JP2009266404A - 画像表示装置の製造方法 - Google Patents

画像表示装置の製造方法 Download PDF

Info

Publication number
JP2009266404A
JP2009266404A JP2008111189A JP2008111189A JP2009266404A JP 2009266404 A JP2009266404 A JP 2009266404A JP 2008111189 A JP2008111189 A JP 2008111189A JP 2008111189 A JP2008111189 A JP 2008111189A JP 2009266404 A JP2009266404 A JP 2009266404A
Authority
JP
Japan
Prior art keywords
temperature
glass substrate
substrate
firing
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008111189A
Other languages
English (en)
Inventor
Hiroyuki Gonda
浩幸 権田
Masataka Morita
真登 森田
Michihiko Takase
道彦 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008111189A priority Critical patent/JP2009266404A/ja
Publication of JP2009266404A publication Critical patent/JP2009266404A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gas-Filled Discharge Tubes (AREA)

Abstract

【課題】本発明の構成によれば、基板面内の温度バラツキすなわち熱収縮量のバラツキを低減することが可能となる。
【解決手段】本発明の画像表示装置の製造方法は、画像表示装置に用いるガラス基板を少なくとも被対象物の一部とする焼成工程を有し、焼成工程においてガラス基板の歪点Td(℃)に対して、ガラス基板の温度がTd(℃)より200℃低い温度以上であって、Td(℃)より60℃高い温度以下である温度T(℃)にてガラス基板の搬送方向を変更させることを特徴とする。
【選択図】図1

Description

この発明は、連続式焼成炉において例えばフラットパネルディスプレイのガラス基板のような薄板ガラスを被焼成物とした焼成工程を有する製造方法に関する。
一般にフラットパネルディスプレイ(以下、FPDとする)は、ガラス基板などの薄板ガラスに各部位を形成して構成されている。特にプラズマディスプレイパネル(以下、PDPとする)においては、ガラス基板に電極材料などを印刷し、乾燥し、露光して現像し、焼成する、と言った加工工程を何工程も繰り返して前面パネル、背面パネルが製造され、最後に前面パネルと背面パネルとが位置合わせと共に貼り合わせされた後に、周辺部をガラスフリット等で封着されている。
その際に、たとえば電極材料を印刷した基板を被焼成物として、脱バインダ並びにガラス成分物質の溶融と固化が起こるように、昇温工程、温度維持工程、徐冷工程を設けた焼成工程が行われる。
そしてその設備として、各工程で複数ポジションを有したトンネル状の連続炉が使用されている。具体的には、昇温区間,温度維持区間では被焼成物は連続的に搬送されているが、徐冷区間では、被焼成物を連続送りすると被焼成物の先端と後端とで温度差が生じ被焼成物が変形してしまうため、複数の徐冷ゾーンが設けられ、各徐冷ゾーンを受け持つ炉に被焼成物が間欠搬送されている。
特開2004−150660号公報
ところで、PDP等を筆頭にFPDは更なる大型化が求められると共に、生産効率を考慮して、複数基板の多面取りを可能とする大型基板を使用する生産方法が取り入れられている。このため上記の焼成工程では2000mm以上の一辺となるガラス基板を焼成する必要がある。
しかしながら、例えば上記の電極を形成する際には含有しているガラス成分の固化を目的として、500℃以上の焼成が必要とされる。このため、その焼成工程によって被焼成物であるガラス基板が収縮し、前面板、背面板とを貼り合わせした際に、精度ずれが生じる。そして上記のような大型ガラス基板を使用した場合、面内の収縮量が大きく異なることになり、基板精度の問題はさらに顕著になる。
上記課題を解決するために、本発明の画像表示装置の製造方法は、画像表示装置に用いるガラス基板を少なくとも被対象物の一部とする焼成工程を有し、焼成工程においてガラス基板の歪点Td(℃)に対して、ガラス基板の温度がTd(℃)より200℃低い温度以上であって、Td(℃)より60℃高い温度以下である温度T(℃)にてガラス基板の搬送方向を変更させることを特徴とする。
ここでガラス基板の歪点Td(℃)に対して、ガラス基板の温度がTd(℃)より100℃低い温度以上であって、Td(℃)より40℃高い温度以下である温度T(℃)にてガラス基板の搬送方向を変更させてもよい。また焼成工程において、470℃以上であって、610℃以下である温度T(℃)にてガラス基板の搬送方向を変更させてもよい。
そして、この温度T℃にて、ガラス基板の表面温度差が6℃以上となった場合に、ガラス基板の搬送方向を変更させてもよい。さらに、この焼成工程において、降温時にのみガラス基板の搬送方向を変更させてもよい。
本発明の構成によれば、基板面内の温度バラツキすなわち熱収縮量のバラツキを低減することが可能となった。
したがって、このような炉設備とすることで、従来の平面配置型の炉設備に比べて炉長を短くすることができる一方で一基板当たりの製造処理時間を短くすることができる。その結果、設備の設置面積、したがって製造工場の床面積を低減できるだけでなく、省エネルギーも実現できる。
以下、本発明の実施の形態を、図面を参照しながら説明する。なお、本発明の実施の形態においては、PDPを例に用いて説明するが、これに限らずガラス基板を焼成する工程を有する製造方法に利用することができる。
<PDP構造>
まずPDPの一般的な構造および製造方法について説明する。一般的なPDPの構造を図1に示す。PDPは、前面板1と背面板2とから構成されている。前面板1は、例えばフロート法による硼珪素ナトリウム系ガラス等からなるガラス基板などの透明且つ絶縁性の前面ガラス基板3上に形成された、走査電極4と維持電極5とが対をなすストライプ状の表示電極6と、表示電極6群を覆うように形成された誘電体層7と、誘電体層7上に形成されたMgOからなる保護膜8とにより構成されている。なお、走査電極4および維持電極5は、例えばITOのような透明かつ導電性の材料で形成された透明電極4a、5aと、この透明電極4a、5aに電気的に接続されるように形成された、例えばAgからなるバス電極4b、5bとで構成されている。
また背面板2は、背面ガラス基板9上に、表示電極6と直交する方向に形成されたアドレス電極10と、そのアドレス電極10を覆うように形成された誘電体層11と、アドレス電極10間の誘電体層11上にアドレス電極10と平行にストライプ状に形成された複数の隔壁12と、この隔壁12間に形成した蛍光体層13とにより構成されている。なお、カラー表示のために前記蛍光体層13は、通常、赤、緑、青の3色が順に配置されている。
そしてPDPは、以上述べた前面板1と背面板2とを、表示電極6とアドレス電極10とが直交するように微小な放電空間を挟んで対向配置した状態で周囲を封着部材(図示せず)により封止した構成となっており、前記放電空間にはネオン及びキセノンなどを混合してなる放電ガスが封入されている。
このPDPの放電空間は、隔壁12によって複数の区画に仕切られており、この隔壁12間に単位発光領域となる複数の放電セルが形成されるように表示電極6が設けられ、表示電極6とアドレス電極10とが直交して配置されている。そして、アドレス電極10および表示電極6に印加される周期的な電圧によって放電を発生させ、この放電による紫外線を蛍光体層13に照射して可視光に変換させることにより、画像表示が行われる。
<PDP製造方法>
次に、上述した構成のPDPの製造方法について図2を用いて説明する。図2は、本発明の実施の形態によるPDPの製造方法の工程を示す図である。
まず、前面板1を製造する前面板工程について述べる。前面ガラス基板3を受入れる基板受入れ工程(S11)の後、前面ガラス基板3上に表示電極6を形成する表示電極形成工程(S12)を行う。これは、透明電極4a、5aを形成する透明電極形成工程(S12−1)と、その後に行われるバス電極4b、5bを形成するバス電極形成工程とを有し、バス電極形成工程(S12−2)は、例えばAgなどの導電性ペーストをスクリーン印刷などで塗布する導電性ペースト塗布工程(S12−2−1)と、その後、塗布した導電性ペーストを焼成する導電性ペースト焼成工程(S12−2−2)とを有する。次に、表示電極形成工程(S12)により形成された表示電極6上を覆うように誘電体層7を形成する誘電体層形成工程(S13)を行う。これは、鉛系のガラス材料(その組成は、例えば、酸化鉛[PbO]70重量%,酸化硼素[B23]15重量%,酸化硅素[SiO2]15重量%。)を含むペーストをスクリーン印刷法で塗布するガラスペースト塗布工程(S13−1)と、その後、塗布したガラス材料を焼成するガラスペースト焼成工程(S13−2)とを有するものである。その後、誘電体層7の表面に真空蒸着法などで酸化マグネシウム[MgO]などの保護膜8を形成する保護膜形成工程(S14)を行う。以上により前面板1が製造される。
次に、背面板2を製造する背面板工程について述べる。背面ガラス基板9を受入れる受入れ工程(S21)の後、背面ガラス基板9上にアドレス電極10を形成するアドレス電極形成工程(S22)を行う。これは、例えばAgなどの導電性ペーストをスクリーン印刷などで塗布する導電性ペースト塗布工程(S22−1)と、その後、塗布した導電性ペーストを焼成する導電性ペースト焼成工程(S22−2)とを有する。次に、アドレス電極10の上に誘電体層11を形成する誘電体層形成工程(S23)を行う。これは、TiO2粒子と誘電体ガラス粒子とを含む誘電体用ペーストをスクリーン印刷などで塗布する誘電体用ペースト塗布工程(S23−1)と、その後、塗布した誘電体用ペーストを焼成する誘電体用ペースト焼成工程(S23−2)とを有する。次に、誘電体層11上のアドレス電極10の間に隔壁12を形成する隔壁形成工程(S24)を行う。これは、ガラス粒子を含む隔壁用ペーストを印刷などで塗布する隔壁用ペースト塗布工程(S24−1)と、その後、塗布した隔壁用ペーストを焼成する隔壁用ペースト焼成工程(S24−2)とを有する。そしてその後、隔壁12間に蛍光体層13を形成する蛍光体層形成工程(S25)を行う。これは、赤色,緑色,青色の各色蛍光体ペーストを作製し、これを隔壁どうしの間隙に塗布する蛍光体ペースト塗布工程(S25−1)と、その後、塗布した蛍光体ペーストを焼成する蛍光体ペースト焼成工程(S25−2)とを有する。以上により背面板2が製造される。
次に、以上により製造された前面板1と背面板2との封着、そしてその後の真空排気、および放電ガス封入について述べる。まず、前面板1及び背面板2のどちらか一方または両方に封着用ガラスフリットからなる封着部材を形成する封着部材形成工程(S31)を行う。これは、封着用ガラスペーストを塗布する工程(S31−1)と、その後、塗布したガラスペースト内の樹脂成分等を除去するために仮焼するガラスペースト仮焼成工程(S31−2)を有する。次に、前面板1の表示電極6と背面板2のアドレス電極10とが直交して対向するように重ね合わせるための重ね合わせ工程(S32)を行い、その後、重ね合わせた両基板を加熱して封着部材を軟化させることによって封着する封着工程(S33)を行う。次に、封着された両基板により形成された微小な放電空間を真空排気しながらパネルを焼成する排気・ベーキング工程(S34)を行い、その後、放電ガスを所定の圧力で封入する放電ガス封入工程(S35)を行うことによりPDPが完成する(S36)。
<焼成方法>
このようにPDPの製造方法では、パネル構造物であるバス電極4b、5b、誘電体層7、アドレス電極10、誘電体層11、隔壁12、蛍光体層13、および封着部材(図示せず)の形成工程において焼成工程が行われる。次にこの焼成工程について、前面板1に形成する誘電体層7を例に挙げて説明する。
一般にPDPの焼成工程で設備として使用する焼成炉は、生産性を向上させるために、被焼成物をメッシュベルトコンベアまたはローラハース等の搬送手段で搬送するいわゆる連続式焼成炉で行われる。そして連続式焼成炉は、設定温度の異なる複数の焼成ポジションを有しており、それぞれの焼成ポジションがドーム状またはトンネル状であって、この炉内を被焼成物が通過することによって加熱処理を施す。
図3は本発明の実施の形態における連続式焼成炉を模式的に示した断面図である。ここで被焼成物である前面ガラス基板3は矢印で示される方向に搬送される。なお、本発明の実施の形態では誘電体層7形成時の焼成工程を例に挙げて説明するため、前面ガラス基板3上にはすでにバス電極4b、5b等が形成されているが、便宜上、前面ガラス基板3を被焼成物として記載する。
そして連続式焼成炉は搬送方向に沿って、被焼成物を加熱昇温させる昇温ゾーン、昇温した被焼成物の温度を一定に維持する維持ゾーン、および被焼成物を冷却降温させる降温ゾーンを有する。被焼成物には各ゾーンを順次通過する間に所定の熱処理が施される。通常、昇温ゾーンでは熱が加えられ、維持ゾーンでは温度を維持するため放熱量に見合う分だけ熱が加えられ、降温ゾーンでは熱が奪われる。そしてそれぞれのゾーンが複数の焼成ポジションに分かれている。
本発明の実施の形態では、図3で示したように、焼成ポジションを8個で示し、A〜Cは昇温ゾーンであり、DおよびEは維持ゾーンであり、F〜Hは降温ゾーンである。昇温ゾーンA〜Cおよび維持ゾーンDおよびEには、昇温手段としてヒーター14が対象物の上方および下方に設けられている。降温ゾーンF〜Hには、降温手段として水冷管(図示なし)が、熱処理ゾーンの上下方向を画定する断熱壁の外側面で蛇行するように設けられ、ゾーン内の温度を均一にするための温度調節手段としてヒーター14が対象物の上方に設けられている。またそれぞれの焼成ポジションにおいて、所定の熱処理が確実に行われるように、温度モニタによって温度管理される。
そして炉内には搬送方向に複数のローラー15が並列されており、これらは水平方向の軸心廻りに回転可能であって、被焼成物はローラー15上を搬送される。この場合、前面ガラス基板3への傷の発生を防止する等の理由から、セッター(図示なし)と称する補助基板に載せられた状態で搬送される。また炉内にはこのような搬送手段以外に、被焼成物の搬送方向に対する方向を変更させうる、基板搬送方向変更機構を有する。
さらに炉内部には、雰囲気ガス温度、雰囲気ガス流量を調節し、供給するための給気管および炉内を排気する排気管(いずれも図示なし)が配置されている。なお、以降被焼成物として前面ガラス基板3のみを記載するが、セッターも含むものとする。
次に焼成工程における各焼成ポジションでの挙動について述べる。図3の連続式焼成炉の断面図の下方に、各焼成ポジションにおける設定温度プロファイル、および前面ガラス基板3の温度プロファイルを示す。
昇温ゾーンA〜Cにおいては、各焼成ポジションの内部に搬入された前面ガラス基板3は所定時間だけ保持される間に、ヒーター14の輻射熱と給気管から均一に送られる気体とによって、図3に示した温度プロファイルに沿った傾きで昇温ゾーンの目標温度まで昇温される。そしてその間に、ワークに印刷されていた誘電体材料中の溶媒、バインダなどは分解、脱離し、排気管を通って流出していく。
維持ゾーンD〜Eでは、昇温ゾーンと同様に搬入された前面ガラス基板3は所定時間だけ留まる間に、ヒーター14の輻射熱と給気管から均一に送られる気体とによって、目標温度まで昇温し、その温度で保持される。そしてその間に、前面ガラス基板3に形成されていた誘電体材料中のガラス質物質が溶融する。
次に降温ゾーンF〜Hにおいては、搬入された前面ガラス基板3は所定時間だけ留まる間に、水冷管と給気管とヒーター14とによって、図3に示した温度プロファイルに沿った傾きで徐冷ゾーンの目標温度以下まで面内均一に降温する。そしてその間に、前面ガラス基板3に形成されていた誘電体材料中のガラス質物質が固化する。
このように、前面ガラス基板3を各焼成ポジションにステップ(間欠)送りすること、および各焼成ポジションの内部で所定時間だけ保持することで、前面ガラス基板3の面内での熱バラツキを低減するようにされている。なお本発明の実施の形態では、昇温ゾーンA、Bでは前面ガラス基板3は連続的に搬送されて炉内を通過するが、それ以外のポジションではステップ送りにて搬送されている場合を示している。
ところが、先に述べたように近年FPDの大型化・生産の効率化に伴い、被焼成物となる前面基板のサイズは1辺2000mm〜3000mmを超える大版サイズとなっている。このため、従来の生産タクト、炉長を維持したままで、このようなサイズの基板を焼成した場合、炉内の基板面内の表面温度の差が大きくなってしまう。
例えば、ある焼成ポジションでの基板面内の温度プロファイルを図5に示す。このように基板面内で温度が最低となる箇所においては、設定温度に達する前に、次の焼成ポジションに搬送されてしまうことになる。
そして、このように基板面内の温度差が大きくなった場合、基板各所での熱収縮量に差異が生じたままで、次の焼成ポジションでのヒーター14の影響を受けるため、生じた熱収縮の差が緩和されること無く、焼成工程が進行することになる。またこの現象は降温時においても同様であり、降温時にも基板面内での温度差が生じれば、熱収縮の差はさらに増大されてしまう。その収縮差は1辺が2000mm程度の基板において、基板面内での温度差が6℃以上となった場合で、最大で約60μm程度にまで達する。
この結果、収縮差によって被焼成物である前面ガラス基板3が変形し、背面板2と貼り合わせて封着する際に、パネル面内によってずれが生じることになる。これは放電セルが設計通りに形成されなくなり、画像表示品位が大きく低下することになる。
一方で、従来技術と同等の基板面内の温度差を維持しようとすれば、生産タクトを極端に低下させ、各炉での基板面内の温度が安定するまでステップ送り時間を長くさせる必要がある。あるいは設定温度を細かく区切った焼成ポジションを追加して、炉長を長くする必要がある。この結果、パネルの生産効率が著しく低下するのはもとより、複数の焼成工程を実施するPDPの製造工程では、製造工場のレイアウトにおいて炉設備に大きな設置床面積が必要であり、また消費エネルギーも多大である。
これに対して、発明者らは従来の焼成ポジション数、生産タクトを維持しながらも、基板面内で内部応力と熱収縮量を一定としうる技術を見出した。
すなわち本発明の実施の形態では、被焼成物であるガラス基板の温度がある範囲になった場合に、ガラス基板の搬送方向を変更している。具体的にはガラス基板の表面温度の平均が、ガラス基板の歪点Td(℃)に対して、Td(℃)より200℃低い温度以上の温度であって、Td(℃)より60℃高い温度以下の温度範囲になったときに、ガラス基板の搬送方向を変更している。これにより基板面内で内部応力と熱収縮量を均一化する。
特に、ガラス基板の表面温度の平均が、ガラス基板の歪点Td(℃)に対して、Td(℃)より100℃低い温度以上の温度であって、Td(℃)より40℃高い温度以下の温度範囲であるときに、ガラス基板の搬送方向を変更するとさらに効果が望める。これは、この温度範囲での熱収縮は基板の変形として残留しやすいためと考えられる。一方、この温度範囲以外の温度において、前面基板の熱収縮が生じたとしても、基板の変形の観点からは影響は少ない。
また、ガラス基板面内の最大温度および最小温度の差が6℃以上となった場合に、被焼成物の搬送方向を変更させることで、ガラス基板面内に生じた熱収縮量の差をさらに一定に保つことができる。これは基板面内の温度差が6℃以上となった場合、その収縮量の差が大きく、PDPの形成に大きな影響を及ぼすためと考えられる。
例えば、旭硝子株式会社製の高歪点ガラスPD200は歪点Td(℃)が570℃程度であるので、ガラス基板の平均温度が470℃〜610℃の範囲にて、ガラス基板の搬送方向を変更することが望ましい。
次に、本発明の実施の形態におけるガラス基板の搬送方向の変更について具体的に説明する。そして図3に示した昇温ゾーンCでは前面ガラス基板3の歪点Td(℃)をわずかに超える温度付近を設定温度としている。この焼成ゾーンCにおける温度プロファイルを図4に示す。
図4に示すように、昇温ゾーンCでの昇温中に基板面内の最大温度と最小温度との差が30℃以上となった場合、被焼成物である前面ガラス基板3の搬送方向を変更する。搬送方向の変更は、収縮量の差を補うように変更することが望ましい。
図5は前面ガラス基板3の搬送方向の変更について示した図である。図5(a)にて矢印方向に搬送される前面ガラス基板3を斜視図で示し、図5(b)、(c)にて搬送方向が変更される前後の状態を平面図で示す。ここで便宜上基準となる辺をA、Bで示している。
図5(b)の平面図で示すように、搬送方向前方に基板温度最大箇所、搬送方向後方に基板温度最小箇所が存在していた場合、基板の搬送方向を面内180°回転させる。また図5(c)の平面図に示すように、搬送方向前方に基板温度最大箇所および最小箇所が存在していた場合、基板の搬送方向を面内90°回転させる。これによって面内に生じていた熱収縮量の差が小さくなる。
このような搬送方向の変更については、温度差が生じた焼成ポジションから次の焼成ポジションに移動する直前に行うのが望ましい。これに対して前面ガラス基板3を水平方向に回転させながら搬送させる方法も考えられるが、これはガラス基板の歪点付近での回転を行うことになり、特に2000mm超の大版基板では回転による変形が懸念されるため望ましくない。
また、搬送方向の変更については、ガラス基板の降温時にのみ行っても効果が得られる。例えば図3で示す焼成ポジションF等での降温時に基板面内の温度差が6℃以上となった場合、前面ガラス基板3の搬送方向を変更することでガラス基板の熱収縮差を低減することができる。
次に、前面ガラス基板3の温度の測定手法について述べる。あらかじめ用意した前面ガラス基板3と同等の熱容量を備えるダミー基板に、温度検知用の熱電対を耐熱テープ等によって基板表面に直接貼り付ける。そして誘電体層7焼成工程に使用する焼成炉を、実施状態と同様のヒーター設定、雰囲気設定とし、その焼成炉に先のダミー基板を投入し基板表面温度を測定する。温度測定結果については、基板表面に貼り付けた熱電対を焼成炉外の温度記録計に接続しモニタすることによって行う。その他、耐熱容器に梱包した基板温度記録手段をダミー基板に搭載して焼成炉に投入し、焼成工程終了後にその結果を確認する手法もある。
そして測定した結果を基に、焼成炉内における基板搬送方向の変更する時間・位置を決定する。なお、基板搬送方向変更機構としては、一般的な基板搬送時における回転機構を使用すればよく、本発明の実施の形態に影響を及ぼすものではない。
以上のように、本発明の実施の形態において画像表示装置の製造方法は、画像表示装置に用いるガラス基板を少なくとも被対象物の一部とする焼成工程を有し、焼成工程においてガラス基板の歪点Td(℃)に対して、ガラス基板の温度がTd(℃)より200℃低い温度以上であって、Td(℃)より60℃高い温度以下である温度T(℃)にてガラス基板の搬送方向を変更させることを特徴とする。これによって、従来技術と比較して、基板の熱収縮量差を低減した焼成を行うことができる。
なお、PDPの焼成工程に用いる他に、同様の構成の炉設備で乾燥、封着も実施できる。
以上のように本発明によれば、被焼成物の熱収縮量を低減でき、変形を抑制できる点で、PDP等の大型FPDの製造に有用である。
プラズマディスプレイパネルの構成を示す断面図 同製造方法の工程を示す説明図 本発明の実施の形態における焼成炉の断面図および温度プロファイルの説明図 本発明の実施の形態における昇温ゾーンにおける温度プロファイルの説明図 本発明の実施の形態における搬送方向変更の説明図
符号の説明
1 前面板
3 前面ガラス基板
7 誘電体層
14 ヒーター
15 ローラー

Claims (5)

  1. 画像表示装置に用いるガラス基板を少なくとも被対象物の一部とする焼成工程を有し、前記焼成工程において、前記ガラス基板の歪点Td(℃)に対して、前記ガラス基板の温度がTd(℃)より200℃低い温度以上であって、Td(℃)より60℃高い温度以下である温度T(℃)にて前記ガラス基板の搬送方向を変更させることを特徴とする画像表示装置の製造方法。
  2. 前記焼成工程において、前記ガラス基板の歪点Td(℃)に対して、前記ガラス基板の温度がTd(℃)より100℃低い温度以上であって、Td(℃)より40℃高い温度以下である温度T(℃)にて前記ガラス基板の搬送方向を変更させることを特徴とする請求項1記載の画像表示装置の製造方法。
  3. 前記焼成工程において、470℃以上であって、610℃以下である温度T(℃)にて前記ガラス基板の搬送方向を変更させることを特徴とする請求項1記載の画像表示装置の製造方法。
  4. 前記温度T℃にて、前記ガラス基板の表面温度差が6℃以上となった場合に、前記ガラス基板の搬送方向を変更させることを特徴とする請求項1〜3いずれかに記載の画像表示装置の製造方法。
  5. 前記焼成工程において、降温時にのみ前記ガラス基板の搬送方向を変更させることを特徴とする請求項1〜4いずれかに記載の画像表示装置の製造方法。
JP2008111189A 2008-04-22 2008-04-22 画像表示装置の製造方法 Pending JP2009266404A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111189A JP2009266404A (ja) 2008-04-22 2008-04-22 画像表示装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111189A JP2009266404A (ja) 2008-04-22 2008-04-22 画像表示装置の製造方法

Publications (1)

Publication Number Publication Date
JP2009266404A true JP2009266404A (ja) 2009-11-12

Family

ID=41392009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111189A Pending JP2009266404A (ja) 2008-04-22 2008-04-22 画像表示装置の製造方法

Country Status (1)

Country Link
JP (1) JP2009266404A (ja)

Similar Documents

Publication Publication Date Title
KR101169106B1 (ko) 플라즈마 디스플레이 패널의 다단 소성 장치
US20020111103A1 (en) Method for manufacturing plasma display panel
KR20080015860A (ko) 플라즈마 디스플레이 패널의 제조 방법
KR100832200B1 (ko) 플라즈마 디스플레이 패널
JP2009252347A (ja) プラズマディスプレイパネルおよびその製造方法
JP2009266404A (ja) 画像表示装置の製造方法
JP2007205592A (ja) 基板の焼成装置
JP2010049899A (ja) 画像表示装置の製造方法
JP3953687B2 (ja) 焼成処理方法および焼成炉
JP4207463B2 (ja) プラズマディスプレイパネルの製造方法
US7083489B2 (en) Plasma display panels manufacturing method and sintering device
KR101136651B1 (ko) 플라즈마 디스플레이 패널 및 그 제조 방법
KR100710333B1 (ko) 플라즈마 디스플레이 패널의 소성 장치 및 이를 이용한플라즈마 디스플레이 패널의 제조방법
JP2001153564A (ja) ラジアントチューブバーナーを利用した基板用連続加熱炉
JP4374933B2 (ja) プラズマディスプレイパネルの製造方法および焼成装置
JP2003346652A (ja) プラズマディスプレイパネルの製造方法と焼成装置
JP2009210166A (ja) プラズマディスプレイパネルの焼成装置
JP2010048513A (ja) 焼成装置およびフラットパネルディスプレイの製造方法
JP3838370B2 (ja) プラズマディスプレイパネル用背面基板の製造方法
JP2004014398A (ja) プラズマディスプレイパネルの製造方法および焼成装置
JP2001002440A (ja) 焼成処理方法および焼成処理装置
JP2004014399A (ja) プラズマディスプレイパネルの製造方法および焼成装置
JP2001110313A (ja) 焼成処理装置
KR20000041950A (ko) 플라즈마 디스플레이 패널의 제조방법
JP2008057887A (ja) 被加熱物の熱処理方法、ディスプレイパネルの製造方法、および、ディスプレイパネルの製造装置