紙・繊維等の被処理物にフレキソ印刷機、グラビア印刷機等一般的な印刷方法によって印刷(塗布・コート)することができ、その後常温乾燥工程又は加熱乾燥工程を経て表面処理される。
[Surface Treatment of Paper / Fiber with the Coating Composition of the Present Invention]
A known method can be used as a method of surface-treating and processing paper / fiber using the coating composition of the present invention. That is, it can be printed (coated / coated) on an object to be treated such as paper or fiber by a general printing method such as a flexographic printing machine or a gravure printing machine, and then subjected to a surface treatment through a room temperature drying process or a heat drying process. .

以下、本発明を実施例に基づいて詳細に説明するが、本発明は実施例に限定されるものではない。なお、以下の実施例および比較例において「部」および「%」は、特に断らない限り質量基準を表す。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to an Example. In the following examples and comparative examples, “parts” and “%” represent mass standards unless otherwise specified.

[試験方法と評価基準]
コーティング用組成物の耐湿摩擦性、成膜性及びこれを塗工した紙・繊維製品の耐ブロッキング性を下記の要領で評価した。
[Test methods and evaluation criteria]
The moisture rub resistance and film-forming property of the coating composition and the blocking resistance of the paper / textile product coated with this were evaluated as follows.

<耐湿摩擦性試験>
樹脂/顔料の固形分比=1/1の水系フレキソインキをバーコーター#3(塗布量:4g/m(固形分換算:1.6g/m))でコート紙に塗工し、23℃50%RHで24時間乾燥した。その後、実施例および比較例で得られたコーティング用組成物をバーコーター#3(塗布量:4g/m(固形分換算:1.6g/m))で塗工し、23℃50%RHで24時間乾燥し、試料を作成した。コーティング用組成物を塗工した試料の表面を水で湿した(75%湿潤度)綿布(カナキン3号)で、荷重500gを乗せて30回往復させ、綿布へのインキの転着を比較した。
<Moisture resistance test>
A water-based flexographic ink having a resin / pigment solid content ratio of 1/1 was applied to coated paper with a bar coater # 3 (coating amount: 4 g / m 2 (solid content conversion: 1.6 g / m 2 )). It was dried at 50 ° C. and 50% RH for 24 hours. Thereafter, the coating compositions obtained in Examples and Comparative Examples were applied with a bar coater # 3 (coating amount: 4 g / m 2 (solid content conversion: 1.6 g / m 2 )), and 23 ° C. and 50%. The sample was prepared by drying with RH for 24 hours. The surface of the sample coated with the coating composition was wetted with water (75% wetness) with a cotton cloth (Kanakin No. 3), loaded with a load of 500 g and reciprocated 30 times, and the transfer of the ink onto the cotton cloth was compared. .

<評価基準>
◎:インキの転着がない
○:ややインキの転着がある
△:インキの転着がある
×:非常にインキの転着がある
<成膜性試験>
JIS K6828−2に従い、MFFT(最低造膜温度)を測定した。
<Evaluation criteria>
◎: No ink transfer ○: Slight ink transfer △: Ink transfer ×: Very ink transfer <Filmability test>
MFFT (minimum film forming temperature) was measured according to JIS K6828-2.

<耐ブロッキング性試験>
耐湿摩擦性試験と同様に試料を作製した。この試料のコーティング用組成物の塗工面同士を重ね合わせ、荷重100g/cmをかけて、50℃95%RH雰囲気下で24時間放置後、塗布面同士を剥がした際のブロッキング性を比較した。
<Blocking resistance test>
Samples were prepared in the same manner as in the wet friction resistance test. The coated surfaces of the coating composition of this sample were superposed, applied with a load of 100 g / cm 2 , allowed to stand in an atmosphere of 50 ° C. and 95% RH for 24 hours, and then compared for blocking properties when the coated surfaces were peeled off. .

<評価基準>
○:ブロッキング無し
△:ややブロッキングしている
×:ブロッキングしている
<Evaluation criteria>
○: No blocking △: Slightly blocking ×: Blocking

[コーティング用組成物の製造例]
実施例1
撹拌装置付きフラスコに脱イオン水を143部仕込み、乳化剤(ペレックスSS−H:花王社製)3.6部をその中に添加し、撹拌して乳化剤水溶液を得た。この中にメタクリル酸メチル(ガラス転移温度は105℃)160部、メタクリル酸2−エチルヘキシル(ガラス転移温度は−70℃)20部の混合物(FOXの式より求めたガラス転移温度Tg72℃)を徐々に添加してモノマー乳化物(M−1)を得た。
[Production Example of Coating Composition]
Example 1
143 parts of deionized water was charged into a flask equipped with a stirrer, 3.6 parts of an emulsifier (Perex SS-H: manufactured by Kao Corporation) was added therein, and stirred to obtain an aqueous emulsifier solution. Methyl methacrylate in the (glass transition temperature 105 ° C.) 160 parts, 2-ethylhexyl methacrylate (glass transition temperature of -70 ° C.) mixture of 20 parts (glass transition temperature Tg 1 72 ° C. obtained from the equation of FOX) Was gradually added to obtain a monomer emulsion (M-1).

次に、撹拌装置付きフラスコに脱イオン水を140部仕込み、乳化剤(ペレックスSS−H:花王社製)5部をその中に添加し、撹拌して乳化剤水溶液を得た。この中にメタクリル酸メチル40部、メタクリル酸2−エチルヘキシル170部の混合物(FOXの式より求めたガラス転移温度Tg−50℃)を徐々に添加してモノマー乳化物(M−2)を得た。 Next, 140 parts of deionized water was charged into a flask equipped with a stirrer, and 5 parts of an emulsifier (Perex SS-H: manufactured by Kao Corporation) was added therein and stirred to obtain an aqueous emulsifier solution. Obtained 40 parts of methyl methacrylate in the mixture of 170 parts of 2-ethylhexyl methacrylate (glass transition temperature Tg 2 -50 ° C. as determined from the equation of FOX) gradually monomer emulsion was added to (M-2) It was.

別のコンデンサー及び撹拌装置付きフラスコに脱イオン水を250部と、セラック(PEARL N−811:岐阜セラック社製)45部、乳化剤(ペレックスSS−H:花王社製)4部を仕込み、撹拌しながら25%アンモニア水7部を添加し、75℃まで昇温、30分間温度を維持しセラックを溶解させた水溶液(C)を得た。   In a separate condenser and flask equipped with a stirrer, 250 parts of deionized water, 45 parts of shellac (PEARL N-811: manufactured by Gifu Shellac Co., Ltd.) and 4 parts of emulsifier (Perex SS-H: manufactured by Kao Corporation) were charged and stirred. While adding 7 parts of 25% ammonia water, the temperature was raised to 75 ° C. and the temperature was maintained for 30 minutes to obtain an aqueous solution (C) in which shellac was dissolved.

その後、水溶液(C)の温度を75℃に設定して、上記モノマー乳化物(M−1)を過硫酸カリウム水溶液(4%溶液)10部とともに撹拌下、窒素ガス気流中で100分、滴下して乳化重合し、60分間温度を維持したまま熟成した。その後、水溶液(C)の温度を75℃に維持したまま、上記モノマー乳化物(M−2)を過硫酸カリウム水溶液(4%溶液)10部とともに撹拌下、窒素ガス気流中で120分、滴下して乳化重合し、60分間温度を維持したまま撹拌した。その後、脱イオン水で固形分40%に調整し水性エマルジョン(C−1)を得た。このエマルジョンについて、FOXの式より求めたモノマー全体の平均ガラス転移温度Tg3は−6.8℃である。 Thereafter, the temperature of the aqueous solution (C) was set to 75 ° C., and the monomer emulsion (M-1) was added dropwise in a nitrogen gas stream for 100 minutes with stirring with 10 parts of an aqueous potassium persulfate solution (4% solution). The emulsion was then polymerized and aged for 60 minutes while maintaining the temperature. Thereafter, while maintaining the temperature of the aqueous solution (C) at 75 ° C., the monomer emulsion (M-2) was added dropwise in a nitrogen gas stream for 120 minutes with stirring with 10 parts of an aqueous potassium persulfate solution (4% solution). The emulsion was then polymerized and stirred for 60 minutes while maintaining the temperature. Thereafter, the solid content was adjusted to 40% with deionized water to obtain an aqueous emulsion (C-1). With respect to this emulsion, the average glass transition temperature Tg 3 of the whole monomer determined from the FOX equation is −6.8 ° C.

以下にFOXの式より、上記のガラス転移温度を算出する方法を示す。
(1)モノマー乳化物(M−1)
1/Tg=160/180×1/(105+273)
+20/180×(−70+273)
Tgは345(K)であり、Tg=72(℃)となる。
(2)モノマー乳化物(M−2)
1/Tg=40/210×1/(105+273)
+170/210×(−70+273)
Tgは223(K)であり、Tg=−50(℃)となる。
(3)エマルジョン(モノマー全体)
1/Tg=200/390×1/(105+273)
+190/390×(−70+273)
Tgは266(K)であり、Tg=−6.8(℃)となる。
A method for calculating the above glass transition temperature from the FOX equation is shown below.
(1) Monomer emulsion (M-1)
1 / Tg 1 = 160/180 × 1 / (105 + 273)
+ 20/180 × (−70 + 273)
Tg 1 is 345 (K), and Tg 1 = 72 (° C.).
(2) Monomer emulsion (M-2)
1 / Tg 2 = 40/210 × 1 / (105 + 273)
+ 170/210 × (−70 + 273)
Tg 2 is 223 (K), and Tg 2 = −50 (° C.).
(3) Emulsion (whole monomer)
1 / Tg 3 = 200/390 × 1 / (105 + 273)
+ 190/390 × (−70 + 273)
Tg 3 is 266 (K), and Tg 3 = −6.8 (° C.).

実施例2
撹拌装置付きフラスコに脱イオン水を252部仕込み、乳化剤(ペレックスSS−H:花王社製)7.8部をその中に添加し、撹拌して乳化剤水溶液を得た。この中にメタクリル酸メチル320部、メタクリル酸2−エチルヘキシル40部の混合物(FOXの式より求めたガラス転移温度72℃)を徐々に添加してモノマー乳化物(M−3)を得た。
Example 2
A flask equipped with a stirrer was charged with 252 parts of deionized water, 7.8 parts of an emulsifier (Perex SS-H: manufactured by Kao Corporation) was added therein, and stirred to obtain an aqueous emulsifier solution. A monomer emulsion (M-3) was obtained by gradually adding a mixture of 320 parts of methyl methacrylate and 40 parts of 2-ethylhexyl methacrylate (glass transition temperature 72 ° C. determined from FOX formula).

別のコンデンサー及び撹拌装置付きフラスコに脱イオン水を200部と、乳化剤(ペレックスSS−H:花王社製)4部を仕込み、75℃まで昇温した。その後水溶液の温度を75℃に設定して、上記モノマー乳化物(M−3)を過硫酸カリウム水溶液(4%溶液)10部とともに撹拌下、窒素ガス気流中で100分、滴下して乳化重合し、60分間温度を維持したまま熟成した。その後、脱イオン水で固形分40%に調整し水性エマルジョン(C−2)を得た。   In another condenser and flask equipped with a stirrer, 200 parts of deionized water and 4 parts of emulsifier (Perex SS-H: manufactured by Kao Corporation) were charged, and the temperature was raised to 75 ° C. Thereafter, the temperature of the aqueous solution was set to 75 ° C., and the monomer emulsion (M-3) was added dropwise with 100 parts of an aqueous potassium persulfate solution (4% solution) in a nitrogen gas stream for 100 minutes with stirring to perform emulsion polymerization. The mixture was aged while maintaining the temperature for 60 minutes. Thereafter, the solid content was adjusted to 40% with deionized water to obtain an aqueous emulsion (C-2).

次に撹拌装置付きフラスコに脱イオン水を260部仕込み、乳化剤(ペレックスSS−H:花王社製)9.3部をその中に添加し、撹拌して乳化剤水溶液を得た。この中にメタクリル酸メチル80部、メタクリル酸2−エチルヘキシル340部の混合物(FOXの式より求めたガラス転移温度−50℃)を徐々に添加してモノマー乳化物(M−4)を得た。   Next, 260 parts of deionized water was charged into a flask equipped with a stirrer, and 9.3 parts of an emulsifier (Perex SS-H: manufactured by Kao Corporation) was added therein and stirred to obtain an aqueous emulsifier solution. A monomer emulsion (M-4) was obtained by gradually adding a mixture of 80 parts of methyl methacrylate and 340 parts of 2-ethylhexyl methacrylate (glass transition temperature -50 ° C. determined from FOX formula).

別のコンデンサー及び撹拌装置付きフラスコに脱イオン水を200部と、乳化剤(ペレックスSS−H:花王社製)4部を仕込み、75℃まで昇温した。その後水溶液の温度を75℃に設定して、上記モノマー乳化物(M−4)を過硫酸カリウム水溶液(4%溶液)10部とともに撹拌下、窒素ガス気流中で100分、滴下して乳化重合し、60分間温度を維持したまま熟成した。その後、脱イオン水で固形分40%に調整し水性エマルジョン(C−3)を得た。   In another condenser and flask equipped with a stirrer, 200 parts of deionized water and 4 parts of emulsifier (Perex SS-H: manufactured by Kao Corporation) were charged, and the temperature was raised to 75 ° C. Thereafter, the temperature of the aqueous solution was set to 75 ° C., and the monomer emulsion (M-4) was added dropwise with 100 parts of an aqueous potassium persulfate solution (4% solution) in a nitrogen gas stream for 100 minutes with stirring to perform emulsion polymerization. The mixture was aged while maintaining the temperature for 60 minutes. Thereafter, the solid content was adjusted to 40% with deionized water to obtain an aqueous emulsion (C-3).

さらに別のコンデンサー及び撹拌装置付きフラスコに脱イオン水を415部と、セラック(PEARL N−811:岐阜セラック社製)90部、を仕込み、撹拌しながら25%アンモニア水14部を添加し、75℃まで昇温、30分間温度を維持しセラックを溶解させることでセラック水溶液(C−4)を得た。   Furthermore, 415 parts of deionized water and 90 parts of shellac (PEARL N-811: manufactured by Gifu Shellac Co., Ltd.) were charged into another condenser and flask equipped with a stirrer, and 14 parts of 25% aqueous ammonia was added while stirring. The shellac aqueous solution (C-4) was obtained by heating up to 0 degreeC and maintaining temperature for 30 minutes, and dissolving shellac.

上記で得られた(C−2)を26.4部、(C−3)を22.5部、(C−4)を4.9部それぞれ混合し、脱イオン水で固形分40%に調整し水性エマルジョン(C−5)を得た。   26.4 parts of (C-2) obtained above, 22.5 parts of (C-3) and 4.9 parts of (C-4) were mixed, and the solid content was adjusted to 40% with deionized water. An aqueous emulsion (C-5) was obtained after adjustment.

比較例1
撹拌装置付きフラスコに脱イオン水を260部仕込み、乳化剤(ペレックスSS−H:花王社製)9.3部をその中に添加し、撹拌して乳化剤水溶液を得た。この中にメタクリル酸メチル347部、メタクリル酸2−エチルヘキシル43部の混合物(FOXの式より求めたガラス転移温度72℃)を徐々に添加してモノマー乳化物(M−5)を得た。
Comparative Example 1
A flask equipped with a stirrer was charged with 260 parts of deionized water, 9.3 parts of an emulsifier (Perex SS-H: manufactured by Kao Corporation) was added therein, and stirred to obtain an aqueous emulsifier solution. A monomer emulsion (M-5) was obtained by gradually adding a mixture of 347 parts of methyl methacrylate and 43 parts of 2-ethylhexyl methacrylate (glass transition temperature 72 ° C. determined from FOX formula).

別のコンデンサー及び撹拌装置付きフラスコに脱イオン水を250部と、セラック(PEARL N−811:岐阜セラック社製)45部、乳化剤(ペレックスSS−H:花王社製)4部を仕込み、撹拌しながら25%アンモニア水7部を添加し、75℃まで昇温、30分間温度を維持しセラックを溶解させた。その後水溶液の温度を75℃に設定して、上記モノマー乳化物(M−5)を過硫酸カリウム水溶液(4%溶液)20部とともに撹拌下、窒素ガス気流中で220分、滴下して乳化重合し、60分間温度を維持したまま撹拌した。その後、脱イオン水で固形分40%に調整し水性エマルジョン(C−6)を得た。このエマルジョンについてFOXの式より求めた平均ガラス転移温度は−50℃である。   In a separate condenser and flask equipped with a stirrer, 250 parts of deionized water, 45 parts of shellac (PEARL N-811: manufactured by Gifu Shellac Co., Ltd.) and 4 parts of emulsifier (Perex SS-H: manufactured by Kao Corporation) were charged and stirred. While adding 7 parts of 25% aqueous ammonia, the temperature was raised to 75 ° C. and maintained for 30 minutes to dissolve shellac. Thereafter, the temperature of the aqueous solution was set to 75 ° C., and the above-mentioned monomer emulsion (M-5) was added dropwise in a nitrogen gas stream for 220 minutes while stirring together with 20 parts of an aqueous potassium persulfate solution (4% solution). The mixture was stirred for 60 minutes while maintaining the temperature. Thereafter, the solid content was adjusted to 40% with deionized water to obtain an aqueous emulsion (C-6). The average glass transition temperature obtained from the FOX equation for this emulsion is −50 ° C.

実施例3〜9、比較例2、比較例3〜5
実施例3〜9、比較例3〜5に関しては、実施例1における(M−1)成分、(M−2)成分及びセラック含有量を各々表1に示す配合量に変えた以外は実施例1と同様にして各コーティング用組成物を得た。
Examples 3-9, Comparative Example 2, Comparative Examples 3-5
Regarding Examples 3 to 9 and Comparative Examples 3 to 5, the (M-1) component, the (M-2) component and the shellac content in Example 1 were changed to the blending amounts shown in Table 1, respectively. Each coating composition was obtained in the same manner as in Example 1.

比較例2においては、比較例1における(M−5)成分を表1に示す配合量に変えた以外は比較例1と同様にして各コーティング用組成物を得た。
得られたコーティング用組成物を用い、耐湿摩擦性試験、成膜性試験及び耐ブロッキング性試験を行い評価した。その評価結果を表1〜3に示す。
In Comparative Example 2, each coating composition was obtained in the same manner as in Comparative Example 1 except that the component (M-5) in Comparative Example 1 was changed to the amount shown in Table 1.
Using the obtained coating composition, a wet friction resistance test, a film forming test, and a blocking resistance test were evaluated. The evaluation results are shown in Tables 1-3.

また、表にはDSC測定の結果、検出されたガラス転移温度も併せて示した。   The table also shows the glass transition temperature detected as a result of DSC measurement.

Figure 2009270247
Figure 2009270247

Figure 2009270247
Figure 2009270247

Figure 2009270247
Figure 2009270247

表の結果から明らかなように本発明に係るコーティング用組成物は、耐湿摩擦性、成膜性及び耐ブロッキング性に優れていることが認められる。   As is apparent from the results in the table, it is recognized that the coating composition according to the present invention is excellent in moisture rub resistance, film formability and blocking resistance.

実施例10
本発明に係るコーティング用組成物にシリカを配合して、つや消しタイプのコーティング皮膜を得た実施例を示す。
シリカ(AY−460:東ソーシリカ社製、平均粒子径3.5μm)10部と水10部を混合してスラリー(C−7)を得た。実施例1で得られた水性エマルジョン100部に対し、前記スラリー(C−7)6部を混合し、脱イオン水で固形分40%に調整してコーティング用組成物(C−8)を得た。得られたコーティング用組成物(C−8)を用いて、耐湿摩擦性試験、成膜性試験及び耐ブロッキング性試験を行い評価したところ、実施例1と同等の結果が得られた。また、コーティング用組成物(C−8)から得られたコーティング皮膜はつや消しされた製品であった。
Example 10
The Example which mix | blended the silica with the coating composition which concerns on this invention, and obtained the matte type coating film is shown.
10 parts of silica (AY-460: manufactured by Tosoh Silica Co., Ltd., average particle size 3.5 μm) and 10 parts of water were mixed to obtain slurry (C-7). To 100 parts of the aqueous emulsion obtained in Example 1, 6 parts of the slurry (C-7) was mixed, and the solid content was adjusted to 40% with deionized water to obtain a coating composition (C-8). It was. When the obtained coating composition (C-8) was used for evaluation by performing a moisture rub resistance test, a film forming test, and a blocking resistance test, results equivalent to those in Example 1 were obtained. The coating film obtained from the coating composition (C-8) was a frosted product.

本発明に係る紙・繊維製品のコーティング用組成物は、耐湿摩擦性、耐ブロッキング性及び常温での成膜性に優れ、袋、バッグ、表紙、化粧箱、壁紙等の紙・不織布等の繊維製品のコーティング用途に有用である。   The coating composition for paper and textile products according to the present invention is excellent in moisture rub resistance, blocking resistance and film-forming properties at room temperature, and fibers such as bags, bags, covers, cosmetic boxes, wallpaper, etc. Useful for product coating applications.

Claims (7)

下記の重合体(A1)、重合体(A2)およびセラックを含有するアクリル系エマルジョンからなる紙・繊維製品のコーティング用組成物であって、前記重合体(A1)および重合体(A2)の合計の平均ガラス転移温度が20℃以下であることを特徴とする紙・繊維製品のコーティング用組成物。
重合体(A1):(メタ)アクリル酸エステルモノマー単独、または(メタ)アクリル酸エステルモノマー及びスチレンモノマーを重合して得られる、ガラス転移温度が−70℃以上0℃以下の範囲にある重合体。
重合体(A2):(メタ)アクリル酸エステルモノマー単独、または(メタ)アクリル酸エステルモノマー及びスチレンモノマーを重合して得られる、ガラス転移温度が50℃以上100℃以下の範囲にある重合体。
A coating composition for paper / textile products comprising an acrylic emulsion containing the following polymer (A1), polymer (A2) and shellac, the sum of the polymer (A1) and the polymer (A2) An average glass transition temperature of 20 ° C. or lower is a coating composition for paper and textile products.
Polymer (A1): (meth) acrylic acid ester monomer alone or a polymer obtained by polymerizing (meth) acrylic acid ester monomer and styrene monomer and having a glass transition temperature in the range of −70 ° C. or higher and 0 ° C. or lower. .
Polymer (A2): A polymer having a glass transition temperature in the range of 50 ° C. or higher and 100 ° C. or lower obtained by polymerizing (meth) acrylic acid ester monomer alone or (meth) acrylic acid ester monomer and styrene monomer.
前記セラックを含有する分散剤中で、(メタ)アクリル酸エステルモノマー単独、または(メタ)アクリル酸エステルモノマー及びスチレンモノマーを重合して得られる前記重合体(A1)および重合体(A2)を含有することを特徴とする請求項1に記載の紙・繊維製品のコーティング用組成物。   In the dispersant containing the shellac, the polymer (A1) and the polymer (A2) obtained by polymerizing the (meth) acrylic acid ester monomer alone or the (meth) acrylic acid ester monomer and the styrene monomer are contained. The composition for coating paper / textile products according to claim 1. 前記重合体(A1)、重合体(A2)およびセラックを混合して得られることを特徴とする請求項1に記載の紙・繊維製品のコーティング用組成物。   The composition for coating paper / textile products according to claim 1, wherein the composition is obtained by mixing the polymer (A1), the polymer (A2) and shellac. 前記セラックの含有量が、コーティング用組成物の全固形分に対して2〜20質量%であることを特徴とする請求項1乃至3のいずれかの項に記載の紙・繊維製品のコーティング用組成物。   The content of the shellac is 2 to 20% by mass with respect to the total solid content of the coating composition, for coating paper / textile products according to any one of claims 1 to 3. Composition. 前記重合体(A1)および重合体(A2)が、(メタ)アクリル酸エステルモノマー単独または(メタ)アクリル酸エステルモノマー及びスチレンモノマーに、さらにそれらのモノマーと共重合可能な他のビニル系重合性単量体を重合して得られる重合体である請求項1乃至4のいずれかの項に記載の紙・繊維製品のコーティング用組成物。   The polymer (A1) and the polymer (A2) are (meth) acrylic acid ester monomers alone or (meth) acrylic acid ester monomers and styrene monomers, and other vinyl-based polymerizable with those monomers. The composition for coating paper / fiber products according to any one of claims 1 to 4, which is a polymer obtained by polymerizing monomers. 請求項1乃至5のいずれかの項に記載の紙・繊維製品のコーティング用組成物から得られるコーティング皮膜であって、示差走査熱量測定によって測定されるガラス転移温度が、50℃以上100℃以下及び−70℃以上0℃以下の各領域にそれぞれ1つ以上あることを特徴とするコーティング皮膜。   A coating film obtained from the paper / textile coating composition according to any one of claims 1 to 5, wherein a glass transition temperature measured by differential scanning calorimetry is 50 ° C or higher and 100 ° C or lower. And at least one coating film in each region of −70 ° C. or more and 0 ° C. or less. 請求項1乃至5のいずれかの項に記載の紙・繊維製品のコーティング用組成物によって表面処理されていることを特徴とする紙・繊維製品。   A paper / textile product which is surface-treated with the coating composition for paper / textile product according to any one of claims 1 to 5.
JP2009092405A 2008-04-11 2009-04-06 Composition for coating paper/fiber product, coating film, and paper/fiber product Pending JP2009270247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009092405A JP2009270247A (en) 2008-04-11 2009-04-06 Composition for coating paper/fiber product, coating film, and paper/fiber product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008104015 2008-04-11
JP2009092405A JP2009270247A (en) 2008-04-11 2009-04-06 Composition for coating paper/fiber product, coating film, and paper/fiber product

Publications (1)

Publication Number Publication Date
JP2009270247A true JP2009270247A (en) 2009-11-19

Family

ID=41161888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009092405A Pending JP2009270247A (en) 2008-04-11 2009-04-06 Composition for coating paper/fiber product, coating film, and paper/fiber product

Country Status (2)

Country Link
JP (1) JP2009270247A (en)
WO (1) WO2009125756A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104060467A (en) * 2014-06-05 2014-09-24 宁波康大美术用品有限公司 Nano composite canvas coating containing graphene
CN109826012A (en) * 2019-01-16 2019-05-31 浙江理工大学 A kind of durable hydrophilic finishing agent and preparation method thereof for non-woven cloth

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5311395B2 (en) * 2009-03-24 2013-10-09 コニシ株式会社 Aqueous resin composition for imparting to fibrous materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037240B2 (en) * 1979-12-17 1985-08-24 近代化学工業株式会社 Strengthening treatment agent for cardboard base paper
JP2002003721A (en) * 2000-06-19 2002-01-09 Gifu Seratsuku Seizosho:Kk Softened shellac composition and method for producing the same
JP2002001864A (en) * 2000-06-23 2002-01-08 Gifu Seratsuku Seizosho:Kk Oil resistant coating film and method for forming the same and oil resistant paper
JP4784850B2 (en) * 2001-01-25 2011-10-05 星光Pmc株式会社 Surface sizing agent and method for producing the same
JP2003328291A (en) * 2002-04-26 2003-11-19 Seiko Pmc Corp Slip-resisting agent for paper and method for producing the same
JP4948047B2 (en) * 2006-06-07 2012-06-06 関西ペイント株式会社 Oxidative curing paint

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104060467A (en) * 2014-06-05 2014-09-24 宁波康大美术用品有限公司 Nano composite canvas coating containing graphene
CN109826012A (en) * 2019-01-16 2019-05-31 浙江理工大学 A kind of durable hydrophilic finishing agent and preparation method thereof for non-woven cloth
CN109826012B (en) * 2019-01-16 2021-11-02 浙江理工大学 Durable hydrophilic finishing agent for non-woven fabric and preparation method thereof

Also Published As

Publication number Publication date
WO2009125756A1 (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP3779375B2 (en) Latex binders and paints without volatile flocculants and freeze-thaw additives
JPH1171417A (en) Production of fluorinated polymer
NZ250932A (en) Emulsion polymer blend comprising a multi-stage polymer latex having one stage of lower tg than another and a second latex which does not form a film at ambient temperature
WO2013119521A1 (en) Latex binders useful in zero or low voc coating compositions
JP7173957B2 (en) oil repellent composition
JP2009270247A (en) Composition for coating paper/fiber product, coating film, and paper/fiber product
JP2685600B2 (en) Aqueous surface treatment agent for polyvinyl chloride
AU2013397705B2 (en) Hydrophobic alkali soluble emulsion thickener
JP2006225662A (en) Method for producing aqueous dispersion
JP5211425B2 (en) Method for producing aqueous resin dispersion for processing fiber
JP2002294561A (en) Synthetic resin emulsion for antifouling finish of nonwoven fabric wall paper, antifouling finishing agent for nonwoven fabric wall paper, and nonwoven fabric wall paper
TWI668345B (en) Method for forming dispersible nonwoven substrate in aqueous medium, dispersible wipe product, and baby wipe, personal care wipe, and cleaning wipe prepared with the dispersible wipe product
US5185396A (en) Water-based varnishes
JP4766311B2 (en) Method for producing resin emulsion for paper processing
JP4066233B2 (en) Emulsion-type paper sizing agent
JP2013129738A (en) Emulsion for vibration damping material, method for producing the same, and coating material composition
JPH05295039A (en) Aqueous dispersant of polymer particle
JP4803425B2 (en) Method for producing resin emulsion for paper processing
JP2009114351A (en) Viscosity-improving agent
JP2001254069A (en) Soil-resistant finishing agent
JP2005179473A (en) Aqueous emulsion resin, fluororesin-containing aqueous emulsion resin, and coating material and paper product using them
JP7217481B1 (en) Water-repellent coating composition
WO2022176290A1 (en) Water- and oil-repellent composition, fiber treating agent, fiber treatment method, processed fiber product and coating agent
JP4937872B2 (en) Aqueous resin composition
JP2006176729A (en) Coating composition for interior material of car and interior material for car