JPH08330614A - Thin film solar cell and manufacture thereof - Google Patents

Thin film solar cell and manufacture thereof

Info

Publication number
JPH08330614A
JPH08330614A JP7152762A JP15276295A JPH08330614A JP H08330614 A JPH08330614 A JP H08330614A JP 7152762 A JP7152762 A JP 7152762A JP 15276295 A JP15276295 A JP 15276295A JP H08330614 A JPH08330614 A JP H08330614A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
compound semiconductor
zinc
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7152762A
Other languages
Japanese (ja)
Other versions
JP3249342B2 (en
Inventor
Katsumi Kushiya
勝巳 櫛屋
Tetsuo Arai
哲郎 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP15276295A priority Critical patent/JP3249342B2/en
Publication of JPH08330614A publication Critical patent/JPH08330614A/en
Application granted granted Critical
Publication of JP3249342B2 publication Critical patent/JP3249342B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: To obtain a thin film solar cell having high conversion efficiency, without using harmful materials. CONSTITUTION: A thin film solar cell 1 has a structure comprising a metal back electrode 3, first p-type multi-element compd. semiconductor thin film 4 forming a photoabsorptive layer on the electrode layer 3, second n-type transparent and conductive metal oxide semiconductor thin film 6 forming a window layer, and third transparent high-resistance S-contained Zn mixed crystal compd. semiconductor thin film 5 laid at the interface between the films 4 and 5. The first semiconductor thin film 4 is grown on the layer 3, third semiconductor thin film 5 is chemically grown from a soln. on the film 4, and second semiconductor thin film 6 is grown on the film 5 to produce the cell 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多元化合物半導体薄膜
を光吸収層として使用したヘテロ接合薄膜太陽電池、特
に光吸収層としてCu-III-VI2族カルコパイライト半導
体、例えば二セレン化銅インジウム (CIS)、ニセレン化
銅インジウム・ガリウム(CIGS)あるいはニセレン・イオ
ウ化銅インジウム・ガリウム (CIGSS)のようなp形半導
体の光吸収層とpnヘテロ接合を有する薄膜太陽電池を
製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heterojunction thin film solar cell using a multi-element compound semiconductor thin film as a light absorbing layer, and more particularly to a Cu-III-VI 2 group chalcopyrite semiconductor, for example, copper indium diselenide as a light absorbing layer. (CIS), copper indium gallium diselenide (CIGS) or copper indium gallium diselenide gallium (CIGSS) and a method for manufacturing a thin film solar cell having a pn heterojunction with a light absorbing layer of a p-type semiconductor.

【0002】[0002]

【従来の技術】前記タイプの薄膜太陽電池は広範囲に実
用化可能であるとみなされ、米国特許第 4335226号明細
書(Michelsen 他による、1982年6月15日発行)に記載
され、かつ高い変換効率の薄膜太陽電池を提供するため
に CISからなる光吸収層上に硫化カドミウム (CdS)層を
成長することを開示している。
2. Description of the Prior Art Thin-film solar cells of the type mentioned above are considered to be widely applicable in practice and are described in U.S. Pat. No. 4,335,226 (Michelsen et al., Published June 15, 1982) and have high conversion. It is disclosed to grow a cadmium sulfide (CdS) layer on a light absorbing layer composed of CIS to provide an efficient thin film solar cell.

【0003】このような高い変換効率の薄膜太陽電池を
開発することを目的とした多くの刊行分献の中でも、米
国特許第 4611091号明細書(Choudray 他による、1986
年9月9日発行)及び米国特許第 5045409号明細書(Eb
erspacher 他による、1991年9月3日発行)は重要であ
る。
Among many publications dedicated to the development of such high conversion efficiency thin film solar cells, US Pat. No. 4,611,091 (Choudray et al., 1986).
Issued September 9, 2013) and US Pat. No. 5,045,409 (Eb
erspacher et al., published September 3, 1991) is important.

【0004】米国特許第 5045409号明細書は CISの薄膜
光吸収層のセレン化の改良方法を、また、米国特許第 4
611091号明細書は、CIS 薄膜光吸収層上に溶液から化学
的に成長したCdS 薄膜上に、有機金属化学的気相成長法
(MOCVD法) により作製した酸化亜鉛のような、透明で導
電性を有する広い禁制帯幅のn形半導体薄膜を成長させ
ることにより CdS層の厚さを大幅に減少させる製造方法
を開示している。
US Pat. No. 5,045,409 describes a method for improving the selenization of thin film light absorbing layers of CIS, and US Pat.
611091 describes a metal organic chemical vapor deposition method on a CdS thin film chemically grown from a solution on a CIS thin film light absorbing layer.
Disclosed is a manufacturing method for significantly reducing the thickness of the CdS layer by growing a transparent and conductive wide bandgap n-type semiconductor thin film such as zinc oxide prepared by (MOCVD method). .

【0005】前記2つの特許明細書は、大面積薄膜太陽
電池モジュールの製造方法において極めて重要と理解さ
れているセレン化水素及びCdS等のような毒性の高い
構成材料の使用量を最小限に抑えるかまたは排除するた
めに有用な製造方法を開示している。
The above two patent specifications minimize the use of highly toxic constituent materials such as hydrogen selenide and CdS, which are understood to be extremely important in the method of manufacturing a large area thin film solar cell module. Disclosed are manufacturing methods that are useful for eliminating or eliminating them.

【0006】米国特許第4611091 号明細書に記載された
溶液から化学的にCdS薄膜を成長する作製方法はそれ
以外の作製方法によるCdSよりもCIS薄膜光吸収層
と高品質なヘテロ接合を形成し、かつシャント抵抗を高
める効果を有するが、このような改良点はCIS薄膜光
吸収層の溶液中への侵漬により形成されるヘテロ接合界
面、特に薄膜光吸収層表面のエッチングあるいは選択的
なクリーニング効果も含まれるとみなしている。
The manufacturing method described in US Pat. No. 4,611,091 for chemically growing a CdS thin film from a solution forms a heterojunction of higher quality with a CIS thin film light absorption layer than CdS by other manufacturing methods. Although it has the effect of increasing the shunt resistance, such improvement is due to etching or selective cleaning of the heterojunction interface formed by dipping the CIS thin film light absorption layer in a solution, especially the surface of the thin film light absorption layer. We consider that the effect is also included.

【0007】[0007]

【発明が解決しようとする課題】ここ数年来、薄膜太陽
電池からカドミウムのような毒性のある材料を原則的に
排除しようとする試みが積極的に提案され実施されてい
る。しかしながら、カドミウム等の毒性のある材料を含
まないことと高品質なヘテロ接合を形成することで高い
変換効率の薄膜太陽電池を作製する試みは成功していな
かった。例えば、水酸化アンモニウムに酢酸亜鉛を溶解
した溶液から成長した亜鉛化合物層は製膜後の大気中で
のアニールを実施しても水酸化亜鉛を30モル%程度まで
多量に含んだ酸化亜鉛薄膜であり、CdS と同程度の良好
な薄膜層は得られなかった。本発明の課題は、前記構造
を有するがカドミウムを含まない高い変換効率のヘテロ
接合を有する薄膜太陽電池およびその製造方法を提供す
ることである。
Since the last few years, attempts have been positively proposed and implemented in principle to eliminate toxic materials such as cadmium from thin film solar cells. However, attempts to produce thin-film solar cells with high conversion efficiency by not including toxic materials such as cadmium and forming high-quality heterojunctions have not been successful. For example, a zinc compound layer grown from a solution of zinc acetate in ammonium hydroxide is a zinc oxide thin film containing a large amount of zinc hydroxide up to about 30 mol% even after annealing in the air after film formation. However, a thin film layer as good as CdS could not be obtained. An object of the present invention is to provide a thin film solar cell having a high conversion efficiency heterojunction having the above structure but containing no cadmium, and a method for manufacturing the same.

【0008】本発明のもう一つの課題は、大容量で経済
性に優れ、良好な再現性で大量生産に適用可能で、かつ
使用化学薬品の濃度や必要量が少ない、前記薄膜太陽電
池およびその製造方法を提供することである。
Another object of the present invention is the thin film solar cell and the thin film solar cell, which have a large capacity, are excellent in economic efficiency, can be applied to mass production with good reproducibility, and have a small concentration or required amount of chemicals used. It is to provide a manufacturing method.

【0009】本発明のもう一つの課題は、高い開放電圧
(VOC) を有する薄膜太陽電池を提供することである。
Another object of the present invention is to provide a high open circuit voltage.
A thin film solar cell having (V OC ).

【0010】[0010]

【課題を解決するための手段】上記の課題は、本発明に
おける、金属裏面電極層と、当該裏面電極層上のp形の
導電形を有し、かつ光吸収層として供される第1の多元
化合物半導体薄膜、特にCu−III −VI2 族カルコパイラ
イト構造の半導体薄膜と、前記第1の多元化合物半導体
薄膜上の第1の導電形と反対の導電形を有し窓層として
供される第2の禁制帯幅が広くかつ透明で導電性を有す
る金属酸化物半導体薄膜と、前記第1の多元化合物半導
体薄膜と第2の金属酸化物半導体薄膜との間の界面に、
溶液から化学的に成長した透明で高抵抗を有するイオウ
含有亜鉛混晶化合物半導体薄膜からなることを特徴とす
る薄膜太陽電池により、解決できる。
SUMMARY OF THE INVENTION According to the first aspect of the present invention, there is provided a metal back electrode layer and a first light absorbing layer having a p-type conductivity type on the back electrode layer. A multi-component compound semiconductor thin film, particularly a semiconductor thin film having a Cu-III-VI 2 group chalcopyrite structure, and a conductivity type opposite to the first conductivity type on the first multi-component compound semiconductor thin film, and serving as a window layer At the interface between the second metal oxide semiconductor thin film having a wide band gap, being transparent and having conductivity, and the first multi-component compound semiconductor thin film and the second metal oxide semiconductor thin film,
A thin film solar cell characterized by comprising a transparent and highly resistive sulfur-containing zinc mixed crystal compound semiconductor thin film chemically grown from a solution can be solved.

【0011】より詳細には、前記薄膜太陽電池は、窓層
として供される第2の半導体薄膜が酸化亜鉛からなり、
p形の導電形を有し、かつ光吸収層として供される第1
の多元化合物半導体薄膜が、CIS 、CIGSあるいはCIGSS
カルコパイライト構造の半導体薄膜からなり、かつ溶液
から化学的に成長した透明で高抵抗なイオウ含有亜鉛混
晶化合物半導体薄膜を前記第1と第2の半導体薄膜の界
面に有する構造からなる。
More specifically, in the thin-film solar cell, the second semiconductor thin film serving as the window layer is made of zinc oxide,
First having a p-type conductivity and serving as a light absorbing layer
Multi-component compound semiconductor thin film of CIS, CIGS or CIGSS
The semiconductor thin film has a chalcopyrite structure, and has a structure having a transparent and highly resistive sulfur-containing zinc mixed crystal compound semiconductor thin film chemically grown from a solution at the interface between the first and second semiconductor thin films.

【0012】より詳細には、前記薄膜太陽電池は、光吸
収層として供される第1の半導体薄膜と窓層として供さ
れる第2の半導体薄膜の界面に、溶液から化学的に成長
される透明で高抵抗なイオウ含有亜鉛混晶化合物半導体
薄膜が、硫酸亜鉛、塩化亜鉛及び酢酸亜鉛、有利には酢
酸亜鉛を適当な錯形成剤、例えば水酸化アンモニウムに
溶解して作製した溶液中で亜鉛アンモニウム錯塩を形成
させ、その溶液中にイオウ含有塩、例えば、チオリア、
チオアセトアミド、トリエタノールアミン、チオウレタ
ン、トリエチルアミン及びチオセミカルバジド、有利に
はチオリアを溶解し、光吸収層として供される第1の半
導体薄膜を前記溶液と接触させて、第1の半導体薄膜上
に当該溶液からイオウ含有亜鉛混晶化合物半導体薄膜を
成長させ、かつ成長したイオウ含有亜鉛混晶化合物半導
体薄膜を大気中で数分〜数十分間アニールすることで乾
燥し、かつ膜中の水酸化亜鉛を酸化亜鉛に転化すると同
時にイオウによる第1の半導体薄膜表面の改質を促進す
る工程により作製されたイオウ含有亜鉛混晶化合物半導
体薄膜を有する構造からなる。イオウ含有亜鉛混晶化合
物半導体薄膜はアニール工程の前に、窒素ガスを表面に
吹き付けることで乾燥させることができる。
More specifically, the thin film solar cell is chemically grown from a solution at the interface of a first semiconductor thin film serving as a light absorbing layer and a second semiconductor thin film serving as a window layer. A transparent and highly resistive sulfur-containing zinc mixed crystal compound semiconductor thin film is prepared by dissolving zinc sulfate, zinc chloride and zinc acetate, preferably zinc acetate in a suitable complexing agent such as ammonium hydroxide. An ammonium complex salt is formed and in its solution a sulfur-containing salt, for example thiolya,
On the first semiconductor thin film, thioacetamide, triethanolamine, thiourethane, triethylamine and thiosemicarbazide, preferably thioria, is dissolved and a first semiconductor thin film serving as a light absorbing layer is brought into contact with the solution. A sulfur-containing zinc mixed crystal compound semiconductor thin film is grown from the solution, and the grown sulfur-containing zinc mixed crystal compound semiconductor thin film is annealed in the atmosphere for several minutes to several tens of minutes to dry and The structure has a sulfur-containing zinc mixed crystal compound semiconductor thin film prepared by a step of converting zinc to zinc oxide and at the same time accelerating modification of the surface of the first semiconductor thin film with sulfur. The sulfur-containing zinc mixed crystal compound semiconductor thin film can be dried by blowing nitrogen gas onto the surface before the annealing step.

【0013】より詳細には、前記イオウ含有亜鉛混晶化
合物半導体薄膜の作製に有利な溶液は、2.5 M水酸化ア
ンモニウム中に溶解した0.025 M亜鉛塩及び0.375 Mチ
オリアからなる。亜鉛塩が、有利には酢酸亜鉛である。
有利な溶液温度は80℃であり、浸漬時間は3分間及びア
ニール温度は設定温度で200 ℃であり、アニール時間は
15分間である。50%までの酢酸亜鉛またはチオリア濃度
の低下は、イオウ含有亜鉛混晶化合物半導体薄膜作製に
許容される浸漬時間内であるが、再現性が幾分か劣り、
かつ生産性からは短時間の方が望ましい。2 Mまでのチ
オリア濃度の増加も許容されるが、より低い濃度、有利
には0.35M〜1.1 Mの範囲では同程度の変換効率が得ら
れるが、より低い濃度の方が化学薬品使用量の削減から
好ましい。
More specifically, an advantageous solution for preparing the sulfur-containing zinc mixed crystal compound semiconductor thin film comprises 0.025 M zinc salt and 0.375 M thiolya dissolved in 2.5 M ammonium hydroxide. The zinc salt is preferably zinc acetate.
The preferred solution temperature is 80 ° C, the immersion time is 3 minutes and the annealing temperature is 200 ° C at the set temperature, the annealing time is
15 minutes. Decrease in zinc acetate or thiolya concentration up to 50% is within the dipping time allowed for the production of sulfur-containing zinc mixed crystal compound semiconductor thin film, but reproducibility is somewhat inferior,
Moreover, from the viewpoint of productivity, shorter time is desirable. Increasing thiolia concentration up to 2 M is acceptable, but lower concentrations, preferably in the range 0.35 M to 1.1 M, give comparable conversion efficiencies, but lower concentrations give higher chemical usage. Reduction is preferable.

【0014】より詳細には、前記イオウ含有亜鉛混晶化
合物半導体薄膜の作製に有利な浸漬時間は1〜5分間で
あり、この時間内で良好な変換効率を有する薄膜太陽電
池が得られる。特に、高い開放電圧(VOC)を有する薄
膜太陽電池を作製するためには浸漬時間3分間が好まし
い。
More specifically, the immersion time advantageous for producing the sulfur-containing zinc mixed crystal compound semiconductor thin film is 1 to 5 minutes, and within this time, a thin film solar cell having good conversion efficiency can be obtained. In particular, a dipping time of 3 minutes is preferable for producing a thin film solar cell having a high open circuit voltage (V OC ).

【0015】より詳細には、良好な変換効率を有する薄
膜太陽電池を作製するためには、設定温度で150 〜250
℃の範囲のアニールが必要である。有利には設定温度で
200℃であり、時間は15分間である。
More specifically, in order to manufacture a thin film solar cell having a good conversion efficiency, a temperature of 150 to 250 is set at a preset temperature.
Annealing in the ° C range is required. Advantageously at set temperature
It is 200 ° C. and the time is 15 minutes.

【0016】より詳細には、光吸収層として供される第
1の半導体薄膜と窓層として供される第2の半導体薄膜
の界面に、溶液から化学的に成長される透明で高抵抗な
半導体薄膜がZn、O 、S 及びOHから構成されることは、
X PS(X-ray PhotoelectronSpectroscopy、X 線による
光電子分光法)により裏付けられた。
More specifically, at the interface between the first semiconductor thin film serving as the light absorbing layer and the second semiconductor thin film serving as the window layer, a transparent and high resistance semiconductor chemically grown from a solution. The thin film is composed of Zn, O 2, S and OH,
This was confirmed by XPS (X-ray Photoelectron Spectroscopy).

【0017】高抵抗のイオウ含有混晶化合物半導体は、
n形の導電形を有するSn(O,OH,S)x、Cd(O,OH,S)x 、CdZ
n(O,OH, S) X 、ZnSn(O,OH,S)x 、Zn(O,OH,S)x 、In(O,
OH,S)x 、 Ga(O,OH,S) x 、InGa(O,OH,S)x を含むこと
ができる。
The high resistance sulfur-containing mixed crystal compound semiconductor is
Sn (O, OH, S) x , Cd (O, OH, S) x , CdZ having n-type conductivity
n (O, OH, S) X , ZnSn (O, OH, S) x , Zn (O, OH, S) x , In (O,
OH, S) x , Ga (O, OH, S) x , InGa (O, OH, S) x .

【0018】[0018]

【作用】溶液から化学的に、透明で高抵抗なイオウ含有
亜鉛混晶化合物半導体薄膜を、p形の導電形を有するCu
−III −VI2 族カルコパイライト構造の光吸収層として
供される半導体薄膜上に安定に成長することで高い変換
効率の薄膜太陽電池が作製され、従来の硫化カドミウム
をその構成材料として含むCu−III −VI2 族カルコパイ
ライト構造の光吸収層を有する薄膜太陽電池のカドミウ
ムの毒性という問題を解決し、かつ簡単な装置構成と安
価な作製法で、安全性に問題のない大面積太陽電池モジ
ュールの製造を可能にする。また、溶液からの化学的成
長であるが、カドミウムのような毒性のある材料を含ん
だ廃液が生成せず、結果的に廃液処理コストの削減から
製造コストの引下げに寄与し、薄膜太陽電池自体のコス
ト引下げが可能となる。
[Function] Chemically, from a solution, a transparent, high-resistance, sulfur-containing zinc mixed crystal compound semiconductor thin film is formed with Cu having a p-type conductivity type.
-III-VI A thin-film solar cell with high conversion efficiency was produced by stable growth on a semiconductor thin film serving as a light-absorbing layer of a group 2 chalcopyrite structure, and Cu-containing conventional cadmium sulfide as its constituent material III-VI Large-area solar cell module that solves the problem of cadmium toxicity in thin-film solar cells that have a light-absorbing layer of the Group 2 chalcopyrite structure, and has a simple device configuration and an inexpensive fabrication method that does not pose a safety problem. Enable the manufacture of. Also, although it is a chemical growth from a solution, it does not generate a waste liquid containing a toxic material such as cadmium, and as a result it contributes to the reduction of the waste liquid processing cost and the manufacturing cost. The cost can be reduced.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1に本発明の薄膜太陽電池の構造例を示
す。薄膜太陽電池1は1〜3mm厚さを有するガラス基板
2上に形成される。裏面電極3は、前記ガラス基板2上
に作製される1〜2ミクロンの厚さのモリブデンあるい
はチタン等の金属である。光吸収層として供される第1
の半導体薄膜4は、p形の導電形を有するCu−III −VI
2 族カルコパイライト構造の厚さ1〜3ミクロンの薄
膜、例えば、CIS 、CIGSあるいはCIGSS 等の多元化合物
半導体薄膜である。この薄膜上に、以下に記載するよう
な溶液から化学的に成長させた高抵抗のイオウ含有亜鉛
混晶化合物半導体薄膜5が形成される。その上に、窓層
として供されるn形の導電形を有する禁制帯幅が広くか
つ透明で導電性を有する厚さ0.5 〜3ミクロンの酸化亜
鉛からなる第2の金属酸化物半導体薄膜6が形成され
る。更に、上部電極あるいはスクライブライン7が、n
形酸化亜鉛からなる第2の金属酸化物半導体薄膜6の露
出表面に作製される。
FIG. 1 shows an example of the structure of the thin film solar cell of the present invention. The thin film solar cell 1 is formed on a glass substrate 2 having a thickness of 1 to 3 mm. The back electrode 3 is a metal such as molybdenum or titanium having a thickness of 1 to 2 μm formed on the glass substrate 2. First serving as light absorption layer
The semiconductor thin film 4 of Cu-III-VI has a p-type conductivity type.
It is a thin film of Group 2 chalcopyrite structure having a thickness of 1 to 3 μm, for example, a multi-element compound semiconductor thin film such as CIS, CIGS or CIGSS. On this thin film, a high resistance sulfur-containing zinc mixed crystal compound semiconductor thin film 5 chemically grown from a solution as described below is formed. A second metal oxide semiconductor thin film 6 made of zinc oxide having a wide forbidden band width, a wide forbidden band width, a thickness of 0.5 to 3 μm, which is transparent, and has conductivity, which serves as a window layer, is formed thereon. It is formed. Further, the upper electrode or the scribe line 7 is n
It is formed on the exposed surface of the second metal oxide semiconductor thin film 6 made of zinc oxide.

【0021】本発明の薄膜太陽電池1は、光吸収層とし
て供される第1の半導体薄膜4と窓層として供される第
2の半導体薄膜6の界面に、酢酸亜鉛を液温80℃の水酸
化アンモニウムに溶解して亜鉛アンモニウム錯塩を形成
させ、その溶液中にイオウ含有塩であるチオリアを溶解
し、光吸収層として供される第1の半導体薄膜4を前記
溶液と3分間接触させて、第1の半導体薄膜4上に当該
溶液からイオウ含有亜鉛混晶化合物半導体薄膜5を化学
的に成長させ、かつ成長したイオウ含有亜鉛混晶化合物
半導体薄膜5を大気中で設定温度200 ℃で15分間アニ
ールすることで乾燥し、かつ膜中の水酸化亜鉛を酸化亜
鉛に転化すると同時にイオウによる第1の半導体薄膜4
表面の改質を促進する工程により作製されたイオウ含有
亜鉛混晶化合物半導体薄膜5を有する構造からなること
を特徴とする。
The thin-film solar cell 1 of the present invention has zinc acetate at a liquid temperature of 80 ° C. at the interface between the first semiconductor thin film 4 serving as a light absorbing layer and the second semiconductor thin film 6 serving as a window layer. It is dissolved in ammonium hydroxide to form a zinc ammonium complex salt, thioria which is a sulfur-containing salt is dissolved in the solution, and the first semiconductor thin film 4 serving as a light absorbing layer is brought into contact with the solution for 3 minutes. , A sulfur-containing zinc mixed crystal compound semiconductor thin film 5 is chemically grown on the first semiconductor thin film 4 from the solution, and the grown sulfur-containing zinc mixed crystal compound semiconductor thin film 5 is set in the air at a set temperature of 200 ° C. for 15 minutes. It is dried by annealing for 1 minute, and the zinc hydroxide in the film is converted into zinc oxide, and at the same time, the first semiconductor thin film 4 made of sulfur is used.
It is characterized by having a structure having a sulfur-containing zinc mixed crystal compound semiconductor thin film 5 produced by a step of promoting surface modification.

【0022】図2に、チオリア濃度を変化させて作製し
たイオウ含有亜鉛混晶化合物半導体薄膜を有するCIS 薄
膜太陽電池の開放電圧VOC及び曲線因子FFの変化特性
を示す。図2に示す前記特性より、有利なチオリア濃度
は、化学薬品使用量の削減から好ましい低い濃度である
0.3〜0.4 M、特に 0.375Mで高い開放電圧VOCを、0.
4 Mで高い曲線因子FFを夫々示した。この時の他の薬
品濃度は、2.5 M水酸化アンモニウム、0.025 M酢酸亜
鉛であった。
FIG. 2 shows the change characteristics of the open circuit voltage V OC and fill factor FF of a CIS thin film solar cell having a sulfur-containing zinc mixed crystal compound semiconductor thin film produced by changing the thiolia concentration. From the above characteristics shown in FIG. 2, the advantageous thiolya concentration is a low concentration preferable from the viewpoint of reducing the amount of chemicals used.
High open circuit voltage V OC at 0.3 to 0.4 M, especially 0.375 M,
A high fill factor FF was exhibited at 4 M, respectively. The other chemical concentrations at this time were 2.5 M ammonium hydroxide and 0.025 M zinc acetate.

【0023】図3に、イオウ含有亜鉛混晶化合物半導体
薄膜を有する CIS薄膜太陽電池のアニール温度に対する
曲線因子FFの変化特性を示す。図3に示す前記特性よ
り、良好な変換効率を有する薄膜太陽電池を作製するた
めには、設定温度で 150〜250 ℃の範囲のアニール、有
利には設定温度で 200℃が必要であることがわかる。ア
ニール時間はいずれも15分間である。
FIG. 3 shows the change characteristics of the fill factor FF with respect to the annealing temperature of the CIS thin film solar cell having the sulfur-containing zinc mixed crystal compound semiconductor thin film. From the characteristics shown in FIG. 3, it is necessary to anneal at a set temperature of 150 to 250 ° C., preferably 200 ° C. at the set temperature in order to produce a thin film solar cell having good conversion efficiency. Recognize. The annealing time is 15 minutes in each case.

【0024】図4に、図1に示す本発明の界面層(バッ
ファー層)がイオウ含有亜鉛混晶化合物半導体薄膜から
なる CIS薄膜太陽電池の電圧V[V] の変化に対する電流
密度J[mA/cm2]の変化特性を、前記 CIS薄膜太陽電池と
同様の構造で界面層(バッファー層)が薄膜CdS 層から
なる CIS薄膜太陽電池のそれと比較して示す。なお、前
記特性の測定条件および結果は、以下のとおりである。
有効発電面積 0.95 cm2 、エアマスAM1.5 、照射強
度100mW/cm2 で、Zn混晶化合物界面層(a) において
は、開放電圧VOC=0.480[V]、短絡電流密度JSC=37.8
[mA/cm2]、曲線因子FF=0.67、変換効率Eff=12.1
[%] であり、CdS界面層(b) においては、開放電圧V
OC=0.458[V]、短絡電流密度JSC=36.2[mA/cm2]、曲線
因子FF=0.68、変換効率Eff=11.26[%]である。前記
特性から明らかなように、イオウ含有亜鉛混晶化合物半
導体薄膜を有するCIS薄膜太陽電池の方が高い開放電圧
OCを示している。その結果、イオウ含有亜鉛混晶化合
物半導体薄膜を使用することでCdS と同程度あるいはそ
れ以上の性能を有する CIS薄膜太陽電池が作製できるこ
とが示された。
FIG. 4 shows the current density J [mA /] of the CIS thin film solar cell in which the interface layer (buffer layer) of the present invention shown in FIG. 1 is a sulfur-containing zinc mixed crystal compound semiconductor thin film, with respect to changes in voltage V [V]. The change characteristics of [cm 2 ] are shown in comparison with those of a CIS thin film solar cell in which the interface layer (buffer layer) is a thin film CdS layer with the same structure as the CIS thin film solar cell. The measurement conditions and results of the characteristics are as follows.
With an effective power generation area of 0.95 cm 2 , air mass AM 1.5, irradiation intensity of 100 mW / cm 2 , and in the Zn mixed crystal compound interface layer (a), open circuit voltage V OC = 0.480 [V], short-circuit current density J SC = 37.8.
[mA / cm 2 ], fill factor FF = 0.67, conversion efficiency E ff = 12.1
[%] And in the CdS interface layer (b), the open circuit voltage V
OC = 0.458 [V], short circuit current density J SC = 36.2 [mA / cm 2 ], fill factor FF = 0.68, conversion efficiency E ff = 11.26 [%]. As is clear from the above characteristics, the CIS thin film solar cell having the sulfur-containing zinc mixed crystal compound semiconductor thin film exhibits a higher open circuit voltage V OC . As a result, it was shown that CIS thin-film solar cells with the same or better performance than CdS could be fabricated by using sulfur-containing zinc mixed crystal compound semiconductor thin films.

【0025】[0025]

【発明の効果】以上の記載のように本発明によれば、従
来からの硫化カドミウムをその構成材料として含むCu-I
II-VI2族カルコパイライト構造の光吸収層を有する薄膜
太陽電池のカドミウムの毒性に関係した課題が解決で
き、かつ安全性に問題のない大面積太陽電池モジュール
の製造を可能にし、また、溶液からの化学的成長である
が、カドミウムのような毒性のある材料を含んだ廃液が
生成せず、結果的に廃液処理コストの削減から製造コス
トの引き下げに寄与し、薄膜太陽電池自体のコスト引き
下げが可能となる高抵抗なイオウ含有亜鉛混晶化合物半
導体薄膜を有する、高い変換効率の薄膜太陽電池を作製
することが可能である。
As described above, according to the present invention, Cu-I containing conventional cadmium sulfide as its constituent material is used.
II-VI Group 2 can solve problems related to toxicity of cadmium in thin-film solar cells with chalcopyrite structure light absorption layer, and enables production of large-area solar cell module with no safety problem, and solution However, it does not generate waste liquid containing toxic materials such as cadmium, and as a result, it contributes to the reduction of manufacturing cost due to the reduction of waste liquid treatment cost, and the cost reduction of thin film solar cell itself. It is possible to manufacture a thin-film solar cell having a high resistance and a zinc-containing mixed crystal compound semiconductor thin film having high resistance, which has a high conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の薄膜太陽電池の構造を示す断
面図である。
FIG. 1 is a cross-sectional view showing the structure of a thin-film solar cell according to an example of the present invention.

【図2】イオウ含有亜鉛混晶化合物半導体薄膜を有する
CIS薄膜太陽電池のチオリヤ濃度の変化に対する開放電
圧VOC及び曲線因子FFの変化の特性を示す図である。
FIG. 2 has a sulfur-containing zinc mixed crystal compound semiconductor thin film
It is a figure which shows the characteristic of the change of open circuit voltage VOC and fill factor FF with respect to the change of the thiolya density | concentration of a CIS thin film solar cell.

【図3】イオウ含有亜鉛混晶化合物半導体薄膜を有する
CIS薄膜太陽電池特性の曲線因子FFに及ぼすアニール
の効果を示す図である。
FIG. 3 has a sulfur-containing zinc mixed crystal compound semiconductor thin film
It is a figure which shows the effect of annealing which affects the fill factor FF of the CIS thin film solar cell characteristic.

【図4】図1に図示の界面層がイオウ含有亜鉛混晶化合
物半導体薄膜からなる CIS薄膜太陽電池の電流電圧特性
を、前記 CIS薄膜太陽電池と同じ構造で界面層が薄膜Cd
S 層からなる CIS薄膜太陽電池のそれと比較して示した
図である。
FIG. 4 shows the current-voltage characteristics of a CIS thin film solar cell in which the interface layer shown in FIG. 1 is a zinc-containing mixed crystal compound semiconductor film containing sulfur.
It is the figure shown in comparison with that of the CIS thin film solar cell consisting of S layer.

【符号の説明】[Explanation of symbols]

1 薄膜太陽電池 2 基板(ガラス) 3 裏面電極(金属) 4 p形の第1の半導体薄膜(光吸収層) 5 イオウ含有亜鉛混晶化合物からなる第3の半導体薄
膜(界面層) 6 n形の第2の半導体薄膜(窓層) 7 上部電極あるいはスクライブライン
1 Thin Film Solar Cell 2 Substrate (Glass) 3 Back Electrode (Metal) 4 First p-type Semiconductor Thin Film (Light Absorbing Layer) 5 Third Semiconductor Thin Film Made of Sulfur-Containing Zinc Mixed Crystal Compound (Interface Layer) 6 n-type Second semiconductor thin film (window layer) 7 Upper electrode or scribe line

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 金属裏面電極層と、当該裏面電極層上に
設けられp形またはn形の導電形を有する第1の多元化
合物半導体薄膜と、前記第1の多元化合物半導体薄膜上
の第1の導電形と反対の導電形を有し禁制帯幅が広くか
つ透明で導電性を有する第2の金属酸化物半導体薄膜
と、前記第1の多元化合物半導体薄膜と第2の金属酸化
物半導体薄膜の間の界面に設けられ透明で高抵抗を有す
る混晶化合物半導体薄膜を有する構造からなることを特
徴とする薄膜太陽電池。
1. A metal back electrode layer, a first multi-component compound semiconductor thin film provided on the back electrode layer and having a p-type or n-type conductivity, and a first multi-component compound semiconductor thin film on the first multi-component compound semiconductor thin film. A second metal oxide semiconductor thin film having a conductivity type opposite to that of the above, having a wide band gap, being transparent and having conductivity, said first multi-component compound semiconductor thin film and second metal oxide semiconductor thin film A thin film solar cell comprising a structure having a mixed crystal compound semiconductor thin film which is transparent and has a high resistance provided at an interface between the thin film solar cells.
【請求項2】 第1の導電形と反対の導電形を有し透明
で導電性を有する第2の金属酸化物半導体薄膜が、窓層
として供され、酸化亜鉛からなることを特徴とする請求
項1記載の薄膜太陽電池。
2. A second metal oxide semiconductor thin film having a conductivity type opposite to that of the first conductivity type and being transparent and having conductivity is provided as a window layer and is made of zinc oxide. Item 3. A thin-film solar cell according to item 1.
【請求項3】 第1の多元化合物半導体薄膜と第2の金
属酸化物半導体薄膜の間の界面に設けられ透明で高抵抗
を有する混晶化合物半導体薄膜が、溶液から化学的に成
長したものからなることを特徴とする請求項1記載の薄
膜太陽電池。
3. A mixed crystal compound semiconductor thin film, which is transparent and has a high resistance and which is provided at an interface between the first multi-component compound semiconductor thin film and the second metal oxide semiconductor thin film, is obtained by chemically growing from a solution. The thin film solar cell according to claim 1, wherein
【請求項4】 第1の多元化合物半導体薄膜と第2の金
属酸化物半導体薄膜の間の界面に設けられ透明で高抵抗
を有する混晶化合物半導体薄膜が、酸素、イオウ及び水
酸基を含んだ亜鉛混晶化合物からなることを特徴とする
請求項1または3記載の薄膜太陽電池。
4. A mixed crystal compound semiconductor thin film having a high resistance, which is transparent and is provided at an interface between the first multi-component compound semiconductor thin film and the second metal oxide semiconductor thin film, is zinc containing oxygen, sulfur and a hydroxyl group. The thin film solar cell according to claim 1 or 3, which is composed of a mixed crystal compound.
【請求項5】 第1の多元化合物半導体薄膜が、光吸収
層として供され、ニセレン化銅インジウム及びI −III
−VI2 族カルコパイライト化合物半導体の1つからなる
ことを特徴とする請求項1記載の薄膜太陽電池。
5. The first multi-component compound semiconductor thin film is provided as a light absorption layer, and copper indium diselenide and I-III are provided.
The thin-film solar cell according to claim 1, wherein the thin-film solar cell comprises one of a group-VI 2 chalcopyrite compound semiconductor.
【請求項6】 第1の多元化合物半導体薄膜が、ニセレ
ン・イオウ化銅インジウム・ガリウムからなることを特
徴とする請求項1記載の薄膜太陽電池。
6. The thin film solar cell according to claim 1, wherein the first multi-element compound semiconductor thin film is made of nickelene.copper indium sulphide.gallium.
【請求項7】 ヘテロ接合薄膜太陽電池を製造する方法
において、金属裏面電極層上にp形の導電形を有する第
1の多元化合物半導体薄膜を作成し、前記第1の多元化
合物半導体薄膜上に透明で高抵抗を有する混晶化合物半
導体薄膜を溶液から化学的に成長させ、その上に前記第
1の多元化合物半導体薄膜の第1の導電形と反対の導電
形を有し禁制帯幅が広くかつ透明で導電性を有する第2
の金属酸化物半導体薄膜を成長させることを特徴とする
ヘテロ接合薄膜太陽電池の製造方法。
7. A method of manufacturing a heterojunction thin film solar cell, wherein a first multi-component compound semiconductor thin film having a p-type conductivity type is formed on a metal back electrode layer, and the first multi-component compound semiconductor thin film is formed on the first multi-component compound semiconductor thin film. A transparent mixed crystal compound semiconductor thin film having a high resistance is chemically grown from a solution, and has a conductivity type opposite to the first conductivity type of the first multi-component compound semiconductor thin film and has a wide band gap. And transparent and conductive second
A method for manufacturing a heterojunction thin-film solar cell, which comprises growing the metal oxide semiconductor thin film according to claim 1.
【請求項8】 前記第1の多元化合物半導体薄膜と第2
の金属酸化物半導体薄膜の間の界面に設けられ透明で高
抵抗を有する混晶化合物半導体薄膜が、亜鉛塩及びイオ
ウ含有塩を適当な錯形成剤と混合して亜鉛塩及びイオウ
含有塩を溶解させた溶液中に亜鉛アンモニア錯塩を形成
させ、第1の多元化合物半導体薄膜を前記溶液中で接触
させて、当該溶液から酸素、イオウ及び水酸基を含んだ
混晶化合物半導体薄膜を第1の多元化合物半導体薄膜上
に成長させることを特徴とする請求項7記載の製造方
法。
8. The first multi-component compound semiconductor thin film and the second
A mixed crystal compound semiconductor thin film, which is transparent and has a high resistance, provided at the interface between the metal oxide semiconductor thin films, dissolves the zinc salt and the sulfur-containing salt by mixing the zinc salt and the sulfur-containing salt with an appropriate complexing agent. A zinc-ammonium complex salt is formed in the solution, the first multi-component compound semiconductor thin film is brought into contact with the solution, and a mixed crystal compound semiconductor thin film containing oxygen, sulfur and a hydroxyl group from the solution is formed into the first multi-component compound. The manufacturing method according to claim 7, wherein the growth is performed on a semiconductor thin film.
【請求項9】 亜鉛塩及びイオウ含有塩を適当な錯形成
剤と混合して亜鉛塩及びイオウ含有塩を溶解させた溶液
中に亜鉛アンモニア錯塩を形成させ、第1の多元化合物
半導体薄膜を前記溶液中で接触させて、当該溶液から酸
素、イオウ及び水酸基を含んだ混晶化合物半導体薄膜を
第1の多元化合物半導体薄膜上に成長させ、その後混晶
化合物半導体薄膜を成長させた第1の多元化合物半導体
薄膜を大気中でアニールして亜鉛混晶化合物中の水酸化
物の一部を酸化物に、あるいは第1の多元化合物半導体
薄膜と亜鉛混晶化合物間のアニオン種の相互拡散を通し
て第1の多元化合物半導体薄膜表面の改質を行なうこと
により、透明で高抵抗の酸素、イオウ及び水酸基を含ん
だ亜鉛混晶化合物を作製することを特徴とする請求項7
記載の製造方法。
9. A zinc-ammonium complex salt is formed by mixing a zinc salt and a sulfur-containing salt with an appropriate complexing agent to form a zinc-ammonia complex salt in a solution in which the zinc salt and the sulfur-containing salt are dissolved. A first multi-component element in which a mixed crystal compound semiconductor thin film containing oxygen, sulfur and a hydroxyl group is grown on the first multi-component compound semiconductor thin film by contacting in a solution, and then the mixed crystal compound semiconductor thin film is grown. The compound semiconductor thin film is annealed in the atmosphere to convert part of the hydroxide in the zinc mixed crystal compound into an oxide, or through the mutual diffusion of anion species between the first multi-component compound semiconductor thin film and the zinc mixed crystal compound. 8. A transparent and high resistance zinc mixed crystal compound containing oxygen, sulfur and hydroxyl groups is produced by modifying the surface of the multi-component compound semiconductor thin film of claim 7.
The manufacturing method described.
【請求項10】 禁制帯幅が広くかつ透明で導電性を有
する第2の金属酸化物半導体薄膜が、窓層として供さ
れ、n形酸化亜鉛であることを特徴とする請求項7、8
または9記載の製造方法。
10. The second metal oxide semiconductor thin film having a wide band gap, being transparent and having conductivity is used as a window layer and is n-type zinc oxide.
Or the manufacturing method according to 9.
【請求項11】 第1の多元化合物半導体薄膜が、光吸
収層として供され、二セレン化銅インジニム、二セレン
化銅インジニム・ガリウムあるいは二セレン・イオウ化
銅インジニム・ガリウムからなることを特徴とする請求
項7、8または9記載の製造方法。
11. A first multi-element compound semiconductor thin film, which serves as a light absorption layer, is made of copper diselenide indinime, copper diselenide indinime gallium, or diselenide copper indinime gallium. The manufacturing method according to claim 7, 8, or 9.
【請求項12】 亜鉛塩が、硫酸亜鉛、塩化亜鉛及び酢
酸亜鉛の1つであることを特徴とする請求項8または9
記載の製造方法。
12. The zinc salt is one of zinc sulphate, zinc chloride and zinc acetate, characterized in that
The manufacturing method described.
【請求項13】 イオウ含有塩が、チオアセトアミド、
チオリア、チオセミカルバジド、チオウレタン、ジエチ
ルアミン、トリエタノールアミンの1つであることを特
徴とする請求項8または9記載の製造方法。
13. The sulfur-containing salt is thioacetamide,
The production method according to claim 8 or 9, which is one of thioria, thiosemicarbazide, thiourethane, diethylamine and triethanolamine.
【請求項14】 亜鉛塩及びイオウ含有塩と混合される
錯形成剤が、水酸化アンモニウムからなることを特徴と
する請求項8または9記載の製造方法。
14. The method according to claim 8, wherein the complexing agent mixed with the zinc salt and the sulfur-containing salt is ammonium hydroxide.
【請求項15】 亜鉛塩が、酢酸亜鉛であり、イオウ含
有塩がチオリアからなることを特徴とする請求項8また
は9記載の製造方法。
15. The method according to claim 8 or 9, wherein the zinc salt is zinc acetate, and the sulfur-containing salt is thioria.
【請求項16】 溶液が 0.1M〜4M水酸化アンモニウ
ム中に溶解した0.01M〜1M亜鉛塩及び 0.1M〜1Mチ
オリアからなることを特徴とする請求項7、8または9
記載の製造方法。
16. A solution comprising 0.01M to 1M zinc salt and 0.1M to 1M thiolya dissolved in 0.1M to 4M ammonium hydroxide.
The manufacturing method described.
【請求項17】 溶液が1M〜3M水酸化アンモニウム
中に溶解した0.01M〜0.05M亜鉛塩及び0.1 M〜 0.5M
チオリアからなることを特徴とする請求項7、8または
9記載の製造方法。
17. A solution of 0.01M to 0.05M zinc salt and 0.1M to 0.5M dissolved in 1M to 3M ammonium hydroxide.
10. The method according to claim 7, 8 or 9, characterized in that it comprises thiolya.
【請求項18】 溶液がほぼ 2.5M水酸化アンモニウム
中に溶解した 0.025M亜鉛塩及び 0.375Mチオリアから
なることを特徴とする請求項7、8または9記載の製造
方法。
18. A process according to claim 7, 8 or 9, characterized in that the solution consists of 0.025M zinc salt and 0.375M thiolya dissolved in approximately 2.5M ammonium hydroxide.
JP15276295A 1995-05-29 1995-05-29 Heterojunction thin-film solar cell and method of manufacturing the same Expired - Lifetime JP3249342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15276295A JP3249342B2 (en) 1995-05-29 1995-05-29 Heterojunction thin-film solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15276295A JP3249342B2 (en) 1995-05-29 1995-05-29 Heterojunction thin-film solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08330614A true JPH08330614A (en) 1996-12-13
JP3249342B2 JP3249342B2 (en) 2002-01-21

Family

ID=15547601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15276295A Expired - Lifetime JP3249342B2 (en) 1995-05-29 1995-05-29 Heterojunction thin-film solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3249342B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259016B1 (en) 1999-03-05 2001-07-10 Matsushita Electric Industrial Co., Ltd. Solar cell
JP2002343987A (en) * 2001-05-15 2002-11-29 Showa Shell Sekiyu Kk Manufacturing method for heterojunction thin film solar battery
US6534704B2 (en) 2000-10-18 2003-03-18 Matsushita Electric Industrial Co., Ltd. Solar cell
WO2003081684A1 (en) 2002-03-26 2003-10-02 Honda Giken Kogyo Kabushiki Kaisha Compound thin-film solar cell and process for producing the same
WO2003105241A1 (en) * 2002-06-07 2003-12-18 本田技研工業株式会社 Method for manufacturing compound thin-film solar cell
DE102006039331A1 (en) * 2006-08-15 2008-02-28 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Photovoltaic-thin layer structure for solar cells and/or photovoltaic module, comprises photoelectric active absorber layer, transparent front contact layer and multi-layer buffer layer placed between absorber layer and front contact layer
WO2008120306A1 (en) * 2007-03-28 2008-10-09 Showa Shell Sekiyu K.K. Method for manufacturing cis based thin film solar cell device
WO2009069582A1 (en) * 2007-11-30 2009-06-04 Showa Shell Sekiyu K.K. Laminated structure for cis-family solar cell, and integrated structure and manufacturing method for cis-family thin-film solar cell
JP2009259938A (en) * 2008-04-15 2009-11-05 Honda Motor Co Ltd Method of manufacturing chalcopyrite thin film solar cell, and apparatus therefor
JP2010073021A (en) * 2008-09-19 2010-04-02 Nissha Printing Co Ltd Coordinate input device
JP2010073022A (en) * 2008-09-19 2010-04-02 Nissha Printing Co Ltd Coordinate input device
JP2010129658A (en) * 2008-11-26 2010-06-10 Kyocera Corp Method of manufacturing compound semiconductor thin film, and method of manufacturing thin-film solar cell
JP2010129659A (en) * 2008-11-26 2010-06-10 Kyocera Corp Method of manufacturing compound semiconductor thin film, and method of manufacturing thin-film solar cell
JP2011187732A (en) * 2010-03-09 2011-09-22 Institute Of National Colleges Of Technology Japan Sulfide thin film device and method of manufacturing the same
US8093096B2 (en) 2005-05-27 2012-01-10 Showa Shell Sekiyu K.K. Method of successive high-resistance buffer layer/window layer (transparent conductive film) formation for CIS based thin-film solar cell and apparatus for successive film formation for practicing the method of successive film formation
JP2012028650A (en) * 2010-07-26 2012-02-09 Toyota Central R&D Labs Inc Photoelectric element and manufacturing method thereof
WO2012147427A1 (en) 2011-04-25 2012-11-01 京セラ株式会社 Photovoltaic converter
WO2013111443A1 (en) 2012-01-27 2013-08-01 京セラ株式会社 Photoelectric conversion device
KR20160108451A (en) 2014-05-22 2016-09-19 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Buffer layer film-forming method and buffer layer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004040546B3 (en) 2004-08-18 2006-05-18 Hahn-Meitner-Institut Berlin Gmbh Method for applying a zinc sulfide buffer layer to a semiconductor substrate by means of chemical bath deposition, in particular to the absorber layer of a chalcopyrite thin-film solar cell
JP5003698B2 (en) 2009-02-18 2012-08-15 Tdk株式会社 Solar cell and method for manufacturing solar cell
JP5517696B2 (en) * 2010-03-29 2014-06-11 京セラ株式会社 Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP5495891B2 (en) * 2010-03-29 2014-05-21 京セラ株式会社 Method for manufacturing photoelectric conversion device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259016B1 (en) 1999-03-05 2001-07-10 Matsushita Electric Industrial Co., Ltd. Solar cell
US6534704B2 (en) 2000-10-18 2003-03-18 Matsushita Electric Industrial Co., Ltd. Solar cell
JP2002343987A (en) * 2001-05-15 2002-11-29 Showa Shell Sekiyu Kk Manufacturing method for heterojunction thin film solar battery
WO2003081684A1 (en) 2002-03-26 2003-10-02 Honda Giken Kogyo Kabushiki Kaisha Compound thin-film solar cell and process for producing the same
US7939745B2 (en) 2002-03-26 2011-05-10 Honda Giken Kogyo Kabushiki Kaisha Compound thin-film solar cell and process for producing the same
EP2216824A2 (en) 2002-03-26 2010-08-11 Honda Giken Kogyo Kabushiki Kaisha Compound thin-film solar cell and process for producing the same
WO2003105241A1 (en) * 2002-06-07 2003-12-18 本田技研工業株式会社 Method for manufacturing compound thin-film solar cell
US7141449B2 (en) 2002-06-07 2006-11-28 Honda Giken Kogyo Kabushiki Kaisha Method of fabricating a compound semiconductor thin-layer solar cell
US8093096B2 (en) 2005-05-27 2012-01-10 Showa Shell Sekiyu K.K. Method of successive high-resistance buffer layer/window layer (transparent conductive film) formation for CIS based thin-film solar cell and apparatus for successive film formation for practicing the method of successive film formation
DE102006039331A1 (en) * 2006-08-15 2008-02-28 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Photovoltaic-thin layer structure for solar cells and/or photovoltaic module, comprises photoelectric active absorber layer, transparent front contact layer and multi-layer buffer layer placed between absorber layer and front contact layer
DE102006039331C5 (en) * 2006-08-15 2013-08-22 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Photovoltaic thin-film construction and manufacturing process
DE102006039331B9 (en) * 2006-08-15 2012-02-23 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Photovoltaic thin-film construction and manufacturing process
DE102006039331B4 (en) * 2006-08-15 2011-07-28 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, 70565 Photovoltaic thin-film construction and manufacturing process
WO2008120306A1 (en) * 2007-03-28 2008-10-09 Showa Shell Sekiyu K.K. Method for manufacturing cis based thin film solar cell device
JP5180188B2 (en) * 2007-03-28 2013-04-10 昭和シェル石油株式会社 CIS-based thin film solar cell device manufacturing method
US7977139B2 (en) 2007-03-28 2011-07-12 Showa Shell Sekiyu K.K. Method for manufacturing CIS based thin film solar cell device
WO2009069582A1 (en) * 2007-11-30 2009-06-04 Showa Shell Sekiyu K.K. Laminated structure for cis-family solar cell, and integrated structure and manufacturing method for cis-family thin-film solar cell
US8691619B2 (en) 2007-11-30 2014-04-08 Showa Shell Sekiyu, K.K. Laminated structure for CIS based solar cell, and integrated structure and manufacturing method for CIS based thin-film solar cell
JP2009259938A (en) * 2008-04-15 2009-11-05 Honda Motor Co Ltd Method of manufacturing chalcopyrite thin film solar cell, and apparatus therefor
JP2010073021A (en) * 2008-09-19 2010-04-02 Nissha Printing Co Ltd Coordinate input device
JP2010073022A (en) * 2008-09-19 2010-04-02 Nissha Printing Co Ltd Coordinate input device
JP2010129659A (en) * 2008-11-26 2010-06-10 Kyocera Corp Method of manufacturing compound semiconductor thin film, and method of manufacturing thin-film solar cell
JP2010129658A (en) * 2008-11-26 2010-06-10 Kyocera Corp Method of manufacturing compound semiconductor thin film, and method of manufacturing thin-film solar cell
JP2011187732A (en) * 2010-03-09 2011-09-22 Institute Of National Colleges Of Technology Japan Sulfide thin film device and method of manufacturing the same
JP2012028650A (en) * 2010-07-26 2012-02-09 Toyota Central R&D Labs Inc Photoelectric element and manufacturing method thereof
WO2012147427A1 (en) 2011-04-25 2012-11-01 京セラ株式会社 Photovoltaic converter
US9484476B2 (en) 2011-04-25 2016-11-01 Kyocera Corporation Photoelectric conversion device
US9935219B2 (en) 2011-04-25 2018-04-03 Kyocera Corporation Photoelectric conversion device
WO2013111443A1 (en) 2012-01-27 2013-08-01 京セラ株式会社 Photoelectric conversion device
EP3142155A1 (en) 2012-01-27 2017-03-15 Kyocera Corporation Photoelectric conversion device
KR20160108451A (en) 2014-05-22 2016-09-19 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Buffer layer film-forming method and buffer layer
US11075318B2 (en) 2014-05-22 2021-07-27 Toshiba Mitsubishi-Electric Industrial Systems Corporation Buffer layer film-forming method and buffer layer

Also Published As

Publication number Publication date
JP3249342B2 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
JP3249342B2 (en) Heterojunction thin-film solar cell and method of manufacturing the same
Chu et al. Thin film II–VI photovoltaics
Braunger et al. An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer
JP4662616B2 (en) Solar cell
JP2651886B2 (en) Method for depositing thin film photovoltaic devices
US5474939A (en) Method of making thin film heterojunction solar cell
US20110240123A1 (en) Photovoltaic Cells With Improved Electrical Contact
JP2011146594A (en) Buffer layer for photoelectric element, method of manufacturing the same, and photoelectric element
KR20100121503A (en) Laminated structure of cis-type solar battery and integrated structure
JP5564688B2 (en) CBD solution for CZTS semiconductor, method for producing buffer layer for CZTS semiconductor, and photoelectric device
JP2013004743A (en) Czts based thin film solar cell manufacturing method and czts based thin film solar cell
CN107623046B (en) Post-processing method of copper-indium-gallium-selenium absorption layer and solar cell preparation method based on post-processing method
JP4549570B2 (en) Method for manufacturing heterojunction thin film solar cell
JP2015508239A (en) Compound semiconductor solar cell
JP2005228975A (en) Solar battery
JP2001044464A (en) METHOD OF FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR LAYER AND MANUFACTURE OF THIN-FILM SOLAR CELL
JP3589380B2 (en) Method of manufacturing semiconductor thin film and method of manufacturing thin film solar cell
JP3311873B2 (en) Manufacturing method of semiconductor thin film
EP2871683B1 (en) Method for cleaning and passivating chalcogenide layers
Nakada et al. Improved efficiency of Cu (In, Ga) Se/sub 2/thin film solar cells with chemically deposited ZnS buffer layers by air-annealing-formation of homojunction by solid phase diffusion
WO2011123117A1 (en) Photovoltaic cells with improved electrical contact
CN109904255B (en) Preparation method of Cr-Se co-doped zinc sulfide solar cell buffer layer thin film material
JP2000332273A (en) Solar battery and manufacture thereof
JP3408618B2 (en) Solar cell manufacturing method
CN112201702B (en) Thin film solar cell absorption layer forming method, thin film solar cell and preparation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term