JP4549570B2 - Method for manufacturing heterojunction thin film solar cell - Google Patents

Method for manufacturing heterojunction thin film solar cell Download PDF

Info

Publication number
JP4549570B2
JP4549570B2 JP2001144523A JP2001144523A JP4549570B2 JP 4549570 B2 JP4549570 B2 JP 4549570B2 JP 2001144523 A JP2001144523 A JP 2001144523A JP 2001144523 A JP2001144523 A JP 2001144523A JP 4549570 B2 JP4549570 B2 JP 4549570B2
Authority
JP
Japan
Prior art keywords
thin film
compound semiconductor
semiconductor thin
layer
crystal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001144523A
Other languages
Japanese (ja)
Other versions
JP2002343987A (en
Inventor
勝巳 櫛屋
義則 名古屋
宗頼 田知行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP2001144523A priority Critical patent/JP4549570B2/en
Publication of JP2002343987A publication Critical patent/JP2002343987A/en
Application granted granted Critical
Publication of JP4549570B2 publication Critical patent/JP4549570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はヘテロ接合薄膜太陽電池の界面層(バッファー層)の製膜方法に関する。
【0002】
【従来の技術】
近年、環境問題等により、太陽電池を構成する材料からカドミウムのような毒性を有するものを原則、排除する技術が積極的に提案且つ実施されている。前記ヘテロ接合薄膜太陽電池1は光吸収層(p形半導体)4と窓層(n形半導体)6との界面に界面層(バッファー層)5が形成されるが、この界面層(バッファー層)5として透明で高抵抗を有するイオウ含有亜鉛混晶化合物半導体薄膜を用いることにより、CdSのような毒性の高い材料を用いずに、高い変換効率を達成することができる(特開平8−330614号参照)。前記界面層(バッファー層)5としてのイオウ含有亜鉛混晶化合物半導体薄膜の製造方法は、水酸化アンモニウム水(又はアンモニア水)をpH調整剤として酢酸亜鉛を溶解することにより、水酸化アンモニウム水(又はアンモニア水)と酢酸亜鉛との間でアンモニウム亜鉛錯塩を形成する溶液と、純水にイオウ含有塩を溶解した水溶液とを混合した強アルカリ性溶液を調整し、この強アルカリ性溶液を80〜90゜Cに加熱して、光吸収層(p形半導体)4上にイオウ含有亜鉛混晶化合物半導体薄膜を成長させる溶液成長法を採用している。
【0003】
しかし、前記溶液成長法によりイオウ含有亜鉛混晶化合物半導体薄膜を形成する場合、時間の経過と共に、化学反応により強アルカリ性溶液中にコロイド状の物質が徐々に形成し、このコロイド状の物質を含んだ界面層(バッファー層)においては膜質の劣化や被覆性の低下が発生したり、光吸収層との接合特性が低下するという問題があった。そして、これまで、界面層(バッファー層)を製膜する溶液の状態をその場で測定したり、溶液の使用限度を評価するような製造工程の運転管理についての議論又は試みはなされていなかった。
【0004】
【発明が解決しようとする課題】
本発明は前記問題点を解決するもので、本発明の目的は、薄膜太陽電池の界面層を製膜する際に、界面層を製膜するための前記強アルカリ性の混合溶液中にコロイド状の物質を含まないように制御・管理することで、界面層の膜質の劣化、被覆性の低下及び光吸収層との接合特性の低下を防止させると共に、溶液の製膜可能時間を長くすること及び被覆性を向上することで、溶液の交換回数の減少により、製造コストを低減させ、且つ製品の歩留りを向上させることである。
【0005】
【課題を解決するための手段】
本発明は、基板上に金属裏面電極層を形成し、金属裏面電極層上に光吸収層として供されるp形の導電性を有する第1の多元化合物半導体薄膜を形成し、前記第1の多元化合物半導体薄膜上に界面層(バッファー層)として供される透明で高抵抗の混晶化合物半導体薄膜を形成し、前記混晶化合物半導体薄膜の上に窓層として供されるn形の導電性を有し、禁制帯幅が広く且つ透明で導電性を有する第2の酸化物半導体薄膜を形成し、前記第2の酸化物半導体薄膜上に上部電極層を形成したヘテロ接合薄膜太陽電池製造方法であって、前記界面層として供される混晶化合物半導体薄膜は酸素、イオウ及び水酸基を含む、亜鉛、ガリウム、インジウム、スズ、カドミウムの1つ又はこれらの組み合わせからなる混晶化合物半導体薄膜からなり、前記界面層の製造方法は前記基板上に金属裏面電極層及び光吸収層が形成された加工試料の光吸収層として供される第1の多元化合物半導体薄膜上に界面層として供される前記混晶化合物半導体薄膜を強アルカリ性の混合溶液から化学的に成長させるものであり、前記強アルカリ性の混合溶液は、亜鉛塩、ガリウム塩、インジウム塩、スズ塩、カドミウム塩の1つ又はこれらの組み合わせからなる物質をアンモニア水又は水酸化アンモニウム水に溶解した溶液とイオウ含有塩を純水に溶解した水溶液とを混合した混合溶液であり、前記混晶化合物半導体薄膜を製膜する際、前記混合溶液中に徐々に形成されるコロイド状物質の形成の程度を前記混合溶液の透明度により検知し、前記混合溶液の使用限度を決定することを特徴とするヘテロ接合薄膜太陽電池の製造方法である。
【0006】
本発明は、前記強アルカリ性の混合溶液の使用限度の下限を、赤色の波長の光、望ましくは、波長650nmの単色光を使用して測定した透明度で、70%乃至50%とするヘテロ接合薄膜太陽電池製造方法である。
【0007】
本発明は、前記加工試料を前記混合溶液の透明度が100%の状態から順次前記混合溶液中に浸漬し、前記混合溶液の透明度が70%乃至50%、望ましくは60%に到達した時点で前記加工試料を混合溶液から引き出すことにより、前記光吸収層上に前記混晶化合物半導体薄膜を膜厚50乃至150nmの範囲で製膜すると共に、後工程である窓層の製膜段階でこの混晶化合物半導体薄膜上にスパッタ法により窓層を形成するヘテロ接合薄膜太陽電池の製造方法である。
【0008】
本発明は、前記加工試料を前記混合溶液の透明度が75%の状態から順次前記混合溶液中に浸漬し、前記混合溶液の透明度が70%乃至50%、望ましくは60%に到達した時点で前記加工試料を混合溶液から引き出すことにより、前記光吸収層上に前記混晶化合物半導体薄膜を膜厚5乃至80nmの範囲で製膜すると共に、後工程である窓層の製膜段階でこの混晶化合物半導体薄膜上に有機金属化学的気相成長法(MOCVD法)により窓層を形成するヘテロ接合薄膜太陽電池の製造方法である。
【0009】
本発明は、前記強アルカリ性の混合溶液がpH10〜13の範囲で前記混晶化合物半導体薄膜を成長させヘテロ接合薄膜太陽電池の製造方法である。
【0010】
本発明は、前記混晶化合物半導体薄膜を成長させる強アルカリ性の混合溶液を100゜C以下の温度、望ましくは80〜90゜Cの温度で加熱するヘテロ接合薄膜太陽電池の製造方法である。
【0011】
本発明は、前記界面層の製造方法が、前記溶液成長法により成長させた前記混晶化合物半導体薄膜を製膜した後、乾燥を目的に該混晶化合物半導体薄膜を加熱するヘテロ接合薄膜太陽電池の製造方法である。
【0012】
本発明は、前記混晶化合物半導体薄膜を加熱乾燥する温度が、100〜250゜C、望ましくは150〜200゜Cであるヘテロ接合薄膜太陽電池の製造方法である。
【0013】
本発明は、前記界面層として供される前記混晶化合物半導体薄膜が、硫酸亜鉛、塩化亜鉛、炭酸亜鉛又は酢酸亜鉛の亜鉛塩のうちの何れか1つから形成されるヘテロ接合薄膜太陽電池の製造方法である。
【0014】
本発明は、前記界面層として供される前記混晶化合物半導体薄膜を形成するためのイオウ含有塩が、チオアセトアミド、チオリア、チオセミカルバジド、チオウレタン、ジエチルアミン、トリエタノールアミンの何れか1つであるヘテロ接合薄膜太陽電池の製造方法である。
【0015】
本発明は、前記界面層として供される前記混晶化合物半導体薄膜は、酸素、イオウ及び水酸基を含むZn(O,OH,S)X 、ZnGa(O,OH,S)X 、ZnIn(O,OH,S)X 、Sn(O,OH,S)X 、Cd(O,OH,S)X 、CdZn(O,OH,S)X 、ZnSn(O,OH,S)X 、In(O,OH,S)X 、Ga(O,OH,S)X 、InGa(O,OH,S)X の何れか1つ又はこれらの何れかの組み合わせからなるヘテロ接合薄膜太陽電池の製造方法である。
【0016】
本発明は、前記光吸収層として供される前記第1の多元化合物半導体薄膜が、二セレン化銅インジウム(CuInSe2 )、二セレン化銅インジウム・ガリウム(Cu(InGa)Se2)、二セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe)2)又は薄膜の二セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe)2)(CIGSS)の層を表面層として有する二セレン化銅インジウム・ガリウム(Cu(InGa)Se2)(CIGS)であるヘテロ接合薄膜太陽電池製造方法である。
【0017】
【発明の実施の形態】
本発明はヘテロ接合薄膜太陽電池の界面層(バッフアー層)の製膜方法に関するものであり、薄膜太陽電池Aの基本構造は、図2に示すように、透明ガラス(青板ガラス)基板Bの上に金属裏面電極層C、光吸収層D、界面層(バッフアー層)E、窓層F及び上部電極Gが順次積層された積層構造で、前記金属裏面電極層Cは前記ガラス基板B上に作製される1〜2μの厚さのMo又はTi等の高耐蝕性で高融点の金属であり、光吸収層Dはp形の導電形を有する厚さ1〜3μのCu-III-VI2族カルコライト薄膜からなる第1の半導体薄膜であり、二セレン化銅インジウム(CuInSe2 )(以下、CISと略称する。)、二セレン化銅インジウム・ガリウム(Cu(InGa)Se2 )(以下、CIGSと略称する。)又は二セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe)2)(以下、CIGSSと略称する。)の単層若しくは前記CIGSの層の表面に薄膜のCIGSSの層を表面層として有するものからなり、界面層(バッフアー層)Eは前記光吸収層Dと窓層Fの間の界面に形成される透明で高抵抗の亜鉛混晶化合物半導体薄膜からなる。
【0018】
前記光吸収層Dと窓層Fとにより、太陽電池の光起電力効果を発生させるためにpn接合を形成するが、光吸収層(p形)Dの表面部分は、Cu、Se等の含有率が高く半金属の性質を有する低抵抗部分が残存するため、光吸収層Dと窓層Fとの間で完全に絶縁されたpn接合を形成することができない。前記光吸収層(p形)Dの表面部分の低抵抗部分を被覆することで良好なpn接合を形成するために、光吸収層(p形)Dの上に透明で且つ高抵抗の亜鉛混晶化合物半導体薄膜からなる界面層(バッフアー層)Eを形成する。
【0019】
窓層Fはn形の導電形を有する禁制帯幅が広く且つ透明で導電性を有する厚さ0.5 〜3μの酸化亜鉛からなる第2の酸化物半導体透明導電膜薄膜である。
【0020】
また、太陽光が光吸収層4に到達し易くするために、光吸収層Dの上に形成される界面層(バッフアー層)E及び窓層Fを透明度の高い材料とする。
【0021】
本発明の薄膜太陽電池の界面層(バッファー層)の製造方法の詳細を以下に示す。
図1に示すように、溶液成長槽2には、アンモニア水又は水酸化アンモニウム水をpH調整剤とし、酢酸亜鉛を溶融することで酢酸亜鉛との間でアンモニウム亜鉛錯塩を形成した溶液▲1▼とイオウ含有塩を純水で溶解した水溶液▲2▼とを混合した強アルカリ性の混合溶液が蓄えられている。そして、前記強アルカリ性の混合溶液に前記薄膜太陽電池Aの界面層(バッフアー層)Eを製膜するための加工試料Hを浸す、前記加工試料Hは図2(b)に示すように、基板B上に、金属裏面電極層C及び光吸収層(p形半導体)Dが順次積層されたものである。その結果、光吸収層Dが前記強アルカリ性の混合溶液に接触して、光吸収層D上に透明で高抵抗の酸素、イオウ及び水酸基を含む亜鉛混晶化合物半導体薄膜が化学的に成長する。前記亜鉛混晶化合物半導体薄膜の製膜工程では前記強アルカリ性の混合溶液の温度を80〜90゜Cの範囲で加熱すると共に、そのpHを略pH10〜13の範囲に維持する。
【0022】
その後、亜鉛混晶化合物半導体薄膜が形成された加工試料を溶液成長槽2から取り出し、前記亜鉛混晶化合物半導体薄膜を大気中又は1〜100Torrの真空中で、設定温度100〜250゜C、望ましくは150〜200゜Cで10〜120分間アニールして乾燥することにより、前記亜鉛混晶化合物半導体薄膜の水酸化亜鉛が酸化亜鉛に転化して、所望の界面層(バッファー層)が得られる。
【0023】
前記光吸収層D上に界面層(バッファー層)として供される亜鉛混晶化合物半導体薄膜を化学的に成長させる際に、前記強アルカリ性の混合溶液は時間の経過と共に化学反応が進行するため、コロイドの生成量が経時的に増加する。その結果、前記混合溶液中のコロイドの増加により混合溶液が縣濁して、混合溶液の透明度の低下現象が生じる。混合溶液中のコロイドの増加により、コロイドを含んだ亜鉛混晶化合物半導体薄膜からなる界面層(バッファー層)が形成され、このようなコロイドを含んだ界面層(バッファー層)は層自体の膜質や被覆性の劣化及び光吸収層との接合特性の低下の原因となる。
【0024】
本発明は、界面層(バッファー層)として供される亜鉛混晶化合物半導体薄膜の化学的な溶液成長段階で、図1に示すような、界面層成長槽2、混合溶液循環用パイプ2A、透明度モニター用センサー3、循環ポンプ4、溶液透明度監視装置5からなる混合溶液の透明度監視システム1により、強アルカリ性の混合溶液の透明度を測定することにより、混合溶液中のコロイドの生成状態を監視(モニター)し測定し、界面層成長槽2内の混合溶液が100%の状態からこの混合溶液に順次、加工試料Hを浸漬し、混合溶液を100゜C、望ましくは、80〜90゜Cの温度まで加熱し、混合溶液の透明度が徐々に低下して、70%〜50%、望ましくは60%に到達した時点で、界面層(バッファー層)の製造を停止する。なお、図1には図示していないが、混合溶液を加熱するための加熱装置、混合溶液の温度を測定するための温度計、混合溶液のpHを測定するためのpH測定器等を設ける必要がある。
【0025】
図3は、前記加工試料Hを強アルカリ性の混合溶液に浸して、界面層(バッファー層)として供される亜鉛混晶化合物半導体薄膜を化学的に成長させた場合の、浸漬時間に対する強アルカリ性の混合溶液の透明度の変化及びその時点で形成された亜鉛混晶化合物半導体薄膜を界面層として用いた薄膜太陽電池の変換効率を示す図である。なお、前記薄膜太陽電池は後工程で所定の乾燥工程、窓層及び上部電極を形成したものである。
【0026】
透明度が100%〜60%程度迄の強アルカリ性の混合溶液で製膜され界面層として供される亜鉛混晶化合物半導体薄膜I(以下、スパッタ窓層用I、という。)は、膜厚が50〜150nmの範囲で厚く、膜質も良質であるため、この膜の上に形成する窓層はスパッタ法により製膜する。
【0027】
透明度が75%〜50%程度迄の強アルカリ性の混合溶液で製膜され界面層として供される亜鉛混晶化合物半導体薄膜II(以下、MOCVD窓層用II、という。)は、膜質が多少劣るので、この膜の上に形成する窓層は有機金属化学的気相成長法(MOCVD法)により製膜する。有機金属化学的気相成長法(MOCVD法)の場合には、下地層である界面層の膜厚を補充する作用を有するので、膜厚が薄いものでも使用することができる。
【0028】
図3の測定データから、界面層が前記スパッタ窓層用Iからなる薄膜太陽電池の変換効率(■で示す。)は略9%以上を示し、前記MOCVD窓層用IIからなる薄膜太陽電池の変換効率(●で示す。)は略11%以上を示しており、強アルカリ性の混合溶液の透明度が60%程度迄の範囲であれば、窓層を使い分けることにより、薄膜太陽電池の界面層として十分使用可能であることが証明された。
【0029】
なお、前記図3の測定データから強アルカリ性の混合溶液の透明度が100%〜60%程度迄の範囲であってもスパッタ窓層用Iの膜厚が一定の厚さに到達していない場合は(○印で囲んだ■で示す。)、変換効率は低く、実用に供することはできない。また、MOCVD窓層用IIの場合においても、強アルカリ性の混合溶液の透明度が60%以下の範囲で製膜されたものは、変換効率が低いが、用途等により必要に応じて実用に供することもできる。
【0030】
以上のように、強アルカリ性の混合溶液により界面層として供される亜鉛混晶化合物半導体薄膜を強アルカリ性の混合溶液の透明度が100%〜60%程度迄の範囲で製膜することで、スパッタ窓層用IとMOCVD窓層用IIとに使い分けることが可能になり、製品の歩留りを向上することができる。
【0031】
前記実施例として、界面層として供される混晶化合物半導体薄膜として、亜鉛混晶化合物半導体薄膜を例示したが、混晶化合物半導体薄膜としては、酸素、イオウ及び水酸基を含むZn(O,OH,S)X 、ZnGa(O,OH,S)X 、ZnIn(O,OH,S)X 、Sn(O,OH,S)X 、Cd(O,OH,S)X 、CdZn(O,OH,S)X 、ZnSn(O,OH,S)X 、In(O,OH,S)X 、Ga(O,OH,S)X 、InGa(O,OH,S)X の何れか1つ又はこれらの何れかの組み合わせからからなる物質を用いることができる。その場合の強アルカリ性の混合溶液は、Sn塩、Cd塩、Zn塩、In塩、Ga塩の何れか1つ又はこれらの何れかの組み合わせからなる物質をアンモニア水又は水酸化アンモニウム水に溶解した溶液とイオウ含有塩を純水に溶解した水溶液とを混合した混合溶液を用いる。そして、前記亜鉛混晶化合物半導体薄膜を製膜する場合に、前記混合溶液の透明度を製膜の運転管理パラメータとして、混合溶液の使用限度を決定する。
【0032】
【発明の効果】
薄膜太陽電池の界面層(バッファー層)を製膜するための混合溶液の使用可能範囲を混合溶液の透明度が100%〜60%の範囲に規定することにより、界面層の膜質の劣化や被覆性の低下及び光吸収層との接合特性の低下を防止することができる。同時に、その溶液をスパッタ法による窓層用とMOCVD法による窓層用の界面層の製膜に使い分けることにより、溶液の正味の製膜可能時間を長くすることができ、溶液の交換回数の減少により、製造コストが低減できると共に、製品の歩留りも向上できる。
【図面の簡単な説明】
【図1】本発明の薄膜太陽電池の界面層(バッファー層)を製造する際の、混合溶液の透明度を測定・監視する透明度監視システムを示す図である。
【図2】(a)本発明の薄膜太陽電池の基本構造を示す図(断面図)である。
(b)本発明の薄膜太陽電池の界面層(バッファー層)を製造する際に使用する加工試料Hの構造を示す図(断面図)である。
【図3】本発明における加工試料の浸漬時間に対する混合溶液の透明度の変化及び薄膜太陽電池の変換効率の変化を示す図である。
【符号の説明】
A 薄膜太陽電池
B 基板
C 金属裏面電極層
D 光吸収層(p形半導体)
E 界面層(バッファー層)
F 窓層(n形半導体)
G 上部電極又はスクライブライン
H 加工試料
1 界面層製膜装置(溶液透明度監視システム)
2 溶液成長槽
2A 溶液循環用パイプ
3 透明度測定モニター用センサー
4 循環ポンプ
5 溶液透明度監視装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming an interface layer (buffer layer) of a heterojunction thin film solar cell.
[0002]
[Prior art]
2. Description of the Related Art In recent years, due to environmental problems and the like, a technique for eliminating, in principle, a toxic material such as cadmium from a material constituting a solar cell has been actively proposed and implemented. In the heterojunction thin film solar cell 1, an interface layer (buffer layer) 5 is formed at the interface between the light absorption layer (p-type semiconductor) 4 and the window layer (n-type semiconductor) 6, and this interface layer (buffer layer). High conversion efficiency can be achieved without using a highly toxic material such as CdS by using a transparent and high resistance sulfur-containing zinc mixed crystal compound semiconductor thin film as No. 5 (Japanese Patent Laid-Open No. 8-330614). reference). The method for producing a sulfur-containing zinc mixed crystal compound semiconductor thin film as the interface layer (buffer layer) 5 is obtained by dissolving zinc acetate using ammonium hydroxide water (or ammonia water) as a pH adjuster, Alternatively, a strong alkaline solution prepared by mixing a solution that forms an ammonium zinc complex salt between aqueous ammonia) and zinc acetate and an aqueous solution in which a sulfur-containing salt is dissolved in pure water is prepared. A solution growth method is employed in which a sulfur-containing zinc mixed crystal compound semiconductor thin film is grown on the light absorption layer (p-type semiconductor) 4 by heating to C.
[0003]
However, when forming a sulfur-containing zinc mixed crystal compound semiconductor thin film by the solution growth method, a colloidal substance is gradually formed in a strong alkaline solution by a chemical reaction with the passage of time, and this colloidal substance is contained. However, in the interface layer (buffer layer), there is a problem that the film quality is deteriorated or the covering property is deteriorated, and the bonding characteristics with the light absorption layer are deteriorated. Until now, no discussion or trial has been made on the operation management of the manufacturing process in which the state of the solution for forming the interface layer (buffer layer) is measured in situ or the use limit of the solution is evaluated. .
[0004]
[Problems to be solved by the invention]
The present invention solves the above problems, and the object of the present invention is to form a colloidal solution in the strongly alkaline mixed solution for forming the interface layer when forming the interface layer of the thin film solar cell. By controlling and managing so as not to contain any substances, it is possible to prevent deterioration of the film quality of the interface layer, deterioration of the coating property and deterioration of the bonding property with the light absorption layer, and increase the time during which the solution can be formed; By improving the coverage, the manufacturing cost is reduced and the product yield is improved by reducing the number of times the solution is exchanged.
[0005]
[Means for Solving the Problems]
According to the present invention, a metal back electrode layer is formed on a substrate, a p-type conductive first multi-component compound semiconductor thin film provided as a light absorption layer is formed on the metal back electrode layer, and the first A transparent, high-resistance mixed crystal compound semiconductor thin film provided as an interface layer (buffer layer) is formed on the multi-component compound semiconductor thin film, and n-type conductivity provided as a window layer on the mixed crystal compound semiconductor thin film has a production of the second oxide semiconductor film is formed, the heterojunction thin-film solar cell formed with the upper electrode layer on the second oxide semiconductor thin film having a band gap wide and transparent conductive a method, mixed crystal compound semiconductor thin film to serve as the interface layer, oxygen, including sulfur and hydroxyl, zinc, gallium, indium, tin, one or mixed crystal compound semiconductor thin film consisting of a combination of cadmium Kara The method of the interface layer is provided as an interface layer on a first multinary compound semiconductor thin film to serve as a light absorbing layer of the processed sample to the metal back electrode layer and the light absorbing layer is formed on the substrate The mixed crystal compound semiconductor thin film is chemically grown from a strong alkaline mixed solution, and the strong alkaline mixed solution is one of zinc salt , gallium salt, indium salt, tin salt, cadmium salt, or a combination thereof. the consist of a combination material is a mixed solution of a solution and sulfur-containing salt dissolved in aqueous ammonia or aqueous ammonium hydroxide was mixed with an aqueous solution prepared by dissolving in pure water, when forming a film of the mixed crystal compound semiconductor thin film, wherein the mixture the extent of formation of colloidal substance is gradually formed in the solution was detected by the transparency of the mixed solution, and determines the allowable limit of the mixed solution het A method for producing a junction thin-film solar cell.
[0006]
The present invention provides a heterojunction thin film in which the lower limit of the use limit of the strongly alkaline mixed solution is 70% to 50% in transparency measured using red wavelength light, preferably monochromatic light having a wavelength of 650 nm. It is a manufacturing method of a solar cell.
[0007]
In the present invention, the processed sample is immersed in the mixed solution sequentially from a state where the transparency of the mixed solution is 100%, and when the transparency of the mixed solution reaches 70% to 50%, preferably 60%, by withdrawing the processed sample from the mixed solution, the mixed crystal compound semiconductor thin film as well as film thickness in the range of 50 to 150 nm, the mixed crystal film stage of the window layer is post-process on the light absorbing layer This is a method for manufacturing a heterojunction thin film solar cell in which a window layer is formed on a compound semiconductor thin film by sputtering.
[0008]
In the present invention, the processed sample is immersed in the mixed solution sequentially from a state where the transparency of the mixed solution is 75%, and when the transparency of the mixed solution reaches 70% to 50%, preferably 60%, by withdrawing the processed sample from the mixed solution, while film in the range of the mixed crystal compound semiconductor thin film thickness of 5 to 80nm in the light absorbing layer, the mixed crystal film stage of the window layer is later step This is a method for manufacturing a heterojunction thin film solar cell in which a window layer is formed on a compound semiconductor thin film by metal organic chemical vapor deposition (MOCVD).
[0009]
The present invention is a method for producing a heterojunction thin-film solar cells the strong alkaline mixed solution Ru grown the mixed crystal compound semiconductor thin film in the range of pH 10.
[0010]
The present invention, the mixed crystal compound semiconductor thin film to be grown strongly alkaline mixed solution 100 ° C or lower temperatures, preferably the method of manufacturing a heterojunction thin-film solar cell is heated at a temperature of 80-90 ° C.
[0011]
The present invention is a manufacturing method of the interface layer, wherein after the film formation of the mixed crystal compound semiconductor thin film grown by the solution growth method, heterojunction thin-film solar cell for heating該混crystal compound semiconductor thin film for the purpose of drying It is a manufacturing method.
[0012]
The present invention is a method for producing a heterojunction thin film solar cell, wherein the temperature for heating and drying the mixed crystal compound semiconductor thin film is 100 to 250 ° C., preferably 150 to 200 ° C.
[0013]
The present invention, the mixed crystal compound semiconductor thin film to serve as the interface layer, zinc sulfate, zinc chloride, heterojunction thin-film solar cell which is formed from any one of zinc salt of zinc carbonate or zinc acetate It is a manufacturing method.
[0014]
The present invention, sulfur-containing salts to form the mixed crystal compound semiconductor thin film to serve as the interface layer, thioacetamide, Chioria, thiosemicarbazide, thiourethane, diethylamine, is one of triethanolamine It is a manufacturing method of a heterojunction thin film solar cell.
[0015]
The present invention, the mixed crystal compound semiconductor thin film to serve as the interface layer, oxygen, Zn containing sulfur and hydroxyl (O, OH, S) X , ZnGa (O, OH, S) X, ZnIn (O, OH, S) X , Sn (O, OH, S) X , Cd (O, OH, S) X , CdZn (O, OH, S) X , ZnSn (O, OH, S) X , In (O, This is a method for manufacturing a heterojunction thin film solar cell made of any one of OH, S) X , Ga (O, OH, S) X , InGa (O, OH, S) X , or any combination thereof.
[0016]
The present invention, the first multinary compound semiconductor thin film to serve as the light absorbing layer, copper indium diselenide (CuInSe 2), copper indium diselenide, gallium (Cu (InGa) Se 2) , diselenide・ Copper indium gallium sulphide (Cu (InGa) (SSe) 2 ) or thin film selenium ・ Cu indium gallium sulphide (Cu (InGa) (SSe) 2 ) (CIGSS) copper indium selenide gallium (Cu (InGa) Se 2) a method for producing a heterojunction thin-film solar cell is (CIGS).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method for forming an interface layer (buffer layer) of a heterojunction thin film solar cell, and the basic structure of the thin film solar cell A is on a transparent glass (blue plate glass) substrate B as shown in FIG. A metal back electrode layer C, a light absorption layer D, an interface layer (buffer layer) E, a window layer F, and an upper electrode G are sequentially laminated, and the metal back electrode layer C is formed on the glass substrate B. Is a high-corrosion-resistant and high-melting-point metal such as Mo or Ti having a thickness of 1 to 2 μm, and the light absorption layer D has a p-type conductivity type of Cu-III-VI 2 group It is a first semiconductor thin film made of a chalcolite thin film, which is copper indium diselenide (CuInSe 2 ) (hereinafter abbreviated as CIS), copper indium selenide / gallium (Cu (InGa) Se 2 ) (hereinafter, CIGS) or diselenium indium gallium sulphide (Cu (In) Ga) (SSe) 2 ) (hereinafter abbreviated as CIGSS) or a thin layer of CIGSS as a surface layer on the surface of the CIGS layer, and the interface layer (buffer layer) E It consists of a transparent and high resistance zinc mixed crystal compound semiconductor thin film formed at the interface between the light absorption layer D and the window layer F.
[0018]
The light absorption layer D and the window layer F form a pn junction to generate the photovoltaic effect of the solar cell. The surface portion of the light absorption layer (p-type) D contains Cu, Se, or the like. Since a low-resistance portion having a high rate and a metalloid property remains, a pn junction that is completely insulated between the light absorption layer D and the window layer F cannot be formed. In order to form a good pn junction by covering the low resistance portion of the surface portion of the light absorption layer (p-type) D, a transparent and high-resistance zinc mixture is formed on the light absorption layer (p-type) D. An interface layer (buffer layer) E made of a crystal compound semiconductor thin film is formed.
[0019]
The window layer F is a second oxide semiconductor transparent conductive film thin film made of zinc oxide having an n-type conductivity, wide forbidden band width, transparent and conductive and having a thickness of 0.5 to 3 μm.
[0020]
In order to make sunlight easily reach the light absorption layer 4, the interface layer (buffer layer) E and the window layer F formed on the light absorption layer D are made of highly transparent materials.
[0021]
The detail of the manufacturing method of the interface layer (buffer layer) of the thin film solar cell of this invention is shown below.
As shown in FIG. 1, in the solution growth tank 2, a solution in which ammonium zinc complex is formed with zinc acetate by using ammonia water or ammonium hydroxide water as a pH adjuster and melting zinc acetate. And a strongly alkaline mixed solution in which an aqueous solution (2) obtained by dissolving a sulfur-containing salt with pure water is stored. Then, a processed sample H for forming the interface layer (buffer layer) E of the thin film solar cell A is immersed in the strong alkaline mixed solution. The processed sample H is a substrate as shown in FIG. A metal back electrode layer C and a light absorption layer (p-type semiconductor) D are sequentially laminated on B. As a result, the light absorption layer D comes into contact with the strongly alkaline mixed solution, and a transparent and high resistance zinc mixed crystal compound semiconductor thin film containing oxygen, sulfur and hydroxyl groups is chemically grown on the light absorption layer D. In the step of forming the zinc mixed crystal compound semiconductor thin film, the temperature of the strongly alkaline mixed solution is heated in the range of 80 to 90 ° C., and the pH is maintained in the range of about pH 10 to 13.
[0022]
Thereafter, the processed sample on which the zinc mixed crystal compound semiconductor thin film is formed is taken out from the solution growth tank 2, and the zinc mixed crystal compound semiconductor thin film is set in the atmosphere or in a vacuum of 1 to 100 Torr, preferably at a set temperature of 100 to 250 ° C. Is annealed at 150 to 200 ° C. for 10 to 120 minutes and dried, whereby the zinc hydroxide of the zinc mixed crystal compound semiconductor thin film is converted into zinc oxide, and a desired interface layer (buffer layer) is obtained.
[0023]
When the zinc mixed crystal compound semiconductor thin film provided as an interface layer (buffer layer) on the light absorption layer D is chemically grown, the strong alkaline mixed solution undergoes a chemical reaction with time. The amount of colloid produced increases over time. As a result, the mixed solution becomes suspended due to an increase in the colloid in the mixed solution, resulting in a phenomenon that the transparency of the mixed solution is lowered. Due to the increase of colloid in the mixed solution, an interface layer (buffer layer) composed of a zinc mixed crystal compound semiconductor thin film containing colloid is formed, and the interface layer (buffer layer) containing such a colloid is the film quality of the layer itself. This causes deterioration of the covering property and deterioration of the bonding characteristics with the light absorption layer.
[0024]
The present invention is a chemical solution growth stage of a zinc mixed crystal compound semiconductor thin film provided as an interface layer (buffer layer), as shown in FIG. 1, an interface layer growth tank 2, a mixed solution circulation pipe 2A, transparency The mixed solution transparency monitoring system 1 comprising the monitoring sensor 3, the circulating pump 4, and the solution transparency monitoring device 5 measures the transparency of the strongly alkaline mixed solution, thereby monitoring the state of colloid formation in the mixed solution (monitoring). Then, the processed sample H is immersed in this mixed solution sequentially from the state where the mixed solution in the interface layer growth tank 2 is 100%, and the mixed solution is heated to a temperature of 100 ° C., preferably 80 to 90 ° C. When the transparency of the mixed solution gradually decreases and reaches 70% to 50%, preferably 60%, the production of the interface layer (buffer layer) is stopped. Although not shown in FIG. 1, it is necessary to provide a heating device for heating the mixed solution, a thermometer for measuring the temperature of the mixed solution, a pH measuring device for measuring the pH of the mixed solution, and the like. There is.
[0025]
FIG. 3 shows a strong alkaline property with respect to the immersion time when the processed sample H is immersed in a strong alkaline mixed solution and a zinc mixed crystal compound semiconductor thin film provided as an interface layer (buffer layer) is chemically grown. It is a figure which shows the conversion efficiency of the thin film solar cell which used the change of the transparency of a mixed solution, and the zinc mixed crystal compound semiconductor thin film formed at that time as an interface layer. In addition, the said thin film solar cell forms a predetermined drying process, a window layer, and an upper electrode at a post process.
[0026]
The zinc mixed crystal compound semiconductor thin film I (hereinafter referred to as “sputter window layer I”) that is formed with a strong alkaline mixed solution having a transparency of about 100% to 60% and serves as an interface layer has a thickness of 50. Since it is thick in the range of ˜150 nm and the film quality is also good, the window layer formed on this film is formed by sputtering.
[0027]
Zinc mixed crystal compound semiconductor thin film II (hereinafter referred to as MOCVD window layer II) formed as a strong interface solution having a transparency of about 75% to 50% and used as an interface layer is somewhat inferior in film quality. Therefore, the window layer formed on this film is formed by metal organic chemical vapor deposition (MOCVD). In the case of the metal organic chemical vapor deposition method (MOCVD method), since it has an effect of supplementing the film thickness of the interface layer which is the underlayer, even a thin film can be used.
[0028]
From the measurement data of FIG. 3, the conversion efficiency (shown by ■) of the thin film solar cell whose interface layer is made of the sputter window layer I is about 9% or more, and the conversion efficiency of the thin film solar cell made of the MOCVD window layer II is The conversion efficiency (indicated by ●) is about 11% or more. If the transparency of the strongly alkaline mixed solution is in the range of up to about 60%, the window layer can be used properly as an interface layer of the thin film solar cell. Proven to be fully usable.
[0029]
In the case where the film thickness of the sputter window layer I does not reach a certain thickness even when the transparency of the strongly alkaline mixed solution is in the range of about 100% to 60% from the measurement data of FIG. (Indicated by ■ enclosed in circles.), Conversion efficiency is low and cannot be put to practical use. Also, in the case of MOCVD window layer II, a film formed with a transparency of a strongly alkaline mixed solution in a range of 60% or less has low conversion efficiency, but it should be put to practical use as needed depending on the application. You can also.
[0030]
As described above, a zinc mixed crystal compound semiconductor thin film provided as an interface layer with a strong alkaline mixed solution is formed in a range where the transparency of the strong alkaline mixed solution is in the range of about 100% to 60%. It becomes possible to use properly for layer I and MOCVD window layer II, and the yield of products can be improved.
[0031]
As the example, the mixed crystal compound semiconductor thin film provided as the interface layer is exemplified by a zinc mixed crystal compound semiconductor thin film, but as the mixed crystal compound semiconductor thin film, Zn (O, OH, containing oxygen, sulfur and hydroxyl groups) is used. S) X , ZnGa (O, OH, S) X , ZnIn (O, OH, S) X , Sn (O, OH, S) X , Cd (O, OH, S) X , CdZn (O, OH, S) X , ZnSn (O, OH, S) X , In (O, OH, S) X , Ga (O, OH, S) X , InGa (O, OH, S) X or one of these A substance comprising any combination of the above can be used. In this case, the strongly alkaline mixed solution was prepared by dissolving a substance consisting of any one of Sn salt, Cd salt, Zn salt, In salt, Ga salt or any combination thereof in ammonia water or ammonium hydroxide water. A mixed solution obtained by mixing a solution and an aqueous solution in which a sulfur-containing salt is dissolved in pure water is used. When the zinc mixed crystal compound semiconductor thin film is formed, the use limit of the mixed solution is determined using the transparency of the mixed solution as an operation management parameter for film formation.
[0032]
【The invention's effect】
By defining the usable range of the mixed solution for forming the interface layer (buffer layer) of the thin-film solar cell within the range of transparency of the mixed solution of 100% to 60%, the film quality of the interface layer is deteriorated and the covering property It is possible to prevent the deterioration of the bonding property and the light absorption layer. At the same time, the solution can be used for the deposition of the interface layer for the window layer by the sputtering method and the window layer by the MOCVD method, so that the net film formation time of the solution can be lengthened and the number of times of solution replacement is reduced. As a result, the manufacturing cost can be reduced and the yield of products can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a transparency monitoring system for measuring and monitoring the transparency of a mixed solution when producing an interface layer (buffer layer) of a thin film solar cell of the present invention.
FIG. 2A is a diagram (sectional view) showing a basic structure of a thin film solar cell of the present invention.
(B) It is a figure (sectional drawing) which shows the structure of the process sample H used when manufacturing the interface layer (buffer layer) of the thin film solar cell of this invention.
FIG. 3 is a diagram showing a change in transparency of a mixed solution and a change in conversion efficiency of a thin film solar cell with respect to the immersion time of a processed sample in the present invention.
[Explanation of symbols]
A Thin-film solar cell B Substrate C Metal back electrode layer D Light absorption layer (p-type semiconductor)
E Interface layer (buffer layer)
F Window layer (n-type semiconductor)
G Upper electrode or scribe line H Processed sample 1 Interface layer film forming device (solution transparency monitoring system)
2 Solution Growth Tank 2A Solution Circulation Pipe 3 Transparency Measurement Monitor Sensor 4 Circulation Pump 5 Solution Transparency Monitoring Device

Claims (12)

基板上に金属裏面電極層を形成し、
金属裏面電極層上に光吸収層として供されるp形の導電性を有する第1の多元化合物半導体薄膜を形成し、
前記第1の多元化合物半導体薄膜上に界面層(バッファー層)として供される透明で高抵抗の混晶化合物半導体薄膜を形成し、
前記混晶化合物半導体薄膜の上に窓層として供されるn形の導電性を有し、禁制帯幅が広く且つ透明で導電性を有する第2の酸化物半導体薄膜を形成し、
前記第2の酸化物半導体薄膜上に上部電極層を形成したヘテロ接合薄膜太陽電池製造方法であって、
前記界面層として供される混晶化合物半導体薄膜は酸素、イオウ及び水酸基を含む、亜鉛、ガリウム、インジウム、スズ、カドミウムの1つ又はこれらの組み合わせからなる混晶化合物半導体薄膜からなり、
前記界面層の製造方法は前記基板上に金属裏面電極層及び光吸収層が形成された加工試料の光吸収層として供される第1の多元化合物半導体薄膜上に界面層として供される前記混晶化合物半導体薄膜を強アルカリ性の混合溶液から化学的に成長させるものであり
前記強アルカリ性の混合溶液は、亜鉛塩、ガリウム塩、インジウム塩、スズ塩、カドミウム塩の1つ又はこれらの組み合わせからなる物質をアンモニア水又は水酸化アンモニウム水に溶解した溶液とイオウ含有塩を純水に溶解した水溶液とを混合した混合溶液であり、
前記混晶化合物半導体薄膜を製膜する際、前記混合溶液中に徐々に形成されるコロイド状物質の形成の程度を前記混合溶液の透明度により検知し、前記混合溶液の使用限度を決定することを特徴とするヘテロ接合薄膜太陽電池の製造方法。
Forming a metal back electrode layer on the substrate;
Forming a first multi-component compound semiconductor thin film having p-type conductivity provided as a light absorption layer on the metal back electrode layer;
Forming a transparent high resistance mixed crystal compound semiconductor thin film serving as an interface layer (buffer layer) on the first multi-component compound semiconductor thin film;
Forming a second oxide semiconductor thin film having n-type conductivity provided as a window layer on the mixed crystal compound semiconductor thin film, having a wide forbidden band, transparent and conductive;
A method of manufacturing a heterojunction thin film solar cell in which an upper electrode layer is formed on the second oxide semiconductor thin film,
Mixed crystal compound semiconductor thin film to serve as the interface layer, oxygen, including sulfur and hydroxyl groups, made of zinc, gallium, indium, tin, a mixed crystal compound semiconductor thin film made of one or a combination of these cadmium,
Manufacturing method of the interfacial layer, said to be subjected as a surface layer on a first multinary compound semiconductor thin film to serve as a light absorbing layer of the processed sample to the metal back electrode layer and the light absorbing layer is formed on the substrate the mixed crystal compound semiconductor thin film from the strongly alkaline solution mixture is intended to chemically grown,
The strongly alkaline mixed solution is a pure solution of a sulfur-containing salt and a solution obtained by dissolving one or a combination of zinc salt , gallium salt, indium salt, tin salt and cadmium salt in ammonia water or ammonium hydroxide water. It is a mixed solution mixed with an aqueous solution dissolved in water ,
When forming the mixed crystal compound semiconductor thin film, the degree of formation of the colloidal substance gradually formed in the mixed solution is detected by the transparency of the mixed solution, and the use limit of the mixed solution is determined. A method for producing a heterojunction thin film solar cell.
前記強アルカリ性の混合溶液の使用限度の下限を、赤色の波長の光、望ましくは、波長650nmの単色光を使用して測定した透明度で、70%乃至50%とすることを特徴とする請求項1に記載のヘテロ接合薄膜太陽電池製造方法。The lower limit of the use limit of the strongly alkaline mixed solution is 70% to 50% in terms of transparency measured using light having a red wavelength, preferably monochromatic light having a wavelength of 650 nm. 2. A method for producing a heterojunction thin film solar cell according to 1. 前記加工試料を前記混合溶液の透明度が100%の状態から順次前記混合溶液中に浸漬し、前記混合溶液の透明度が70%乃至50%、望ましくは60%に到達した時点で前記加工試料を混合溶液から引き出すことにより、前記光吸収層上に前記混晶化合物半導体薄膜を膜厚50乃至150nmの範囲で製膜すると共に、後工程である窓層の製膜段階でこの混晶化合物半導体薄膜上にスパッタ法により窓層を形成することを特徴とする請求項1又は2に記載のヘテロ接合薄膜太陽電池の製造方法。The processed sample is immersed in the mixed solution sequentially from a state where the transparency of the mixed solution is 100%, and the processed sample is mixed when the transparency of the mixed solution reaches 70% to 50%, preferably 60%. by withdrawing from the solution, the light absorbing said mixed crystal compound semiconductor thin film on layer while film thickness in the range of 50 to 150 nm, post-process is a window layer the mixed crystal compound semiconductor thin film with a film stage A method for producing a heterojunction thin film solar cell according to claim 1, wherein the window layer is formed by sputtering. 前記加工試料を前記混合溶液の透明度が75%の状態から順次前記混合溶液中に浸漬し、前記混合溶液の透明度が70%乃至50%、望ましくは60%に到達した時点で前記加工試料を混合溶液から引き出すことにより、前記光吸収層上に前記混晶化合物半導体薄膜を膜厚5乃至80nmの範囲で製膜すると共に、後工程である窓層の製膜段階でこの混晶化合物半導体薄膜上に有機金属化学的気相成長法(MOCVD法)により窓層を形成することを特徴とする請求項1又は2に記載のヘテロ接合薄膜太陽電池の製造方法。The processed sample is immersed in the mixed solution sequentially from the state where the transparency of the mixed solution is 75%, and the processed sample is mixed when the transparency of the mixed solution reaches 70% to 50%, preferably 60%. by withdrawing from the solution, the light absorbing said mixed crystal compound semiconductor thin film on layer while film thickness in the range of 5 to 80 nm, post-process is a window layer the mixed crystal compound semiconductor thin film with a film stage The method of manufacturing a heterojunction thin film solar cell according to claim 1, wherein the window layer is formed by metal organic chemical vapor deposition (MOCVD). 前記強アルカリ性の混合溶液がpH10〜13の範囲で前記混晶化合物半導体薄膜を成長させることを特徴とする請求項1乃至4の何れか1つに記載のヘテロ接合薄膜太陽電池の製造方法。The method for producing a heterojunction thin film solar cell according to any one of claims 1 to 4, wherein the mixed crystal compound semiconductor thin film is grown in the strongly alkaline mixed solution in a pH range of 10 to 13. 前記混晶化合物半導体薄膜を成長させる強アルカリ性の混合溶液を100゜C以下の温度、望ましくは80〜90゜Cの温度で加熱することを特徴とする請求項1乃至5の何れか1つに記載のヘテロ接合薄膜太陽電池の製造方法。 6. The strongly alkaline mixed solution for growing the mixed crystal compound semiconductor thin film is heated at a temperature of 100 [deg.] C. or lower, preferably 80-90 [deg.] C. The manufacturing method of the heterojunction thin film solar cell of description. 前記界面層の製造方法が、請求項1乃至6に記載の溶液成長法により成長させた前記混晶化合物半導体薄膜を製膜した後、乾燥を目的に該混晶化合物半導体薄膜を加熱する請求項1乃至6の何れか1つに記載のヘテロ接合薄膜太陽電池の製造方法。 The method for producing the interface layer comprises heating the mixed crystal compound semiconductor thin film for the purpose of drying after forming the mixed crystal compound semiconductor thin film grown by the solution growth method according to claim 1. The method for producing a heterojunction thin film solar cell according to any one of 1 to 6. 前記混晶化合物半導体薄膜を加熱乾燥する温度が、100〜250゜C、望ましくは150〜200゜Cであることを特徴とする請求項1乃至7の何れか1つに記載のヘテロ接合薄膜太陽電池の製造方法。The heterojunction thin film solar according to any one of claims 1 to 7, wherein a temperature for heating and drying the mixed crystal compound semiconductor thin film is 100 to 250 ° C, preferably 150 to 200 ° C. Battery manufacturing method. 前記界面層として供される前記混晶化合物半導体薄膜が、硫酸亜鉛、塩化亜鉛、炭酸亜鉛又は酢酸亜鉛の亜鉛塩のうちの何れか1つから形成される請求項1乃至8の何れか1つに記載のヘテロ接合薄膜太陽電池の製造方法。 The mixed crystal compound semiconductor thin film to serve as the interface layer, any one of claims 1 to 8 are formed from any one of zinc sulfate, zinc chloride, zinc salts of zinc carbonate or zinc acetate The manufacturing method of the heterojunction thin film solar cell of description. 前記界面層として供される前記混晶化合物半導体薄膜を形成するためのイオウ含有塩が、チオアセトアミド、チオリア、チオセミカルバジド、チオウレタン、ジエチルアミン、トリエタノールアミンの何れか1つである1乃至8の何れか1つに記載のヘテロ接合薄膜太陽電池の製造方法。Sulfur-containing salts to form the mixed crystal compound semiconductor thin film to serve as the interface layer, thioacetamide, Chioria, thiosemicarbazide, thiourethane, diethylamine, is one of triethanolamine 1-8 The manufacturing method of the heterojunction thin film solar cell as described in any one. 前記界面層として供される前記混晶化合物半導体薄膜は、酸素、イオウ及び水酸基を含むZn(O,OH,S)X 、ZnGa(O,OH,S)X 、ZnIn(O,OH,S)X 、Sn(O,OH,S)X 、Cd(O,OH,S)X 、CdZn(O,OH,S)X 、ZnSn(O,OH,S)X 、In(O,OH,S)X 、Ga(O,OH,S)X 、InGa(O,OH,S)X の何れか1つ又はこれらの何れかの組み合わせからなることを特徴とする請求項1乃至10の何れか1つに記載のヘテロ接合薄膜太陽電池の製造方法。 The mixed crystal compound semiconductor thin film to serve as the interface layer, oxygen, Zn containing sulfur and hydroxyl (O, OH, S) X , ZnGa (O, OH, S) X, ZnIn (O, OH, S) X , Sn (O, OH, S) X , Cd (O, OH, S) X , CdZn (O, OH, S) X , ZnSn (O, OH, S) X , In (O, OH, S) 11. The method according to claim 1, comprising any one of X , Ga (O, OH, S) X , InGa (O, OH, S) X , or any combination thereof. The manufacturing method of the heterojunction thin film solar cell of description. 前記光吸収層として供される前記第1の多元化合物半導体薄膜が、二セレン化銅インジウム(CuInSe2 )、二セレン化銅インジウム・ガリウム(Cu(InGa)Se2)、二セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe)2)又は薄膜の二セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe)2)(CIGSS)の層を表面層として有する二セレン化銅インジウム・ガリウム(Cu(InGa)Se2)(CIGS)である請求項1乃至11の何れか1つに記載のヘテロ接合薄膜太陽電池製造方法。 Said first multinary compound semiconductor thin film to serve as the light absorbing layer, copper indium diselenide (CuInSe 2), copper indium diselenide, gallium (Cu (InGa) Se 2) , diselenide-sulfur copper Copper indium diselenide having a surface layer of indium gallium (Cu (InGa) (SSe) 2 ) or a thin film of diselen selenide copper indium gallium (Cu (InGa) (SSe) 2 ) (CIGSS) gallium (Cu (InGa) Se 2) method of manufacturing heterojunction thin-film solar cell according to any one of claims 1 to 11 which is (CIGS).
JP2001144523A 2001-05-15 2001-05-15 Method for manufacturing heterojunction thin film solar cell Expired - Fee Related JP4549570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144523A JP4549570B2 (en) 2001-05-15 2001-05-15 Method for manufacturing heterojunction thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144523A JP4549570B2 (en) 2001-05-15 2001-05-15 Method for manufacturing heterojunction thin film solar cell

Publications (2)

Publication Number Publication Date
JP2002343987A JP2002343987A (en) 2002-11-29
JP4549570B2 true JP4549570B2 (en) 2010-09-22

Family

ID=18990460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144523A Expired - Fee Related JP4549570B2 (en) 2001-05-15 2001-05-15 Method for manufacturing heterojunction thin film solar cell

Country Status (1)

Country Link
JP (1) JP4549570B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005021200D1 (en) * 2004-01-13 2010-06-24 Panasonic Corp Solar cell and manufacturing process
JP5180188B2 (en) * 2007-03-28 2013-04-10 昭和シェル石油株式会社 CIS-based thin film solar cell device manufacturing method
DE102007024667A1 (en) * 2007-05-25 2008-11-27 Rena Sondermaschinen Gmbh Method and device for coating flat substrates
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
US20100236627A1 (en) 2007-09-28 2010-09-23 Haruo Yago Substrate for solar cell and solar cell
JP4974986B2 (en) 2007-09-28 2012-07-11 富士フイルム株式会社 Solar cell substrate and solar cell
JP4782880B2 (en) 2009-10-05 2011-09-28 富士フイルム株式会社 Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion element, and solar cell
JP4745450B2 (en) 2009-10-06 2011-08-10 富士フイルム株式会社 Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion element, and solar cell
JP2011151261A (en) * 2010-01-22 2011-08-04 Fujifilm Corp Method of manufacturing buffer layer, and photoelectric conversion device
JP2011204825A (en) 2010-03-25 2011-10-13 Fujifilm Corp Photoelectric conversion semiconductor layer, method for producing the same, photoelectric conversion device, and solar battery
JP4615067B1 (en) 2010-07-06 2011-01-19 富士フイルム株式会社 Photoelectric conversion element and solar cell including the same
JP2013008838A (en) * 2011-06-24 2013-01-10 Fujifilm Corp Formation method of buffer layer of photoelectric conversion element and manufacturing method of photoelectric conversion element
KR101238335B1 (en) 2011-07-08 2013-03-04 한국과학기술원 Manufacturing methods of heterojunction solar cells using zinc compounds
JP2013175653A (en) 2012-02-27 2013-09-05 Nitto Denko Corp Method for manufacturing compound solar cell
JP6265362B2 (en) 2012-02-27 2018-01-24 日東電工株式会社 CIGS compound solar cell
KR101342960B1 (en) * 2012-06-19 2013-12-18 주식회사 디엠에스 Chemical bath deposition apparatus and solar cell manufactured by the same
JP6083785B2 (en) 2012-08-24 2017-02-22 日東電工株式会社 Compound solar cell and method for producing the same
JP2014157931A (en) 2013-02-15 2014-08-28 Nitto Denko Corp Cigs-based compound solar cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243991A (en) * 1999-02-19 2000-09-08 Canon Inc Method of forming zinc oxide film and semiconductor element using same
JP2000332280A (en) * 1999-05-25 2000-11-30 Matsushita Electric Ind Co Ltd METHOD OF FORMING ZnO SEMICONDUCTOR THIN FILM AND MANUFACTURE OF SOLAR BATTERY USING THE SAME
JP2000332273A (en) * 1999-05-25 2000-11-30 Matsushita Electric Ind Co Ltd Solar battery and manufacture thereof
JP2001044464A (en) * 1999-07-28 2001-02-16 Asahi Chem Ind Co Ltd METHOD OF FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR LAYER AND MANUFACTURE OF THIN-FILM SOLAR CELL

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651061U (en) * 1979-09-27 1981-05-07
JPH0228917B2 (en) * 1985-11-13 1990-06-27 Hitachi Ltd SENJOSOCHI
JP3055082B2 (en) * 1992-11-30 2000-06-19 リソテック ジャパン株式会社 Concentration management method and device
JP3249342B2 (en) * 1995-05-29 2002-01-21 昭和シェル石油株式会社 Heterojunction thin-film solar cell and method of manufacturing the same
JP3589380B2 (en) * 1997-06-05 2004-11-17 松下電器産業株式会社 Method of manufacturing semiconductor thin film and method of manufacturing thin film solar cell
JP3311286B2 (en) * 1997-11-06 2002-08-05 昭和シェル石油株式会社 Manufacturing method of thin film solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243991A (en) * 1999-02-19 2000-09-08 Canon Inc Method of forming zinc oxide film and semiconductor element using same
JP2000332280A (en) * 1999-05-25 2000-11-30 Matsushita Electric Ind Co Ltd METHOD OF FORMING ZnO SEMICONDUCTOR THIN FILM AND MANUFACTURE OF SOLAR BATTERY USING THE SAME
JP2000332273A (en) * 1999-05-25 2000-11-30 Matsushita Electric Ind Co Ltd Solar battery and manufacture thereof
JP2001044464A (en) * 1999-07-28 2001-02-16 Asahi Chem Ind Co Ltd METHOD OF FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR LAYER AND MANUFACTURE OF THIN-FILM SOLAR CELL

Also Published As

Publication number Publication date
JP2002343987A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
JP4549570B2 (en) Method for manufacturing heterojunction thin film solar cell
US7939745B2 (en) Compound thin-film solar cell and process for producing the same
US5112410A (en) Cadmium zinc sulfide by solution growth
US6023020A (en) Solar cell and method for manufacturing the same
Chu et al. Thin film II–VI photovoltaics
Kodigala Cu (In1-xGax) Se2 Based thin film solar cells
JP4012957B2 (en) Method for producing compound thin film solar cell
US8551802B2 (en) Laser annealing for thin film solar cells
JP3249342B2 (en) Heterojunction thin-film solar cell and method of manufacturing the same
TW200939492A (en) Laminated structuer of cis-type solar battery and integrated structure
JP5564688B2 (en) CBD solution for CZTS semiconductor, method for producing buffer layer for CZTS semiconductor, and photoelectric device
Saha A Status Review on Cu2ZnSn (S, Se) 4‐Based Thin‐Film Solar Cells
JP4320529B2 (en) Compound thin film solar cell and manufacturing method thereof
JP2007242646A (en) Method of forming buffer layer and thin-film solar cell therewith
WO2014052515A1 (en) Method of processing a semiconductor assembly
CN104051565A (en) Method for manufacturing photovoltaic device
JP3589380B2 (en) Method of manufacturing semiconductor thin film and method of manufacturing thin film solar cell
JP2000332273A (en) Solar battery and manufacture thereof
JP2003258278A (en) Photoelectric conversion device and manufacturing method thereof
CN112201702B (en) Thin film solar cell absorption layer forming method, thin film solar cell and preparation method
TW201427054A (en) Photoelectric conversion element and method of producing the same, manufacturing method for buffer layer of photoelectric conversion element, and solar cell
Il’chuk et al. Chemical surface deposition of CdS ultra thin films from aqueous solutions
JP6169283B2 (en) Morpholine bath and method for chemically depositing layers
Deokate The Recent Research and Growth in Energy Efficiency in Cu 2 ZnSnS 4 (CZTS) Solar Cells
JPH11145493A (en) Manufacture of thin-film solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080730

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100707

R150 Certificate of patent or registration of utility model

Ref document number: 4549570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees