JP5211425B2 - Method for producing aqueous resin dispersion for processing fiber - Google Patents

Method for producing aqueous resin dispersion for processing fiber Download PDF

Info

Publication number
JP5211425B2
JP5211425B2 JP2005314329A JP2005314329A JP5211425B2 JP 5211425 B2 JP5211425 B2 JP 5211425B2 JP 2005314329 A JP2005314329 A JP 2005314329A JP 2005314329 A JP2005314329 A JP 2005314329A JP 5211425 B2 JP5211425 B2 JP 5211425B2
Authority
JP
Japan
Prior art keywords
resin dispersion
aqueous resin
ethylenically unsaturated
processing
unsaturated monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005314329A
Other languages
Japanese (ja)
Other versions
JP2007119620A (en
Inventor
浩司 佐藤
和雄 高見
恒則 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2005314329A priority Critical patent/JP5211425B2/en
Publication of JP2007119620A publication Critical patent/JP2007119620A/en
Application granted granted Critical
Publication of JP5211425B2 publication Critical patent/JP5211425B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、繊維素繊維加工用水性樹脂分散体の製造方法に関する。更に詳しくは、重合時の安定性、加工時の安定性、耐水性、及び風合いに優れる繊維素繊維加工用水性樹脂分散体の製造方法に関する。   The present invention relates to a method for producing an aqueous resin dispersion for processing fiber fibers. More specifically, the present invention relates to a method for producing an aqueous resin dispersion for processing fiber fibers, which is excellent in stability during polymerization, stability during processing, water resistance, and texture.

繊維素繊維とは、一般に木質パルプを原料にセルロースだけを精製して作られた植物系繊維のことをいい、例えばテンセル、バンブー、レーヨン、綿、麻、紙等が挙げられる。   Fibrous fibers generally refer to plant fibers made by refining only cellulose using wood pulp as a raw material, and examples thereof include tencel, bamboo, rayon, cotton, hemp, and paper.

繊維素繊維に、水性樹脂分散体に含有される樹脂を担持させる加工方法としては、例えば塗工法、含浸法、噴霧法(スプレー法)などの種々の加工方法があるが、それらの中でも繊維素繊維の改質には主に含浸法が採用されている。   There are various processing methods such as a coating method, an impregnation method, and a spraying method (spray method) as processing methods for supporting the resin contained in the aqueous resin dispersion on the fiber base fiber. An impregnation method is mainly used for the modification of fibers.

水性樹脂分散体による含浸加工後の繊維素繊維、所謂「含浸繊維素繊維」は、繊維素繊維の間隙に樹脂を介在させることにより、繊維素繊維のみでは得られない特性、例えば優れた耐水性などの特性を得ることが可能となるため、繊維素繊維の加工に用いられる水性樹脂分散体には、優れた耐水性が必須の特性として要求される。   A so-called “impregnated fiber base fiber” after impregnation processing with an aqueous resin dispersion is a property that cannot be obtained only by the fiber base fiber by interposing a resin in the gap between the base fiber, for example, excellent water resistance Therefore, excellent water resistance is required as an essential property for aqueous resin dispersions used for processing of fiber fibers.

また、水性樹脂分散体を用いて含浸加工を行うためには、水性樹脂分散体の加工時の安定性、即ち機械的安定性が必須の特性として求められる。   In addition, in order to perform impregnation using an aqueous resin dispersion, stability during processing of the aqueous resin dispersion, that is, mechanical stability is required as an essential characteristic.

このような繊維素繊維加工用の水性樹脂分散体として、従来から(メタ)アクリル酸エステル系重合体の水性樹脂分散体が使用されており、該重合体の乳化重合時には、通常、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、あるいはポリビニルアルコール(PVA)等の水溶性高分子界面活性剤などが用いられていた。   Conventionally, aqueous resin dispersions of (meth) acrylic acid ester-based polymers have been used as such aqueous resin dispersions for processing fiber fibers, and are usually nonionic during emulsion polymerization of the polymer. A surfactant, an anionic surfactant, a cationic surfactant, or a water-soluble polymer surfactant such as polyvinyl alcohol (PVA) has been used.

しかしながら、これら界面活性剤を用いて得られる(メタ)アクリル酸エステル系重合体の水性樹脂分散体は、前述のような界面活性剤の使用量が多いため、水性樹脂分散体により形成される塗膜の耐水性、あるいは水性樹脂分散体を用いて加工した基材の耐水性に極めて劣り、決して満足できるものではなかった。   However, an aqueous resin dispersion of a (meth) acrylic acid ester polymer obtained by using these surfactants has a large amount of the surfactant used as described above, so that a coating formed by the aqueous resin dispersion is used. The water resistance of the membrane or the base material processed with the aqueous resin dispersion was extremely inferior, and was never satisfactory.

かかる問題に対処するために、(メタ)アクリル酸エステルと、該(メタ)アクリル酸エステルに対し0.1〜20重量%のスチレンと、界面活性剤とを少なくとも含有するモノマー組成物を乳化重合する微粒子エマルジョンの製造方法が提案されており、かかる微粒子エマルジョンを用いることにより、重合時の安定性が得られ、良好な耐水性を発現し得る緻密な皮膜を形成できるという(例えば、特許文献1参照。)。   In order to cope with this problem, a monomer composition containing at least (meth) acrylic acid ester, 0.1 to 20% by weight of styrene with respect to the (meth) acrylic acid ester and a surfactant is emulsion-polymerized. A method for producing a fine particle emulsion has been proposed. By using such a fine particle emulsion, stability during polymerization can be obtained, and a dense film capable of expressing good water resistance can be formed (for example, Patent Document 1). reference.).

しかしながら、特許文献1記載の製造方法では、エマルジョン粒子中に含まれるポリマーのガラス転移温度(Tg)が10〜70℃で比較的高く、耐水性が未だ不充分であり、且つ微粒子エマルジョンを容易に得ることができず、また、微粒子化された水性樹脂分散体の粘度が一般に高いために高固形分化が困難であるという問題があった。   However, in the production method described in Patent Document 1, the glass transition temperature (Tg) of the polymer contained in the emulsion particles is relatively high at 10 to 70 ° C., the water resistance is still insufficient, and the fine particle emulsion can be easily formed. In addition, there is a problem that high solid differentiation is difficult because the viscosity of the finely divided aqueous resin dispersion is generally high.

また、ラジカル重合可能なエチレン性単量体を、スルホコハク酸エステル系やアルキルフェノールエーテル系反応性乳化剤の存在下に、乳化重合する水性樹脂分散体の製造方法において、水と上記単量体と上記反応性乳化剤とを入れた反応釜に、上記単量体と上記反応性乳化剤と水とを含む混合物を滴下して有機系重合開始剤によりラジカル重合する水性樹脂分散体の製造方法が提案されており、かかる製造方法によれば、水性樹脂分散体の製造時における乳化安定性が良好で、樹脂の粒子径が小さく、皮膜耐水性が良好であるという(例えば、特許文献2参照。)。   Further, in the method for producing an aqueous resin dispersion in which an ethylenic monomer capable of radical polymerization is emulsion-polymerized in the presence of a sulfosuccinic acid ester-based or alkylphenol ether-based reactive emulsifier, water, the above monomer and the above reaction A method for producing an aqueous resin dispersion in which a mixture containing the monomer, the reactive emulsifier and water is dropped into a reaction kettle containing a reactive emulsifier and radical polymerization is performed with an organic polymerization initiator has been proposed. According to this production method, the emulsion stability during production of the aqueous resin dispersion is good, the particle size of the resin is small, and the water resistance of the film is good (see, for example, Patent Document 2).

しかしながら、特許文献2記載の製造方法では、スルホコハク酸エステル系やアルキルフェノールエーテル系反応性乳化剤の使用量を多くし、カルボキシル基含有エチレン性不飽和単量体を併用しなければ、水性樹脂分散体の安定性を維持することが難しく、このような反応性乳化剤を用いたり、あるいはカルボキシル基含有エチレン性不飽和単量体を併用したりすると、樹脂に親水性の強い極性基が過剰に導入され、耐水性が著しく低下してしまうという問題があった。   However, in the production method described in Patent Document 2, if the amount of sulfosuccinic acid ester-based or alkylphenol ether-based reactive emulsifier is increased and a carboxyl group-containing ethylenically unsaturated monomer is not used in combination, the aqueous resin dispersion of It is difficult to maintain stability, and when such reactive emulsifier is used or when a carboxyl group-containing ethylenically unsaturated monomer is used in combination, a strong hydrophilic polar group is introduced into the resin, There was a problem that the water resistance was significantly lowered.

更に、従来の繊維素繊維加工用の水性樹脂分散体では、加工時の安定性、及び風合いなどの特性も未だ不満足なものであった。   Furthermore, conventional aqueous resin dispersions for processing fiber fibers are still unsatisfactory in terms of stability during processing and texture.

以上のように、これまで、重合時の安定性、加工時の安定性、耐水性、及び風合いなどの特性に優れる繊維素繊維加工用水性樹脂分散体の製造方法の開発が切望されていた。   As described above, development of a method for producing an aqueous resin dispersion for processing fiber fibers that has excellent properties such as polymerization stability, processing stability, water resistance, and texture has been eagerly desired.

特開2000−327722号公報JP 2000-327722 A 特開平5−209007号公報Japanese Patent Laid-Open No. 5-209007

本発明の目的は、重合時の安定性、加工時の安定性、耐水性、及び風合いなどの特性に優れる繊維素繊維加工用水性樹脂分散体の製造方法を提供することである。   An object of the present invention is to provide a method for producing an aqueous resin dispersion for processing fiber fibers, which has excellent properties such as polymerization stability, processing stability, water resistance, and texture.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、メチルメタクリレート(x−1)、炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)、及び(メタ)アクリロニトリル(x−3)からなる群から選ばれる、少なくとも1種の単量体(X)と共に、反応性乳化剤としてポリオキシアルキレンアルケニルエーテル(Y)を含有するエチレン性不飽和単量体混合物を、水中で乳化重合する繊維素繊維加工用水性樹脂分散体の製造方法であり、特定の条件を満たす前記エチレン性不飽和単量体混合物を用いることにより、上記課題が解決できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that methyl methacrylate (x-1), (meth) acrylate (x-2) having an alkyl group having 2 to 8 carbon atoms, and Ethylenically unsaturated monomer containing polyoxyalkylene alkenyl ether (Y) as a reactive emulsifier together with at least one monomer (X) selected from the group consisting of (meth) acrylonitrile (x-3) The mixture is a method for producing an aqueous resin dispersion for processing fibrous fibers that is emulsion-polymerized in water, and by using the ethylenically unsaturated monomer mixture that satisfies a specific condition, it is found that the above problem can be solved, The present invention has been completed.

即ち、本発明は、炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)であるエチル(メタ)アクリレート及びブチル(メタ)アクリレートと、メチルメタクリレート(x−1)または(メタ)アクリロニトリル(x−3)を含む単量体(X)と共に、反応性乳化剤として下記一般式〔I〕、
R−(BO)−(EO)−H ・・・一般式〔I〕
〔式中、Rは分子鎖末端に結合した不飽和アルケニル基、BOはオキシブチレン基、EOはオキシエチレン基であり、mは2〜10の間の数値、nは10〜60の間の数値を表す。〕
で示されるポリオキシアルキレンアルケニルエーテル(Y)を含有するエチレン性不飽和単量体混合物を水中で乳化重合する繊維素繊維加工用水性樹脂分散体の製造方法であり、且つ、前記エチレン性不飽和単量体混合物が下記(1)〜(4)の条件を満たすものであることを特徴とする繊維素繊維加工用水性樹脂分散体の製造方法を提供することである。

条件(1);前記単量体(X)の前記エチレン性不飽和単量体混合物における含有率が90重量%以上であること。
条件(2);前記一般式〔I〕で示されるポリオキシアルキレンアルケニルエーテル(Y)の前記エチレン性不飽和単量体混合物における含有率が1〜10重量%であること。
条件(3);20℃における水への溶解度が10g/100ml以上のエチレン性不飽和単量体(x−4)のエチレン性不飽和単量体混合物における含有率が0.5重量%以下であること(但し、一般式〔I〕で示されるポリオキシアルキレンアルケニルエーテル(Y)を除く。)。
条件(4);乳化重合して得られる樹脂の示差走査熱量計(DSC)によるガラス転移温度(Tg)が−40〜0℃であること。
That is, the present invention relates to ethyl (meth) acrylate and butyl (meth) acrylate which are (meth) acrylate (x-2) having an alkyl group having 2 to 8 carbon atoms, and methyl methacrylate (x-1) or ( Together with the monomer (X) containing (meth) acrylonitrile (x-3) , the following general formula [I] as a reactive emulsifier:
R- (BO) m- (EO) n- H ... General formula [I]
[In the formula, R is an unsaturated alkenyl group bonded to the molecular chain end, BO is an oxybutylene group, EO is an oxyethylene group, m is a value between 2 and 10, and n is a value between 10 and 60. Represents. ]
Is a method for producing an aqueous resin dispersion for processing fiber fibers, in which an ethylenically unsaturated monomer mixture containing a polyoxyalkylene alkenyl ether (Y) represented by formula (E) is emulsion-polymerized in water. It is an object of the present invention to provide a method for producing an aqueous resin dispersion for processing fibrous fibers, wherein the monomer mixture satisfies the following conditions (1) to (4).

Condition (1): The content of the monomer (X) in the ethylenically unsaturated monomer mixture is 90% by weight or more.
Condition (2): The content of the polyoxyalkylene alkenyl ether (Y) represented by the general formula [I] in the ethylenically unsaturated monomer mixture is 1 to 10% by weight.
Condition (3): The content in the ethylenically unsaturated monomer mixture of the ethylenically unsaturated monomer (x-4) having a solubility in water at 20 ° C. of 10 g / 100 ml or more is 0.5% by weight or less. (Excluding the polyoxyalkylene alkenyl ether (Y) represented by the general formula [I]).
Condition (4): The glass transition temperature (Tg) of a resin obtained by emulsion polymerization as measured by a differential scanning calorimeter (DSC) is −40 to 0 ° C.

本発明の繊維素繊維加工用水性樹脂分散体の製造方法は、従来の製造方法では必須に用いられていたカルボキシル基及びスルホン酸基含有エチレン性不飽和単量体等の強い親水性を有する単量体を用いずに、重合時の安定性、加工時の安定性、耐水性、及び風合いなどの優れた特性を発揮する繊維素繊維水性樹脂分散体を与えることができ、該繊維素繊維水性樹脂分散体を基材に用いた場合、加工基材として、特に耐水性が要求される繊維素繊維の加工分野、例えば壁紙、ふすま紙及び羽毛布団等の目止め防止、あるいは衣料の防水加工など、多岐にわたり極めて有用である。   The method for producing an aqueous resin dispersion for processing fibrous fibers according to the present invention has a strong hydrophilicity such as a carboxyl group- and sulfonic acid group-containing ethylenically unsaturated monomer, which has been essentially used in conventional production methods. Without using a polymer, it is possible to provide a fibrous fiber aqueous resin dispersion that exhibits excellent properties such as polymerization stability, processing stability, water resistance, and texture. When the resin dispersion is used as the base material, the processing base of the fiber base fiber particularly required for water resistance, for example, prevention of sealing of wallpaper, bran paper and duvet, or waterproofing of clothing, etc. It is extremely useful for a wide variety of purposes.

以下に、本発明についてより詳しく説明する。
本発明の繊維素繊維加工用水性樹脂分散体の製造方法においては、エチレン性不飽和単量体混合物を水中で乳化重合する。
Hereinafter, the present invention will be described in more detail.
In the method for producing an aqueous resin dispersion for processing fibrous fibers of the present invention, an ethylenically unsaturated monomer mixture is emulsion-polymerized in water.

前記エチレン性不飽和単量体混合物とは、メチルメタクリレート(x−1)、炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)、及び(メタ)アクリロニトリル(x−3)からなる群から選ばれる、少なくとも1種の単量体(X)と、反応性乳化剤として前記一般式〔I〕で示されるポリオキシアルキレンアルケニルエーテル(Y)とを少なくとも含有し、更に、必要に応じて、その他の成分として、20℃における水への溶解度が10g/100ml未満のエチレン性不飽和単量体(x−5)を含有してなる。   The ethylenically unsaturated monomer mixture is methyl methacrylate (x-1), (meth) acrylate (x-2) having an alkyl group having 2 to 8 carbon atoms, and (meth) acrylonitrile (x-3). At least one monomer (X) selected from the group consisting of) and a polyoxyalkylene alkenyl ether (Y) represented by the above general formula [I] as a reactive emulsifier, and further necessary Accordingly, as other components, an ethylenically unsaturated monomer (x-5) having a solubility in water at 20 ° C. of less than 10 g / 100 ml is contained.

<エチレン性不飽和単量体混合物の条件(1)>
前記エチレン性不飽和単量体混合物は、必須の単量体(X)として、メチルメタクリレート(x−1)、炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)、及び(メタ)アクリロニトリル(x−3)からなる群から選ばれる、少なくとも1種の単量体を90重量%以上、より好ましくは93〜97重量%の範囲で含有してなる。
<Conditions for ethylenically unsaturated monomer mixture (1)>
The ethylenically unsaturated monomer mixture includes, as the essential monomer (X), methyl methacrylate (x-1), (meth) acrylate (x-2) having an alkyl group having 2 to 8 carbon atoms, And at least one monomer selected from the group consisting of (meth) acrylonitrile (x-3) is contained in an amount of 90% by weight or more, more preferably 93 to 97% by weight.

前記単量体(X)の前記エチレン性不飽和単量体混合物における含有率が、90重量%未満では、前記単量体(X)と前記ポリオキシアルキレンアルケニルエーテル(Y)とを含有するエチレン性不飽和単量体混合物として、水中で乳化重合した際に、優れた重合時の安定性、及び加工時の安定性などの特性を得ることができない。   When the content of the monomer (X) in the ethylenically unsaturated monomer mixture is less than 90% by weight, ethylene containing the monomer (X) and the polyoxyalkylene alkenyl ether (Y) When a water-soluble unsaturated monomer mixture is emulsion-polymerized in water, characteristics such as excellent stability during polymerization and stability during processing cannot be obtained.

本願発明の製造方法では、従来の水性樹脂分散体の製造方法で必須に用いられるカルボキシル基又はスルホン酸基含有エチレン性不飽和単量体等の強い親水性を有する単量体を用いずに、前記単量体(X)と前記ポリオキシアルキレンアルケニルエーテル(Y)とを含有するエチレン性不飽和単量体混合物を、水中で乳化重合することにより、従来の技術では達成できなかったレベルの優れた重合時の安定性、加工時の安定性、耐水性、及び風合いなどの特性を得ることができる。   In the production method of the present invention, without using a monomer having a strong hydrophilic property such as a carboxyl group or a sulfonic acid group-containing ethylenically unsaturated monomer, which is essential in the conventional production method of an aqueous resin dispersion, By emulsifying and polymerizing an ethylenically unsaturated monomer mixture containing the monomer (X) and the polyoxyalkylene alkenyl ether (Y) in water, an excellent level that cannot be achieved by conventional techniques It is possible to obtain characteristics such as stability during polymerization, stability during processing, water resistance, and texture.

前記エチレン性不飽和単量体混合物において、単量体(X)として、メチルメタクリレート(x−1)を含有してもよく、これにより、重合時の安定性に優れると共に、共重合性に優れエチレン性不飽和単量体の未反応物を減少でき、得られる水性樹脂分散体は加工時の安定性に優れるものとなる。また、乳化重合して得られる樹脂の適切なガラス転移温度(Tg)の範囲への調整が容易にできる。   In the ethylenically unsaturated monomer mixture, methyl methacrylate (x-1) may be contained as the monomer (X), thereby providing excellent stability during polymerization and excellent copolymerizability. Unreacted ethylenically unsaturated monomers can be reduced, and the resulting aqueous resin dispersion is excellent in stability during processing. Moreover, adjustment to the range of the appropriate glass transition temperature (Tg) of resin obtained by emulsion polymerization can be performed easily.

前記エチレン性不飽和単量体混合物において、単量体(X)として、前記炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)を含有してもよく、例えば、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート等が挙げられ、その中でもブチル(メタ)アクリレートが、共重合性に優れエチレン性不飽和単量体の未反応物を減少でき、得られる水性樹脂分散体は加工時の安定性に優れ、それを加工してなる水性樹脂分散体含浸繊維素繊維の風合いに優れる点で好ましい。
前記炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)は、単独使用でもよく2種以上を併用してもよい。
In the ethylenically unsaturated monomer mixture, the monomer (X) may contain the (meth) acrylate (x-2) having an alkyl group having 2 to 8 carbon atoms, for example, ethyl (Meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (Meth) acrylate, etc., among which butyl (meth) acrylate is excellent in copolymerizability and can reduce unreacted ethylenically unsaturated monomers, and the resulting aqueous resin dispersion is stable during processing. It is preferred because it is excellent in the texture of the water-based resin dispersion-impregnated fiber base fiber obtained by processing it. There.
The (meth) acrylate (x-2) having an alkyl group having 2 to 8 carbon atoms may be used alone or in combination of two or more.

前記炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)のアルキル基は、直鎖構造でも分岐構造でも環状構造であっても構わない。   The alkyl group of the (meth) acrylate (x-2) having an alkyl group having 2 to 8 carbon atoms may have a linear structure, a branched structure, or a cyclic structure.

前記炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)を用いることにより、これにより、重合時の安定性に優れると共に、共重合性に優れエチレン性不飽和単量体の未反応物を減少でき、得られる水性樹脂分散体は加工時の安定性に優れるものとなる。また、乳化重合して得られる樹脂の適切なガラス転移温度(Tg)の範囲への調整が容易にできる。   By using the (meth) acrylate (x-2) having an alkyl group having 2 to 8 carbon atoms, it is excellent in stability during polymerization and excellent in copolymerizability, and is an ethylenically unsaturated monomer. The unreacted product can be reduced, and the resulting aqueous resin dispersion has excellent stability during processing. Moreover, adjustment to the range of the appropriate glass transition temperature (Tg) of resin obtained by emulsion polymerization can be performed easily.

前記エチレン性不飽和単量体混合物において、単量体(X)として、(メタ)アクリロニトリル(x−3)を含有してもよく、これにより、重合時の安定性に優れると共に、共重合性に優れエチレン性不飽和単量体の未反応物を減少でき、得られる水性樹脂分散体は加工時の安定性に優れるものとなる。また、乳化重合して得られる樹脂の適切なガラス転移温度(Tg)の範囲への調整が容易にできる。   In the ethylenically unsaturated monomer mixture, (meth) acrylonitrile (x-3) may be contained as the monomer (X), thereby providing excellent stability during polymerization and copolymerization. The amount of unreacted ethylenically unsaturated monomer can be reduced, and the resulting aqueous resin dispersion has excellent stability during processing. Moreover, adjustment to the range of the appropriate glass transition temperature (Tg) of resin obtained by emulsion polymerization can be performed easily.

前記単量体(X)は、好ましくは炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)と、メチルメタクリレート(x−1)及び/又は(メタ)アクリロニトリル(x−3)を含有する混合物であるが、より好ましくはブチル(メタ)アクリレートと、メチルメタクリレート(x−1)及び/又は(メタ)アクリロニトリル(x−3)を含有する混合物である。
炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)として、ブチル(メタ)アクリレートを用いることにより、得られる水性樹脂分散体は加工時の安定性に優れ、それを加工してなる水性樹脂分散体含浸繊維素繊維は風合いに優れる。
The monomer (X) is preferably a (meth) acrylate (x-2) having an alkyl group having 2 to 8 carbon atoms, methyl methacrylate (x-1) and / or (meth) acrylonitrile (x- Although it is a mixture containing 3), More preferably, it is a mixture containing butyl (meth) acrylate and methylmethacrylate (x-1) and / or (meth) acrylonitrile (x-3).
By using butyl (meth) acrylate as (meth) acrylate (x-2) having an alkyl group having 2 to 8 carbon atoms, the resulting aqueous resin dispersion has excellent stability during processing, and it is processed The water-based resin dispersion-impregnated fibrous base fiber is excellent in texture.

<エチレン性不飽和単量体混合物の条件(2)>
前記エチレン性不飽和単量体混合物は、前記単量体(X)と共に、反応性乳化剤として下記一般式〔I〕で示されるポリオキシアルキレンアルケニルエーテル(Y)を含有してなる。
R−(BO)−(EO)−H ・・・一般式〔I〕
<Conditions for ethylenically unsaturated monomer mixture (2)>
The ethylenically unsaturated monomer mixture contains, together with the monomer (X), a polyoxyalkylene alkenyl ether (Y) represented by the following general formula [I] as a reactive emulsifier.
R- (BO) m- (EO) n- H ... General formula [I]

式中のRは分子鎖末端に結合した不飽和アルケニル基、BOはオキシブチレン基、EOはオキシエチレン基であり、mは2〜10の間の数値であり、より好ましくは4〜8の間の数値であり、また、nは10〜60の間の数値であり、より好ましくは20〜50の間の数値である。   In the formula, R is an unsaturated alkenyl group bonded to the molecular chain end, BO is an oxybutylene group, EO is an oxyethylene group, m is a value between 2 and 10, more preferably between 4 and 8. Moreover, n is a numerical value between 10-60, More preferably, it is a numerical value between 20-50.

前記一般式〔I〕で示されるポリオキシアルキレンアルケニルエーテル(Y)のm及びnの数値が、上記範囲外であるならば、良好な状態のミセルを形成できず、重合時の安定性が不良となり、重合時にフロック(凝集物)が発生し、且つ、優れた加工時の安定性及び耐水性を有する水性樹脂分散体を得ることができない。   If the values of m and n of the polyoxyalkylene alkenyl ether (Y) represented by the general formula [I] are outside the above range, good micelles cannot be formed, and the stability during polymerization is poor. Thus, flocs (aggregates) are generated during polymerization, and an aqueous resin dispersion having excellent processing stability and water resistance cannot be obtained.

前記ポリオキシアルキレンアルケニルエーテル(Y)の前記エチレン性不飽和単量体混合物における含有率は、1〜10重量%の範囲であり、より好ましくは3〜7重量%の範囲である。   The content of the polyoxyalkylene alkenyl ether (Y) in the ethylenically unsaturated monomer mixture is in the range of 1 to 10% by weight, more preferably in the range of 3 to 7% by weight.

前記ポリオキシアルキレンアルケニルエーテル(Y)の前記エチレン性不飽和単量体混合物における含有率が、1重量%未満である場合は、重合時の安定性及び加工時の安定性に劣り、10重量%を超える場合は、使用量に比べ、重合時の安定性及び加工時の安定性の向上効果が得られず、逆に前記ポリオキシアルキレンアルケニルエーテル(Y)を使用すると樹脂中の親水成分が過剰となり耐水性が低下するという弊害が生じてしまう。   When the content of the polyoxyalkylene alkenyl ether (Y) in the ethylenically unsaturated monomer mixture is less than 1% by weight, the stability during polymerization and the stability during processing are inferior, and 10% by weight. In the case of exceeding the use amount, the effect of improving the stability at the time of polymerization and the stability at the time of processing cannot be obtained. Conversely, when the polyoxyalkylene alkenyl ether (Y) is used, the hydrophilic component in the resin is excessive. As a result, there is a negative effect that the water resistance is lowered.

本発明で用いるポリオキシアルキレンアルケニルエーテル(Y)は、ポリオキシブチレン−ポリオキシエチレンのブロック共重合体の分子鎖の片末端に不飽和アルケニル基が結合したもの(即ち「片末端不飽和アルケニル体」)であり、通常のポリオキシエチレンのみのノニオン界面活性剤に比べて、水への溶解度が低く、且つ、反応性に富むため、未反応のままフリーの形で残存する界面活性剤の量を低減できると共に、予想外に優れた耐水性などの効果を得ることができる。   The polyoxyalkylene alkenyl ether (Y) used in the present invention is one in which an unsaturated alkenyl group is bonded to one end of a molecular chain of a polyoxybutylene-polyoxyethylene block copolymer (ie, “one-end unsaturated alkenyl body”). The amount of the surfactant that remains unreacted in a free form because of its low solubility in water and high reactivity compared to a conventional nonionic surfactant containing only polyoxyethylene. As well as unexpectedly superior effects such as water resistance can be obtained.

本発明の目的を阻害しない範囲であれば、樹脂の乳化重合の際に、前記ポリオキシアルキレンアルケニルエーテル(Y)以外の公知の反応性乳化剤、あるいはアニオン界面活性剤、ノニオン界面活性剤、又はカチオン界面活性剤などの公知の界面活性剤を併用してもよい。   As long as the object of the present invention is not impaired, a known reactive emulsifier other than the polyoxyalkylene alkenyl ether (Y), an anionic surfactant, a nonionic surfactant, or a cation may be used in the emulsion polymerization of the resin. You may use well-known surfactants, such as surfactant.

前記アニオン界面活性剤、ノニオン界面活性剤又はカチオン界面活性剤などの界面活性剤の種類としては、特に制限はなく、目的に応じて公知のものの中から適宜選択することができる。   There is no restriction | limiting in particular as kind of surfactant, such as the said anionic surfactant, nonionic surfactant, or cationic surfactant, According to the objective, it can select suitably from well-known things.

かかる界面活性剤の併用は、耐水性を低下させるおそれがあるので、その併用は避ける方が望ましいが、併用する場合はその使用量は極力減らすべきであり、好ましくは1重量%以下、より好ましくは0.5重量%以下である。   Since the combined use of such a surfactant may reduce water resistance, it is desirable to avoid the combined use. However, when used in combination, the amount of use should be reduced as much as possible, preferably 1% by weight or less, more preferably Is 0.5% by weight or less.

<エチレン性不飽和単量体混合物の条件(3)>
前記エチレン性不飽和単量体混合物は、メチルメタクリレート(x−1)、炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)、及び(メタ)アクリロニトリル(x−3)からなる群から選ばれる、少なくとも1種の単量体(X)を90重量%以上、前記ポリオキシアルキレンアルケニルエーテル(Y)を1〜10重量%で含有し、且つ、20℃における水への溶解度が10g/100ml以上のエチレン性不飽和単量体(x−4)の含有率が1重量%以下であることを条件とし、より好ましくは0.5重量%以下、更に好ましくは使用しないことである(但し、一般式〔I〕で示されるポリオキシアルキレンアルケニルエーテル(Y)を除く。)。
<Condition of ethylenically unsaturated monomer mixture (3)>
The ethylenically unsaturated monomer mixture includes methyl methacrylate (x-1), (meth) acrylate (x-2) having an alkyl group having 2 to 8 carbon atoms, and (meth) acrylonitrile (x-3). 90% by weight or more of at least one monomer (X) selected from the group consisting of 1 to 10% by weight of the polyoxyalkylene alkenyl ether (Y), and into water at 20 ° C. On condition that the content of ethylenically unsaturated monomer (x-4) having a solubility of 10 g / 100 ml or more is 1% by weight or less, more preferably 0.5% by weight or less, and still more preferably not used. (However, the polyoxyalkylene alkenyl ether (Y) represented by the general formula [I] is excluded).

前記20℃における水への溶解度が10g/100ml以上のエチレン性不飽和単量体(x−4)の含有率が、1重量%を超えると、得られる樹脂の親水性が強まり、繊維素繊維加工用水性樹脂分散体が十分な耐水性を得ることができない。   When the content of the ethylenically unsaturated monomer (x-4) having a solubility in water at 20 ° C. of 10 g / 100 ml or more exceeds 1% by weight, the hydrophilicity of the resulting resin increases, and the fiber fiber The aqueous resin dispersion for processing cannot obtain sufficient water resistance.

前記20℃における水への溶解度が10g/100ml以上のエチレン性不飽和単量体(x−4)としては、例えば、(メタ)アクリル酸、2−ヒドロキシエチル(メタ)アクリレート、アクリルアミド等のエチレン性不飽和単量体などが挙げられる。   Examples of the ethylenically unsaturated monomer (x-4) having a solubility in water at 20 ° C. of 10 g / 100 ml or more include ethylene such as (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, and acrylamide. Unsaturated unsaturated monomers.

また、本発明では、メチルメタクリレート(x−1)、炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)、及び(メタ)アクリロニトリル(x−3)からなる群から選ばれる、少なくとも1種の単量体(X)と共に、更に、その他の成分として、20℃における水への溶解度が10g/100ml未満のエチレン性不飽和単量体(x−5)を含有してもよい。   Moreover, in this invention, it selects from the group which consists of methyl methacrylate (x-1), (meth) acrylate (x-2) which has a C2-C8 alkyl group, and (meth) acrylonitrile (x-3). In addition to at least one monomer (X), an ethylenically unsaturated monomer (x-5) having a solubility in water at 20 ° C. of less than 10 g / 100 ml is contained as another component. Also good.

前記その他の成分として使用可能な、20℃における水への溶解度が10g/100ml未満のエチレン性不飽和単量体(x−5)とは、例えば、スチレン、α−メチルスチレン、ジビニルスチレン等の芳香族環を有するエチレン性不飽和単量体;メチルアクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等の(メタ)アクリル酸エステル類;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、バーサチック酸ビニル等のビニルエステル類;エチレン、ブタジエン、イソプレン等の脂肪族共役ジエン単量体;エチレン性不飽和ニトリル、等が挙げられ、これら化合物は単独使用でもよく2種以上を併用してもよい。   Examples of the ethylenically unsaturated monomer (x-5) having a solubility in water at 20 ° C. of less than 10 g / 100 ml that can be used as the other components include styrene, α-methylstyrene, and divinylstyrene. Ethylenically unsaturated monomers having an aromatic ring; (meth) acrylic esters such as methyl acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate; vinyl acetate, vinyl propionate, vinyl butyrate, vinyl versatate Vinyl esters such as ethylene; aliphatic conjugated diene monomers such as ethylene, butadiene and isoprene; ethylenically unsaturated nitriles and the like. These compounds may be used alone or in combination of two or more.

但し、前記エチレン性不飽和単量体(x−5)の中でも、メチルアクリレートは、特に加水分解しやすく、加水分解すると20℃における水への溶解度が10g/100ml以上のアクリル酸とメタノールになり、水性樹脂分散体中にアクリル酸を残留させ種々の悪影響を与えるため、使用しないことが好ましいが、併用する場合であってもその使用量は最小限に留めるべきであり、その使用量は1重量%以下とする。   However, among the ethylenically unsaturated monomers (x-5), methyl acrylate is particularly easily hydrolyzed, and when hydrolyzed, it becomes acrylic acid and methanol having a solubility in water at 20 ° C. of 10 g / 100 ml or more. However, it is preferable not to use it because acrylic acid remains in the aqueous resin dispersion and causes various adverse effects. However, even when used in combination, the amount of use should be kept to a minimum. Less than wt%.

<エチレン性不飽和単量体混合物の条件(4)>
本発明で、水中で乳化重合して得られる繊維素繊維加工用水性樹脂分散体の樹脂の示差走査熱量計(DSC)によるガラス転移温度(Tg)は、−40〜0℃の範囲であり、より好ましくは−30〜−10℃の範囲である。
<Condition of ethylenically unsaturated monomer mixture (4)>
In the present invention, the glass transition temperature (Tg) by differential scanning calorimetry (DSC) of the resin of the aqueous resin dispersion for processing fiber fibers obtained by emulsion polymerization in water is in the range of -40 to 0 ° C. More preferably, it is the range of -30 to -10 degreeC.

前記樹脂のガラス転移温度(Tg)が、−40℃未満の場合には、水性樹脂分散体が粘着性を呈し、繊維素繊維への加工に際しブロッキングや加工時の安定性不良等の問題を生じる。また、0℃を超える場合には、水性樹脂分散体の皮膜造膜性が劣るばかりでなく、加工した加工基材の風合いが悪化する。   When the glass transition temperature (Tg) of the resin is less than −40 ° C., the aqueous resin dispersion exhibits tackiness, and causes problems such as blocking and poor stability during processing when processed into a fibrous fiber. . Moreover, when exceeding 0 degreeC, the film forming property of an aqueous resin dispersion is not only inferior, but the texture of the processed processed substrate deteriorates.

前記樹脂のガラス転移温度(Tg)は、付加重合可能な任意のエチレン性不飽和単量体を組み合わせることで、目的に応じて調整できる。   The glass transition temperature (Tg) of the resin can be adjusted according to the purpose by combining arbitrary ethylenically unsaturated monomers capable of addition polymerization.

尚、樹脂の実際のガラス転移温度を測定する方法は、様々な方法が知られているが、本発明では示差走査熱量計(DSC)での測定方法を採用し、その内容は後述する。   Various methods are known for measuring the actual glass transition temperature of the resin. In the present invention, a measuring method using a differential scanning calorimeter (DSC) is adopted, and the contents thereof will be described later.

前記樹脂の製造時に使用する重合開始剤としては、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩類;過酸化ベンゾイル、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド等の有機過酸化物類;過酸化水素等の過酸化物、などが挙げられ、特に制限しない。   Examples of the polymerization initiator used in the production of the resin include persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate; organic peroxides such as benzoyl peroxide, cumene hydroperoxide, and t-butyl hydroperoxide. Oxides; peroxides such as hydrogen peroxide, etc. are mentioned, and there is no particular limitation.

これら過酸化物のみを用いてラジカル重合するか、或いは前記過酸化物と、例えば、アスコルビン酸、エリソルビン酸、エリソルビン酸ナトリウム、ホルムアルデヒドスルホキシラートの金属塩、チオ硫酸ナトリウム、重亜硫酸ナトリウムのような還元剤とを併用したレドックス重合開始剤系によっても重合でき、また、例えば、4,4’−アゾビス(4−シアノ吉草酸)、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩等のアゾ系開始剤を使用することも可能であり、これら化合物は、単独使用でもよく2種以上を併用してもよい。   Radical polymerization using only these peroxides, or such peroxides, for example, ascorbic acid, erythorbic acid, sodium erythorbate, metal salts of formaldehyde sulfoxylate, sodium thiosulfate, sodium bisulfite, etc. Polymerization can also be achieved by a redox polymerization initiator system used in combination with a reducing agent. For example, 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2-amidinopropane) dihydrochloride, etc. These azo initiators can also be used, and these compounds may be used alone or in combination of two or more.

重合方法としては、例えば、使用する全てのエチレン性不飽和単量体を一括で仕込み重合する回分重合法、あるいは、エチレン性不飽和単量体の一部を重合反応中に連続で添加する半回分重合法などが挙げられ、何れの方法で行ってもよく、特に制限はない。   Examples of the polymerization method include a batch polymerization method in which all the ethylenically unsaturated monomers to be used are charged in a batch and polymerized, or a part of the ethylenically unsaturated monomer is added continuously during the polymerization reaction. There are batch polymerization methods, and any method may be used without any particular limitation.

重合反応中、同一温度に保つ必要はなく、重合反応の進行に伴い適宜温度調整を行いながら、加熱又は除熱をしながら重合を行ってもよく、特に限定しない。   It is not necessary to maintain the same temperature during the polymerization reaction, and the polymerization may be performed while heating or removing heat while appropriately adjusting the temperature as the polymerization reaction proceeds, and is not particularly limited.

重合温度は使用するエチレン性不飽和単量体や重合開始剤の種類などにより異なるため、特に限定しないが、単一開始剤の場合には通常30〜100℃の範囲であり、レドックス系重合開始剤の場合には通常20〜80℃の範囲であり、逐次添加する場合には通常30〜95℃の範囲である。また、反応釜が高圧密閉系であれば、安全上問題のない範囲で100℃を超えても構わない。   The polymerization temperature varies depending on the type of ethylenically unsaturated monomer and polymerization initiator used, and is not particularly limited. However, in the case of a single initiator, it is usually in the range of 30 to 100 ° C., and redox polymerization is initiated. In the case of an agent, it is usually in the range of 20 to 80 ° C, and in the case of sequential addition, it is usually in the range of 30 to 95 ° C. Moreover, if the reaction kettle is a high-pressure closed system, it may exceed 100 ° C. within a range where there is no safety problem.

重合時間も特に限定しないが、通常1〜40時間であり、また、連続重合反応装置による連続反応も可能である。   The polymerization time is not particularly limited, but is usually 1 to 40 hours, and a continuous reaction by a continuous polymerization reaction apparatus is also possible.

重合反応器内の雰囲気は特に限定しないが、重合反応を速やかに行わせるためには窒素ガス等の不活性ガスで反応開始前から置換しておくことが好ましい。   The atmosphere in the polymerization reactor is not particularly limited, but it is preferably replaced with an inert gas such as nitrogen gas before the start of the reaction in order to carry out the polymerization reaction quickly.

連鎖移動剤としては、例えば、ラウリルメルカプタン、オクチルメルカプタン、ドデシルメルカプタン、2−メルカプトエタノール、チオグリコール酸オクチル、3−メルカプトプロピオン酸、チオグリセリン等のメルカプタン類、α−メチルスチレン・ダイマー等が挙げられ、その使用量により分子量が調整できる。これら化合物は、単独使用でもよく2種以上を併用してもよい。   Examples of the chain transfer agent include mercaptans such as lauryl mercaptan, octyl mercaptan, dodecyl mercaptan, 2-mercaptoethanol, octyl thioglycolate, 3-mercaptopropionic acid, thioglycerin, α-methylstyrene dimer, and the like. The molecular weight can be adjusted by the amount used. These compounds may be used alone or in combination of two or more.

中和剤として用いる塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属化合物;水酸化カルシウム、炭酸カルシウム等のアルカリ土類金属化合物;アンモニア;モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノプロピルアミン、ジメチルプロピルアミン、モノエタノールアミン、ジエタノールアミン、ジメチルエタノールアミン、トリエタノールアミン、エチレンジアミン、ジエチレントリアミン等の水溶性の有機アミン類等が挙げられ、これらは単独使用でもよく2種以上を使用することができる。これらの中でも得られる被膜の耐水性をより向上させるためには、常温或いは加熱により飛散する塩基性物質が好ましく、アンモニアを使用することが特に好ましい。   Examples of the basic substance used as a neutralizing agent include alkali metal compounds such as sodium hydroxide and potassium hydroxide; alkaline earth metal compounds such as calcium hydroxide and calcium carbonate; ammonia; monomethylamine, dimethylamine, trimethylamine, Examples include water-soluble organic amines such as monoethylamine, diethylamine, triethylamine, monopropylamine, dimethylpropylamine, monoethanolamine, diethanolamine, dimethylethanolamine, triethanolamine, ethylenediamine, and diethylenetriamine. Often two or more can be used. Among these, in order to further improve the water resistance of the resulting film, a basic substance that scatters at room temperature or by heating is preferable, and it is particularly preferable to use ammonia.

前記樹脂の重合では、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシラン等のビニル基含有シランカップリング剤;アクリル酸グリシジル、メタクリル酸グリシジル等のエチレン性不飽和カルボン酸のグリシジルエステル等の架橋剤を使用することで更なる耐水性の向上を図ることができる。   In the polymerization of the resin, for example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyl. By using a crosslinking agent such as glycidyl ester of ethylenically unsaturated carboxylic acid such as glycidyl acrylate and glycidyl methacrylate, vinyl group-containing silane coupling agent such as methyldiethoxysilane and γ-methacryloxypropyltriethoxylane Further improvement in water resistance can be achieved.

また、本発明の繊維素繊維加工用水性樹脂分散体には、必要に応じて本発明の所望の効果を阻害しない範囲で、充填剤、顔料、pH調整剤、被膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤等の公知の添加剤を適宜添加して使用することができる。   In addition, the aqueous fiber dispersion for processing a fibrous fiber of the present invention includes a filler, a pigment, a pH adjuster, a film forming aid, a leveling agent, as long as the desired effects of the present invention are not impaired as necessary. Known additives such as thickeners, water repellents, and antifoaming agents can be appropriately added and used.

以下、本発明を実施例及び比較例により、一層具体的に説明するが、本発明はそれら実施例のみに限定されるものではない。
また、文中「部」及び「%」は特に断りのない限り重量基準であるものとする。
尚、諸物性は以下に記した方法により評価した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention more concretely, this invention is not limited only to these Examples.
In the text, “part” and “%” are based on weight unless otherwise specified.
Various physical properties were evaluated by the methods described below.

〔水性樹脂分散体の重合時の安定性の評価方法〕
水性樹脂分散体の重合時の安定性は、重合後の水性樹脂分散体を200メッシュ濾布で濾過し、濾取したフロック(凝集物)を140℃で10分間乾燥させ、乾燥後の残渣の重量を測定し、水性樹脂分散体のWET重量に対する割合(%)を計算し、計算結果を以下の基準に従い評価し、その評価結果(評価レベル5〜1)を表2に示した。評価レベルが大きい程、重合時の安定性に優れることを意味する。
重合時の安定性の判定基準
評価レベル5→割合が0.01%未満。
評価レベル4→割合が0.01%以上、0.02%未満。
評価レベル3→割合が0.02%以上、0.03%未満。
評価レベル2→割合が0.03%以上、0.04%未満。
評価レベル1→割合が0.04%以上。
[Method for evaluating stability during polymerization of aqueous resin dispersion]
The stability of the aqueous resin dispersion during polymerization is determined by filtering the aqueous resin dispersion after polymerization with a 200 mesh filter cloth, drying the collected floc (aggregate) at 140 ° C. for 10 minutes, and removing the residue after drying. The weight was measured, the ratio (%) to the WET weight of the aqueous resin dispersion was calculated, the calculation results were evaluated according to the following criteria, and the evaluation results (evaluation levels 5 to 1) are shown in Table 2. The larger the evaluation level, the better the stability during polymerization.
Criteria for determining stability during polymerization Evaluation level 5 → Ratio is less than 0.01%.
Evaluation level 4 → The ratio is 0.01% or more and less than 0.02%.
Evaluation level 3 → ratio is 0.02% or more and less than 0.03%.
Evaluation level 2 → The ratio is 0.03% or more and less than 0.04%.
Evaluation level 1 → The ratio is 0.04% or more.

〔水性樹脂分散体の加工時の安定性の評価方法〕
水性樹脂分散体の加工時の安定性は、以下に記載するマーロン機械的安定性試験で評価を行った。得られた繊維素繊維加工用水性樹脂分散体に水を加え、固形分濃度を20%に調整したもの50gを、荷重10kgで2000回転にて10分間のシェアをかけた後、200メッシュ濾布で濾過した後の残渣量を測定し、水性樹脂分散体のSolid重量に対しての残渣量の割合(%)を測定し、測定結果を以下の基準に従い評価し、その評価結果(評価レベル5〜1)を表2に示した。評価レベルが大きい程、加工時の安定性に優れることを意味する。
加工時の安定性の判定基準
評価レベル5→濾過後の残渣量が0.05%未満。
評価レベル4→濾過後の残渣量が0.05%以上、0.15%未満。
評価レベル3→濾過後の残渣量が0.15%以上、0.25%未満。
評価レベル2→濾過後の残渣量が0.25%以上、0.35%未満。
評価レベル1→濾過後の残渣量が0.35%以上。
[Method for evaluating stability during processing of aqueous resin dispersion]
The stability of the aqueous resin dispersion during processing was evaluated by the Marlon mechanical stability test described below. Water was added to the obtained aqueous fiber dispersion for processing fiber fibers, and 50 g of a solid content concentration adjusted to 20% was applied for 10 minutes at a load of 10 kg at 2000 rpm, and then a 200 mesh filter cloth. The amount of the residue after filtration with the aqueous resin dispersion was measured, the ratio (%) of the amount of the residue to the solid weight of the aqueous resin dispersion was measured, and the measurement result was evaluated according to the following criteria. The evaluation result (evaluation level 5) ˜1) is shown in Table 2. The larger the evaluation level, the better the stability during processing.
Judgment criteria for stability during processing Evaluation level 5 → The amount of residue after filtration is less than 0.05%.
Evaluation level 4 → The amount of residue after filtration is 0.05% or more and less than 0.15%.
Evaluation level 3 → residue amount after filtration is 0.15% or more and less than 0.25%.
Evaluation level 2 → residue amount after filtration is 0.25% or more and less than 0.35%.
Evaluation level 1 → residue amount after filtration is 0.35% or more.

〔耐水性の評価方法〕
水性樹脂分散体を常温乾燥により膜厚0.6mmのフィルム状とし、更に140℃で5分間乾燥キュアを行い、耐水性評価用のアクリル樹脂フィルムを作成した。アクリル樹脂フィルムを24時間水に浸漬させた後、樹脂フィルムの面積膨潤率を測定し、測定結果を以下の基準に従い評価し、その評価結果(評価レベル5〜1)を表2に示した。評価レベルが大きい程、耐水性に優れることを意味する。
耐水性の判定基準
評価レベル5→面積膨潤率が10%未満。
評価レベル4→面積膨潤率が10%以上、17.5%未満。
評価レベル3→面積膨潤率が17.5%以上、25%未満。
評価レベル2→面積膨潤率が25%以上、32.5%未満。
評価レベル1→面積膨潤率が32.5%以上。
[Water resistance evaluation method]
The aqueous resin dispersion was dried at room temperature to form a film with a thickness of 0.6 mm, and further dried at 140 ° C. for 5 minutes to prepare an acrylic resin film for water resistance evaluation. After the acrylic resin film was immersed in water for 24 hours, the area swelling rate of the resin film was measured, and the measurement results were evaluated according to the following criteria. The evaluation results (evaluation levels 5 to 1) are shown in Table 2. It means that it is excellent in water resistance, so that an evaluation level is large.
Criteria for water resistance Evaluation level 5 → area swelling rate is less than 10%.
Evaluation level 4 → Area swelling ratio is 10% or more and less than 17.5%.
Evaluation level 3 → area swelling ratio is 17.5% or more and less than 25%.
Evaluation level 2 → area swelling ratio is 25% or more and less than 32.5%.
Evaluation level 1 → area swelling ratio is 32.5% or more.

〔風合いの評価方法〕
得られた繊維素繊維加工用水性樹脂分散体に水を加え、固形分濃度を20%に調整した含浸液に、パルプ繊維不織布(約140g/mのもの。)を浸績し、加工基材に対する樹脂付着量が8〜9%になるようにマングルロールで絞り、熱風循環乾燥機にて140℃で10分間乾燥キュアを行い、加工基材を作成した。加工基材の風合いを触感により、以下の基準に従い評価し、その評価レベル(○、△、×にて表記。)を表2に示した。
風合いの判定基準
評価レベル○→風合いがソフトであり肌触りに優れる。
評価レベル△→風合いが中間的であり肌触りが普通である。
評価レベル×→風合いがハードであり肌触りに劣る。
[Texture evaluation method]
A pulp fiber nonwoven fabric (about 140 g / m 2 ) is soaked in an impregnating solution in which water is added to the obtained aqueous fiber dispersion for processing fiber fibers and the solid content concentration is adjusted to 20%. A processed base material was prepared by squeezing with a mangle roll so that the amount of the resin adhered to the material was 8 to 9%, followed by drying curing at 140 ° C. for 10 minutes with a hot air circulating dryer. The texture of the processed substrate was evaluated according to the following criteria by tactile sensation, and the evaluation levels (indicated by ◯, Δ, ×) are shown in Table 2.
Judgment criteria of texture Evaluation level ○ → The texture is soft and the touch is excellent.
Evaluation level Δ → feel is intermediate and touch is normal.
Evaluation level x → The texture is hard and inferior to the touch.

〔実施例1〕
表1に示した如く、撹拌装置を備えた重合容器に窒素ガスを飽和させた後、水417部を仕込み、内温60℃に昇温した。別の容器に下記式〔II〕で示した反応性乳化剤(Y)を20部、単量体(X)としてエチルアクリレート(EA)208部とブチルアクリレート(BA)135.2部とアクリロニトリル(AN)36部、架橋剤としてγ−メタクリロキシプロピルトリメトキシシラン0.8部、及び水160部を仕込み、攪拌を行い乳化させ、乳化液を調整した。
CH=C(CH)−CO−(BO)6.4−(EO)20.4−H ・・式〔II〕
前記乳化液の3重量%を前記重合容器に仕込み、10%過硫酸ナトリウム水溶液1.6部を添加し、重合を開始させた。次いで、残りのモノマー混合物の乳化液と10%過硫酸ナトリウム水溶液14.4部を4時間かけて滴下し、重合を行った。滴下終了後、10%過硫酸アンモニウム水溶液2部を投入し、内温60℃にて2時間保持した。次いで、冷却を行い、アンモニア水でエマルジョンをpH7.0に調整し、本発明の繊維素繊維加工用水性樹脂分散体(1)を得た。評価結果を表1及び表2に示したが、本発明の繊維素繊維加工用水性樹脂分散体(1)の樹脂の示差走査熱量計(DSC、TAインスツルメント株式会社製)で測定したガラス転移温度(Tg)は−13℃であり、繊維素繊維加工用水性樹脂分散体の重合時の安定性、加工時の安定性、耐水性、及び風合いは何れも優れていた。
[Example 1]
As shown in Table 1, after saturating nitrogen gas in a polymerization vessel equipped with a stirrer, 417 parts of water was charged and the internal temperature was raised to 60 ° C. In a separate container, 20 parts of the reactive emulsifier (Y) represented by the following formula [II], 208 parts of ethyl acrylate (EA), 135.2 parts of butyl acrylate (BA) and acrylonitrile (AN) as the monomer (X) ) 36 parts, 0.8 part of γ-methacryloxypropyltrimethoxysilane as a cross-linking agent, and 160 parts of water were added and stirred to emulsify to prepare an emulsion.
CH 2 = C (CH 3) -C 2 H 4 O- (BO) 6.4 - (EO) 20.4 -H ·· formula [II]
3% by weight of the emulsion was charged into the polymerization vessel and 1.6 parts of a 10% aqueous sodium persulfate solution was added to initiate polymerization. Next, the remaining emulsion of the monomer mixture and 14.4 parts of a 10% aqueous sodium persulfate solution were added dropwise over 4 hours for polymerization. After completion of the dropwise addition, 2 parts of a 10% ammonium persulfate aqueous solution was added and maintained at an internal temperature of 60 ° C. for 2 hours. Next, cooling was performed, and the emulsion was adjusted to pH 7.0 with aqueous ammonia to obtain an aqueous resin dispersion (1) for processing fiber fibers according to the present invention. Although the evaluation result was shown in Table 1 and Table 2, the glass measured with the differential scanning calorimeter (DSC, product made from TA Instruments Co., Ltd.) of resin of the aqueous resin dispersion (1) for fiber-fiber processing of this invention. The transition temperature (Tg) was −13 ° C., and the stability during polymerization, the stability during processing, the water resistance, and the texture of the aqueous resin dispersion for processing fiber fibers were excellent.

〔実施例2〕
実施例1における単量体(X)として、アクリロニトリル(AN)の代わりにメチルメタクリレート(MMA)を用いた以外は、実施例1と同様に行い、本発明の繊維素繊維加工用水性樹脂分散体(2)を得た。評価結果を表1及び表2に示したが、本発明の繊維素繊維加工用水性樹脂分散体の樹脂のガラス転移温度(Tg)は−22℃であり、繊維素繊維加工用水性樹脂分散体の重合時の安定性、加工時の安定性、耐水性、及び風合いは何れも優れていた。
[Example 2]
As the monomer (X) in Example 1, the same procedure as in Example 1 was used except that methyl methacrylate (MMA) was used instead of acrylonitrile (AN). (2) was obtained. The evaluation results are shown in Tables 1 and 2, and the glass transition temperature (Tg) of the resin of the aqueous resin dispersion for processing fiber fibers of the present invention is −22 ° C., and the aqueous resin dispersion for processing fiber fibers. The stability during polymerization, stability during processing, water resistance, and texture were all excellent.

〔実施例3〕
実施例1における式〔II〕で示した反応性乳化剤の代わりに、下記式〔III〕で示した反応性乳化剤(Y)を用いた以外は、実施例1と同様に行い、本発明の繊維素繊維加工用水性樹脂分散体(3)を得た。評価結果を表1及び表2に示したが、本発明の繊維素繊維加工用水性樹脂分散体の樹脂のガラス転移温度(Tg)は−15℃であり、繊維素繊維加工用水性樹脂分散体の重合時の安定性、加工時の安定性、耐水性、及び風合いは何れも優れていた。
CH=C(CH)−CO−(BO)6.3−(EO)30.2−H ・・式〔III〕
Example 3
The fiber of the present invention was carried out in the same manner as in Example 1 except that the reactive emulsifier (Y) represented by the following formula [III] was used instead of the reactive emulsifier represented by the formula [II] in Example 1. An aqueous resin dispersion (3) for fiber processing was obtained. The evaluation results are shown in Tables 1 and 2, and the glass transition temperature (Tg) of the resin of the aqueous resin dispersion for processing fiber fibers of the present invention is −15 ° C., and the aqueous resin dispersion for processing fiber fibers. The stability during polymerization, stability during processing, water resistance, and texture were all excellent.
CH 2 = C (CH 3) -C 2 H 4 O- (BO) 6.3 - (EO) 30.2 -H ·· formula [III]

〔実施例4〕
実施例1における式〔II〕で示した反応性乳化剤の代わりに、下記式〔IV〕で示した反応性乳化剤(Y)を用いた以外は、実施例1と同様に行い、本発明の繊維素繊維加工用水性樹脂分散体(4)を得た。評価結果を表1及び表2に示したが、本発明の繊維素繊維加工用水性樹脂分散体の樹脂のガラス転移温度(Tg)は−14℃であり、繊維素繊維加工用水性樹脂分散体の重合時の安定性、加工時の安定性、耐水性、及び風合いは何れも優れていた。
CH=C(CH)−CO−(BO)6.2−(EO)49.3−H ・・式〔IV〕
Example 4
The fiber of the present invention was prepared in the same manner as in Example 1 except that the reactive emulsifier (Y) represented by the following formula [IV] was used instead of the reactive emulsifier represented by the formula [II] in Example 1. An aqueous resin dispersion (4) for fiber processing was obtained. The evaluation results are shown in Tables 1 and 2, and the glass transition temperature (Tg) of the resin of the aqueous resin dispersion for processing fiber fibers of the present invention is −14 ° C., and the aqueous resin dispersion for processing fiber fibers. The stability during polymerization, stability during processing, water resistance, and texture were all excellent.
CH 2 = C (CH 3) -C 2 H 4 O- (BO) 6.2 - (EO) 49.3 -H ·· formula [IV]

〔実施例5〕
実施例1におけるエチレン性不飽和単量体(X)をエチルアクリレート(EA)208部とブチルアクリレート(BA)128部とアクリロニトリル(AN)36部にし、且つ、反応性乳化剤(Y)として式〔II〕で示した反応性乳化剤20部の代わりに12部と、ポリオキシアルキレンデシルエーテル8部(ノイゲンXL−160、第一工業製薬株式会社製)を用いた以外は実施例1と同様に行い、本発明の繊維素繊維加工用水性樹脂分散体(5)を得た。評価結果を表1及び表2に示したが、本発明の繊維素繊維加工用水性樹脂分散体の樹脂のガラス転移温度(Tg)は−15℃であり、繊維素繊維加工用水性樹脂分散体の重合時の安定性、加工時の安定性、耐水性、及び風合いは何れも優れていた。
Example 5
The ethylenically unsaturated monomer (X) in Example 1 was changed to 208 parts of ethyl acrylate (EA), 128 parts of butyl acrylate (BA) and 36 parts of acrylonitrile (AN), and the formula [ II] In the same manner as in Example 1, except that 20 parts of the reactive emulsifier shown in FIG. 11 and 8 parts of polyoxyalkylene decyl ether (Neugen XL-160, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) were used. Then, an aqueous resin dispersion (5) for processing fiber fibers of the present invention was obtained. The evaluation results are shown in Tables 1 and 2, and the glass transition temperature (Tg) of the resin of the aqueous resin dispersion for processing fiber fibers of the present invention is −15 ° C., and the aqueous resin dispersion for processing fiber fibers. The stability during polymerization, stability during processing, water resistance, and texture were all excellent.

〔比較例1〕
反応性乳化剤(Y)を除くエチレン性不飽和単量体(X)の組成をエチルアクリレート(EA)208部とブチルアクリレート(BA)135.2部とメチルメタクリレート(MMA)26部、及びアクリル酸(AA)を10部用い、架橋剤としてγ−メタクリロキシプロピルトリメトキシシラン0.8部にした以外は、実施例1と同様に行い、繊維素繊維加工用水性樹脂分散体(6)を得た。評価結果を表1及び表2に示したが、繊維素繊維加工用水性樹脂分散体(6)の樹脂のガラス転移温度(Tg)は−20℃であり、繊維素繊維加工用水性樹脂分散体は耐水性に劣っていた。
[Comparative Example 1]
The composition of the ethylenically unsaturated monomer (X) excluding the reactive emulsifier (Y) is 208 parts ethyl acrylate (EA), 135.2 parts butyl acrylate (BA), 26 parts methyl methacrylate (MMA), and acrylic acid. Except that 10 parts of (AA) was used and 0.8 part of γ-methacryloxypropyltrimethoxysilane was used as a crosslinking agent, the same procedure as in Example 1 was carried out to obtain an aqueous resin dispersion (6) for processing fiber fibers. It was. The evaluation results are shown in Tables 1 and 2, and the glass transition temperature (Tg) of the resin in the aqueous resin dispersion for processing fiber fibers (6) is -20 ° C, and the aqueous resin dispersion for processing fiber fibers. Was inferior in water resistance.

〔比較例2〕
反応性乳化剤(Y)を除くエチレン性不飽和単量体(X)の組成をエチルアクリレート(EA)208部とブチルアクリレート(BA)135.2部とメチルメタクリレート(MMA)20部、及びアクリルアミド(AM)を16部、架橋剤としてγ−メタクリロキシプロピルトリメトキシシラン0.8部にした以外は、実施例1と同様に行い、繊維素繊維加工用水性樹脂分散体(7)を得た。評価結果を表1及び表2に示したが、繊維素繊維加工用水性樹脂分散体(7)の樹脂のガラス転移温度(Tg)は−16℃であり、繊維素繊維加工用水性樹脂分散体は耐水性に劣っていた。
[Comparative Example 2]
The composition of the ethylenically unsaturated monomer (X) excluding the reactive emulsifier (Y) is 208 parts ethyl acrylate (EA), 135.2 parts butyl acrylate (BA), 20 parts methyl methacrylate (MMA), and acrylamide ( AM) was carried out in the same manner as in Example 1, except that 16 parts of AM) and 0.8 parts of γ-methacryloxypropyltrimethoxysilane were used as a crosslinking agent, to obtain an aqueous resin dispersion (7) for processing fiber fibers. The evaluation results are shown in Tables 1 and 2, and the glass transition temperature (Tg) of the resin of the aqueous resin dispersion (7) for processing fiber fibers is −16 ° C., and the aqueous resin dispersion for processing fiber fibers Was inferior in water resistance.

〔比較例3〕
反応性乳化剤(Y)を除くエチレン性不飽和単量体(X)の組成をブチルアクリレート(BA)167.2部とメチルメタクリレート(MMA)212部、及び架橋剤としてγ−メタクリロキシプロピルトリメトキシシラン0.8部にした以外は、実施例1と同様に行い、繊維素繊維加工用水性樹脂分散体(8)を得た。評価結果を表1及び表2に示したが、繊維素繊維加工用水性樹脂分散体(8)の樹脂のガラス転移温度(Tg)は19℃であり高く、繊維素繊維加工用水性樹脂分散体を用いて加工した加工基布は風合いが硬く、肌触りに極めて劣っていた。
[Comparative Example 3]
The composition of the ethylenically unsaturated monomer (X) excluding the reactive emulsifier (Y) is 167.2 parts of butyl acrylate (BA) and 212 parts of methyl methacrylate (MMA), and γ-methacryloxypropyltrimethoxy as a crosslinking agent Except having changed into 0.8 parts of silane, it carried out similarly to Example 1 and obtained the aqueous resin dispersion (8) for fiber fiber processing. The evaluation results are shown in Tables 1 and 2, and the glass transition temperature (Tg) of the resin of the aqueous fiber dispersion for fiber fiber processing (8) is as high as 19 ° C., and the aqueous resin dispersion for fiber fiber processing is high. The processed base fabric processed using the material had a hard texture and was extremely inferior to the touch.

〔比較例4〕
反応性乳化剤(Y)を除くエチレン性不飽和単量体(X)の組成をブチルアクリレート(BA)379.2部、及び架橋剤としてγ−メタクリロキシプロピルトリメトキシシラン0.8部にした以外は、実施例1と同様に行い、繊維素繊維加工用水性樹脂分散体(9)を得た。評価結果を表1及び表2に示したが、繊維素繊維加工用水性樹脂分散体(9)の樹脂のガラス転移温度(Tg)は−47℃であり低く過ぎ、繊維素繊維加工用水性樹脂分散体は加工時の安定性に劣っていた。
[Comparative Example 4]
The composition of the ethylenically unsaturated monomer (X) excluding the reactive emulsifier (Y) was changed to 379.2 parts of butyl acrylate (BA) and 0.8 part of γ-methacryloxypropyltrimethoxysilane as a crosslinking agent. Was carried out in the same manner as in Example 1 to obtain an aqueous resin dispersion (9) for processing fiber fibers. The evaluation results are shown in Tables 1 and 2, but the glass transition temperature (Tg) of the resin of the aqueous resin dispersion for fiber fiber processing (9) is −47 ° C., which is too low. The dispersion was inferior in stability during processing.

〔比較例5〕
エチレン性不飽和単量体(X)をエチルアクリレート(EA)208部とブチルアクリレート(BA)146部とアクリロニトリル(AN)36部、及びアクリル酸(AA)を10部用い、且つ、式〔II〕で示した反応性乳化剤(Y)20部の代わりにポリオキシアルキレンデシルエーテル20部(ノイゲンXL−160、第一工業製薬製)を用いた以外は、実施例1と同様に行い、繊維素繊維加工用水性樹脂分散体(10)を得た。評価結果を表1及び表2に示したが、繊維素繊維加工用水性樹脂分散体(10)の樹脂のガラス転移温度(Tg)は−22℃であり、繊維素繊維加工用水性樹脂分散体は、重合時の安定性、加工時の安定性、及び耐水性に劣っていた。
[Comparative Example 5]
Ethylenically unsaturated monomer (X) was used in 208 parts of ethyl acrylate (EA), 146 parts of butyl acrylate (BA), 36 parts of acrylonitrile (AN), and 10 parts of acrylic acid (AA), and a compound of formula [II In the same manner as in Example 1 except that 20 parts of polyoxyalkylene decyl ether (Neugen XL-160, manufactured by Daiichi Kogyo Seiyaku) was used instead of 20 parts of the reactive emulsifier (Y) shown in FIG. An aqueous resin dispersion (10) for fiber processing was obtained. The evaluation results are shown in Tables 1 and 2, and the glass transition temperature (Tg) of the resin of the aqueous resin dispersion for fiber fiber processing (10) is −22 ° C., and the aqueous resin dispersion for fiber fiber processing. Was inferior in stability during polymerization, stability during processing, and water resistance.

〔比較例6〕
表1に示した如く、撹拌装置を備えた重合容器に窒素ガスを飽和させた後、水384.3部を仕込み、内温65℃に昇温した。別の容器に式〔V〕で示した反応性乳化剤ラテムルS−180(商標名、花王株式会社製)を15部、単量体(X)としてブチルアクリレート(BA)170部とメチルメタクリレート(MMA)120部及び水281.7部を仕込み、混合しプレエマルジョンを調整した。
反応性乳化剤ラテムルS−180を15部、t−ブチルベンゾエートを0.5部、エリソルビン酸ナトリウムを0.2部、これらを前記重合容器に仕込み、5分後に、別容器にて調整したモノマー混合物、t−ブチルベンゾエート2.5部、エリソルビン酸ナトリウム0.8部の滴下を開始させた。3時間かけて滴下し、重合を行い、滴下終了後、内温80℃にて2時間加熱熟成した。次いで、冷却を行い、アンモニア水でエマルジョンをpH7.0に調整し、繊維素繊維加工用水性樹脂分散体(11)を得た。評価結果を表1及び表2に示したが、繊維素繊維加工用水性樹脂分散体(11)の樹脂の示差走査熱量計(DSC、TAインスツルメント株式会社製)で測定したガラス転移温度(Tg)は9℃であり、繊維素繊維加工用水性樹脂分散体は、耐水性、及び風合いに劣っていた。
[Comparative Example 6]
As shown in Table 1, after saturating nitrogen gas in a polymerization vessel equipped with a stirrer, 384.3 parts of water was charged and the internal temperature was raised to 65 ° C. In a separate container, 15 parts of reactive emulsifier latemul S-180 (trade name, manufactured by Kao Corporation) represented by the formula [V], 170 parts of butyl acrylate (BA) as monomer (X) and methyl methacrylate (MMA) ) 120 parts and 281.7 parts of water were charged and mixed to prepare a pre-emulsion.
Reactive emulsifier Latemul S-180 15 parts, t-butylbenzoate 0.5 part, sodium erythorbate 0.2 part, these were charged in the polymerization vessel, and after 5 minutes, the monomer mixture prepared in a separate vessel Then, dropwise addition of 2.5 parts of t-butylbenzoate and 0.8 parts of sodium erythorbate was started. The solution was added dropwise over 3 hours to perform polymerization, and after completion of the addition, the mixture was aged by heating at an internal temperature of 80 ° C. for 2 hours. Next, cooling was performed and the emulsion was adjusted to pH 7.0 with aqueous ammonia to obtain an aqueous resin dispersion (11) for processing fiber fibers. Although the evaluation result was shown in Table 1 and Table 2, the glass transition temperature (DSC, product made from TA Instruments Co., Ltd.) measured with the resin differential scanning calorimeter (DSC) of the aqueous resin dispersion (11) for processing fiber fibers. Tg) was 9 ° C., and the aqueous resin dispersion for processing fiber fibers was inferior in water resistance and texture.

Figure 0005211425
Figure 0005211425

〔式中、Rは炭素数12〜30のアルキル基を表す。〕 [Wherein, R represents an alkyl group having 12 to 30 carbon atoms. ]

Figure 0005211425
Figure 0005211425

表1中の略号は、下記の化合物名を表す。
EA ;エチルアクリレート
BA ;ブチルアクリレート
AN ;アクリロニトリル
MMA;メチルメタクリレート
AA ;アクリル酸
AM ;アクリルアミド
架橋剤;γ−メタクリロキシプロピルトリメトキシシラン
式[II];式〔II〕で示されるポリオキシアルキレンアルケニルエーテル
式[III];式〔III〕で示されるポリオキシアルキレンアルケニルエーテル
式[IV];式〔IV〕で示されるポリオキシアルキレンアルケニルエーテル
ラテムルS−180;式〔V〕で示されるスルホコハク酸型反応性乳化剤、花王株式会社製
ノイゲンXL−160;ポリオキシアルキレンデシルエーテル、第一工業製薬株式会社製
Abbreviations in Table 1 represent the following compound names.
EA; ethyl acrylate BA; butyl acrylate AN; acrylonitrile MMA; methyl methacrylate AA; acrylic acid AM; acrylamide cross-linking agent; γ-methacryloxypropyltrimethoxysilane formula [II]; polyoxyalkylene alkenyl ether represented by formula [II] Polyoxyalkylene alkenyl ether represented by formula [III]; polyoxyalkylene alkenyl ether represented by formula [III]; polyoxyalkylene alkenyl ether laterum S-180 represented by formula [IV]; sulfosuccinic acid type represented by formula [V] Reactive emulsifier, Neuogen XL-160 manufactured by Kao Corporation; Polyoxyalkylene decyl ether, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.

Figure 0005211425
Figure 0005211425

本発明の繊維素繊維加工用水性樹脂分散体の製造方法は、従来の製造方法では必須に用いていたカルボキシル基及びスルホン酸基含有エチレン性不飽和単量体等の強い親水性を有する単量体を実質的に用いずに、重合時の安定性、加工時の安定性、耐水性、及び風合いなどの優れた特性を発揮する繊維素繊維水性樹脂分散体を与えることができ、これにより得られる繊維素繊維水性樹脂分散体を基材に用いた場合、加工基材として、特に耐水性が要求される繊維素繊維の加工分野、例えば壁紙、ふすま紙及び羽毛布団等の目止め防止、あるいは衣料の防水加工など、多岐にわたり極めて有用である。


The method for producing an aqueous resin dispersion for processing fiber fibers according to the present invention is a single unit having a strong hydrophilic property such as a carboxyl group and a sulfonic acid group-containing ethylenically unsaturated monomer, which is essentially used in the conventional production method. It is possible to provide a fibrous fiber aqueous resin dispersion that exhibits excellent properties such as stability during polymerization, stability during processing, water resistance, and texture without substantially using the body. When the fibrous fiber aqueous resin dispersion to be used is used as a base material, as a processed base material, a fiber base fiber processing field in which water resistance is particularly required, for example, prevention of sealing of wallpaper, bran paper and duvet, or the like, or It is extremely useful for a wide variety of purposes such as waterproofing clothing.


Claims (5)

炭素原子数2〜8のアルキル基を有する(メタ)アクリレート(x−2)であるエチル(メタ)アクリレート及びブチル(メタ)アクリレートと、メチルメタクリレート(x−1)または(メタ)アクリロニトリル(x−3)とを含む単量体(X)と共に、反応性乳化剤として下記一般式〔I〕、
R−(BO)−(EO)−H ・・・一般式〔I〕
〔式中、Rは分子鎖末端に結合した不飽和アルケニル基、BOはオキシブチレン基、EOはオキシエチレン基であり、mは2〜10の間の数値、nは10〜60の間の数値を表す。〕
で示されるポリオキシアルキレンアルケニルエーテル(Y)を含有するエチレン性不飽和単量体混合物を水中で乳化重合する繊維素繊維加工用水性樹脂分散体の製造方法であり、且つ、前記エチレン性不飽和単量体混合物が下記(1)〜(4)の条件を満たすものであることを特徴とする繊維素繊維加工用水性樹脂分散体の製造方法。
条件(1);前記単量体(X)の前記エチレン性不飽和単量体混合物における含有率が90重量%以上である。
条件(2);前記一般式〔I〕で示されるポリオキシアルキレンアルケニルエーテル(Y)の前記エチレン性不飽和単量体混合物における含有率が1〜10重量%である。
条件(3);20℃における水への溶解度が10g/100ml以上のエチレン性不飽和単量体(x−4)のエチレン性不飽和単量体混合物における含有率が0.5重量%以下である(但し、一般式〔I〕で示されるポリオキシアルキレンアルケニルエーテル(Y)を除く。)。
条件(4);乳化重合して得られる樹脂の示差走査熱量計(DSC)によるガラス転移温度(Tg)が−40〜0℃である。
Ethyl (meth) acrylate and butyl (meth) acrylate , which are (meth) acrylate (x-2) having an alkyl group having 2 to 8 carbon atoms, and methyl methacrylate (x-1) or (meth) acrylonitrile (x- 3) and a monomer (X) containing the following general formula [I] as a reactive emulsifier:
R- (BO) m- (EO) n- H ... General formula [I]
[In the formula, R is an unsaturated alkenyl group bonded to the molecular chain end, BO is an oxybutylene group, EO is an oxyethylene group, m is a value between 2 and 10, and n is a value between 10 and 60. Represents. ]
Is a method for producing an aqueous resin dispersion for processing fiber fibers, in which an ethylenically unsaturated monomer mixture containing a polyoxyalkylene alkenyl ether (Y) represented by formula (E) is emulsion-polymerized in water. A method for producing an aqueous resin dispersion for processing fibrous fibers, wherein the monomer mixture satisfies the following conditions (1) to (4).
Condition (1): The content of the monomer (X) in the ethylenically unsaturated monomer mixture is 90% by weight or more.
Condition (2): The content of the polyoxyalkylene alkenyl ether (Y) represented by the general formula [I] in the ethylenically unsaturated monomer mixture is 1 to 10% by weight.
Condition (3): The content in the ethylenically unsaturated monomer mixture of the ethylenically unsaturated monomer (x-4) having a solubility in water at 20 ° C. of 10 g / 100 ml or more is 0.5% by weight or less. (Excluding the polyoxyalkylene alkenyl ether (Y) represented by the general formula [I]).
Condition (4): The glass transition temperature (Tg) of a resin obtained by emulsion polymerization as measured by a differential scanning calorimeter (DSC) is −40 to 0 ° C.
前記エチレン性不飽和単量体混合物における前記単量体(X)の含有率が93〜97重量%であり、前記一般式〔I〕で示されるポリオキシアルキレンアルケニルエーテル(Y)の含有率が3〜7重量%である請求項1記載の繊維素繊維加工用水性樹脂分散体の製造方法。 The content of the monomer (X) in the ethylenically unsaturated monomer mixture is 93 to 97% by weight, and the content of the polyoxyalkylene alkenyl ether (Y) represented by the general formula [I] is The method for producing an aqueous resin dispersion for processing a fibrous fiber according to claim 1, wherein the content is 3 to 7% by weight. 前記一般式〔I〕で示されるポリオキシアルキレンアルケニルエーテル(Y)において、式中のRが分子鎖末端に結合した不飽和アルケニル基、BOがオキシブチレン基、EOがオキシエチレン基であり、mが4〜8の間の数値、nが20〜50の間の数値である請求項1記載の繊維素繊維加工用水性樹脂分散体の製造方法。 In the polyoxyalkylene alkenyl ether (Y) represented by the general formula [I], R in the formula is an unsaturated alkenyl group bonded to the molecular chain end, BO is an oxybutylene group, EO is an oxyethylene group, m The method for producing an aqueous resin dispersion for processing fibrous fibers according to claim 1, wherein is a numerical value between 4 and 8, and n is a numerical value between 20 and 50. 前記エチレン性不飽和単量体混合物において、20℃における水への溶解度が10g/100ml以上のエチレン性不飽和単量体(x−4)の含有率が0.5重量%以下である(但し、一般式〔I〕で示されるポリオキシアルキレンアルケニルエーテル(Y)を除く値である。)請求項1記載の繊維素繊維加工用水性樹脂分散体の製造方法。 In the ethylenically unsaturated monomer mixture, the content of ethylenically unsaturated monomer (x-4) having a solubility in water at 20 ° C. of 10 g / 100 ml or more is 0.5% by weight or less (provided that And a value excluding the polyoxyalkylene alkenyl ether (Y) represented by the general formula [I].) The method for producing an aqueous resin dispersion for processing fiber fibers according to claim 1. 乳化重合して得られる樹脂の示差走査熱量計(DSC)によるガラス転移温度(Tg)が−30〜−5℃である請求項1記載の繊維素繊維加工用水性樹脂分散体の製造方法。 The method for producing an aqueous resin dispersion for processing fiber fibers according to claim 1, wherein the resin obtained by emulsion polymerization has a glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) of -30 to -5 ° C.
JP2005314329A 2005-10-28 2005-10-28 Method for producing aqueous resin dispersion for processing fiber Expired - Fee Related JP5211425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314329A JP5211425B2 (en) 2005-10-28 2005-10-28 Method for producing aqueous resin dispersion for processing fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005314329A JP5211425B2 (en) 2005-10-28 2005-10-28 Method for producing aqueous resin dispersion for processing fiber

Publications (2)

Publication Number Publication Date
JP2007119620A JP2007119620A (en) 2007-05-17
JP5211425B2 true JP5211425B2 (en) 2013-06-12

Family

ID=38143799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314329A Expired - Fee Related JP5211425B2 (en) 2005-10-28 2005-10-28 Method for producing aqueous resin dispersion for processing fiber

Country Status (1)

Country Link
JP (1) JP5211425B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007039785A1 (en) * 2007-08-23 2009-02-26 Clariant International Ltd. Nonionic water-soluble additives based on allyl and vinyl ether
CN102666591B (en) * 2009-12-22 2015-11-25 Dic株式会社 Modification fibrillation Mierocrystalline cellulose and containing its resin composite materials
JP7040723B2 (en) * 2018-03-28 2022-03-23 日本カーバイド工業株式会社 Resin composition for printing and printing
CN117986496A (en) * 2024-01-19 2024-05-07 黄山联固新材料科技有限公司 High-biobased acrylic resin dispersoid and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290376A (en) * 1985-10-15 1987-04-24 ジェイエスアール株式会社 Composition for carpet backing
JPH01292179A (en) * 1988-05-16 1989-11-24 Nippon Shokubai Kagaku Kogyo Co Ltd Resin for yarn fabrication
JP4112164B2 (en) * 2000-09-21 2008-07-02 花王株式会社 Reactive surfactant composition for emulsion polymerization
JP3901500B2 (en) * 2001-11-30 2007-04-04 日本カーバイド工業株式会社 Cross-linked resin aqueous composition for fiber processing
JP2005213308A (en) * 2004-01-28 2005-08-11 Nippon Carbide Ind Co Inc Aqueous resin composition for nonwoven fabric finishing

Also Published As

Publication number Publication date
JP2007119620A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
US8088252B2 (en) Salt-sensitive cationic polymeric binders for nonwoven webs and method of making the same
JP5669363B2 (en) Resin composition and paper or fiber processed product treated with the same
JP5211425B2 (en) Method for producing aqueous resin dispersion for processing fiber
WO1999061484A1 (en) Aqueous emulsion and process for producing the same
EP3227385B1 (en) Polymer latex composition for fibre binding
EP1347996B1 (en) Formaldehyde-free crosslinked core-shell latex for textile
JP2018529796A (en) Aqueous dispersion of oxazoline group-containing polymer
JP4766311B2 (en) Method for producing resin emulsion for paper processing
JP2009270247A (en) Composition for coating paper/fiber product, coating film, and paper/fiber product
JP2007247111A (en) Binder emulsion for nonwoven fabric and method for producing the same
JP2947594B2 (en) Emulsion composition
JPH0211653A (en) Aqueous dispersion of heat-crosslinkable polymer based on alkyl (meth)acrylate, its production and use thereof, especially, as binder and/or impregnating agent
JPH11335509A (en) Water borne composition
JP4810916B2 (en) Glass fiber processing resin composition and glass paper
JP4803425B2 (en) Method for producing resin emulsion for paper processing
US20040249034A1 (en) Aqueous copolymer dispersions, process for preparing them, and compositions comprising them for coatings
CN113195565B (en) Aqueous polymer dispersions crosslinkable with amino acid crosslinkers for textiles
JP2003096691A (en) Surface sizing agent for paper manufacturing use
JPH02147601A (en) Preparation of aqueous emulsion of self-dispersing fluorinated resin
JPH0762036A (en) Aqueous resin dispersion
JP2000034308A (en) Production of aqueous emulsion
JP2007291160A (en) Synthetic resin emulsion, binder for nonwoven fabric containing the emulsion and processed nonwoven fabric
US20210179884A1 (en) Redox chased suspension bead additives for paints and stains
JPH07286128A (en) Resin composition for paper coating
JP2008133380A (en) Method for producing acrylic emulsion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees