JPH11145493A - Manufacture of thin-film solar battery - Google Patents

Manufacture of thin-film solar battery

Info

Publication number
JPH11145493A
JPH11145493A JP9319155A JP31915597A JPH11145493A JP H11145493 A JPH11145493 A JP H11145493A JP 9319155 A JP9319155 A JP 9319155A JP 31915597 A JP31915597 A JP 31915597A JP H11145493 A JPH11145493 A JP H11145493A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
compound semiconductor
sulfur
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9319155A
Other languages
Japanese (ja)
Other versions
JP3311286B2 (en
Inventor
Katsumi Kushiya
勝巳 櫛屋
Osamu Yamase
修 山瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP31915597A priority Critical patent/JP3311286B2/en
Publication of JPH11145493A publication Critical patent/JPH11145493A/en
Application granted granted Critical
Publication of JP3311286B2 publication Critical patent/JP3311286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve exchange efficiency and yield rate of a thin-film solar battery with a hetero junction, to enable to mass-produce the solar battery using an existing device, and to reduce manufacturing cost of the solar battery. SOLUTION: A manufacturing method of a thin-film solar battery is provided, wherein a metal backside electrode 3, a multiple element compound semiconductor thin film 4 having a P-type conductivity and used as a light absorbing layer, a transparent and high resistant sulfur-containing zinc mixed crystal compound semiconductor thin film 5 which is formed between the semiconductor thin film 4 and a metal oxide semiconductor thin film 6 and used as an interfacial layer, a metal oxide semiconductor thin film 6, and an upper electrode 7, are successively formed on a glass substrate 2. In this case, the conversion efficiency and yield of production of the thin film solar battery can be improved by performing high temperature drying treatment, such as an annealing at 100 to 250 deg.C in the vacuum atmosphere of 1 to 100 Torr for 10 to 120 minutes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多元化合物半導体
薄膜を光吸収層として使用したヘテロ接合薄膜太陽電
池、特に光吸収層としてCu-III-VI2族カルコパイト半導
体、例えば二セレン化銅インジウム(CIS)、二セレ
ン化銅インジウム・ガリウム(CIGS)又は二セレン
・イオウ化銅インジウム・ガリウム(CIGSS)、薄
膜の二セレン・イオウ化銅インジウム・ガリウム(CI
GSS)層を表面層として有する二セレン化銅インジウ
ム・ガリウム(CIGS)のようなp形半導体の光吸収
層とpnヘテロ接合を有する薄膜太陽電池の製造方法に
関する。
TECHNICAL FIELD The present invention relates to a hetero-junction thin-film solar cell using multinary compound semiconductor thin film as a light absorbing layer, in particular Cu-III-VI 2 Group Karukopaito semiconductor as a light absorbing layer, for example, copper indium diselenide ( CIS), copper indium gallium diselenide (CIGS) or copper indium gallium indium selenide (CIGSS), thin-film copper indium gallium indium selenide (CIGS)
The present invention relates to a method for manufacturing a thin-film solar cell having a pn heterojunction and a light-absorbing layer of a p-type semiconductor such as copper indium gallium diselenide (CIGS) having a GSS) layer as a surface layer.

【0002】[0002]

【従来の技術】従来、前記タイプの薄膜太陽電池は広範
囲に実用化可能であると見做され、米国特許第4335
226号明細書(Michelsen et.al による、1982年
6月15日発行)に記載され、且つ高い変換効率を有す
る薄膜太陽電池を提供するためにCISからなる光吸収
層上に硫化カドミウム(CdS)層を成長させることを
開示している。
2. Description of the Related Art Conventionally, thin film solar cells of the above type have been considered to be widely practicable and are disclosed in US Pat.
No. 226, issued by Michelsen et.al, issued June 15, 1982, and cadmium sulfide (CdS) on a light absorbing layer made of CIS to provide a thin film solar cell having high conversion efficiency. It discloses growing a layer.

【0003】このような高変換効率を有する薄膜太陽電
池を開発することを目的とした多くの刊行物の中でも、
米国特許第4611091号明細書(Choudray et.alに
よる、1986年9月9日発行)及び米国特許第504
5409号明細書(Eberspacher et.al による、199
1年9月3日発行)が重要である。
[0003] Among many publications aimed at developing a thin film solar cell having such a high conversion efficiency,
U.S. Pat. No. 4,610,091 (Choudray et.al, issued September 9, 1986) and U.S. Pat.
No. 5409 (1992 by Eberspacher et.al).
(Issued September 3, 2001) is important.

【0004】前記米国特許第5045409号明細書は
CIS薄膜光吸収層のセレン化の改良方法を、また、前
記米国特許第4611091号明細書はCIS薄膜光吸
収層上に溶液から化学的に成長したCdS薄膜上に、有
機金属化学的気相成長法(MOCVD法)により作製し
た酸化亜鉛のような、透明で導電性を有する広い禁制帯
幅のn形半導体薄膜層を成長させることにより、CdS
層の厚さを大幅に減少させる製造方法を開示している。
US Pat. No. 5,045,409 describes a method for improving selenization of a CIS thin film light absorbing layer, and US Pat. No. 4,611,091 chemically grows a solution on a CIS thin film light absorbing layer from a solution. By growing a transparent and conductive n-type semiconductor thin film layer having a wide band gap such as zinc oxide formed by metal organic chemical vapor deposition (MOCVD) on the CdS thin film,
A manufacturing method is disclosed that significantly reduces the thickness of the layer.

【0005】前記2つの特許明細書は、大面積の薄膜太
陽電池モジュールの製造方法において極めて重要と解さ
れている、セレン化水素及びCdS等のような毒性の高
い構成材料の使用量を最小限に抑えるか又は排除するた
めに有用な製造方法を開示している。
The above two patent specifications minimize the use of highly toxic components such as hydrogen selenide and CdS, which are considered to be extremely important in a method for manufacturing a large-area thin-film solar cell module. Disclosed are methods of manufacture that are useful for minimizing or eliminating.

【0006】前記米国特許第4611091号明細書に
記載された溶液から化学的にCdS薄膜を成長させる作
製方法は、それ以外の作製方法による厚膜のCdSより
もCIS薄膜光吸収層と高品質なヘテロ接合を形成し、
且つシャント抵抗を高める効果を有するが、このような
改良点はCIS薄膜光吸収層の溶液中への浸漬により形
成されるヘテロ接合界面、特に薄膜光吸収層表面のエッ
チング或いは選択的なクリーニング効果も含まれている
と見做している。
The method of growing a CdS thin film chemically from a solution described in the above-mentioned US Pat. No. 4,611,091 uses a CIS thin film light absorbing layer and a higher quality than a thick CdS formed by other methods. Form a heterojunction,
In addition, it has the effect of increasing the shunt resistance, but such an improvement is attributable to the etching or selective cleaning effect of the heterojunction interface formed by immersing the CIS thin film light absorbing layer in a solution, particularly the thin film light absorbing layer surface. It is considered included.

【0007】[0007]

【発明が解決しようとする課題】近年、薄膜太陽電池か
らカドミウムのような毒性のある材料を原則的に排除し
ようという試みが積極的に提案又は実施がなされてい
る。しかしながら、カドミウムのような毒性のある材料
を使用せずに高品質のヘテロ接合を形成させて高変換効
率の薄膜太陽電池を作製することは成功していない。例
えば、水酸化アンモニウムに酢酸亜鉛を溶解した溶液か
ら成長した亜鉛化合物層は、製膜後の大気中でのアニー
ルによる乾燥を行っても、水酸化亜鉛を30mol %程度
まで多量に含んだ酸化亜鉛薄膜であるため、水酸基が表
面に存在して膜密度が低下し表面の被覆が不十分とな
り、CdSを使用したものと同程度の良好な薄膜層を得
ることができないという問題があった。
In recent years, attempts have been actively made or implemented to essentially eliminate toxic materials such as cadmium from thin-film solar cells. However, it has not been successful to form a high-quality heterojunction without using a toxic material such as cadmium to produce a thin-film solar cell with high conversion efficiency. For example, a zinc compound layer grown from a solution obtained by dissolving zinc acetate in ammonium hydroxide can be dried by annealing in air after film formation, and can contain zinc oxide containing a large amount of zinc hydroxide up to about 30 mol%. Since the film is a thin film, there is a problem that a hydroxyl group is present on the surface, the film density is reduced, the coating on the surface is insufficient, and a thin film layer as good as that using CdS cannot be obtained.

【0008】また、カドミウム等の毒性を含まない材料
を用いた薄膜太陽電池としては、従来、図1に示すよう
な、ガラス基板2上に、金属裏面電極2、p形の導電形
を有し、且つ光吸収層として供される第1の多元化合物
半導体薄膜4、前記第1の多元化合物半導体薄膜4と第
2の金属酸化物半導体薄膜6との間の界面に形成され、
透明で高抵抗を有し、界面層として供されるイオウ含有
亜鉛混晶化合物半導体薄膜5、前記イオウ含有亜鉛混晶
化合物半導体薄膜5上に形成され、第1の多元化合物半
導体薄膜とは反対の導電形を有し、窓層として供され、
禁制帯幅が広く且つ透明で導電性を有する第2の金属酸
化物半導体薄膜6及び上部電極又はスクライブライン7
が順次形成された構造の薄膜太陽電池1があった。しか
しながら、前記構造の薄膜太陽電池を製造する場合、特
に、前記界面層として供されるイオウ含有亜鉛混晶化合
物半導体薄膜の作製工程において、従来の製造方法にお
いては、第1の多元化合物半導体薄膜上に化学的成長に
よりイオウ含有亜鉛混晶化合物半導体薄膜を成長させた
後、常温乾燥処理を行っているため、変換効率等の素子
特性及び歩留りにおいて、カドミウム等の材料を用いた
薄膜太陽電池と比べて劣るという問題があった。
As a thin-film solar cell using a material which does not contain toxicity such as cadmium, a metal back electrode 2 having a p-type conductive type on a glass substrate 2 as shown in FIG. A first multi-component compound semiconductor thin film 4 serving as a light absorbing layer, formed at an interface between the first multi-component compound semiconductor thin film 4 and the second metal oxide semiconductor thin film 6,
Sulfur-containing zinc mixed crystal compound semiconductor thin film 5 which is transparent and has high resistance and is provided as an interface layer, formed on the sulfur-containing zinc mixed crystal compound semiconductor thin film 5 and opposite to the first multi-element compound semiconductor thin film Having a conductivity type, serving as a window layer,
Second metal oxide semiconductor thin film 6 having a wide band gap, being transparent and conductive, and upper electrode or scribe line 7
Were formed in this order. However, in the case of manufacturing a thin film solar cell having the above structure, particularly in a manufacturing process of a sulfur-containing zinc mixed crystal compound semiconductor thin film serving as the interface layer, in a conventional manufacturing method, the first multi-element compound semiconductor thin film is formed. After a sulfur-containing zinc mixed crystal compound semiconductor thin film is grown by chemical growth and then dried at room temperature, device characteristics such as conversion efficiency and yield are lower than those of thin film solar cells using materials such as cadmium. Was inferior.

【0009】本発明は、前記問題点を解決するためのも
のであり、カドミウムを含まない高い変換効率の前記多
元化合物半導体薄膜を光吸収層として使用したヘテロ接
合を有する薄膜太陽電池の製造方法を提供することを目
的とする。
The present invention has been made to solve the above problems, and provides a method of manufacturing a thin film solar cell having a heterojunction using the multiplexed compound semiconductor thin film of high conversion efficiency containing no cadmium as a light absorbing layer. The purpose is to provide.

【0010】更に、本発明は、前記ヘテロ接合を有する
薄膜太陽電池の素子特性、即ち、変換効率及び歩留り
(収率)が向上する薄膜太陽電池の製造方法を提供する
ことを目的とする。
Another object of the present invention is to provide a method of manufacturing a thin-film solar cell in which the device characteristics of the thin-film solar cell having the heterojunction, that is, the conversion efficiency and the yield (yield) are improved.

【0011】更に、本発明は、前記ヘテロ接合を有する
薄膜太陽電池を製造する場合、大量生産可能で、且つ化
学薬品の使用量及び濃度を減少させる薄膜太陽電池の製
造方法を提供することを目的とする。
Another object of the present invention is to provide a method of manufacturing a thin-film solar cell which can be mass-produced and which reduces the use and concentration of chemicals when manufacturing the thin-film solar cell having the heterojunction. And

【0012】[0012]

【課題を解決するための手段】本発明は、金属裏面電極
と、該金属裏面電極上に形成され、p形の導電形を有
し、且つ光吸収層として供される第1の多元化合物半導
体薄膜と、前記第1の多元化合物半導体薄膜上に形成さ
れ、第1の多元化合物半導体薄膜とは反対の導電形を有
し、窓層として供され、禁制帯幅が広く且つ透明で導電
性を有する第2の金属酸化物半導体薄膜と、前記第1の
多元化合物半導体薄膜と第2の金属酸化物半導体薄膜と
の間の界面に形成され、透明で高抵抗を有し、界面層と
して供されるイオウ含有亜鉛混晶化合物半導体薄膜と、
上部電極とからなる薄膜太陽電池の製造方法であって、
前記第1の多元化合物半導体薄膜の上に酸素、イオウ及
び水酸基を含んだ前記イオウ含有亜鉛混晶化合物半導体
薄膜を溶液から化学的に成長させた後、該イオウ含有亜
鉛混晶化合物半導体薄膜を、真空中で高温乾燥すること
により、透明で高抵抗を有する界面層を形成する薄膜太
陽電池の製造方法である。
SUMMARY OF THE INVENTION The present invention provides a metal back electrode and a first multi-element compound semiconductor formed on the metal back electrode, having a p-type conductivity and serving as a light absorbing layer. A thin film, formed on the first multi-compound semiconductor thin film, having a conductivity type opposite to that of the first multi-compound semiconductor thin film, serving as a window layer, having a wide band gap, being transparent and having conductivity. Formed at the interface between the second metal oxide semiconductor thin film and the first multi-component compound semiconductor thin film and the second metal oxide semiconductor thin film, which is transparent, has high resistance, and serves as an interface layer. A sulfur-containing zinc mixed crystal compound semiconductor thin film,
A method for manufacturing a thin-film solar cell comprising an upper electrode,
After chemically growing the sulfur-containing zinc mixed crystal compound semiconductor thin film containing oxygen, sulfur and hydroxyl groups on the first multi-component compound semiconductor thin film from a solution, the sulfur-containing zinc mixed crystal compound semiconductor thin film is This is a method for manufacturing a thin-film solar cell in which a transparent and high-resistance interface layer is formed by drying at a high temperature in a vacuum.

【0013】本発明は、前記光吸収層として供される第
1の多元化合物半導体薄膜が、二セレン化銅インジウム
(CIS)、二セレン化銅インジウム・ガリウム(CI
GS)、二セレン・イオウ化銅インジウム・ガリウム或
いは薄膜の二セレン・イオウ化銅インジウム・ガリウム
(CIGSS)層を表面層として有する二セレン化銅イ
ンジウム・ガリウム(CIGS)から成る薄膜太陽電池
の製造方法である。
In the present invention, the first multi-element compound semiconductor thin film serving as the light absorbing layer may be made of copper indium diselenide (CIS) or copper indium gallium diselenide (CI).
GS), manufacture of thin-film solar cells composed of copper-indium-gallium-diselene-copper-indium-gallium (CIGS) having a thin layer of copper-selenium-copper-indium-iodide-gallium (CIGS) as a surface layer Is the way.

【0014】本発明は、前記窓層として供される第2の
金属酸化物半導体薄膜が、酸化亜鉛からなる薄膜太陽電
池の製造方法である。
The present invention is a method for manufacturing a thin-film solar cell, wherein the second metal oxide semiconductor thin film serving as the window layer is made of zinc oxide.

【0015】本発明は、前記界面層として供されるイオ
ウ含有亜鉛混晶化合物半導体薄膜を形成するために亜鉛
塩が用いられ、その亜鉛塩が、硫酸亜鉛、塩化亜鉛又は
酢酸亜鉛のうちの1つから選択される薄膜太陽電池の製
造方法である。
In the present invention, a zinc salt is used to form a sulfur-containing zinc mixed crystal compound semiconductor thin film serving as the interface layer, and the zinc salt is one of zinc sulfate, zinc chloride and zinc acetate. This is a method for manufacturing a thin-film solar cell selected from the following.

【0016】本発明は、前記界面層として供されるイオ
ウ含有亜鉛混晶化合物半導体薄膜を形成するために、亜
鉛塩の他にイオウ含有塩を含む薄膜太陽電池の製造方法
である。
The present invention is a method for producing a thin-film solar cell containing a sulfur-containing salt in addition to a zinc salt to form a sulfur-containing zinc mixed crystal compound semiconductor thin film serving as the interface layer.

【0017】本発明は、前記イオウ含有亜鉛混晶化合物
半導体薄膜を、真空中で高温乾燥する場合、前記温度が
100乃至250℃である薄膜太陽電池の製造方法であ
る。
The present invention is a method for manufacturing a thin-film solar cell, wherein the temperature is 100 to 250 ° C. when the sulfur-containing zinc mixed crystal compound semiconductor thin film is dried at a high temperature in a vacuum.

【0018】本発明は、前記イオウ含有亜鉛混晶化合物
半導体薄膜を、真空中で高温乾燥する場合、前記真空度
が1乃至100Torrである薄膜太陽電池の製造方法であ
る。
The present invention is a method for producing a thin-film solar cell wherein the degree of vacuum is 1 to 100 Torr when the sulfur-containing zinc mixed crystal compound semiconductor thin film is dried at a high temperature in a vacuum.

【0019】本発明は、前記イオウ含有亜鉛混晶化合物
半導体薄膜を、真空中で高温乾燥する場合、前記乾燥時
間が10乃至120分である薄膜太陽電池の製造方法で
ある。
The present invention is a method for producing a thin-film solar cell, wherein when the sulfur-containing zinc mixed crystal compound semiconductor thin film is dried at a high temperature in a vacuum, the drying time is 10 to 120 minutes.

【0020】[0020]

【発明の実施の形態】本発明の実施の形態を以下に説明
する。カドミウム等の毒性を含まない材料を用いた薄膜
太陽電池としては、従来、ガラス基板上に、金属裏面電
極、p形の導電形を有し、且つ光吸収層として供される
第1の多元化合物半導体薄膜、前記第1の多元化合物半
導体薄膜と第2の金属酸化物半導体薄膜との間の界面に
形成され、透明で高抵抗を有し、界面層として供される
イオウ含有亜鉛混晶化合物半導体薄膜、前記イオウ含有
亜鉛混晶化合物半導体薄膜上に形成され、第1の多元化
合物半導体薄膜とは反対の導電形を有し、窓層として供
され、禁制帯幅が広く且つ透明で導電性を有する第2の
金属酸化物半導体薄膜及び上部電極又はスクライブライ
ンが順次形成された構造の薄膜太陽電池があった。
Embodiments of the present invention will be described below. As a thin-film solar cell using a material that does not contain toxicities such as cadmium, a first multi-element compound having a metal back electrode, a p-type conductivity type, and serving as a light absorbing layer on a glass substrate is conventionally used. A semiconductor thin film, a sulfur-containing zinc mixed crystal compound semiconductor formed at an interface between the first multi-component compound semiconductor thin film and the second metal oxide semiconductor thin film, having high transparency and being provided as an interface layer; A thin film, formed on the sulfur-containing zinc mixed crystal compound semiconductor thin film, having a conductivity type opposite to that of the first multi-component compound semiconductor thin film, serving as a window layer, and having a wide band gap and being transparent and conductive. There is a thin film solar cell having a structure in which a second metal oxide semiconductor thin film and an upper electrode or a scribe line are sequentially formed.

【0021】前記構造の薄膜太陽電池を製造する場合、
特に、前記界面層として供されるイオウ含有亜鉛混晶化
合物半導体薄膜の作製工程において、従来の製造方法に
おいては、第1の多元化合物半導体薄膜上に化学的成長
によりイオウ含有亜鉛混晶化合物半導体薄膜を成長させ
た後、常温乾燥処理を行っていたが、本発明の製造方法
においては、前記従来の常温乾燥処理に代えて、真空中
で高温乾燥処理を行うことにより、変換効率等の素子特
性及び歩留りを向上することができる。
When manufacturing a thin film solar cell having the above structure,
In particular, in the manufacturing process of the sulfur-containing zinc mixed crystal compound semiconductor thin film serving as the interface layer, in the conventional manufacturing method, the sulfur-containing zinc mixed crystal compound semiconductor thin film is formed by chemical growth on the first multi-component compound semiconductor thin film. Was grown at room temperature, but in the manufacturing method of the present invention, instead of the conventional room temperature drying process, a high temperature drying process was performed in a vacuum to obtain device characteristics such as conversion efficiency. And the yield can be improved.

【0022】[0022]

【実施例】薄膜太陽電池1は、ガラス基板2上に、金属
裏面電極3、第1の多元化合物半導体薄膜4、イオウ含
有亜鉛混晶化合物半導体薄膜5、第2の金属酸化物半導
体薄膜6及び上部電極又はスクライブライン7が順次形
成された構造である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A thin-film solar cell 1 comprises a glass substrate 2, a metal back electrode 3, a first multi-component semiconductor thin film 4, a sulfur-containing zinc mixed crystal compound semiconductor thin film 5, a second metal oxide semiconductor thin film 6, This is a structure in which upper electrodes or scribe lines 7 are sequentially formed.

【0023】本発明は薄膜太陽電池の製造方法に関す
る。前記薄膜太陽電池1は図1に示すような構造であ
り、ガラス基板2上に、金属裏面電極3、第1の多元化
合物半導体薄膜4、イオウ含有亜鉛混晶化合物半導体薄
膜5、第2の金属酸化物半導体薄膜6及び上部電極又は
スクライブライン7が順次積層構造に形成される。
The present invention relates to a method for manufacturing a thin-film solar cell. The thin-film solar cell 1 has a structure as shown in FIG. 1, and a metal back electrode 3, a first multi-component compound semiconductor thin film 4, a sulfur-containing zinc mixed crystal compound semiconductor thin film 5, a second metal The oxide semiconductor thin film 6 and the upper electrode or scribe line 7 are sequentially formed in a laminated structure.

【0024】更に、薄膜太陽電池1の詳細を説明する。
ガラス基板2は1〜3mmの厚さを有する。金属裏面電
極3は厚さ1〜2μmのモリブデン、チタン又はタンタ
ル等の金属或いは金属積層構造体からなる。第1の多元
化合物半導体薄膜4は光吸収層として供され、p形の導
電形を有するCu-III-VI2族カルコパイト構造の厚さ1〜
3μmの薄膜、CIS、CIGS、CIGSS又はCI
GSS層を表面層とするCIGS等の多元化合物半導体
薄膜からなる。イオウ含有亜鉛混晶化合物半導体薄膜5
は高抵抗で、界面層として供され、この薄膜を形成する
ためには、亜鉛塩、詳細には、硫酸亜鉛、塩化亜鉛又は
酢酸亜鉛の1つから選択される溶液を用いる。また、必
要に応じて亜鉛酸の他にイオウ含有塩を用いることもで
きる。第2の金属酸化物半導体薄膜6は窓層として供さ
れ、n形の導電形を有する禁制帯幅が広く且つ透明で導
電性を有する厚さ0.5〜3μmの酸化亜鉛からなる。
上部電極又はスクライブライン7は前記第2の金属酸化
物半導体薄膜6の露出表面に作製される。
Further, details of the thin-film solar cell 1 will be described.
The glass substrate 2 has a thickness of 1 to 3 mm. The metal back electrode 3 is made of a metal such as molybdenum, titanium or tantalum or a metal laminated structure having a thickness of 1 to 2 μm. The first multi-element compound semiconductor thin film 4 serves as a light absorbing layer and has a thickness of 1 to 3 of a p-type conductivity type Cu-III-VI group 2 chalcopyrite structure.
3 μm thin film, CIS, CIGS, CIGSS or CI
It is composed of a thin film of a multiple compound semiconductor such as CIGS having a GSS layer as a surface layer. Sulfur-containing zinc mixed crystal compound semiconductor thin film 5
Are high resistance, serve as an interfacial layer, and use a zinc salt, specifically a solution selected from one of zinc sulfate, zinc chloride or zinc acetate to form this thin film. If necessary, a sulfur-containing salt can be used in addition to zinc acid. The second metal oxide semiconductor thin film 6 is provided as a window layer, and is made of zinc oxide having a wide bandgap having an n-type conductivity type and a thickness of 0.5 to 3 μm which is transparent and conductive.
An upper electrode or scribe line 7 is formed on an exposed surface of the second metal oxide semiconductor thin film 6.

【0025】本発明の薄膜太陽電池の製造方法は以下の
イオウ含有亜鉛混晶化合物半導体薄膜5の作製工程に特
徴を有する。光吸収層として供される前記第1の多元化
合物半導体薄膜4の上に亜鉛塩又はイオウ含有塩を含む
溶液から酸素、イオウ及び水酸基を含んだ薄膜を化学的
に成長させた後、真空中で高温乾燥処理することによ
り、高抵抗のイオウ含有亜鉛混晶化合物半導体薄膜5を
形成する。
The method for manufacturing a thin-film solar cell of the present invention is characterized by the following steps for preparing a sulfur-containing zinc mixed crystal compound semiconductor thin film 5. After chemically growing a thin film containing oxygen, sulfur and hydroxyl groups from a solution containing a zinc salt or a sulfur-containing salt on the first multi-component compound semiconductor thin film 4 serving as a light absorbing layer, By performing a high-temperature drying treatment, a high-resistance sulfur-containing zinc mixed crystal compound semiconductor thin film 5 is formed.

【0026】前記薄膜太陽電池の製造方法における真空
高温乾燥処理工程を以下詳細に説明する。光吸収層とし
て供される前記第1の多元化合物半導体薄膜4を亜鉛塩
又はイオウ含有塩を含む溶液中に浸析させて、第1の多
元化合物半導体薄膜4上にイオウ含有亜鉛混晶化合物半
導体薄膜5を化学的に成長させた後、成長したイオウ含
有亜鉛混晶化合物半導体薄膜5を1〜100Torrの
真空中で、設定温度100〜250℃で10〜120分
間アニールすることにより、乾燥し且つ膜中の水酸化亜
鉛を酸化亜鉛に転化すると同時に、イオウによる第1の
多元化合物半導体薄膜4の表面の改質を促進する。
The vacuum high-temperature drying process in the method for manufacturing a thin-film solar cell will be described in detail below. The first multi-component semiconductor thin film 4 serving as a light absorbing layer is immersed in a solution containing a zinc salt or a sulfur-containing salt to form a sulfur-containing zinc mixed crystal compound semiconductor on the first multi-component semiconductor thin film 4. After chemically growing the thin film 5, the grown sulfur-containing zinc mixed crystal compound semiconductor thin film 5 is annealed in a vacuum of 1 to 100 Torr at a set temperature of 100 to 250 ° C. for 10 to 120 minutes to dry and At the same time as converting zinc hydroxide in the film to zinc oxide, it promotes the reforming of the surface of the first multi-component compound semiconductor thin film 4 with sulfur.

【0027】以下に前記本発明の薄膜太陽電池の製造方
法により製造された薄膜太陽電池1の素子特性の試験結
果を示す。
The test results of the element characteristics of the thin-film solar cell 1 manufactured by the method for manufacturing a thin-film solar cell of the present invention will be described below.

【0028】真空乾燥処理による変換効率及び歩留り
(収率)への影響を表1乃至表4を用いて説明する。
The effects of the vacuum drying process on conversion efficiency and yield (yield) will be described with reference to Tables 1 to 4.

【0029】真空乾燥処理に於ける処理時間による変換
効率及び歩留り(収率)への影響
Influence on conversion efficiency and yield (yield) by processing time in vacuum drying processing

【0030】[0030]

【表1】 [Table 1]

【0031】上記表1は、従来の製造方法である常温乾
燥処理(温度:200℃、圧力:常圧、乾燥時間:15
分)により製造された薄膜太陽電池の素子特性を示す。
The above Table 1 shows a normal-temperature drying treatment (temperature: 200 ° C., pressure: normal pressure, drying time: 15) which is a conventional production method.
2) shows the element characteristics of the thin-film solar cell manufactured according to the above method.

【0032】[0032]

【表2】 [Table 2]

【0033】上記表2は、温度:200℃、圧力:30
Torr 一定で、乾燥時間を変化させて製造した薄膜太陽
電池の素子特性を示す。
Table 2 shows that temperature: 200 ° C., pressure: 30
This shows the device characteristics of a thin-film solar cell manufactured at a constant Torr while varying the drying time.

【0034】上記表1に示す従来の製造方法である常温
乾燥処理(温度:200℃、圧力:常圧、乾燥時間:1
5分)により製造された薄膜太陽電池と比べて、上記表
2に示す、温度:200℃、圧力:30Torr 一定で、
乾燥時間を変化させて製造した薄膜太陽電池のの場合、
乾燥時間が15〜120分の全てに於いて、変換効率及
び標準偏差βともに向上する。そして、乾燥時間が15
〜60分の間は乾燥時間の増加とともに、変換効率及び
標準偏差βが改善される。
A normal temperature drying treatment (temperature: 200 ° C., pressure: normal pressure, drying time: 1) which is a conventional production method shown in Table 1 above.
5 minutes), the temperature: 200 ° C., the pressure: 30 Torr, as shown in Table 2 above.
In the case of thin-film solar cells manufactured by changing the drying time,
In all the drying times of 15 to 120 minutes, both the conversion efficiency and the standard deviation β are improved. And the drying time is 15
Between 6060 minutes, the conversion efficiency and standard deviation β improve with increasing drying time.

【0035】なお、標準偏差βは変換効率のバラツキα
に関与し、バラツキα=(変換効率×β)÷2 という
関係になる。
The standard deviation β is the variation α of the conversion efficiency.
And the variation α = (conversion efficiency × β) ÷ 2.

【0036】例えば、表1に示す従来の製造方法により
製造されたものと、表2に示す乾燥時間が60分のもの
とを比較すると、従来のものでは、変換効率10.0±
1.105(10.0×0.0221÷2)の太陽電池
セルが65%の歩留り(収率)で得られるのに対して、
乾燥時間が60分のものでは、変換効率11.0±0.
0462(11.0×0.0084÷2)の太陽電池セ
ルが65%の歩留り(収率)が得られることになり、効
率及び歩留り(収率)ともに改善される。
For example, a comparison between the one manufactured by the conventional manufacturing method shown in Table 1 and the one with a drying time of 60 minutes shown in Table 2 shows that the conversion efficiency of the conventional one is 10.0 ± 10%.
While 1.105 (10.0 × 0.0221 ÷ 2) solar cells can be obtained with a yield (yield) of 65%,
When the drying time is 60 minutes, the conversion efficiency is 11.0 ± 0.
A 0462 (11.0 × 0.0084 ÷ 2) solar cell has a 65% yield (yield), and both efficiency and yield (yield) are improved.

【0037】なお、上記両者の歩留り(収率)は同じ6
5%であっても、そのバラツキαが後者は0.0462
であるのに対して、前者は1.105であるから、実質
的に後者の方が歩留り(収率)が優れていることにな
る。
The yield (yield) of the two is the same.
Even if it is 5%, the variation α is 0.0462.
On the other hand, since the former is 1.105, the latter substantially has a higher yield (yield).

【0038】しかし、乾燥時間が60分の場合が最大
で、乾燥時間が120分になると、変換効率及び標準偏
差βともに低下するものの、表1に示す従来のものより
は、換効率及び標準偏差βは向上している。
However, when the drying time is 60 minutes, the conversion efficiency and the standard deviation β decrease when the drying time reaches 120 minutes. β is improving.

【0039】なお、乾燥時間が長過ぎると変換効率及び
標準偏差βが低下する原因は、界面状態の悪化によるも
のと考えられる。
The reason why the conversion efficiency and the standard deviation β decrease when the drying time is too long is considered to be the deterioration of the interface state.

【0040】真空乾燥処理に於ける乾燥温度による変換
効率及び歩留り(収率)への影響
Effect of drying temperature on conversion efficiency and yield (yield) in vacuum drying process

【0041】[0041]

【表3】 [Table 3]

【0042】上記表3は、時間:60分、圧力:30To
rr 一定で、温度を変化させて製造した薄膜太陽電池の
素子特性を示す。
Table 3 shows that time: 60 minutes, pressure: 30 To.
rr Indicates the device characteristics of a thin-film solar cell manufactured at a constant temperature while varying.

【0043】前記表1に示す、従来の製造方法である常
温乾燥処理(温度:200℃、圧力:常圧、乾燥時間:
15分)により製造された薄膜太陽電池と比べて、上記
表3に示す、時間:60分、圧力:30Torr 一定で、
温度を変化させて製造した薄膜太陽電池の場合、乾燥温
度が100〜230℃の全てに於いて、表1に示す従来
のものより変換効率及び標準偏差βともに向上する。2
00℃までは、温度の上昇と共に、変換効率及び標準偏
差βが向上するが、230℃になると間の増加ととも
に、表1に示す従来のものよりは、換効率及び標準偏差
βにおいて、優れているものの、多少低下する。この原
因は、温度上昇に伴う界面の相互拡散による影響と考え
られる。
As shown in Table 1 above, a normal temperature drying treatment (temperature: 200 ° C., pressure: normal pressure, drying time:
15 minutes), the time: 60 minutes, the pressure: 30 Torr, as shown in Table 3 above,
In the case of the thin-film solar cell manufactured by changing the temperature, the conversion efficiency and the standard deviation β are improved over the conventional one shown in Table 1 at all the drying temperatures of 100 to 230 ° C. 2
Up to 00 ° C., the conversion efficiency and the standard deviation β increase with an increase in the temperature. However, as the temperature increases to 230 ° C., the conversion efficiency and the standard deviation β are more excellent than those of the prior art shown in Table 1. , But slightly lower. The cause is considered to be the influence of interdiffusion of the interface due to the temperature rise.

【0044】真空乾燥処理に於ける乾燥圧力による変換
効率及び歩留り(収率)への影響
Effect of Drying Pressure on Conversion Efficiency and Yield (Yield) in Vacuum Drying

【0045】[0045]

【表4】 [Table 4]

【0046】上記表4は、時間:60分、温度:200
℃ 一定で、乾燥圧力を変化させて製造した太陽電池の
素子特性を示す。
Table 4 shows that time: 60 minutes, temperature: 200
This shows the device characteristics of a solar cell manufactured at a constant ° C and a varied drying pressure.

【0047】表1に示す、従来の製造方法である常温乾
燥処理(温度:200℃、圧力:常圧、乾燥時間:15
分)により製造された太陽電池と比べて、上記表4に示
す、時間:60分、温度:200℃ 一定で、乾燥圧力
を変化させて製造した太陽電池の場合、乾燥圧力が1〜
50Torrの範囲では、表1に示す従来のものより変換効
率及び標準偏差βともに向上する。しかし、100Torr
になると表1に示す従来のものと殆ど同等の値になる。
これは、圧力が上昇すると水分の乾燥効果が減少するた
めと考えられる。
As shown in Table 1, a normal-temperature drying treatment (temperature: 200 ° C., pressure: normal pressure, drying time: 15) which is a conventional production method is performed.
Min), the solar cell manufactured by changing the drying pressure at a constant time of 60 minutes and at a temperature of 200 ° C. as shown in Table 4 above has a drying pressure of 1 to
In the range of 50 Torr, both the conversion efficiency and the standard deviation β are improved as compared with the conventional one shown in Table 1. But 100 Torr
Becomes almost the same value as the conventional one shown in Table 1.
This is considered to be because the effect of drying moisture decreases as the pressure increases.

【0048】以上〜の実験例から見て、処理時間に
ついては、実験した全ての時間範囲、即ち、15〜12
0分の範囲で、乾燥温度については、実験した全ての温
度範囲、即ち、100〜230℃の範囲で、乾燥圧力に
ついては、1〜100Torrの範囲で、表4に示す従来の
ものより変換効率及び標準偏差βともに向上するという
ことが判明した。
In view of the above experimental examples, the processing time was determined for the entire time range of the experiment, ie, 15 to 12 hours.
In the range of 0 minutes, the drying temperature was in the entire temperature range tested, that is, in the range of 100 to 230 ° C., and the drying pressure was in the range of 1 to 100 Torr. And the standard deviation β are both improved.

【0049】[0049]

【発明の効果】本発明の製造方法により、高い変換効率
で、且つ高い歩留りの薄膜太陽電池を、カドミウム等の
毒性を有する材料を用いることなく、製造することがで
きる。
According to the manufacturing method of the present invention, a thin-film solar cell having high conversion efficiency and high yield can be manufactured without using toxic materials such as cadmium.

【0050】更に、本発明の製造方法は、真空高温乾燥
処理という既存の比較的簡単な装置を用いて製造するの
で、薄膜太陽電池を製造する場合、大量生産可能で、且
つ化学薬品の使用量及び濃度を減少させることができる
ので、製造コストを低減することができる。
Further, since the manufacturing method of the present invention is manufactured using an existing relatively simple apparatus called a vacuum high-temperature drying process, when manufacturing a thin-film solar cell, it can be mass-produced and the amount of chemicals used can be reduced. And the concentration can be reduced, so that the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法の製造対象である薄膜太陽電
池の概略構造を示す図である。
FIG. 1 is a view showing a schematic structure of a thin film solar cell to be manufactured by a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 薄膜太陽電池 2 基板 3 金属裏面電極 4 第1の多元化合物半導体薄膜(光吸収層:p形半
導体) 5 イオウ含有亜鉛混晶化合物半導体薄膜(界面層) 6 第2の金属酸化物半導体薄膜(窓層:n形半導
体) 7 上部電極又はスクライブライン
DESCRIPTION OF SYMBOLS 1 Thin film solar cell 2 Substrate 3 Metal back electrode 4 First multi-component compound semiconductor thin film (light absorption layer: p-type semiconductor) 5 Sulfur-containing zinc mixed crystal compound semiconductor thin film (interface layer) 6 Second metal oxide semiconductor thin film ( (Window layer: n-type semiconductor) 7 Upper electrode or scribe line

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 金属裏面電極と、該金属裏面電極上に形
成され、p形の導電形を有し、且つ光吸収層として供さ
れる第1の多元化合物半導体薄膜と、前記第1の多元化
合物半導体薄膜上に形成され、第1の多元化合物半導体
薄膜とは反対の導電形を有し、窓層として供され、禁制
帯幅が広く且つ透明で導電性を有する第2の金属酸化物
半導体薄膜と、前記第1の多元化合物半導体薄膜と第2
の金属酸化物半導体薄膜との間の界面に形成され、透明
で高抵抗を有し、界面層として供されるイオウ含有亜鉛
混晶化合物半導体薄膜と、上部電極とからなる薄膜太陽
電池の製造方法において、前記第1の多元化合物半導体
薄膜の上に酸素、イオウ及び水酸基を含んだ前記イオウ
含有亜鉛混晶化合物半導体薄膜を溶液から化学的に成長
させた後、該イオウ含有亜鉛混晶化合物半導体薄膜を、
真空中で高温乾燥することにより、透明で高抵抗を有す
る界面層を形成することを特徴とする薄膜太陽電池の製
造方法。
1. A metal back electrode, a first multi-compound semiconductor thin film formed on the metal back electrode, having a p-type conductivity, and serving as a light absorbing layer; A second metal oxide semiconductor formed on the compound semiconductor thin film, having a conductivity type opposite to that of the first multi-element compound semiconductor thin film, serving as a window layer, and having a wide bandgap, and being transparent and conductive; A thin film, the first multi-component compound semiconductor thin film, and a second
A thin-film solar cell manufacturing method comprising: a sulfur-containing zinc mixed crystal compound semiconductor thin film formed at an interface between a metal oxide semiconductor thin film of the present invention, which is transparent, has high resistance and serves as an interface layer, and an upper electrode In the above, after the sulfur-containing zinc mixed crystal compound semiconductor thin film containing oxygen, sulfur and hydroxyl groups is chemically grown from a solution on the first multi-component compound semiconductor thin film, the sulfur-containing zinc mixed crystal compound semiconductor thin film To
A method for producing a thin-film solar cell, wherein a transparent and high-resistance interface layer is formed by drying at a high temperature in a vacuum.
【請求項2】 前記光吸収層として供される第1の多元
化合物半導体薄膜が、二セレン化銅インジウム、二セレ
ン化銅インジウム・ガリウム(CIGS)、二セレン・
イオウ化銅インジウム・ガリウム或いは薄膜の二セレン
・イオウ化銅インジウム・ガリウム(CIGSS)層を
表面層として有する二セレン化銅インジウム・ガリウム
(CIGS)から成ることを特徴とする請求項1記載の
薄膜太陽電池の製造方法。
2. The method according to claim 1, wherein the first multi-element compound semiconductor thin film serving as the light absorbing layer is made of copper indium diselenide, copper indium gallium diselenide (CIGS),
2. The thin film according to claim 1, comprising copper indium gallium iodide or copper indium gallium diselenide (CIGS) having a thin film of diselene-copper indium-gallium iodide (CIGSS) as a surface layer. Solar cell manufacturing method.
【請求項3】 前記窓層として供される第2の金属酸化
物半導体薄膜が、酸化亜鉛からなることを特徴とする請
求項1記載の薄膜太陽電池の製造方法。
3. The method according to claim 1, wherein the second metal oxide semiconductor thin film serving as the window layer is made of zinc oxide.
【請求項4】 前記界面層として供されるイオウ含有亜
鉛混晶化合物半導体薄膜を形成するために亜鉛塩が用い
られ、その亜鉛塩が、硫酸亜鉛、塩化亜鉛又は酢酸亜鉛
のうちの1つから選択されることを特徴とする請求項1
記載の薄膜太陽電池の製造方法。
4. A zinc salt is used for forming a sulfur-containing zinc mixed crystal compound semiconductor thin film serving as the interface layer, wherein the zinc salt is formed from one of zinc sulfate, zinc chloride and zinc acetate. 2. The method according to claim 1, wherein the selection is performed.
A method for manufacturing the thin-film solar cell according to the above.
【請求項5】 前記界面層として供されるイオウ含有亜
鉛混晶化合物半導体薄膜を形成するために、亜鉛塩の他
にイオウ含有塩を含むことを特徴とする請求項1記載の
薄膜太陽電池の製造方法。
5. The thin-film solar cell according to claim 1, further comprising a sulfur-containing salt in addition to the zinc salt to form the sulfur-containing zinc mixed crystal compound semiconductor thin film serving as the interface layer. Production method.
【請求項6】 前記イオウ含有亜鉛混晶化合物半導体薄
膜を、真空中で高温乾燥する場合、前記温度が100乃
至250℃であることを特徴とする請求項1、2、3、
4又は5記載の薄膜太陽電池の製造方法。
6. The method according to claim 1, wherein when the sulfur-containing zinc mixed crystal compound semiconductor thin film is dried at a high temperature in a vacuum, the temperature is 100 to 250 ° C.
6. The method for producing a thin-film solar cell according to 4 or 5.
【請求項7】 前記イオウ含有亜鉛混晶化合物半導体薄
膜を、真空中で高温乾燥する場合、前記真空度が1乃至
100Torrであることを特徴とする請求項1、2、3、
4又は5記載の薄膜太陽電池の製造方法。
7. The method according to claim 1, wherein when the sulfur-containing zinc mixed crystal compound semiconductor thin film is dried at a high temperature in a vacuum, the degree of vacuum is 1 to 100 Torr.
6. The method for producing a thin-film solar cell according to 4 or 5.
【請求項8】 前記イオウ含有亜鉛混晶化合物半導体薄
膜を、真空中で高温乾燥する場合、前記乾燥時間が10
乃至120分であることを特徴とする請求項1、2、
3、4又は5記載の薄膜太陽電池の製造方法。
8. When the sulfur-containing zinc mixed crystal compound semiconductor thin film is dried at a high temperature in a vacuum, the drying time is 10 minutes.
1 to 2, wherein the time is from 120 to 120 minutes.
6. The method for producing a thin-film solar cell according to 3, 4, or 5.
JP31915597A 1997-11-06 1997-11-06 Manufacturing method of thin film solar cell Expired - Fee Related JP3311286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31915597A JP3311286B2 (en) 1997-11-06 1997-11-06 Manufacturing method of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31915597A JP3311286B2 (en) 1997-11-06 1997-11-06 Manufacturing method of thin film solar cell

Publications (2)

Publication Number Publication Date
JPH11145493A true JPH11145493A (en) 1999-05-28
JP3311286B2 JP3311286B2 (en) 2002-08-05

Family

ID=18107058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31915597A Expired - Fee Related JP3311286B2 (en) 1997-11-06 1997-11-06 Manufacturing method of thin film solar cell

Country Status (1)

Country Link
JP (1) JP3311286B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469422B2 (en) 2000-01-21 2002-10-22 Koninklijke Philips Ultrasound N.V. Hex packed two dimensional ultrasonic transducer arrays
JP2002343987A (en) * 2001-05-15 2002-11-29 Showa Shell Sekiyu Kk Manufacturing method for heterojunction thin film solar battery
WO2008120306A1 (en) * 2007-03-28 2008-10-09 Showa Shell Sekiyu K.K. Method for manufacturing cis based thin film solar cell device
EP1981089A2 (en) 2002-10-04 2008-10-15 Sumitomo Metal Mining Co., Ltd. Transparent electrode film based on indium oxide with titanium and tungsten admixtures and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469422B2 (en) 2000-01-21 2002-10-22 Koninklijke Philips Ultrasound N.V. Hex packed two dimensional ultrasonic transducer arrays
JP2002343987A (en) * 2001-05-15 2002-11-29 Showa Shell Sekiyu Kk Manufacturing method for heterojunction thin film solar battery
EP1981089A2 (en) 2002-10-04 2008-10-15 Sumitomo Metal Mining Co., Ltd. Transparent electrode film based on indium oxide with titanium and tungsten admixtures and manufacturing method thereof
US7507357B2 (en) 2002-10-04 2009-03-24 Sumitomo Metal Mining Co., Ltd. Transparent oxide electrode film and manufacturing method thereof, transparent electroconductive base material, solar cell and photo detection element
US7575698B2 (en) 2002-10-04 2009-08-18 Sumitomo Metal Mining Co., Ltd. TI and W containing transparent oxide electrode film
WO2008120306A1 (en) * 2007-03-28 2008-10-09 Showa Shell Sekiyu K.K. Method for manufacturing cis based thin film solar cell device
US7977139B2 (en) 2007-03-28 2011-07-12 Showa Shell Sekiyu K.K. Method for manufacturing CIS based thin film solar cell device
JP5180188B2 (en) * 2007-03-28 2013-04-10 昭和シェル石油株式会社 CIS-based thin film solar cell device manufacturing method

Also Published As

Publication number Publication date
JP3311286B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
CA2239786C (en) Preparation of cuxinygazsen (x=0-2, y=0-2, z=0-2, n=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
JP3249342B2 (en) Heterojunction thin-film solar cell and method of manufacturing the same
JP4012957B2 (en) Method for producing compound thin film solar cell
JP4098330B2 (en) Solar cell and manufacturing method thereof
JP6096790B2 (en) Conductive substrate for photovoltaic cells
US20110240123A1 (en) Photovoltaic Cells With Improved Electrical Contact
JP2008520102A (en) Method and photovoltaic device using alkali-containing layer
JP2011146594A (en) Buffer layer for photoelectric element, method of manufacturing the same, and photoelectric element
JP5564688B2 (en) CBD solution for CZTS semiconductor, method for producing buffer layer for CZTS semiconductor, and photoelectric device
JP2003318424A (en) Thin film solar battery and method of manufacturing same
JP2009152302A (en) Method of forming photovoltaic device
JP4320529B2 (en) Compound thin film solar cell and manufacturing method thereof
JP2001044464A (en) METHOD OF FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR LAYER AND MANUFACTURE OF THIN-FILM SOLAR CELL
JP3311873B2 (en) Manufacturing method of semiconductor thin film
JP4055064B2 (en) Method for manufacturing thin film solar cell
KR101322652B1 (en) Structure and Fabrication of ZnS/CIGS Thin Film Solar Cells
WO2011123117A1 (en) Photovoltaic cells with improved electrical contact
JP3311286B2 (en) Manufacturing method of thin film solar cell
JP3408618B2 (en) Solar cell manufacturing method
JP6035122B2 (en) Photoelectric conversion element and method for producing buffer layer of photoelectric conversion element
KR20180034248A (en) Flexible CZTS-based thin film solar cell using sodium hydroxide and manufacturing method thereof
JP2000012883A (en) Manufacture of solar cell
US20120309125A1 (en) Buffer layer deposition methods for group ibiiiavia thin film solar cells
CA2284826C (en) Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells
JP2003258282A (en) Method for forming optical absorption layer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees