JP2009256982A - 緩衝装置付橋梁群及びその衝撃緩衝方法 - Google Patents

緩衝装置付橋梁群及びその衝撃緩衝方法 Download PDF

Info

Publication number
JP2009256982A
JP2009256982A JP2008108026A JP2008108026A JP2009256982A JP 2009256982 A JP2009256982 A JP 2009256982A JP 2008108026 A JP2008108026 A JP 2008108026A JP 2008108026 A JP2008108026 A JP 2008108026A JP 2009256982 A JP2009256982 A JP 2009256982A
Authority
JP
Japan
Prior art keywords
bridge
pier
bridge girder
girder
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008108026A
Other languages
English (en)
Other versions
JP4336857B1 (ja
Inventor
Tomoyo Taniguchi
朋代 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University NUC
Original Assignee
Tottori University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University NUC filed Critical Tottori University NUC
Priority to JP2008108026A priority Critical patent/JP4336857B1/ja
Priority to PCT/JP2009/057505 priority patent/WO2009128447A1/ja
Application granted granted Critical
Publication of JP4336857B1 publication Critical patent/JP4336857B1/ja
Publication of JP2009256982A publication Critical patent/JP2009256982A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

【課題】桁間衝突に起因する固定支沓の損傷等を防止する。
【解決手段】橋脚(14)の上に固定支沓(24)を介して第1の橋桁(18)を支持するとともに可動支沓(26)を介して第2の橋桁(20)を支持した橋梁群(10)において、第1の橋桁(18)と第2の橋脚(20)が衝突したときに第1の橋桁(18)が第2の橋桁(20)から受ける衝撃力を、第2の橋脚(14)と第1の橋桁(18)との間に連結した緩衝装置(32)で緩衝する。
【選択図】図1

Description

本発明は、複数の橋桁を連続的に配置して構成される橋梁群であって、橋桁同士の衝突による衝撃によって支沓が破壊するのを防止する緩衝装置付連梁群及びその衝撃緩衝方法に関する。
地震時における橋桁の振動を抑制する制振構造が、特許文献1に開示されている。この制振構造は、可動支沓を介してのみ橋脚又は橋台に支持された橋桁と各橋脚又は橋台とをブレーキダンパで連結したものである。
別の特許文献2には、橋桁と複数の橋脚又は橋台との間のすべての支点に可動支沓(滑り支沓装置)を採用し、少なくとも一つの支点に橋桁と橋脚又は橋台との相対移動を可能とするダンパを設けた制振構造が開示されている。
特開2004−197502号公報 特開2007−32046号公報
これら制振構造は、地震動に伴う橋桁と橋脚又は橋台との相対移動を抑制するという点では確かに有効な手段であると考えられる。しかし、地震時における橋梁の挙動として、従来見落とされていた重大なことがある。それは、複数の橋桁を連続的に配置して構成される橋梁群において、隣接する橋桁の間で発生し得る衝突及びそれに伴う支沓の破壊や橋桁の移動の問題である。
この問題について、図5を参照して説明する。図5(a)は、連続橋梁の一例を模式的に示した図である。この図において、橋梁群100は、間隔をあけて連続的に配置された3つの第1〜第3の橋脚(又は橋台)102,104,106と、第1と第2の橋脚102,104に支持された第1の橋桁108と、第2と第3の橋脚104,106に支持された第2の橋桁110を有する。この橋梁群100では、第1の橋桁108は、第1の固定支沓112を介して第1の橋脚102に支持され、第1の可動支沓114を介して第2の橋脚104に支持されている。第2の橋桁110は、第2の固定支沓116を介して第2の橋脚104に支持され、第2の可動支沓118を介して第3の橋脚106に支持されている。
この橋梁群100が地震動を受けたとき、橋梁群100は図5に破線で示す振動単位130、132で応答する。振動単位130は、橋梁、橋脚からなる系を一自由度バネ−質点系でモデル化したものである。大雑把な構成として、橋梁108の質量が一自由度バネ−質点系の質量に、橋脚102の剛性を一自由度バネ−質点系のバネと見なすことができ、バネと質量は、固定支沓112で連結されている。振動単位132も同様に、橋梁、橋脚からなる系を一自由度バネ−質点系でモデル化したもので、橋梁110の質量が一自由度バネ−質点系の質量に、橋脚104の剛性を一自由度バネ−質点系のバネと見なすことができ、バネと質量は、固定支沓116で連結されている。
地震時の橋梁群100の挙動を詳細に説明する。例えば主桁方向の地震動が作用した場合、図5(b)に示すように、地震発生直後の橋梁が振動を開始した直後の段階(振動開始時)では、橋脚102と橋桁108で構成される振動単位130と,橋脚104と橋桁110で構成される振動単位132は同一方向(図の右側方向)に変形しようとする。しかし、振動単位130、132の固有振動数の違いや減衰定数の違いなどから、その後も同一の挙動を示すわけではなく、例えば、図5(c)に示すように第1の橋脚102と第2の橋脚104の上部が互いに接近する方向に変形しようとする状況が発生することがある。この場合、図示するように、第1の橋脚102に固定支沓112を介して支持されている第1の橋桁108は図の右側に向かって移動し、逆に、第2の橋脚104に固定支沓116を介して支持されている第2の橋桁110は図の左側に向かって移動する。そして、第1の橋桁108と第2の橋脚104の移動量の合計が第1の橋脚102と第2の橋脚104に設けられている隙間120を越えると第1の橋脚102と第2の橋脚104が衝突(以下、この衝突を「桁端衝突」という。)し、その衝突時の衝撃によって第1の橋桁108と第2の橋桁120は互いに逆の方向の衝撃力を受け(図5(d)参照)、これにより、振動単位1130と振動単位132の反発が始まる。
振動単位が完全に反発状態になるためには、この衝撃力が橋桁と橋脚を連結している支沓を介して橋脚に伝達され、橋脚の運動の向きが反対になることが必要であるが、第1の橋桁108と第2の橋脚104との間にある支沓は可動支沓114であることから、この可動支沓114に衝撃力はまったく又は殆ど作用しない。しかし、第2の橋桁110と第2の橋脚104との間にある支沓は固定支沓116であるため、この固定支沓116に衝撃力がそのまま作用する。その結果、第2の橋脚104に対して第2の橋桁110を支持する固定支沓116が破壊する、また、最悪の場合は、第2の橋桁110が第2の橋脚から脱落するという事態が生じる。また、第1の橋桁108と第1の橋脚102との間にある固定支沓112も破壊する。
そこで、本発明は、上述のように、地震の発生直後に生じ得る桁端衝突に起因して橋桁を支持する固定支沓が損傷したり、橋桁が橋脚から脱落する危険を回避する緩衝装置付の橋梁群及びその衝撃緩衝方法を提供することを目的とする。
この目的を達成するため、本発明は、間隔をあけて配置された複数の橋脚(12,14,16)で複数の橋桁(18,20)を連続的に支持して構成される橋梁群(10)であって、
間隔をあけて配置された少なくとも第1、第2、第3の橋脚(12,14,16)と、
第1の橋脚(12)と第2の橋脚(14)に支持された第1の橋桁(18)及び第2の橋脚(14)と第3の橋脚(16)に支持された第2の橋桁(20)と、
第2の橋脚(14)と第1の橋桁(18)との間に配置された固定支沓(24)と、
第2の橋脚(14)と第2の橋桁(20)との間に配置された可動支沓(26)と、
第2の橋脚(14)と第1の橋桁(18)にそれぞれ連結され、橋桁(18)に作用する主桁方向の衝撃を緩衝する緩衝装置(32)を備えたことを特徴とする緩衝装置付き橋梁群を提供するものである。
本発明はまた、橋脚(14)の上に固定支沓(24)を介して第1の橋桁(18)を支持するとともに可動支沓(26)を介して第2の橋桁(20)を支持した橋梁群(10)の衝撃緩衝方法であって、第1の橋桁(18)と第2の橋脚(20)が衝突したときに第1の橋桁(18)が第2の橋桁(20)から受ける衝撃力を、第2の橋脚(14)と第1の橋桁(18)との間に連結した緩衝装置(32)で緩衝することを特徴とする、連続橋梁の衝撃緩衝方法を提供するものである。図1に示すように、第1の橋桁(18)の質量と第2の橋桁(20)の質量に明らかに差がある場合には、運動量保存則から質量の小さい橋桁の方が衝突後に受ける衝撃は大きいことから、緩衝装置(32)は質量の小さい橋桁に取り付けることが好ましい。
以上の構成を備えた本発明によれば、地震の発生直後に桁端衝突が発生しても、その衝突エネルギは緩衝装置に吸収されるため、橋桁を支持する固定支沓が損傷したり、橋桁が橋脚から脱落したりする危険がない。
以下、本発明の実施形態を具体的に説明する。なお、以下の説明では、図面を参照した発明の説明及び理解を容易にするために、特定の方向を示す用語、例えば、「右」、「左」を使用するが、その主旨からこれらの用語は発明の技術的範囲を画定するうえで参考にされるべきものでないことは当然である。
図1は、本発明の実施形態に係る橋梁群10の概略構成を示す。本実施形態において、橋梁群10は、間隔をあけて配置された3つの下部構造−第1の橋脚12、第2の橋脚14、第3の橋脚16−を有する。橋梁群10はまた、2つの上部構造−第1の橋桁18と第2の橋桁20−を有する。第1の橋桁18は、可動支沓22を介して第1の橋脚12に連結され、固定支沓24を介して第2の橋脚14に連結されている。第2の橋桁20は、可動支沓26を介して第2の橋脚14に連結され、固定支沓28を介して第3の橋脚16に連結されている。そして、第2の橋脚14に支持されている第1の橋桁18と第2の橋桁20との間には、主桁方向(図の左右方向)に適当な大きさの桁間隙30が設けてある。
発明の理解を容易にするため、図示する橋梁群10は極めて単純な形で表されているが、そこに表されている橋梁、橋脚、橋台等は、公知の任意の構造を採り得る。例えば、複数の橋脚は一列に整列して配置されている必要はなく、曲線経路に沿って配置されていてもよい。明細書では、橋脚は、橋桁を支持するあらゆる形式の下部構造(例えば、「橋台」)を含む概念で使用されており、橋脚を構成する材料、橋脚の構造又は形式等によって特定の種類の下部構造に限定されるべきものでない。橋桁は、下部構造に支持されるあらゆる形成の上部構造を含む概念で使用されており、公知の任意の構造又は形式によって特定の種類の上部構造に限定されるべきものでない。固定支沓及び可動支沓は、橋梁の上部構造と下部構造の間に設置され、上部構造の荷重を下部構造に伝達する役割を果たすものである。また、固定支沓は、下部構造に対する上部構造の回転変位のみを吸収する支沓であり、可動支沓は、下部構造に対する上部構造の回転と伸縮(水平方向の移動)を吸収する支沓である。そして、これら固定支沓と可動支沓には、公知の構造を採用することができる。
以上の一般的構造に加えて、本発明に係る橋梁群10は、地震直後の揺れに起因する桁端衝突によって固定支沓が損傷又は破壊するのを防止するため、第2の橋脚14と第1の橋桁18を互いに連結する一つ又は複数の緩衝装置32が設けてある。図2,3を参照すると、緩衝装置32は、衝撃吸収ダンパ34を有する。ダンパ34は、長手方向−衝撃吸収方向−の一端部36と他端部38を有し、長手方向を主桁方向に向けて、端部36,38が連結機構60、62を介して第2の橋脚14の壁面44と第1の橋桁18の底部46に連結されている。ダンパ34は、シリンダ型ショックアブソーバであるオイルダンパ(粘性型ダンパ)、鉛の塑性変形を利用する鉛ダンパ(履歴型ダンパ)のいずれであってもよい。また、オイルダンパは、単筒式、複筒式のいずれであってもよい。
連結機構40は、特にその構造が限定されるものでないが、例えば、橋脚18と橋桁18に固定される固定板48と、固定板48に対して垂直に且つ平行に固定された一対の垂直板50を有する。2つの垂直板50は、一列に配置されたボルト貫通孔52をそれぞれ有する。一方、ダンパ34の一端部36と他端部38には環状リング54が固定されており、リング54が2つの垂直板50の間に配置される。そして、垂直板50の貫通孔52とリング54にボルト56が挿通される。
このように構成された橋梁群10によれば、橋桁18,20の主桁方向(図1の左右方向)に地震動が作用すると、第1と振動単位60と第2の振動単位62(図1参照)の固有振動数や減衰定数などの違いから、第1と第2の橋脚12,14が向かい合う方向に変形し、第1と第2の橋桁18,20が衝突することがある。この場合、衝突によって第1の橋桁18に加わる衝撃力は、第1の橋桁18と第2の橋脚14を連結している緩衝装置32のダンパ34に完全に又は殆ど吸収される。その結果、第1の橋桁18を第2の橋脚14に連結する固定支沓24は損傷することがないし、たとえ損傷することがあってもその度合いは僅かである。
なお、本発明は、種々の形態の橋梁群に対して適用可能である。具体的に、図6(a)〜(d)は上部構造と下部構造の他の組み合わせ例を示す。図中、110は橋脚又は橋台を示し、112は橋桁、114は固定支沓、116は可動支沓、118は緩衝装置、120は振動単位を示す。
実際に観測された地震波を用いて、桁端衝突による橋桁(第2の橋桁20)の速度・加速度を算出し、桁端衝突に起因する支沓破壊を防止するダンパの仕様を検討した。
検討対象とした橋桁(第1の橋桁)は、RC床版を有する鋼製単純桁橋(幅員:9.7m、橋長:33.9m、自重:400トン)である。図1の橋梁群を左右2組の橋脚−橋桁系から成る振動単位60,62に分け、図4に示すように、それぞれの橋脚−橋梁系をバネ−質点系に置換した力学モデル1,2を作成した。ここで、左右の橋脚−橋桁系は、橋桁の質量と橋脚の減衰定数およびバネ定数から成る1自由度系モデルとして表し、桁遊間の隙間(X)(図1に符号30で示す隙間)をあけて並べて配置することで隣接する橋脚−橋桁系を表した。なお、図4において、mは力学モデル1の質量、mは力学モデル2の質量、Tは力学モデル1の固有周期、Tは力学モデル2の固有周期、Vは力学モデル1の速度、Vは力学モデル2の速度、kは力学モデル1のバネ定数、kは力学モデル2のバネ定数である。
以上の条件で、衝突速度とその時の加速度を調べるために、力学モデル1、2の固有周期(T,T)として2組の固有周期(0.5s,0.6s)、(0.6s,1.0s)〔s:秒〕について、桁遊間の隙間Xを5cm、10cmとして、実地震波を用いて時刻歴応答解析を行った。力学モデル1,2の減衰定数はそれぞれ5%とした。時刻歴応答解析に用いた地震波は、阪神・淡路大震災の際に記録された6種類(神戸海洋気象N-S、神戸海洋気象E-W、JR鷹取駅N-S、JR鷹取駅E-W、ポートアイランドN-S、ポートアイランドE-W)である。
時刻歴解析の結果を以下の表1〜表4に示す。表中、V、Aは力学モデル1の質量の衝突直前の速度と加速度、V、Aは力学モデル2の質量の衝突直前の速度と加速度である。
Figure 2009256982
Figure 2009256982
Figure 2009256982
Figure 2009256982
この解析結果をもとに、ダンパに必要な性能を評価した。ところで、以上の解析は橋桁同士の反撥係数、各橋桁の質量については詳細な設定を行っていない。そこで、大まかな計算として、時刻歴解析で得られた衝突速度の最大値の2倍と加速度の最大値を組み合わせて要求性能を算定した。その結果、桁端衝突によって第1の橋桁に生じる衝撃を緩衝するためにダンパに要求される最大速度は300cm/s(=147.0×2)、減衰力は6400kN(=1551.0×400トン)である。
したがって、例えば、オイレス工業株式会社製の橋梁用ビンガムダンパ−「オイレスBM−S」(最大速度150cm/s、定格減衰力2000kN)を使用する場合、ダンパの最大速度が安全率を見込んで設定されていることを勘案すれば、このダンパを3〜4本橋脚と橋桁の間に設置することにより、実際の連続橋梁では桁端衝突に起因する固定支沓の損傷を完全に防止できるものと考えられる。
図1は、本発明に係る橋梁群を模式的に示した正面図。 図2は、緩衝装置の正面図。 図3は、図2に示す緩衝装置の一部を示す図。 図4は、図1の連続橋梁を2つの橋桁−橋脚系力学モデルに置換した図。 図5(a)は、桁間衝突を説明する図。 図5(b)は、桁間衝突を説明する図。 図5(c)は、桁間衝突を説明する図。 図5(d)は、桁間衝突を説明する図。 図6は、上部構造と下部構造の組み合わせ例を示す。
符号の説明
10:橋梁群
12:第1の橋脚
14:第2の橋脚
16:第3の橋脚
18:第1の橋桁
20:第2の橋桁
22:可動支沓
24:固定支沓
26:可動支沓
28:固定支沓
30:桁間隙
32:緩衝装置
34:ダンパ

Claims (4)

  1. 間隔をあけて配置された複数の橋脚(12,14,16)で複数の橋桁(18,20)を連続的に支持して構成される橋梁群(10)であって、
    間隔をあけて配置された少なくとも第1、第2、第3の橋脚(12,14,16)と、
    第1の橋脚(12)と第2の橋脚(14)に支持された第1の橋桁(18)及び第2の橋脚(14)と第3の橋脚(16)に支持された第2の橋桁(20)と、
    第2の橋脚(14)と第1の橋桁(18)との間に配置された固定支沓(24)と、
    第2の橋脚(14)と第2の橋桁(20)との間に配置された可動支沓(26)と、
    第2の橋脚(14)と第1の橋桁(18)にそれぞれ連結され、第1の橋桁(18)に作用する主桁方向の衝撃を緩衝する緩衝装置(32)を備えたことを特徴とする緩衝装置付橋梁群。
  2. 緩衝装置(32)は、ダンパ(34)を備えていることを特徴とする請求項1の緩衝装置付橋梁群。
  3. 橋脚(14)の上に固定支沓(24)を介して第1の橋桁(18)を支持するとともに可動支沓(26)を介して第2の橋桁(20)を支持した橋梁群(10)の衝撃緩衝方法であって、第1の橋桁(18)と第2の橋桁(20)が衝突したときに第1の橋桁(18)が第2の橋桁(20)から受ける衝撃力によって固定支沓(24)が破壊することを防止するために、その衝撃力を第2の橋脚(14)と第1の橋桁(18)との間に連結した緩衝装置(32)で緩衝することを特徴とする、橋梁群の衝撃緩衝方法。
  4. 緩衝装置(32)は、ダンパ(34)を備えていることを特徴とする請求項3の方法。
JP2008108026A 2008-04-17 2008-04-17 緩衝装置付橋梁群及びその衝撃緩衝方法 Expired - Fee Related JP4336857B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008108026A JP4336857B1 (ja) 2008-04-17 2008-04-17 緩衝装置付橋梁群及びその衝撃緩衝方法
PCT/JP2009/057505 WO2009128447A1 (ja) 2008-04-17 2009-04-14 緩衝装置付橋梁群及びその衝撃緩衝方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108026A JP4336857B1 (ja) 2008-04-17 2008-04-17 緩衝装置付橋梁群及びその衝撃緩衝方法

Publications (2)

Publication Number Publication Date
JP4336857B1 JP4336857B1 (ja) 2009-09-30
JP2009256982A true JP2009256982A (ja) 2009-11-05

Family

ID=41190705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108026A Expired - Fee Related JP4336857B1 (ja) 2008-04-17 2008-04-17 緩衝装置付橋梁群及びその衝撃緩衝方法

Country Status (2)

Country Link
JP (1) JP4336857B1 (ja)
WO (1) WO2009128447A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011059072A1 (ja) * 2009-11-12 2011-05-19 中部電力株式会社 ダムに設けられた既設水門柱の耐震性向上工法、及びダムの耐震橋梁
KR101291260B1 (ko) * 2010-08-30 2013-07-30 삼성중공업 주식회사 부유식 구조물
JP2014034853A (ja) * 2012-08-10 2014-02-24 Sumitomo Rubber Ind Ltd 橋梁および橋梁用制振ダンパー
JP2015113606A (ja) * 2013-12-10 2015-06-22 株式会社竹中工務店 構造体の架設構造、及び架設構造の補強方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109750592A (zh) * 2018-09-26 2019-05-14 中铁十八局集团第二工程有限公司 桥梁伸缩缝处桥墩与桥梁的连接结构
CN113863129B (zh) * 2021-10-22 2023-07-21 中铁大桥勘测设计院集团有限公司 一种连续体系的多联桥梁

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3046929B2 (ja) * 1995-06-16 2000-05-29 三菱重工業株式会社 橋梁の免震構造
JP2930575B1 (ja) * 1998-03-06 1999-08-03 川重橋梁メンテナンス株式会社 耐震構造用緩衝リンク
JP2003184031A (ja) * 2001-09-28 2003-07-03 Kiyoshi Karasuno 鉛ダンパー
JP3898949B2 (ja) * 2001-12-28 2007-03-28 オイレス工業株式会社 構造物用シリンダー型ダンパー

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011059072A1 (ja) * 2009-11-12 2011-05-19 中部電力株式会社 ダムに設けられた既設水門柱の耐震性向上工法、及びダムの耐震橋梁
JP2011106095A (ja) * 2009-11-12 2011-06-02 Chubu Electric Power Co Inc 既設水門柱の耐震性向上構造、及び連成耐震構造物
KR101291260B1 (ko) * 2010-08-30 2013-07-30 삼성중공업 주식회사 부유식 구조물
JP2014034853A (ja) * 2012-08-10 2014-02-24 Sumitomo Rubber Ind Ltd 橋梁および橋梁用制振ダンパー
JP2015113606A (ja) * 2013-12-10 2015-06-22 株式会社竹中工務店 構造体の架設構造、及び架設構造の補強方法

Also Published As

Publication number Publication date
WO2009128447A1 (ja) 2009-10-22
JP4336857B1 (ja) 2009-09-30

Similar Documents

Publication Publication Date Title
Park et al. Simulation of the seismic performance of the Bolu Viaduct subjected to near‐fault ground motions
JP4336857B1 (ja) 緩衝装置付橋梁群及びその衝撃緩衝方法
KR100635098B1 (ko) 희생수단를 이용한 교량 내진 보호장치
CN101424071A (zh) 一种大跨径斜拉桥支承体系
CN107268431A (zh) 自复位摩擦阻尼减震支座及减震桥梁
WO2003056105A1 (fr) Dispositif d'isolation de base pour une structure
JP5872091B1 (ja) 免震構造物に用いる変形制限装置
CN107794839B (zh) 一种减隔震支座的限位装置
JP4893061B2 (ja) 粘性系の振動減衰装置及びこれを具備した免震建物
CN109695199A (zh) 一种基于摩擦型控制器的主动控制加速质量阻尼器系统
JP5406631B2 (ja) 免震構造、及び免震構造物
JP2013189842A (ja) 構造物用の滑り支承
JP4915842B2 (ja) 免震システム
JP3854108B2 (ja) 橋梁免震装置
JP7090006B2 (ja) 免震装置
JP5475847B2 (ja) 免震装置
KR20120066458A (ko) 희생부재를 구비한 교량의 방호울타리 연결장치
Kuang-Yen et al. Parametric study on performance of bridge retrofitted by unseating prevention devices
JP3128506B2 (ja) 橋梁の支承構造
JP5697004B1 (ja) 免振装置
Cardone et al. Seismic response of simply supported deck bridges with auxiliary superelastic devices
JP7239458B2 (ja) 鉄道橋りょう桁端構造
JP2001106455A (ja) エレベーターのガイドレール支持装置
JP6957107B2 (ja) 構造物の振動抑制装置
JP2017160652A (ja) 橋梁用座屈拘束型ダンパ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150710

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees