JP2009259938A - Method of manufacturing chalcopyrite thin film solar cell, and apparatus therefor - Google Patents

Method of manufacturing chalcopyrite thin film solar cell, and apparatus therefor Download PDF

Info

Publication number
JP2009259938A
JP2009259938A JP2008105556A JP2008105556A JP2009259938A JP 2009259938 A JP2009259938 A JP 2009259938A JP 2008105556 A JP2008105556 A JP 2008105556A JP 2008105556 A JP2008105556 A JP 2008105556A JP 2009259938 A JP2009259938 A JP 2009259938A
Authority
JP
Japan
Prior art keywords
substrate
chemical
buffer layer
solar cell
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008105556A
Other languages
Japanese (ja)
Other versions
JP5006245B2 (en
Inventor
Satoshi Yonezawa
諭 米澤
Hitoshi Nagasaki
仁志 長▲崎▼
Takeshi Echizenya
剛 越前谷
Yuichi Hirano
祐一 平野
Keiya Tokunaga
圭哉 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008105556A priority Critical patent/JP5006245B2/en
Publication of JP2009259938A publication Critical patent/JP2009259938A/en
Application granted granted Critical
Publication of JP5006245B2 publication Critical patent/JP5006245B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of obtaining a buffer layer of high quality which is adaptive to a large-sized substrate, reduces the consumption of a material solution, and has superior film thickness uniformity in film deposition of a buffer layer for a chalcopyrite thin film solar cell. <P>SOLUTION: An apparatus for manufacturing a solar cell includes a heater-incorporated susceptor which supports and heats a substrate on which a back electrode layer having a p-type light absorption layer containing group I, III, and VI elements is formed, a heating means of additionally heating the susceptor, a chemical mixing means of mixing and sending reducing chemicals and material chemicals to a chemical introduction nozzle, the chemical introduction nozzle which drips the mixed chemicals onto the substrate, and a reactor vessel which holds the dripped mixed chemicals. The method of manufacturing the solar cell includes a step of forming the p-type light absorption layer, containing at least group I, III and VI elements, of the back electrode layer formed on the substrate, a step of forming an n-type buffer layer on the light absorption layer, and a step of forming a transparent electrode layer on the buffer layer, and in the step of forming the buffer layer, the mixed chemicals are dripped on the heated substrate and held and further chemicals are intermittently supplied. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、薄膜太陽電池の製造方法に関し、特に、光吸収層と透明電極層との間にバッファ層を形成した薄膜太陽電池のバッファ層成膜方法およびその装置に関する。   The present invention relates to a method for manufacturing a thin film solar cell, and more particularly, to a method for forming a buffer layer in a thin film solar cell in which a buffer layer is formed between a light absorption layer and a transparent electrode layer and an apparatus therefor.

カルコパイライト型薄膜太陽電池は、薄膜型種類に属し、I族、III族、VI族の元素を構成成分とするカルコパイライト化合物からなるCu−In−Ga−Se(以下、CIGSと略称することがある)層をp型の光吸収層として備える。   A chalcopyrite thin film solar cell belongs to a thin film type, and is a Cu—In—Ga—Se (hereinafter abbreviated as CIGS) composed of a chalcopyrite compound containing elements of Group I, Group III, and Group VI as constituent components. A layer) as a p-type light absorption layer.

カルコパイライト型薄膜太陽電池は、ガラス基板上に、Mo金属層からなる正極たる裏面電極層と、CIGS光吸収層と、n型のバッファ層と、負極たる透明電極層による最外表面層とを備えた多層積層構造で構成される。そして、この多層積層構造の表面受光部から太陽光等の照射光が入射すると、多層積層構造のp−n接合付近では、バンドギャップ以上のエネルギーを有する照射光によって励起されて一対の電子および正孔が生じる。励起された電子と正孔とは拡散によりp−n接合部に達し、接合の内部電界により、電子がn領域に、正孔がp領域に集合して分離される。この結果、n領域が負に帯電し、p領域が正に帯電し、各領域に設けた電極間で電位差が生じる。そして、この電位差を起電力として、各電極間を導線で結線したときに光電流が得られる。   A chalcopyrite thin film solar cell has a back electrode layer, which is a positive electrode made of a Mo metal layer, a CIGS light absorption layer, an n-type buffer layer, and an outermost surface layer made of a transparent electrode layer, which is a negative electrode, on a glass substrate. It is composed of a multilayered laminated structure. When irradiation light such as sunlight enters from the surface light receiving portion of this multilayer laminated structure, it is excited near the pn junction of the multilayer laminated structure by the irradiation light having energy greater than or equal to the band gap, and a pair of electrons and positive electrons. A hole is formed. The excited electrons and holes reach the pn junction by diffusion, and the electrons are collected in the n region and the holes are separated in the p region due to the internal electric field of the junction. As a result, the n region is negatively charged, the p region is positively charged, and a potential difference is generated between the electrodes provided in each region. Then, when this potential difference is used as an electromotive force, a photocurrent is obtained when the electrodes are connected by a conductive wire.

このような化合物薄膜太陽電池におけるバッファ層として、CIGS光吸収層が積層された基板に対して浸漬浴堆積(Chemical Bath Deposition、以下CBDと略称することがある)法により、複数の基板を反応溶液に浸漬して、n型半導体材料であるCdS、ZnO、InS等の成膜を行っている(例えば、特許文献1参照)。   As a buffer layer in such a compound thin film solar cell, a plurality of substrates are reacted with a reaction solution by a dip bath deposition (hereinafter sometimes abbreviated as CBD) method on a substrate on which a CIGS light absorption layer is laminated. The film is immersed in CdS, ZnO, InS, etc., which are n-type semiconductor materials (see, for example, Patent Document 1).

また、成膜反応を促進する上では、基板上面の成膜領域に常に新鮮な反応溶液を接触させることが必要であるという観点から、反応溶液層に複数の振動子を備え、振動によって均一な攪拌を行うように構成されたものが知られている(例えば、特許文献2参照)。   Further, in order to promote the film formation reaction, the reaction solution layer is provided with a plurality of vibrators from the viewpoint that it is necessary to always bring a fresh reaction solution into contact with the film formation region on the upper surface of the substrate. What is comprised so that stirring may be performed is known (for example, refer patent document 2).

しかしながら、このようなバッチ式の成膜方法では、基板を大型化した際、槽から複数の基板を引き上げる際に基板同士が貼り付いてしまうという懸念が生じる。また、加熱した溶液をポンプ機構によって循環させたり、溶液槽に振動を与えたりしても槽内で溶液温度を均一に保つことは難しく、温度差が発生するとバッファ膜の成膜速度に差が生じ、バッファ膜の膜厚ムラの原因となる。また、溶液を加熱昇温する際、槽や循環系の薬液全体を昇温する必要があるために溶液の熱容量が大きくなり、昇降温に長時間を要して処理時間が長くなってしまう欠点があった。   However, in such a batch-type film forming method, there is a concern that when the substrates are enlarged, the substrates adhere to each other when the plurality of substrates are pulled up from the tank. Even if the heated solution is circulated by a pump mechanism or a vibration is applied to the solution tank, it is difficult to keep the solution temperature uniform in the tank, and if a temperature difference occurs, there is a difference in the deposition rate of the buffer film. This causes uneven thickness of the buffer film. In addition, when heating the temperature of the solution, it is necessary to increase the temperature of the entire chemical solution in the tank and the circulation system, so the heat capacity of the solution increases, and it takes a long time to raise and lower the temperature, resulting in a longer processing time. was there.

また、溶液を循環させて溶液槽に溜めて成膜を行うため、基板が大きくなればなるほど大量の溶液が必要となり、破棄する溶液の量も多大になる傾向がある。ポンプ配管やタンクにも溶液を充填させる必要があるため、基板表面積に対して過大な溶液を必要とし、成膜に不必要な箇所でも反応が発生して消費されるため、材料利用率が低くなっていた。特に、基板の裏面も溶液に接し、成膜されるため、後にその層を除去する工程を追加する必要があった。   In addition, since the solution is circulated and stored in a solution tank for film formation, the larger the substrate, the larger the amount of solution required, and the greater the amount of solution discarded. Since it is necessary to fill the pump piping and tank with the solution, too much solution is required with respect to the substrate surface area, and the reaction is generated and consumed even in the place unnecessary for film formation, so the material utilization rate is low. It was. In particular, since the back surface of the substrate is also in contact with the solution to form a film, it is necessary to add a step for removing the layer later.

反応溶液の使用量を低減させるため、基板の成膜する側にだけ反応溶液層を設け、使用する溶液の量を削減する方法が考えられている(例えば、特許文献3参照)。しかしながら、溶液を反応温度に保持するために基板および溶液槽を収容するだけの容量を持った恒温槽が必要となり、設備も大掛かりなものになる。また、恒温槽の温度が一定に保たれていたとしても、基板を投入してから反応溶液の温度が反応温度まで向上するまで時間がかかってしまう。   In order to reduce the amount of the reaction solution used, a method of reducing the amount of the solution to be used by providing a reaction solution layer only on the side on which the substrate is formed has been considered (for example, see Patent Document 3). However, in order to maintain the solution at the reaction temperature, a constant temperature bath having a capacity sufficient to accommodate the substrate and the solution bath is required, and the equipment becomes large. Further, even if the temperature of the thermostatic bath is kept constant, it takes time until the temperature of the reaction solution is increased to the reaction temperature after the substrate is introduced.

以上述べたような反応溶液槽に基板を浸漬して行う方法の問題を解決するための方法として、加熱用ヒータ内蔵の基台に基板を直接載置して加熱状態とし、その上にキャリアガスと混合した反応溶液を気相中で薬剤を反応させ、固体微粒子化後、堆積させる方法が開示されている、(例えば、特許文献4参照)。この方法によれば、必要最低限の反応溶液の使用量で済むという利点がある。   As a method for solving the problem of the method of immersing the substrate in the reaction solution tank as described above, the substrate is directly placed on a base with a built-in heater for heating, and a carrier gas is formed thereon. There is disclosed a method in which a reaction solution mixed with is reacted with a drug in a gas phase to form solid fine particles and then deposited (see, for example, Patent Document 4). According to this method, there is an advantage that only a necessary amount of the reaction solution is used.

しかしながら、光吸収層表面には微小な凹凸が多いため、反応成分を固体微粒子として噴霧すると、反応成分は物理的に到達可能な表層部のみに付着して凹部の内部まで完全に入り込ませることが困難である。そのため、p−n接合が生じない部分ができてしまうという問題がある。   However, since the surface of the light absorbing layer has many minute irregularities, when the reaction component is sprayed as solid fine particles, the reaction component may adhere only to the physically reachable surface layer portion and completely penetrate into the recess. Have difficulty. Therefore, there is a problem that a portion where a pn junction does not occur is formed.

特開2006−196771号公報JP 2006-196771 A 特開平11−330509号公報Japanese Patent Laid-Open No. 11-330509 特開平11−330100号公報Japanese Patent Laid-Open No. 11-330100 特開平11−87747号公報JP 11-87747 A

本発明は上記の問題点に鑑みてなされたものであり、太陽電池の生産におけるバッファ層の成膜において、大型基板に対応し、材料溶液使用量の低減による低コスト化、膜厚均一性に優れた高品質なバッファ層を得る成膜方法を提供する。   The present invention has been made in view of the above problems, and in the formation of a buffer layer in the production of solar cells, it corresponds to a large-sized substrate, and it is possible to reduce cost and reduce film thickness uniformity by reducing the amount of material solution used. Provided is a film forming method for obtaining an excellent high quality buffer layer.

本発明のカルコパイライト型薄膜太陽電池の製造装置は、少なくともI族、III族およびVI族元素を含むp型の光吸収層が形成された裏面電極層を形成した基板を支持し加熱するヒータ内蔵サセプタと、ヒータ内蔵サセプタを付加的に加熱するための加熱手段と、還元薬品と原料薬品を混合して薬液導入ノズルに混合薬液を送る薬液混合手段と、基板面に混合薬液を滴下する薬液導入ノズルと、滴下された混合薬液を保持する反応槽とを有することを特徴としている。   The apparatus for manufacturing a chalcopyrite thin film solar cell of the present invention has a built-in heater for supporting and heating a substrate on which a back electrode layer on which a p-type light absorption layer containing at least a group I, group III and group VI element is formed is formed. A susceptor, a heating means for additionally heating the heater built-in susceptor, a chemical liquid mixing means for mixing the reducing chemical and the raw material chemical and sending the mixed chemical liquid to the chemical liquid introduction nozzle, and a chemical liquid introduction for dropping the mixed chemical liquid onto the substrate surface It has a nozzle and a reaction tank that holds the dropped mixed chemical solution.

加熱手段は、複数の赤外線ランプからなり、基板を支持するサセプタは熱伝導性に優れた材料で構成され、加熱手段は、赤外線ランプを個々に制御することにより基板温度を均一に保持することを好ましい態様としている。   The heating means is composed of a plurality of infrared lamps, the susceptor supporting the substrate is made of a material having excellent thermal conductivity, and the heating means is to maintain the substrate temperature uniformly by controlling the infrared lamps individually. This is a preferred embodiment.

また、本発明のカルコパイライト型薄膜太陽電池の製造方法は、基板上に形成された裏面電極層上に少なくともI族、III族およびVI族元素を含むp型の光吸収層を形成する工程と、光吸収層上にn型バッファ層を形成する工程と、バッファ層上に透明電極層を形成する工程とを有し、バッファ層を形成する工程は、加熱された基板上に原料薬品および還元薬品を予め混合した溶液を滴下して保持し、さらに溶液を間欠供給することを特徴としている。   The method for producing a chalcopyrite thin film solar cell of the present invention comprises a step of forming a p-type light absorption layer containing at least a group I, group III and group VI element on a back electrode layer formed on a substrate; And a step of forming an n-type buffer layer on the light absorption layer and a step of forming a transparent electrode layer on the buffer layer. The step of forming the buffer layer comprises the step of forming a raw material chemical and a reducing agent on the heated substrate. It is characterized in that a solution premixed with chemicals is dropped and held, and the solution is intermittently supplied.

バッファ層を形成する工程は、表面を被覆するための低温プロセスと、所望の膜厚を得るための高温プロセスを連続して実施することを好ましい態様としている。   The step of forming the buffer layer is preferably performed by continuously performing a low temperature process for covering the surface and a high temperature process for obtaining a desired film thickness.

本発明による太陽電池のバッファ層の製造方法を用いれば、基板表面に溶液を必要量のみ滴下するため、槽方式に比して溶液使用量を大きく低減させることができる。また、ウェット方式で成膜を行うため、凹凸の多いCIGS光吸収層上にもくまなくバッファ層の成膜を行うことができる。基板を保持する熱伝導性に優れたサセプタを直接加熱するため、基板の温度分布を高精度に制御することが可能になり、膜厚分布や膜質分布に優れ、成膜速度を短縮したプロセスを行うことができる。   If the manufacturing method of the buffer layer of the solar cell by this invention is used, since only a required amount of solution will be dripped at the substrate surface, a solution usage-amount can be reduced significantly compared with a tank system. In addition, since the film formation is performed by the wet method, the buffer layer can be formed all over the CIGS light absorption layer with many irregularities. Since the susceptor with excellent thermal conductivity that holds the substrate is directly heated, it is possible to control the temperature distribution of the substrate with high accuracy, and the process with excellent film thickness distribution and film quality distribution and reduced film formation speed. It can be carried out.

以下、図面を参照しながら、本発明の最良の実施形態について詳細に説明する。
従来のCBD工程の問題点
図1は、従来の大型槽を使用したバッチ式のCBD工程を示す模式図である。図1(a)に示すように、反応槽11内に、原料薬液および還元薬液を混合して反応溶液2としたものを満たし、十数枚の太陽電池基板3をバッチ方式にて一括で投入し、反応溶液2を加熱しながらポンプ13によって循環させて、太陽電池基板3表面への成膜反応を行う。
Hereinafter, the best embodiment of the present invention will be described in detail with reference to the drawings.
Problems of Conventional CBD Process FIG. 1 is a schematic diagram showing a batch type CBD process using a conventional large tank. As shown in FIG. 1 (a), the reaction tank 11 is filled with a raw chemical solution and a reducing chemical solution to form a reaction solution 2, and dozens of solar cell substrates 3 are batch-fitted in a batch system. Then, the reaction solution 2 is circulated by the pump 13 while heating, and a film forming reaction is performed on the surface of the solar cell substrate 3.

この工程では、反応槽11や溶液保持槽1、配管12およびポンプ13に反応溶液2を循環させているため、基板が大きくなればなるほど大量の溶液が必要となってしまう。また、成膜に不必要な箇所でも反応が発生するため、消費される材料が多く、廃棄する溶液の量も多大になり、材料利用率が低い。特に、基板の裏面も溶液に接し、成膜されるため、後にその層を除去する工程を追加する必要があった。   In this step, since the reaction solution 2 is circulated through the reaction tank 11, the solution holding tank 1, the pipe 12 and the pump 13, a larger amount of solution is required as the substrate becomes larger. In addition, since a reaction occurs even at a place unnecessary for film formation, a large amount of material is consumed, the amount of the solution to be discarded becomes large, and the material utilization rate is low. In particular, since the back surface of the substrate is also in contact with the solution to form a film, it is necessary to add a step for removing the layer later.

また、加熱した反応溶液をポンプによって循環させるが、槽内(特に上下方向)で均一な温度分布にすることは原理上困難であり、温度差が発生すると、バッファ膜の成膜速度に差が生じ、膜厚ムラの原因となる。さらに、溶液を加熱昇温する際、槽や循環系の薬液全体を昇温する必要があるために溶液の熱容量が大きくなり、昇降温に長時間を要して処理時間が長くなってしまう。   In addition, although the heated reaction solution is circulated by a pump, it is difficult in principle to obtain a uniform temperature distribution in the tank (especially in the vertical direction). This causes film thickness unevenness. Furthermore, when heating the temperature of the solution, it is necessary to raise the temperature of the entire chemical solution in the tank and the circulation system, so that the heat capacity of the solution becomes large, and it takes a long time to raise and lower the temperature, resulting in a longer processing time.

図1(b)に示すように、成膜反応終了後は、太陽電池基板3を一括して引き上げる。基板間スペースを狭くするほど、一定の大きさの反応槽で処理できる基板の数を増やすことが可能であり、生産コストとして有利であるが、基板間スペースを狭くしすぎると、引き上げ中に、基板と基板の間に残った反応溶液が滴下する際に表面張力によって両側の基板を引っ張るため、図1(c)に示すように両側の基板同士が貼り付く現象が見られる場合がある。この場合、基板搬送が不可能となり、装置が停止するため、生産性が悪化する。   As shown in FIG. 1B, after the film formation reaction is completed, the solar cell substrates 3 are pulled up collectively. It is possible to increase the number of substrates that can be processed in a reaction tank of a certain size as the space between the substrates is narrowed, which is advantageous as a production cost, but if the space between the substrates is too narrow, When the reaction solution remaining between the substrates is dropped, the substrates on both sides are pulled by surface tension, so that a phenomenon may occur in which the substrates on both sides stick to each other as shown in FIG. In this case, the substrate cannot be transported and the apparatus is stopped, so that productivity is deteriorated.

本発明の原理
本発明の成膜チャンバM1のおよび反応溶液の供給機構を、図2に示す。還元薬品タンク15内の還元薬品21および原料タンク16内の原料薬品22は、それぞれ予め計量ノズル4で必要量が計量されて、攪拌容器17に供給される。攪拌容器17に内蔵された攪拌手段5によって還元薬品21および原料薬品22は攪拌されて反応溶液2となり、成膜チャンバM1のシャワーヘッド18(薬液導入ノズル)に送られる。
Principle of the Invention FIG. 2 shows the reaction chamber supply mechanism of the film forming chamber M1 of the present invention. A necessary amount of the reducing chemical 21 in the reducing chemical tank 15 and the raw chemical 22 in the raw material tank 16 are previously measured by the measuring nozzle 4 and supplied to the stirring container 17. The reducing chemical 21 and the raw chemical 22 are agitated by the agitating means 5 incorporated in the agitating vessel 17 to become the reaction solution 2 and sent to the shower head 18 (chemical solution introduction nozzle) of the film forming chamber M1.

シャワーヘッド18の下方には、図示しない加熱用のヒータを内蔵したサセプタ6上に太陽電池基板3が載置されており、反応槽19に囲まれて保持されている。シャワーヘッド18から滴下された反応溶液2は、反応槽19内に保持され、太陽電池基板3はこの反応溶液2に浸漬された状態となる。本発明では、サセプタを通じて、基板を裏面から直接加熱し、基板の成膜面に反応溶液を滴下してバッファ層の成膜を行う。ここで、サセプタ6に内蔵されたヒータによって太陽電池基板3の加熱を開始すると、反応溶液2のうち基板と接触している部分にて反応が開始され、バッファ層の成膜が進行する。   Below the shower head 18, the solar cell substrate 3 is placed on a susceptor 6 containing a heater for heating (not shown) and is surrounded and held by a reaction vessel 19. The reaction solution 2 dropped from the shower head 18 is held in the reaction vessel 19, and the solar cell substrate 3 is immersed in the reaction solution 2. In the present invention, the substrate is directly heated from the back surface through the susceptor, and the reaction solution is dropped onto the film formation surface of the substrate to form the buffer layer. Here, when the heating of the solar cell substrate 3 is started by the heater built in the susceptor 6, the reaction is started in the portion of the reaction solution 2 in contact with the substrate, and the film formation of the buffer layer proceeds.

また、補助的な加熱手段として、図に示すように、サセプタの下部にランプシステム61などによるヒータを配置して個別制御可能な付加的な加熱手段とし、温度分布制御が可能な形態とする。   Further, as an auxiliary heating means, as shown in the figure, a heater by a lamp system 61 or the like is disposed at the lower part of the susceptor to provide an additional heating means that can be individually controlled, so that temperature distribution control is possible.

加熱された基板に反応溶液を複数回滴下して化学反応を進行させ、バッファ層を形成する。複数回繰り返した後、純水などにより洗浄を行い、エアナイフによって基板を乾燥させることにより、成膜を完了する。   The reaction solution is dropped several times on the heated substrate to advance the chemical reaction, thereby forming a buffer layer. After repeating a plurality of times, cleaning is performed with pure water or the like, and the substrate is dried with an air knife to complete the film formation.

本発明は、1枚ずつ処理を行う枚葉処理方式であるので、従来のバッチ処理で問題になっていた基板同士の貼り付きが発生しない。また、反応成分を固体微粒子として噴霧する従来の方法では、物理的な手法であるため、光吸収層表面の凹部に反応固体粒子が被覆されず、ダイオード界面のリークを生じる懸念があったが、本形態によれば、基板を完全に浸漬するウェット方式であるので、凹部にも反応溶液が浸透する。   Since the present invention is a single wafer processing method in which processing is performed one by one, there is no sticking between substrates, which has been a problem in conventional batch processing. In addition, since the conventional method of spraying the reaction component as solid fine particles is a physical method, there is a concern that the reaction solid particles are not coated on the recesses on the surface of the light absorption layer, and the diode interface leaks. According to this embodiment, since it is a wet system in which the substrate is completely immersed, the reaction solution penetrates into the recess.

本発明では、反応溶液を加熱するのではなく、基板自体を加熱しているので、成膜反応は基板表面近傍において最も強く反応し、基板から離れた箇所においては反応が生じにくい。このため、基板の加熱を停止することで反応は速やかに収束し、不必要な成膜反応の継続が抑制される。サセプタに内蔵されたヒータは、多チャンネル式ヒータであると好ましい。各ヒータの出力調整を行うことで、大型基板上の温度分布を制御することが可能になる。   In the present invention, since the reaction solution is not heated, but the substrate itself is heated, the film formation reaction reacts most strongly in the vicinity of the substrate surface, and the reaction hardly occurs at a position away from the substrate. For this reason, by stopping the heating of the substrate, the reaction quickly converges and unnecessary continuation of the film forming reaction is suppressed. The heater built in the susceptor is preferably a multi-channel heater. By adjusting the output of each heater, the temperature distribution on the large substrate can be controlled.

サセプタを構成する材料は、熱伝導率に優れたものを用いることが好ましい。そのような材料として、カーボン材や、SiCといったカーボン化合物、耐食コートされた金属(Al、Cu、Fe)等が挙げられ、コート材としては、AlN、Al等が挙げられる。このような材料にヒータを内蔵させることで、サセプタ全体の均熱性を向上させることができる。 The material constituting the susceptor is preferably a material having excellent thermal conductivity. Examples of such a material include carbon materials, carbon compounds such as SiC, and corrosion-resistant coated metals (Al, Cu, Fe), and the like. Examples of the coating material include AlN, Al 2 O 3, and the like. By incorporating a heater in such a material, the thermal uniformity of the entire susceptor can be improved.

補助加熱手段であるランプシステム61は、赤外線ランプ62を備えていることが好ましく、個別制御可能な複数の赤外線ランプであるとさらに好ましい。赤外線をサセプタに効率良く吸収させることで、急速な昇温に対応が可能となる。図3のグラフに示すように、サセプタ内蔵のヒータに加えてランプシステムを併用すると、基板の加熱をより速やかに行うことができる。   The lamp system 61 serving as auxiliary heating means preferably includes an infrared lamp 62, and more preferably a plurality of infrared lamps that can be individually controlled. By efficiently absorbing infrared rays into the susceptor, it is possible to cope with rapid temperature rise. As shown in the graph of FIG. 3, when a lamp system is used in combination with a heater with a built-in susceptor, the substrate can be heated more quickly.

また、それぞれの赤外線ランプを取り囲むランプリフレクタ63を備えることができる。ランプリフレクタ63は、角度調節することで、赤外線照射範囲を調節して最適な温度分布が得られるような調整が可能となる。また、ランプシステム61全体は、回転機能を付加することで、サセプタに対する赤外線照射範囲を均一化することができる。この場合、回転数は通常0〜200rpmの範囲内で調節される。   Moreover, the lamp reflector 63 surrounding each infrared lamp can be provided. The lamp reflector 63 can be adjusted such that an optimum temperature distribution can be obtained by adjusting the infrared irradiation range by adjusting the angle. Moreover, the whole lamp system 61 can make the infrared irradiation range with respect to a susceptor uniform by adding a rotation function. In this case, the rotational speed is usually adjusted within a range of 0 to 200 rpm.

ランプシステム61の上方には、石英ガラス64が備えられていると好ましい。石英ガラスに限らず、耐熱性(〜300℃程度)に優れ、高光透過性、高強度の素材であればよい。また、ランプシステム61および石英ガラス64の周囲には、反射板65が備えられていると好ましい。反射板の材料としては、赤外線に対して高い反射率を持つ金やアルミニウム等の金属等が挙げられる。   A quartz glass 64 is preferably provided above the lamp system 61. The material is not limited to quartz glass, and may be any material that has excellent heat resistance (up to about 300 ° C.), high light transmittance, and high strength. Further, it is preferable that a reflector 65 is provided around the lamp system 61 and the quartz glass 64. Examples of the material of the reflector include metals such as gold and aluminum having a high reflectance with respect to infrared rays.

シャワーヘッドから供給する反応溶液は、溶液滴下直前に還元薬品と原料薬品を混合して攪拌したものを使用する。シャワー状に形成された滴下手段から、基板表面を最低限覆う程度になるよう、必要量のみ(表面張力レベル)を間欠供給することが好ましい。基板表面の成膜反応の進行状況を判断しながら微量の反応溶液を間欠供給することによって、所望の膜厚、成膜レートを得るために必要な最適量を供給することが可能である。このため、余分な材料供給によって起こる不必要な反応の発生が防止され、材料使用量を抑制することができる。   As the reaction solution supplied from the shower head, a solution obtained by mixing and stirring a reducing chemical and a raw material chemical immediately before dropping the solution is used. It is preferable that only a necessary amount (surface tension level) is intermittently supplied from the dropping means formed in a shower shape so as to cover at least the substrate surface. By intermittently supplying a small amount of the reaction solution while judging the progress of the film formation reaction on the substrate surface, it is possible to supply the optimum amount necessary for obtaining a desired film thickness and film formation rate. For this reason, generation | occurrence | production of the unnecessary reaction which arises by extra material supply is prevented, and material usage-amount can be suppressed.

反応溶液の例としては、硫化インジウムの成膜を行う際には、還元薬品としてチオアセトアミド、原料薬品として塩化インジウムを用いる。また、硫化亜鉛の成膜の場合は、チオアセトアミド、アンモニアおよび塩化亜鉛の混合薬液を使用する。InAlSなど多元素の硫化物バッファ層を成膜する場合には、塩化インジウムと塩化アルミニウムなど複数元素の原料薬品をそれぞれ作製し、定量した後に還元薬品のチオアセトアミドとの混合薬液にする。   As an example of the reaction solution, when forming a film of indium sulfide, thioacetamide is used as a reducing chemical, and indium chloride is used as a raw material chemical. In the case of forming a zinc sulfide film, a mixed chemical solution of thioacetamide, ammonia and zinc chloride is used. In the case of forming a multi-element sulfide buffer layer such as InAlS, raw material chemicals of a plurality of elements such as indium chloride and aluminum chloride are respectively prepared and quantified, and then mixed with a reducing chemical thioacetamide.

他の反応溶液の例としては、硫化カドミウム(CdS)の成膜を行う際には、塩化カドミウム、チオ尿素、アンモニアの混合薬液を使用する。   As another example of the reaction solution, when forming a film of cadmium sulfide (CdS), a mixed chemical solution of cadmium chloride, thiourea, and ammonia is used.

攪拌容器17および攪拌手段5としては、プロペラを回転させる構造のスターラーや、超音波攪拌、またはスタティック方式など、公知の手段を用いることができる。   As the stirring container 17 and the stirring means 5, known means such as a stirrer having a structure for rotating a propeller, ultrasonic stirring, or a static method can be used.

バッファ層を形成する工程は、第1バッファ層を形成する相対的に低温に制御する工程と、第2バッファ層を第1バッファ層に重ねて形成する相対的に高温に制御する工程とを有することが好ましい。   The step of forming the buffer layer includes a step of controlling the relatively low temperature to form the first buffer layer, and a step of controlling the relatively high temperature to form the second buffer layer so as to overlap the first buffer layer. It is preferable.

第1バッファ層では、高い膜品質と被覆性を備えた成膜を行うことが目的であるため、反応温度を低温に保持して成膜することが好ましい。低い保持温度では滴下された薬液の化学反応が反応律速領域であるため、薬液の滴下量の多寡によらずサセプタ内蔵システムのヒータ加熱機構による均一な温度制御を反映した低い成膜レートによって均一成膜させることができ、高い膜品質が得られる。また、成膜レートが低いことと薬液温度が低温に保たれることから、吸収層の表面凹部の内部にも確実に反応が進行し、吸収層表面凹凸に対する良好な被覆性を得ることができる。これに対し、第2バッファ層では、処理時間を短くするために反応温度を高温に保持して成膜することが好ましい。高い保持温度では、薬液は滴下されると直ちに加熱されて十分な反応性を持つため、成膜レートが高くなり、処理時間を短縮することが可能である。また、供給律速領域で化学反応が進行するため成膜レートは薬液供給量に依存し、ランプ加熱機構による温度ばらつきの影響を受けず、成膜レートは均一な薬液供給によって均一に保たれる。   Since the first buffer layer is intended to form a film with high film quality and coverage, it is preferable to form the film while maintaining the reaction temperature at a low temperature. At low holding temperatures, the chemical reaction of the dropped chemical solution is in the reaction rate-determining region.Therefore, regardless of the amount of dropped chemical solution, the uniform film formation rate is achieved by reflecting the uniform temperature control by the heater heating mechanism of the susceptor built-in system. The film can be formed and high film quality can be obtained. In addition, since the film formation rate is low and the temperature of the chemical solution is kept at a low temperature, the reaction reliably proceeds inside the surface recesses of the absorption layer, and good coverage with respect to the surface unevenness of the absorption layer can be obtained. . On the other hand, it is preferable to form the second buffer layer while keeping the reaction temperature at a high temperature in order to shorten the processing time. At a high holding temperature, when the chemical solution is dropped, it is immediately heated and has sufficient reactivity, so that the film formation rate is increased and the processing time can be shortened. In addition, since the chemical reaction proceeds in the supply rate-determining region, the film formation rate depends on the chemical supply amount and is not affected by temperature variations due to the lamp heating mechanism, and the film formation rate is kept uniform by uniform chemical supply.

以上説明した成膜チャンバM1は、図4に示すように、複数段に積み重ねることによって、多段積層成膜室M2とすることができる。このように成膜チャンバM1を複数段とし、図示しない搬送手段によって太陽電池基板3を連続的に成膜チャンバM1に移送し、図示しない薬液供給手段によって混合薬液を供給することによって、設置面積を有効に利用したバッファ層形成設備とすることができる。   The film forming chamber M1 described above can be formed into a multi-stage stacked film forming chamber M2 by stacking in a plurality of stages as shown in FIG. In this way, the film forming chamber M1 has a plurality of stages, the solar cell substrate 3 is continuously transferred to the film forming chamber M1 by a transport unit (not shown), and the mixed chemical solution is supplied by a chemical solution supply unit (not shown). The buffer layer forming equipment can be used effectively.

具体的な実施形態
次に、具体的な本発明の実施形態についてより詳細に説明する。図5は、本発明の一実施形態における成膜装置M3を示す模式平面図である。成膜装置M3は、図4に示す多段積層成膜室M2を複数台備え、搬送手段7および把持手段8を備えている。搬送手段7は、未成膜の太陽電池基板3を外部から搬入し、成膜が完了した太陽電池基板3を外部へ搬出する手段であり、把持手段8は、搬入された太陽電池基板3を把持していずれかの多段積層成膜室M2に供給し、成膜反応終了後は多段積層成膜室M2から太陽電池基板3を把持して取り出す手段である。また、各多段成膜室M2(M2a〜M2c)は、図5に模式的に示すように、還元薬品タンク15および原料薬品タンク16、攪拌容器17、攪拌手段5からなる薬品供給システムを備えており、上述したようにこれらを混合薬品として各成膜チャンバM1に供給する。
Specific Embodiments Next, specific embodiments of the present invention will be described in more detail. FIG. 5 is a schematic plan view showing a film forming apparatus M3 according to an embodiment of the present invention. The film forming apparatus M3 includes a plurality of multi-layer stacked film forming chambers M2 shown in FIG. The transfer means 7 is a means for carrying in the unformed solar cell substrate 3 from the outside and carrying out the formed solar cell substrate 3 to the outside. The gripping means 8 is for holding the loaded solar cell substrate 3. Then, it is a means for supplying to any one of the multi-layer stacked film forming chambers M2 and holding and removing the solar cell substrate 3 from the multi-stage stacked film forming chamber M2 after the film forming reaction is completed. Each multi-stage film forming chamber M2 (M2a to M2c) includes a chemical supply system including a reducing chemical tank 15, a raw chemical tank 16, a stirring container 17, and a stirring means 5, as schematically shown in FIG. As described above, these are supplied as mixed chemicals to each film forming chamber M1.

次に、図5の成膜装置M3において、1つの多段積層成膜室M2aの1つの成膜チャンバM1のみを稼動させて成膜を行う場合を例にして、下記表1に示す各ステップを参照しながら説明する。   Next, in the film forming apparatus M3 in FIG. 5, the steps shown in the following Table 1 are performed by taking as an example a case where film formation is performed by operating only one film forming chamber M1 of one multistage stacked film forming chamber M2a. The description will be given with reference.

Figure 2009259938
Figure 2009259938

まず、第1ステップでは、把持手段8が、搬送手段7より太陽電池基板3を受け取る。これと同時に、薬品供給システムでは、計量ノズル4によって第1バッファ層形成用の還元薬品21および原料薬品22の定量が行われ、攪拌容器17への2液注入が行われる。また、加熱システムでは、サセプタ6の内蔵ヒータがONとなり、サセプタ6の加熱が開始される。   First, in the first step, the gripping means 8 receives the solar cell substrate 3 from the transport means 7. At the same time, in the chemical supply system, the metering nozzle 4 determines the reducing chemical 21 for forming the first buffer layer and the raw chemical 22 and injects two liquids into the stirring container 17. In the heating system, the built-in heater of the susceptor 6 is turned on, and heating of the susceptor 6 is started.

第2ステップでは、把持手段8は、太陽電池基板3を成膜チャンバM1のサセプタ6に挿入する。サセプタ6の加熱は既に開始されているので、太陽電池基板3自体の昇温も始まる。また、薬品供給システムでは、攪拌容器17に注入された還元薬品21と原料薬品22が攪拌手段5によって攪拌され、反応溶液2となる。   In the second step, the gripping means 8 inserts the solar cell substrate 3 into the susceptor 6 of the film forming chamber M1. Since the heating of the susceptor 6 has already been started, the temperature rise of the solar cell substrate 3 itself is also started. In the chemical supply system, the reducing chemical 21 and the raw chemical 22 injected into the stirring container 17 are stirred by the stirring means 5 to become the reaction solution 2.

第3ステップでは、シャワーヘッド18を介して、第1バッファ層形成用の反応溶液2が太陽電池基板3上に定量滴下される。   In the third step, the reaction solution 2 for forming the first buffer layer is quantitatively dropped onto the solar cell substrate 3 through the shower head 18.

太陽電池基板3は、サセプタの内蔵ヒータによってすでに昇温されているので、第4ステップでは、反応溶液が基板に接触することで、その部分において直ちに第1バッファ層の成膜反応が起こる。また、これと並行して、薬品供給システムでは、計量ノズル4によって第2バッファ層形成用の還元薬品21および原料薬品22の定量が行われ、攪拌容器17への2液注入が行われる。   Since the solar cell substrate 3 has already been heated by the built-in heater of the susceptor, in the fourth step, the reaction solution comes into contact with the substrate, and the film formation reaction of the first buffer layer occurs immediately at that portion. In parallel with this, in the chemical supply system, the metering nozzle 4 quantifies the reducing chemical 21 for forming the second buffer layer and the raw chemical 22 and injects two liquids into the stirring container 17.

第5ステップでは、第1バッファ層の成膜反応が継続中であり、これと並行して、薬品供給システムでは、攪拌容器17に注入された還元薬品21と原料薬品22が攪拌手段5によって攪拌され、反応溶液2となる。   In the fifth step, the film formation reaction of the first buffer layer is ongoing. In parallel with this, in the chemical supply system, the reducing chemical 21 and the raw chemical 22 injected into the stirring vessel 17 are stirred by the stirring means 5. The reaction solution 2 is obtained.

第6ステップでは、シャワーヘッド18を介して、第2バッファ層形成用の反応溶液2が太陽電池基板3上に定量滴下される。これと並行して、加熱システムでは、サセプタ内蔵ヒータがOFFとなるとともにランプシステム61がONとなり、サセプタ6の付加的な加熱が開始される。これにより、サセプタ6および太陽電池基板3はさらに加熱され、第2バッファ層の成膜反応が起こる。第2バッファ層の形成では、第1バッファ層の形成よりも高い温度に保持されているので、成膜速度が高レートである。   In the sixth step, the reaction solution 2 for forming the second buffer layer is quantitatively dropped onto the solar cell substrate 3 through the shower head 18. In parallel with this, in the heating system, the heater with built-in susceptor is turned off and the lamp system 61 is turned on, and additional heating of the susceptor 6 is started. Thereby, the susceptor 6 and the solar cell substrate 3 are further heated, and a film forming reaction of the second buffer layer occurs. Since the second buffer layer is formed at a higher temperature than that of the first buffer layer, the film formation rate is high.

第7ステップでは、第2バッファ層の成膜が完了するので、ランプシステム61の昇温は完了する。なお、上記第6ステップおよび第7ステップを繰り返すことにより、さらなる成膜反応を進行させ、バッファ層の膜厚を増大させることも可能である。   In the seventh step, since the film formation of the second buffer layer is completed, the temperature increase of the lamp system 61 is completed. In addition, by repeating the sixth step and the seventh step, it is possible to advance a further film formation reaction and increase the thickness of the buffer layer.

第8ステップでは、薬品供給システムは完全に停止しており、また、加熱システムでは、ランプシステム61がOFFとなる一方でサセプタ6の内蔵ヒータがONとなる。太陽電池基板3上には純水が滴下され、オーバーフローリンスによって残留する反応溶液との置換が行われる。   In the eighth step, the chemical supply system is completely stopped, and in the heating system, the lamp system 61 is turned off while the built-in heater of the susceptor 6 is turned on. Pure water is dropped on the solar cell substrate 3 and replaced with the remaining reaction solution by overflow rinsing.

第9ステップでは、エアナイフ等の乾燥手段により、残留する純水が除去され、太陽電池基板3の乾燥が行われる。   In the ninth step, the remaining pure water is removed by a drying means such as an air knife, and the solar cell substrate 3 is dried.

第10ステップでは、把持手段8が成膜チャンバM1内の太陽電池基板3を把持し、搬送手段7へ搬出することで、バッファ層成膜が完了した太陽電池基板を得る。   In the tenth step, the gripping means 8 grips the solar cell substrate 3 in the film formation chamber M1 and carries it out to the transport means 7, thereby obtaining a solar cell substrate on which the buffer layer deposition is completed.

上述した一連の工程は、成膜チャンバM1を1つ稼動させた場合の成膜工程の一例であるが、図4に示すような多段積層成膜室M2を用いることによって、把持手段7によって太陽電池基板を複数段に収納し、成膜反応を同時進行させることもできる。   The series of processes described above is an example of a film forming process when one film forming chamber M1 is operated. By using a multi-layer stacked film forming chamber M2 as shown in FIG. Battery substrates can be accommodated in a plurality of stages, and film formation reactions can proceed simultaneously.

また、図5に示すように、多段積層成膜室M2を複数台(M2a〜M2c)設け、例えば成膜室M2aにおいて成膜反応が進行している間に、他の成膜室M2bにおいて太陽電池基板の搬入や還元薬品および原料薬品の調合を行い、M2aにおける成膜が完了後にM2bにおける成膜を開始し、以下同様にして成膜室M2cにおいても成膜反応を行うという形態とすれば、M2a→M2b→M2c→M2aというように成膜反応を連続的に行うことができて好適である。なお、図5は成膜室M2が3箇所に設けられているが、この数は任意であり、本発明を限定するものではない。   In addition, as shown in FIG. 5, a plurality of multi-layer stacked film forming chambers M2 (M2a to M2c) are provided, for example, while the film forming reaction proceeds in the film forming chamber M2a, If the battery substrate is carried in, the reducing chemical and the raw chemical are mixed, the film formation in M2b is started after the film formation in M2a is completed, and the film formation reaction is performed in the film formation chamber M2c in the same manner. M2a → M2b → M2c → M2a is preferable because the film formation reaction can be continuously performed. In FIG. 5, although the film forming chambers M2 are provided at three locations, this number is arbitrary and does not limit the present invention.

本発明によるCIGS太陽電池のバッファ層成膜CBD工程によって、下記の改善をすることができた。
1.基板張り付き
バッチ方式で発生していた大型槽から取り出す際に起こる基板同士の張り付きトラブルは、枚葉式の為、原理上発生しない。
2.薬液使用量
バッファ膜の形成を行なう基板表面のみに薬液を、必要量のみ滴下するため、大型槽方式に対して薬液使用量を大きく低減させることが可能である。
3.膜厚均一性
基板に直に接触するという枚葉式サセプタ構造の利点と、サセプタに内蔵の分割ヒータによる温度分布制御機構により、基板の温度分布を高精度に制御する事が可能である。温度分布をコントロールすることにより、成膜レートの基板間・基板内バラツキを抑えることが可能となり、膜厚分布を改善する。
4.選択成膜
薬液を基板表面に選択的に滴下することが可能な為、成膜が起こるのは基板表面のみとなる。
5.処理時間の高速化
サセプタに内蔵のヒータに加え、ランプ加熱機構を設けることで基板の急速昇温を実現する。ステップ間の温度切り替えに必要な昇温時間を短縮することが可能であり、プロセス処理時間を短縮させる。
The following improvements could be achieved by the buffer layer deposition CBD process of the CIGS solar cell according to the present invention.
1. The substrate sticking trouble that occurs when taking out from a large tank that has occurred in the batch method with substrate sticking does not occur in principle because of the single wafer type.
2. Since only a necessary amount of the chemical solution is dropped only on the substrate surface on which the chemical solution use amount buffer film is formed, it is possible to greatly reduce the use amount of the chemical solution with respect to the large tank system.
3. The temperature distribution of the substrate can be controlled with high accuracy by the advantage of the single wafer type susceptor structure in which the film thickness is in direct contact with the substrate and the temperature distribution control mechanism using a divided heater built in the susceptor. By controlling the temperature distribution, it is possible to suppress variations in the film formation rate between substrates and within the substrate, thereby improving the film thickness distribution.
4). Since the selective film forming chemical can be selectively dropped onto the substrate surface, film formation occurs only on the substrate surface.
5). Speeding up the processing time In addition to the heater built in the susceptor, a lamp heating mechanism is provided to achieve rapid temperature rise of the substrate. It is possible to shorten the temperature raising time required for temperature switching between steps, and shorten the process processing time.

カルコパイライト型薄膜太陽電池の製造におけるバッファ層形成工程において環境負荷を低減させ、かつ低コスト化および高品質化を実現することができる。   In the buffer layer forming step in the manufacture of the chalcopyrite thin film solar cell, it is possible to reduce the environmental load, and to achieve cost reduction and high quality.

従来のバッチ式バッファ層成膜工程を示す模式断面図である。It is a schematic cross section which shows the conventional batch type buffer layer film-forming process. 本発明の枚葉式バッファ層成膜工程の成膜チャンバを示す模式断面図である。It is a schematic cross section which shows the film-forming chamber of the single-wafer | sheet-fed buffer layer film-forming process of this invention. 従来の加熱と本発明のランプシステムによる加熱を比較したグラフである。It is the graph which compared the heating by the conventional heating and the lamp system of this invention. 本発明の成膜チャンバの多段積層成膜室を示す斜視図である。It is a perspective view which shows the multistage laminated film-forming chamber of the film-forming chamber of this invention. 本発明の成膜装置の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the film-forming apparatus of this invention.

符号の説明Explanation of symbols

1…溶液保持槽、11…反応槽、12…配管、13…ポンプ、15…還元薬品タンク、
16…原料薬品タンク、17…攪拌容器、18…シャワーヘッド、19…反応槽、
2…反応溶液、21…還元薬品、22…原料薬品、3…太陽電池基板、4…計量ノズル、
5…攪拌手段、6…サセプタ、61…ランプシステム、62…赤外線ランプ、
63…ランプリフレクタ、64…石英ガラス、65…反射板、7…搬送手段、
8…把持手段、M1…成膜チャンバ、M2…多段積層成膜室、M3…成膜装置
DESCRIPTION OF SYMBOLS 1 ... Solution holding tank, 11 ... Reaction tank, 12 ... Piping, 13 ... Pump, 15 ... Reducing chemical tank,
16 ... Raw material chemical tank, 17 ... Stirring vessel, 18 ... Shower head, 19 ... Reaction tank,
2 ... Reaction solution, 21 ... Reducing chemical, 22 ... Raw material chemical, 3 ... Solar cell substrate, 4 ... Metering nozzle,
5 ... Stirring means, 6 ... Susceptor, 61 ... Lamp system, 62 ... Infrared lamp,
63 ... Lamp reflector, 64 ... Quartz glass, 65 ... Reflector, 7 ... Conveying means,
8 ... Grasping means, M1 ... Film forming chamber, M2 ... Multi-layered film forming chamber, M3 ... Film forming apparatus

Claims (5)

少なくともI族、III族およびVI族元素を含むp型の光吸収層が形成された裏面電極層を形成した基板を支持し、加熱するヒータ内蔵サセプタと、
上記ヒータ内蔵サセプタを付加的に加熱するための加熱手段と、
還元薬品と原料薬品を混合して薬液導入ノズルに混合薬液を送る薬液混合手段と、
上記基板面に上記混合薬液を滴下する薬液導入ノズルと、
滴下された上記混合薬液を保持する反応槽とを有することを特徴とするカルコパイライト型薄膜太陽電池の製造装置。
A heater built-in susceptor that supports and heats a substrate on which a back electrode layer on which a p-type light absorption layer containing at least a group I, group III, and group VI element is formed;
Heating means for additionally heating the heater built-in susceptor;
A chemical mixing means for mixing the reducing chemical and the raw chemical and sending the mixed chemical to the chemical introduction nozzle;
A chemical introduction nozzle that drops the mixed chemical on the substrate surface;
An apparatus for manufacturing a chalcopyrite thin-film solar cell, comprising: a reaction tank that holds the dropped mixed chemical solution.
前記加熱手段は、複数の赤外線ランプからなり、基板を支持する前記サセプタは熱伝導性に優れた材料で構成され、上記加熱手段は、赤外線ランプを個々に制御することにより基板温度を均一に保持することを特徴とする請求項1に記載のカルコパイライト型薄膜太陽電池の製造装置。   The heating means is composed of a plurality of infrared lamps, and the susceptor supporting the substrate is made of a material having excellent thermal conductivity. The heating means keeps the substrate temperature uniform by controlling the infrared lamps individually. The apparatus for manufacturing a chalcopyrite thin film solar cell according to claim 1. 前記サセプタを構成する材料は、カーボン、カーボン化合物、耐食処理を行った金属から選択される材料であることを特徴とする請求項2に記載のカルコパイライト型薄膜太陽電池の製造装置。   3. The apparatus for manufacturing a chalcopyrite thin film solar cell according to claim 2, wherein the material constituting the susceptor is a material selected from carbon, a carbon compound, and a metal subjected to corrosion resistance treatment. 基板上に形成された裏面電極層上に少なくともI族、III族およびVI族元素を含むp型の光吸収層を形成する工程と、
上記光吸収層上にn型バッファ層を形成する工程と、
上記バッファ層上に透明電極層を形成する工程とを有し、
上記バッファ層を形成する工程は、加熱された上記基板上に原料薬品および還元薬品を予め混合した溶液を滴下して保持し、さらに上記溶液を間欠供給することを特徴とするカルコパイライト型薄膜太陽電池の製造方法。
Forming a p-type light absorption layer containing at least a group I, group III and group VI element on a back electrode layer formed on the substrate;
Forming an n-type buffer layer on the light absorption layer;
Forming a transparent electrode layer on the buffer layer,
The step of forming the buffer layer includes dropping and holding a solution prepared by mixing a raw material chemical and a reducing chemical in advance on the heated substrate, and further supplying the solution intermittently. A battery manufacturing method.
前記バッファ層を形成する工程は、反応律速領域による第1バッファ層を形成する温度に制御する工程と、供給律速領域による第2バッファ層を上記第1バッファ層に重ねて形成する温度に制御する工程とを有することを特徴とする請求項4に記載のカルコパイライト型太陽電池の製造方法。   The step of forming the buffer layer is controlled to a temperature at which the first buffer layer is formed by the reaction rate-limiting region and a temperature at which the second buffer layer by the supply rate-limiting region is formed to overlap the first buffer layer. The method for producing a chalcopyrite solar cell according to claim 4, further comprising a step.
JP2008105556A 2008-04-15 2008-04-15 Method and apparatus for manufacturing chalcopyrite thin film solar cell Expired - Fee Related JP5006245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105556A JP5006245B2 (en) 2008-04-15 2008-04-15 Method and apparatus for manufacturing chalcopyrite thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105556A JP5006245B2 (en) 2008-04-15 2008-04-15 Method and apparatus for manufacturing chalcopyrite thin film solar cell

Publications (2)

Publication Number Publication Date
JP2009259938A true JP2009259938A (en) 2009-11-05
JP5006245B2 JP5006245B2 (en) 2012-08-22

Family

ID=41387017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105556A Expired - Fee Related JP5006245B2 (en) 2008-04-15 2008-04-15 Method and apparatus for manufacturing chalcopyrite thin film solar cell

Country Status (1)

Country Link
JP (1) JP5006245B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159648A (en) * 2010-01-29 2011-08-18 Fujifilm Corp Method and apparatus for manufacturing buffer layer
KR101142417B1 (en) 2010-08-31 2012-05-07 금호전기주식회사 Buffer layer deposition apparatus for thin-film solar cells and method for deposition of buffer layer using the same
KR101220006B1 (en) * 2011-04-29 2013-01-21 주식회사 디엠에스 In-line type apparatus for manufacturing solar cell and Solar cell manufactured by the same
KR101267454B1 (en) * 2011-07-20 2013-05-31 (주)에스티아이 Manufacturing equipment of CdS layer for Solar Cell
KR101543699B1 (en) * 2013-07-31 2015-08-11 세메스 주식회사 Substrate treating apparatus
US9748118B2 (en) 2013-07-31 2017-08-29 Semes Co., Ltd. Substrate treating apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316247A (en) * 1995-05-17 1996-11-29 Matsushita Electric Ind Co Ltd Manufacture of compound semiconductor thin film and manufacture of photoelectric conversion element
JPH08330614A (en) * 1995-05-29 1996-12-13 Showa Shell Sekiyu Kk Thin film solar cell and manufacture thereof
JPH1187747A (en) * 1997-09-05 1999-03-30 Matsushita Denchi Kogyo Kk Manufacture of compound semiconductor film and solar cell
JPH11121778A (en) * 1997-10-09 1999-04-30 Matsushita Battery Industrial Co Ltd Manufacture of compound semiconductor film and solar cell
JPH11284211A (en) * 1998-03-27 1999-10-15 Showa Shell Sekiyu Kk Manufacture of zno transparent conductive film for thin film solar cell
JP2000332280A (en) * 1999-05-25 2000-11-30 Matsushita Electric Ind Co Ltd METHOD OF FORMING ZnO SEMICONDUCTOR THIN FILM AND MANUFACTURE OF SOLAR BATTERY USING THE SAME
JP2004015041A (en) * 2002-06-07 2004-01-15 Honda Motor Co Ltd Method for manufacturing compound thin film solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316247A (en) * 1995-05-17 1996-11-29 Matsushita Electric Ind Co Ltd Manufacture of compound semiconductor thin film and manufacture of photoelectric conversion element
JPH08330614A (en) * 1995-05-29 1996-12-13 Showa Shell Sekiyu Kk Thin film solar cell and manufacture thereof
JPH1187747A (en) * 1997-09-05 1999-03-30 Matsushita Denchi Kogyo Kk Manufacture of compound semiconductor film and solar cell
JPH11121778A (en) * 1997-10-09 1999-04-30 Matsushita Battery Industrial Co Ltd Manufacture of compound semiconductor film and solar cell
JPH11284211A (en) * 1998-03-27 1999-10-15 Showa Shell Sekiyu Kk Manufacture of zno transparent conductive film for thin film solar cell
JP2000332280A (en) * 1999-05-25 2000-11-30 Matsushita Electric Ind Co Ltd METHOD OF FORMING ZnO SEMICONDUCTOR THIN FILM AND MANUFACTURE OF SOLAR BATTERY USING THE SAME
JP2004015041A (en) * 2002-06-07 2004-01-15 Honda Motor Co Ltd Method for manufacturing compound thin film solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159648A (en) * 2010-01-29 2011-08-18 Fujifilm Corp Method and apparatus for manufacturing buffer layer
KR101142417B1 (en) 2010-08-31 2012-05-07 금호전기주식회사 Buffer layer deposition apparatus for thin-film solar cells and method for deposition of buffer layer using the same
KR101220006B1 (en) * 2011-04-29 2013-01-21 주식회사 디엠에스 In-line type apparatus for manufacturing solar cell and Solar cell manufactured by the same
KR101267454B1 (en) * 2011-07-20 2013-05-31 (주)에스티아이 Manufacturing equipment of CdS layer for Solar Cell
KR101543699B1 (en) * 2013-07-31 2015-08-11 세메스 주식회사 Substrate treating apparatus
US9748118B2 (en) 2013-07-31 2017-08-29 Semes Co., Ltd. Substrate treating apparatus

Also Published As

Publication number Publication date
JP5006245B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5006245B2 (en) Method and apparatus for manufacturing chalcopyrite thin film solar cell
US7700161B2 (en) Film growth system and method
US9673348B2 (en) Buffer layer deposition for thin-film solar cells
JP4680183B2 (en) Method for producing chalcopyrite thin film solar cell
US7972899B2 (en) Method for fabricating copper-containing ternary and quaternary chalcogenide thin films
TWI385276B (en) Electroless plating method and apparatus
CN1150353C (en) Method for forming zinc-oxide film and method of preparing semiconductor element matrix and photoelectric elements
US20070243657A1 (en) Method and Apparatus to Form Thin Layers of Materials on a Base
TW200832732A (en) Roll-to-roll electroplating for photovoltaic film manufacturing
US20060037858A1 (en) Electroless plating apparatus and electroless plating method
KR101129038B1 (en) In line type substrate processing apparatus
KR101093677B1 (en) Method and apparatus for the surface modification of flat substrates
WO2013035876A1 (en) Chemical bath deposition apparatus, method of forming buffer layer and method of manufacturing photoelectric conversion device
WO2019141045A1 (en) Apparatus for immersion-based preparation of perovskite thin film, use method and application thereof
US6391108B2 (en) Liquid phase growth method of silicon crystal, method of producing solar cell, and liquid phase growth apparatus
US20050173253A1 (en) Method and apparatus for infilm defect reduction for electrochemical copper deposition
JP2013070032A (en) Manufacturing method of buffer layer and manufacturing method of photoelectric conversion element
KR101092067B1 (en) Chemical Bath Deposition apparatus of in-line type for manufacturing solar cell
CN102738071B (en) For filling the method and apparatus of interconnection structure
KR101142417B1 (en) Buffer layer deposition apparatus for thin-film solar cells and method for deposition of buffer layer using the same
EP2604721A2 (en) Chemical bath deposition (CBD) apparatus
JP2011159648A (en) Method and apparatus for manufacturing buffer layer
KR101035245B1 (en) Chemical bath deposition apparatus for manufacturing solar cell
JP2013052361A (en) Chemical bath deposition apparatus
JP5792008B2 (en) Method for manufacturing chalcopyrite solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5006245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees