JP2009252643A - 誘導加熱装置及び誘導加熱方法 - Google Patents

誘導加熱装置及び誘導加熱方法 Download PDF

Info

Publication number
JP2009252643A
JP2009252643A JP2008101622A JP2008101622A JP2009252643A JP 2009252643 A JP2009252643 A JP 2009252643A JP 2008101622 A JP2008101622 A JP 2008101622A JP 2008101622 A JP2008101622 A JP 2008101622A JP 2009252643 A JP2009252643 A JP 2009252643A
Authority
JP
Japan
Prior art keywords
heating
inductance
induction
coil
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008101622A
Other languages
English (en)
Other versions
JP5038962B2 (ja
Inventor
Hiroteru Mochinaga
大照 持永
Kazunari Ishizaki
一成 石崎
Shigenobu Koga
重信 古賀
Takeharu Kataoka
毅晴 片岡
Kenji Umetsu
健司 梅津
Yasuzumi Matsunaga
泰往 松永
Yasuyuki Ikeda
泰幸 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008101622A priority Critical patent/JP5038962B2/ja
Application filed by Nippon Steel Corp, Fuji Electric Systems Co Ltd filed Critical Nippon Steel Corp
Priority to RU2010145273/07A priority patent/RU2449510C1/ru
Priority to US12/918,555 priority patent/US8420990B2/en
Priority to PL09730349T priority patent/PL2265089T3/pl
Priority to BRPI0911174-3A priority patent/BRPI0911174B1/pt
Priority to CN2009801115724A priority patent/CN102100124B/zh
Priority to KR1020107022532A priority patent/KR101215662B1/ko
Priority to PCT/JP2009/054734 priority patent/WO2009125645A1/ja
Priority to EP09730349.9A priority patent/EP2265089B1/en
Publication of JP2009252643A publication Critical patent/JP2009252643A/ja
Application granted granted Critical
Publication of JP5038962B2 publication Critical patent/JP5038962B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/362Coil arrangements with flat coil conductors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/60Continuous furnaces for strip or wire with induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

【課題】エネルギー効率を改善しつつ、鋼板を加熱する昇温速度の変化を低減することができる誘導加熱装置及び誘導加熱方法を提供すること。
【解決手段】ソレノイド方式により鋼板を連続的に加熱する誘導加熱装置を提供する。この誘導加熱装置1は、鋼板2が内部を通過するように、鋼板の長手方向に沿って配置された少なくとも3つの加熱コイル10A〜10Dと、各加熱コイルと当該各加熱コイルに電圧を印可する電源とを電気的に接続する電気経路11上に配置され、自己誘導を発生させ、かつ、当該自己誘導における自己インダクタンスを調整可能なインダクタンス調整器12A〜12Dと、を有し、各インダクタンス調整器は、少なくとも相隣接したインダクタンス調整器の間に相互誘導が発生するように配置される。
【選択図】図1

Description

本発明は、誘導加熱装置及び誘導加熱方法に関する。
鋼板の製造等において、例えば焼鈍炉・メッキの合金化炉・塗装鋼板の乾燥など様々なところで、鋼板の加熱が行われる。この鋼板の加熱方法としては、例えば、ガス加熱・トランス誘導加熱などがある。例えば、ガス加熱は、焼鈍炉に多く使用され、トランス誘導加熱は、メッキ前の加熱に使用されうるが、主にメッキの合金化炉、塗装鋼板の乾燥などで主に用いられている。
一方、誘導加熱方法としては、大きく分けてソレノイド方式(軸方向磁束加熱)とトランスバース方式(横断磁束加熱)などがある。ソレノイド方式は、鋼板の長手方向に沿った磁束を鋼板に印可して加熱する。トランスバース方式は、鋼板を貫通する方向に沿った磁束を鋼板に印可して加熱する。トランスバース方式の誘導加熱方法は、通常、非磁性体材料の加熱に用いられ、鋼板の加熱には、主としてソレノイド方式の誘導加熱方法が用いられる。このソレノイド方式の誘導加熱方法としては、従来から例えば特許文献1、2のような方法が知られている。
特開2003−243137号公報 特開2005−206906号公報 特開2001−21270号公報 特開平11−257850号公報
特許文献1の誘導加熱方法は、誘導加熱に使用される加熱コイル毎に直列可変コンデンサを設けて、各加熱コイルに流れる電流量を等しくする。しかし、かかる方法では、例えば50kHzなどの高周波交流電圧を加熱コイルに印可すると、直列可変コンデンサでの容量性リアクタンス値が減少し、適切に電流量を制御するために更に大容量の直列可変コンデンサが必要となる。一方、鋼板を例えばキュリー点近傍の高温域まで加熱したり、加熱速度を上昇させる場合には、例えば、加熱コイルに大電流を流すか、印可電圧の周波数を上げるなどの必要があるが、この特許文献1の誘導加熱方法では、上記の理由に高周波電圧を印可することはできず、電流量を上昇させる必要がある。大電流を流すことが可能なように装置全体の設計をすることは困難であり、例えば鋼板を高温域まで加熱することなどが困難であった。
一方、特許文献2の誘導加熱方法は、2台以上のシングルターンコイルを鋼板の長手方向に沿って設置し、最後段の加熱コイルの磁化力を最前段の1倍〜10倍にする。この特許文献2の誘導加熱方法によれば、鋼板をキュリー点近傍の高温域まで加熱し、かつ、キュリ点近傍における昇温速度の低下を低減することができる。尚、鋼板の加熱において、昇温速度の低下は、例えば再結晶挙動や界面制御等を曖昧にし、最適な品質の造り込みを困難にしてしまうので、特許文献2の誘導加熱方法は、昇温速度の低下を低減させている。しかしながら、特許文献2の誘導加熱方法は、各加熱コイルと電源との間に可変抵抗を挿入し、この可変抵抗値を変更することにより、各加熱コイルの磁化力を制御している。よって、この特許文献2の誘導加熱方法によれば、可変抵抗においてジュール熱が発生するので、エネルギー損失(発熱ロス)が大きい。よって、少ない電流が流れる分にはかまわないが、鋼板を加熱する場合例えば4500Aの大電流が流れるため、かかるエネルギー損失は無視できず、更にエネルギー効率を向上させることが希求されている。また、また、特許文献2の誘導加熱方法によっても、完全に昇温速度を一定にすることは難しく、更に昇温速度の低下を低減させることが可能な誘導加熱方法も希求されている。
また、昇温速度を制御するために最終加熱温度を制御する方法や昇温速度を調整する方法などの他の方法でも、最終的な加熱速度や昇温速度の平均値が制御されるにとどまっていた。一方、従来の合金化溶融亜鉛メッキ鋼板の製造工程において、合金化加熱の加熱炉は、例えば5〜10m程度と全長が長く、上記のような平均値を制御する加熱方法では、キュリー点近傍の高温域でなくとも、メッキ浴温度から最終加熱到達温度までの昇温速度を一定に保つことは困難であった。合金構造を厳密に制御するためには、昇温速度を一定に保つことが重要であり、このことからも昇温速度を一定に保つことが可能な誘導加熱方法が希求されている。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、ソレノイド方式の誘導加熱装置及び誘導加熱方法において、エネルギー効率を改善しつつ、鋼板を加熱する昇温速度の変化を低減することにある。
上記課題を解決するために、本発明のある観点によれば、ソレノイド方式により鋼板を連続的に加熱する誘導加熱装置であって、鋼板が内部を通過するように、鋼板の長手方向に沿って配置された少なくとも3つの加熱コイルと、各加熱コイルと当該各加熱コイルに電圧を印可する電源とを電気的に接続する電気経路上に配置され、自己誘導を発生させ、かつ、当該自己誘導における自己インダクタンスを調整可能なインダクタンス調整器と、を有し、各インダクタンス調整器は、少なくとも相隣接したインダクタンス調整器の間に相互誘導が発生するように配置されることを特徴とする、誘導加熱装置が提供される。
かかる構成によれば、相隣接した加熱コイルにより発生する鋼板の加熱密度を重畳させることができる。インダクタンス調整器の自己インダクタンスを調整することにより、少なくとも3つの加熱コイルに印可される電圧を調整することができる。また、相隣接したインダクタンス調整器間の相互インダクタンスにより、インダクタンス調整の効果を相乗させることができる。
また、鋼板の長手方向の最前段の加熱コイル及び最後段の加熱コイルの各インダクタンス調整器が発生させる自己インダクタンスは、最前段の加熱コイルと最後段の加熱コイルとの間に配置された加熱コイルのインダクタンス調整器が発生させる自己インダクタンスよりも小さくなるように調整されてもよい。
また、相隣接した加熱コイルの相互距離は、加熱コイルの高さ方向の内側の距離の1/10以上1/3以下であり、各インダクタンス調整器は、電気経路に対して交差する方向に沿って配置され、相隣接したインダクタンス調整器同士の間隙は、50mm〜500mmであってもよい。
また、各インダクタンス調整器は、当該インダクタンス調整器が配置された電気経路を略コイル状に迂回させることにより自己誘導を発生させ、かつ、迂回させた電気経路の略コイル状の迂回経路に囲まれた領域の断面積を変更することにより自己誘導における自己インダクタンスを調整してもよい。
また、各加熱コイルと電源とを接続する電気経路のそれぞれは、各加熱コイルから長尺状に延設された一対の入出力端子により構成され、インダクタンス調整器は、一対の入出力端子の一方と他方とが互いに離隔するように一対の入出力端子を迂回させ、かつ、迂回経路における一対の入出力端子の一方と他方との間の距離を変更して迂回経路に囲まれた領域の断面積を変更してもよい。
また、各加熱コイルと当該加熱コイルに接続されたインダクタンス調整器との間隙は、500mm〜2000mmであってもよい。
また、各加熱コイルは、シングルターンコイル又はダブルターンコイルであってもよい。
また、上記課題を解決するために、本発明の別の観点によれば、ソレノイド方式により鋼板を連続的に加熱する誘導加熱方法であって、少なくとも3つの加熱コイルを、鋼板が内部を通過するように鋼板の長手方向に沿って配置し、自己誘導を発生させ、かつ、当該自己誘導における自己インダクタンスを調整可能なインダクタンス調整器を、各加熱コイルと当該各加熱コイルに電圧を印可する電源とを電気的に接続する電気経路上において、少なくとも相隣接したインダクタンス調整器の間に相互誘導が発生するように配置して、鋼板の長手方向の最前段の加熱コイル及び最後段の加熱コイルの各インダクタンス調整器が発生させる自己インダクタンスを、最前段の加熱コイルと最後段の加熱コイルとの間に配置された加熱コイルのインダクタンス調整器が発生させる自己インダクタンスよりも小さくなるように調整することを特徴とする、誘導加熱方法が提供される。
また、相隣接した加熱コイルの相互距離は、加熱コイルの高さ方向の内側の距離の1/10以上1/3以下であり、各インダクタンス調整器は、電気経路に対して交差する方向に沿って配置され、相隣接したインダクタンス調整器同士の間隙は、50mm〜500mmであってもよい。
また、各インダクタンス調整器は、当該インダクタンス調整器が配置された電気経路を略コイル状に迂回させることにより自己誘導を発生させ、かつ、迂回させた電気経路の略コイル状の迂回経路に囲まれた領域の断面積を変更することにより自己誘導における自己インダクタンスを調整してもよい。
また、各加熱コイルと電源とを接続する電気経路のそれぞれは、各加熱コイルから長尺状に延設された一対の入出力端子により構成され、インダクタンス調整器は、一対の入出力端子の一方と他方とが互いに離隔するように一対の入出力端子を迂回させ、かつ、迂回経路における一対の入出力端子の一方と他方との間の距離を変更して迂回経路に囲まれた領域の断面積を変更してもよい。
また、各加熱コイルと当該加熱コイルに接続されたインダクタンス調整器との間隙は、500mm〜2000mmであってもよい。
また、各加熱コイルは、シングルターンコイル又はダブルターンコイルであってもよい。
以上説明したように本発明によれば、エネルギー効率を改善しつつ、鋼板を加熱する昇温速度の変化を低減することができる。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<誘導加熱装置の構成>
まず、図1〜図3を参照して、本発明の第1実施形態に係る誘導加熱装置の構成について説明する。図1は、本発明の第1実施形態に係る誘導加熱装置を示す斜視図であり、図2は、本実施形態に係る誘導加熱装置を鋼板の通板方向から見た側面図であり、図3は、本実施形態に係る誘導加熱装置を上方から見た上面図である。
本実施形態に係る誘導加熱装置1は、加熱コイル10A〜10D,電気経路11,及びL調整器12A〜12Dを有する。よって、以下ではまず、これらの各構成について説明する。
本実施形態に係る誘導加熱装置1は、通板方向J1に通板される鋼板2をソレノイド方式により加熱する。ソレノイド方式(軸方向磁束加熱)とは、ほぼ被加熱体(例えば鋼板2)の長手方向(軸方向、x軸方向)に向いた磁束を被加熱体の内部に発生させて、この磁束を変化させることにより、被加熱体内部に渦電流を発生させ、この渦電流のジュール熱により被加熱体を加熱する誘導加熱の方式である。
(加熱コイル)
誘導加熱装置1は、上記の鋼板1の長手方向の磁束を発生させるために、図1及び図2に示すように、鋼板2を取囲むように配置された少なくとも3つ以上の加熱コイルを有する。尚、本実施形態では、説明の便宜上、誘導加熱装置1が4つの加熱コイル10A〜10Dを有する場合について説明する。しかし、加熱コイルの個数は、4つに限定されるものではなく、4つ以外の3つの加熱コイルを備える場合、誘導加熱装置1は、他の構成も加熱コイルに対応した個数を備える。
図3に示すように、加熱コイル10A〜10Dのそれぞれは、鋼板1が内部を通過するように、鋼板1を取囲んで形成され、鋼板2の長手方向(x軸方向)に沿って配置される。還元すれば、加熱コイル10A〜10Dは、コイルを形成する形成面が略平行となり、かつ、形成面の中心点が略同一直線上に位置するように並べられて配置される。この際、加熱コイル10A〜10Dのコイル形成面の中心点を鋼板2が通過するように各加熱コイル10A〜10Dを配置すると、加熱効率を高めることができる。
(加熱密度の重畳)
また、加熱コイル10A〜10Dのそれぞれは、相隣接する加熱コイル10A〜10Dの相互距離D1が加熱コイル10A〜10Dの高さ方向の内側の距離W1の1/10倍以上1/3倍以下となるように、配置される。このように相隣接した加熱コイル10A〜10Dの相互距離D1を、加熱コイル10A〜10Dの高さ方向の内側の距離W1の1/10以上1/3以下とすることにより、各加熱コイル10A〜10Dは、鋼板2の加熱速度を一定に保つことができ、加熱効率を高めることができる。よって、この構成によれば、キュリー点近傍で低下する鋼板2の透磁率に起因する加熱量の不足を、近接するかねるコイル10A〜10Dの加熱領域で補うことができる。
また、上記の構成によれば、各加熱コイル10A〜10D間において相互インダクタンスが発生し、この相互インダクタンスの影響を相乗させることができる。つまり、端部に配置された加熱コイル10A,10D(最前段と最後段の加熱コイル)に流れる電流を大きくすることができる。これは、加熱コイル10A〜10Dを近接させた結果、中央の加熱コイル10B,10Cにおけるインダクタンスが増加したために、相対的に端部の加熱コイル10A,10Dのインダクタンスが低下したことによる。そして、このような相互インダクタンスにより、最後段における加熱コイル10A(及び最前段における加熱コイル10D)での加熱速度を、他の加熱コイル10B,10Cでの加熱速度よりも大きくすることができる。よって、最後段においてキュリー点近傍に加熱された鋼板2の加熱速度を大きくすることができる。
尚、相隣接した加熱コイル10A〜10Dの相互距離D1を加熱コイルコイル10A〜10Dの高さ方向の内側の距離W1の1/10未満とすると、高周波交流電圧を印可した場合に相隣接する加熱コイル10A〜10D間で放電が発生する恐れがある。また、以下で説明するように、加熱コイル10A〜10Dに印可する電圧は、コイルそのものに起因した電位差以外にも、下記のL調整器12A〜12Dにより各コイル毎に調整可能であり、コイル間に電位差が生じる。よって、かかる電位差によっても、放電が発生する恐れがある。よって、相隣接した加熱コイル10A〜10Dの相互距離D1は、加熱コイルコイル10A〜10Dの高さ方向の内側の距離W1の1/10以上であることが好ましい。また、相隣接した加熱コイル10A〜10Dの相互距離D1を加熱コイルコイル10A〜10Dの高さ方向の内側の距離W1の1/3超過とすると、相隣接する加熱コイル10A〜10Dの加熱効率を向上させることができない。この相隣接した加熱コイル10A〜10Dの相互距離D1を加熱コイルの高さ方向の内側の距離W1の1/3以下とすることによる鋼板2の加熱について、図4を参照して、概略的に説明する。
図4は、本実施形態に係る誘導加熱装置において、加熱コイル10C、10Dにより発生する鋼板上の加熱密度を説明するための説明図である。尚、図4(A)は、本実施形態の場合、つまり、相隣接した加熱コイル10A〜10Dの相互距離D1を、加熱コイル10A〜10Dの高さ方向の内側の距離W1の1/10以上1/3以下とした場合を示す。図4(B)は、本実施形態と比較するために、コイルの導線の幅を一定にして、相隣接した加熱コイル10A〜10Dの相互距離D1を、加熱コイル10A〜10Dの高さ方向の内側の距離W1の1/3超過とした場合を示す。
図4(A)に示すように、相隣接した加熱コイル10A〜10Dの相互距離D1を、加熱コイル10A〜10Dの高さ方向の内側の距離W1の1/10以上1/3以下とした場合、加熱コイル10Dにより発生する加熱密度(単位は、「Q/m」。以下同じ。)H1と、加熱コイル10Cにより発生する加熱密度H2とは、鋼板2の長手方向に対して略ガウス分布となる。よって、加熱密度H1と加熱密度H2とは、相隣接した加熱コイル10A〜10Dの相互距離D1が、加熱コイル10A〜10Dの高さ方向の内側の距離W1の1/10以上1/3以下となるように、加熱コイル10C、10Dが隣接配置されることにより、裾野が重畳する。よって、実際に鋼板2を加熱する加熱密度T1は、加熱コイル10Dと加熱コイル10Cとの間においても、高い値を保つこと、つまり、昇温速度を一定に保つことができる。また、図4(B)に示すように、相隣接した加熱コイル10A〜10Dの相互距離D1を、加熱コイル10A〜10Dの高さ方向の内側の距離W1の1/3超過とした場合には、当然加熱密度H1,H2の重畳が消失し、一定の昇温速度を保つができないことは、いうまでもない。
尚、本実施形態では、説明の便宜上、図1等に示すように加熱コイル10A〜10Dは、シングルターンコイルであるが、しかし、加熱コイルは、ダブルターンであってもよい。
(電気経路)
この加熱コイル10A〜10Dには、交流電源3から交流電圧が印可される。この交流電圧を印可する端子として、各加熱コイル10A〜10Dのそれぞれには、電気経路11が延設され、この電気経路11のそれぞれに交流電源3からの交流電圧が印可される。換言すれば、電気経路11は、交流電源3と各加熱コイル10A〜10Dとを電気的に接続し、交流電源3からの交流電圧を各加熱コイル10A〜10Dに印可し、交流電源3からの電流を入出力させるために用いられる入出力導線である。
電気経路11は、加熱コイル10A〜10Dのコイル形状の両端部からそれぞれ長尺状に延設された一対の入出力端子111,112により構成される。また、この一対の入出力端子111,112のそれぞれは、接続された加熱コイル10A〜10Dと一体に形成される。この構成によれば、両者が別体に形成される場合に比べて、加熱コイル10A〜10Dと一対の入出力端子111,112との接続部位での電気抵抗を低減し、強度を高め、かつ、製造を容易にすることができる。しかし、加熱コイル10A〜10Dと一対の入出力端子111,112とを別体に形成することも可能であることはいうまでもない。尚、図1等には、加熱コイル10A〜10Dが幅広の板材により形成される場合を示し、この一対の入出力端子111,112も加熱コイル10A〜10Dと同じ幅を持たせている。一対の入出力端子111,112は、幅広の板材で形成されることにより、耐電流強度を高めて大電流を流すことができるが、一対の入出力端子111,112は、必ずしも板材により構成される必要はない。
また、一対の入出力端子111,112は、互いに略平行に延設される。そして、一対の入出力端子111,112のそれぞれ(つまり、電気経路11同士)は、接続された各加熱コイル10A〜10Dによらず略同一平面内(xy平面内)において略同一の方向(y軸方向)に延設されることが好ましい。この構成によれば、誘導加熱装置1をコンパクト化(小型化)することができ、かつ、各加熱コイル10A〜10Dを同一の形状で形成できるため、製造が容易である。
(L調整器)
各加熱コイル10A〜10Dと交流電源3との間の電気経路11のそれぞれの電気経路上には、L調整器12A〜12Dが挿入配置される。
L調整器12A〜12Dは、自己インダクタンスを調整して、回路内のリアクタンスを調整可能なインダクタンス調整器の一例であって、電気経路11を略コイル状に迂回させる。より具体的には、L調整器12A〜12Dは、図2に示すように、電気経路11を構成する一方の入出力端子111を上方(z軸正の方向)に迂回させ,他方の入出力端子112を下方(z軸負の方向)に迂回させることにより、L調整器12A〜12Dが配置され位置において、一方の入出力端子111と他方の入出力端子112とを離隔させる。換言すれば、L調整器12A〜12Dは、電気経路11の入出力端子111,112のそれぞれを略コの字状に迂回させる。その結果、L調整器12A〜12Dは、入出力端子111,112が迂回された迂回経路121,122により取囲まれた領域Sを形成する。この領域Sを取囲む入出力端子111,112の迂回経路121,122は、シングルターンコイルのような略コイルを形成する。かかる構成を有するL調整器12A〜12Dは、略コイル状の形状を有するので、交流電源3から交流電流が流れると(交流電圧が印可されると)自己誘導を発生させる。
図2を参照して、L調整器12A〜12Dの各構成例について、L調整器12Aを例に、更に具体的に説明する。
L調整器12Aは、立設部111C,111B,112C,112Bと、連結部111M,112Mとを有する。立設部111Cは、加熱コイル10Aから延設された入出力端子111を鉛直方向(z軸方向)上方に向けて折曲げることにより形成され、立設部111Bは、交流電源3が接続される入出力端子111を同様に折曲げることにより形成される。よって、立設部111Cと立設部111Bとは、略平行に立設される。そして、連結部111Mは、この立設部111Cと立設部111Bとの間を電気的に接続する。この立設部111C,111B及び連結部111Mが、迂回経路121を形成する。
一方、立設部112Cは、加熱コイル10Aから延設された入出力端子112を鉛直方向(z軸方向)上方に向けて折曲げることにより形成され、立設部112Bは、交流電源3が接続される入出力端子111を同様に折曲げることにより形成される。よって、立設部112Cと立設部112Bとは、略平行に立設される。そして、連結部112Mは、この立設部112Cと立設部112Bとの間を電気的に接続する。この立設部112C,112B及び連結部112Mが、迂回経路122を形成する。つまり、この迂回経路121と迂回経路121との間の空間が領域Sを形成し、この領域Sを形成することにより、L調整器12A〜12Dは、略コイル形状を形成し、自己誘導における自己インダクタンスを発生させる。
(自己インダクタンス)
また、L調整器12A〜12Dのそれぞれは、各自の自己インダクタンスを調整可能に構成される。具体的には、L調整器12A〜12Dは、迂回経路121,122により取囲まれた領域Sの断面積(yz平面内への投影面積)、つまり略コイル状を形成する面の面積を変更することにより、自己インダクタンスを調整することができる。尚、コイルの自己インダクタンスは、例えば巻数・コイル半径・コイル長・導線の径・周囲の透磁率(コア、つまり鋼板2の透磁率)等により決定されるので、コイルの断面積を変えて例えばコイル半径等を変更することにより、コイルのインダクタンスを調整することができる。よって、L調整器12A〜12Dは、領域Sの断面積を変更することにより、自己インダクタンスを調整することができる。よって、L調整器12A〜12Dにより、回路中のリアクタンスを調整して、加熱コイル10A〜12Dのそれぞれに印可する電圧を調整することができる。よって、加熱コイル10A〜12Dによる鋼板2の加熱量を、各コイル毎に調整することができる。
図2を参照して、この自己インダクタンス調整のための断面積変更について、L調整器12Aを例に更に具体的に説明する。図2に示すように、迂回経路121と迂回経路122との間で平行に延設された部位、つまり、連結部111Mと連結部112Mとは、離隔距離を調整することができるように配置される。つまり、連結部111M,112Mは、上下動可能に配置され、この連結部111M,112Mを上下動させることにより、L調整器112Aは、領域Sの断面積を調整する。尚、この連結部111M,112Mは、立設部111C,111B,112C,112Bの延設された長さの範囲内で上下動し、領域Sの中心点Oが、入出力端子111,112間の中心に位置するように、上下動されることが好ましい。つまり、連結部111Mが最下端に位置して、入出力端子111と略平行となった状態(迂回していない状態)からの連結部111Mの上方への移動距離は、連結部112Mが最上端に位置して、入出力端子112と略平行となった状態(迂回していない状態)からの連結部112Mの下方への移動距離とほぼ等しくなるように、連結部111M,112Mは、上下動される。
また、このようにL調整器12A〜12Dの断面積を変更する方法としては、連結部111M、112Mを上下動させてL調整器12A〜12Dの高さを変更する方法以外にも、立設部111C,111B,112C,112Bを平行移動させてL調整器12A〜12Dの幅を変更する方法も可能である。しかし、誘導加熱装置1は、例えばブスバー(Bus bar)や整合器などと接続されているので、幅を変更する方法では、それらの接続位置を変更する必要があり、装置の設計上困難性が高い。一方、高さを変更する方法は、変更可能な高さに制限がある。しかし、以下で説明するL調整器12A〜12D間で相互インダクタンスを発生させる際に、L調整器12A〜12Dと加熱コイル10A〜10Dとの間の相互インダクタンスを幾何学的に分離できるので、L調整器間の相互インダクタンス調整が容易である。
尚、本実施形態において、各連結部111M,112Mは、例えばボルトなどの締結手段により、立設部111C,111B,112C,112Bに電気的に接続されて締結固定される。
また、構成上全く異なり、他の技術分野からではあるが、インダクタンスを調整して電圧を変更する技術として、例えば上記の特許文献3のようなアーク式電気炉の電気炉用変圧器も挙げられる。しかしながら、この変圧器における調整は、3相電源の各相の端子間距離を変更して、1つの回路内の相間の相互インダクタンスを変更して、回路内のインピーダンスを調整している。一方、本実施形態に係る誘導加熱装置1は、1つの回路内の自己インダクタンスを調整するため、全く異なる構成を有する。また更に、本実施形態に係る誘導加熱装置1は、以下で説明するように各回路間の相互リアクタンスを利用して、電圧調整の機構を特許文献3に比べてコンパクト化することが可能である。
(相互インダクタンス)
また、各L調整器12A〜12Dのそれぞれは、電気経路11の延設方向と交差する方向(図1のx軸方向)に沿って配置される。換言すれば、図2に示すように、各L調整器12A〜12Dの領域Sの中心点Oが略同一直線上に位置するように、各L調整器12A〜12Dは配置される。より具体的には、図1等に示すように、各L調整器12A〜12Dは、加熱コイル10A〜12Dの配列方向と同様の方向に沿って、領域Sの断面が略平行になるように配置される。つまり、各L調整器12A〜12Dの立設部111C同士は、平行となるように折曲げて形成される。他の立設部111B,112C,112Bも同様に形成される。また、この際、各L調整器12A〜12Dは、鋼板2の通板方向(x軸方向)と平行な方向に並べられることが好ましい。
更に、各L調整器12A〜12Dのそれぞれは、図3に示すように、相隣接するL調整器12A〜12D同士の間隙D2が50mm〜500mmとなるように配置される。上記のように、L調整器12A〜12Dを、同一直線上に並列に50mm〜500の間隙D2を空けて配置することにより、少なくとも相隣接するL調整器12A〜12D同士の間に相互インダクタンスを発生させて、相互誘導を発生させることができる。相互誘導を発生させることにより、L調整器12A〜12Dは、自己インダクタンスの調整による回路内のリアクタンス調整効果及び効率を向上させることができる。よって、L調整器12A〜12Dによる自己インダクタンス調整の幅を小さくすることができる。つまり、L調整器12A〜12Dの断面積等を減少させ、誘導加熱装置1全体の構成を小さくすることができ、装置をコンパクトにすることができる。
一方、例えば上記特許文献3の電圧調整機構によれば、インピーダンスを約40%調整するのに各相の端子間の距離を900mm以上も変更する必要がある。かかる電圧調整機構は、装置の構成が大きくなるばかりか、例えばブスバーや整合器などと接続する必要がありレイアウトの変更が困難な誘導加熱装置には適用することは困難である。一方、本実施形態に係る誘導加熱装置1は、上記のように自己インダクタンス調整をL調整器12A〜12Dの高さ調整のみで行うことによりコンパクト化することができるだけでなく、相互インダクタンスを利用することによりL調整器12A〜12Dを更にコンパクト化することが可能である。よって、本実施形態に係る誘導加熱装置1が有する電圧調整機構は、特許文献3が有する電圧調整機構よりも非常にコンパクトであり、装置全体の構成を小型化することが可能である。
尚、隣接するL調整器12A〜12D同士の間隙D2が50mm未満の場合には、高周波交流電圧を印可した場合に隣接するL調整器12A〜12D間で放電が発生する恐れがある。また、隣接するL調整器12A〜12D同士の間隙D2が500mm超過の場合には、隣接するL調整器12A〜12D間の相互インダクタンスが減少する。
このL調整器12A〜12Dの相対的な配置位置について、相互インダクタンスの観点から説明する以下のようになる。上記のように各L調整器12A〜12Dを配置することにより、相隣接するL調整器12A〜12D間の相互インダクタンスを、各L調整器12A〜12Dの自己インダクタンスの5〜30%に調整することができる。尚、相互インダクタンスが自己インダクタンスの30%を超えると、1つのL調整器12A〜12Dの面積変化に対して加熱コイル10A〜10Dの電流変化量が大きすぎる。すなわち、この場合、L調整器12A〜12Dの調整が敏感になりすぎて、昇温速度を制御するために、高精度の調整(1mm単位の調整)が必要となる。よって、昇温速度を制御が困難となる。また、相互インダクタンスが自己インダクタンスの5%未満であると、1つのL調整器12A〜12Dの面積変化に対して加熱コイル10A〜10Dの電流の変化量が小さすぎて、L調整器12A〜12Dのコンパクト化が難しくなる。
尚、この場合、L調整器12A〜12D間の相互インダクタンスは、加熱コイル10A〜10Dに対するL調整器12A〜12Dの面積変化の比と、その加熱コイル10A〜10Dに流れる電流変化の比とにより、概略的に求めることができる。つまり、電流変化の比を面積変化の比で割った値が1.2である場合、この値の増加分(0.2)が、相互インダクタンスに対応する。よって、この場合、相互インダクタンスは、L調整器12A〜12Dの自己インダクタンスの20%であると算出することができる。
(加熱コイルとL調整器との関係)
また、L調整器12A〜12Dは、各加熱コイル10A〜10Dとそれに接続された各L調整器12A〜12Dとの間の間隙D3が500mm〜2000mmとなるように配置される。この間隙D3を空けてL調整器12A〜12Dを配置することにより、L調整器12A〜12Dによるインダクタンス調整をより容易かつ安定して行うことができる。すなわち、この間隙D3が500mm未満である場合には、L調整器12A〜12Dで発生する磁場が加熱コイル10A〜10Dに干渉してしまい、両者の間に相互インダクタンスが発生する。よって、L調整器12A〜12Dの調整が困難になる。一方、間隙D3の上限2000mmは、対地間耐圧を確保することが可能な、加熱コイル10A〜10DとL調整器12A〜12Dを含めた回路全体のインピーダンスの値により決定される。つまり、間隙D3が2000mm超過の場合には、装置全体の構成が大きくなりコンパクト化を妨げるだけでなく、回路全体のインピーダンスが増加し、コイル間の電位差が増加して放電し易くなる。
また、鋼板2の大きさにも起因するが、L調整器12A〜12Dの鋼板2の板幅方向(y軸方向)の幅は、例えば500〜2500mm(加熱コイル10A〜10Dの約30〜50%)、L調整器12A〜12Dの鋼板2の板厚方向(z軸方向)の高さは、例えば100〜200mm(加熱コイル10A〜10Dの約20〜200%)に設定されることが好ましい。換言すれば、L調整器12A〜12Dの大きさは、(加熱コイルの面積+L調整器の面積)/加熱コイルの面積=1〜3となるように設定されることが好ましい。また、L調整器12A〜12Dの鋼板2の通板方向J1の幅は、加熱コイル10A〜10Dと略同一に設定される。
(L調整器の効果の例)
以上のように構成されるL調整器12A〜12Dは、装置全体のコンパクト化が可能で、かつ、加熱コイル10A〜10Bそれぞれの電流量を調整することが可能である。電流量を調整する際、このL調整器12A〜12Dは、上記特許文献2のような抵抗を使用しないため、ジュール熱の発生によるエネルギー損失が発生せず、本実施形態に係る誘導加熱装置1は、エネルギー効率を向上させることができる。また、各L調整器12A〜12Dは、自己インダクタンスを調整することができるため、例えば、鋼板2の材質や板厚、板幅等に応じて、自己インダクタンスを調整して鋼板2の加熱を調整することが容易である。
(L調整器の調整方法)
更に、本実施形態に係る誘導加熱装置1は、L調整器12A〜12Dの面積を調整することにより自己インダクタンスだけでなく相互インダクタンスをも調整することにより、キュリー点近傍においても一定の昇温速度を保つことを可能にしている。高温域において昇温速度を一定に保つ際のL調整器12A〜12Dの面積調整について、以下で説明する。なお、以下で説明するL調整器12A〜12Dの面積調整だけでなく、上記の各構成等も作用してキュリー点近傍における昇温速度を一定に保つことを可能にしていることは、いうまでもない。
L調整器12A〜12Dは、図5に示すように、鋼板2の長手方向の最前段の加熱コイル10Dと、最後段の加熱コイル10Aとにそれぞれ接続されたL調整器12D,12Aで発生する自己インダクタンスが、それらの間のL調整器12C,12Bで発生する自己インダクタンスよりも小さくなるように、調整される。
より具体的には、L調整器12D,12Aの領域Sにおける断面積が、L調整器12C,12Bの領域Sにおける断面積よりも小さくなるように、L調整器12A〜12Dは調整される。換言すれば、L調整器12D,12Aにおける連結部111M,112M間の離隔距離は、L調整器12C,12Bにおける連結部111M,112M間の離隔距離よりも小さくなるように、L調整器12A〜12Dは調整される。L調整器12A〜12Dの高さで説明すると、L調整器12D,12Aの高さは、L調整器12B,12Cの高さよりも低くなる。
このような構成にすると、L調整器12D,12Aが配置された回路内のリアクタンスが、他の回路と比べて小さくなり、結果として加熱コイル10D,10Aに、加熱コイル10C,10Bよりも大きな電流を流すことができる。このように最前段と最後段の加熱コイル10D,10Aの電流量を大きくすることにより、この加熱コイル10D,10Aに対応した鋼板2で加熱密度を大きくすることができ、キュリー点近傍での鋼板2の昇温速度を一定に保つことができる。
(実施例)
このL調整器12A〜12Dの調整による電流量や加熱密度の変化について、実施例を示す。この本実施形態に係る実施例では、加熱コイル10A〜10Dの幅(図1のy軸方向の幅)は、1000mmとし、高さ(図1のz軸方向の長さ、図2の距離W1)は、400mmとし、各加熱コイル10A〜10Dのコイル長さは100mm、相隣接した加熱コイル10A〜10Dの相互距離D1は、50mmとした(つまりこの場合、相隣接した加熱コイル10A〜10Dの相互距離D1は、加熱コイル10A〜10Dの高さ方向の内側の距離W1の1/8倍)。そして、L調整器12A〜12Dの幅(図1のy軸方向の幅)は、400mmとして、高さ(図1のz軸方向の長さ)は、0mm(入出力端子111,112間の間隙)〜300mmまで変化させた。
この際、L調整器12A〜12Dの面積を調整した結果、対応した加熱コイル10A〜10Dに流れる電流の変化を図6に示す。尚、図6中、横軸は、各加熱コイル10D,10C,10B,10Aを表し、縦軸は、各加熱コイルに流れる電流を表す。そして、「全閉」は、L調整器を閉じた場合、つまり、連結部111Mを最下端に位置させて入出力端子111の直線上に配置し、連結部112Mを最上端に位置させて入出力端子112の直線上に配置した場合を意味する。具体的には、この実施例の場合、L調整器の高さを0mm(入出力端子111,112間の間隙)とした状態を示す。「全開」は、L調整器を開いた場合、つまり、連結部111Mを最上端に位置させ、連結部112Mを最下端に位置させて、L調整器の領域Sの断面積を最大にした場合を意味する。具体的には、この実施例の場合、L調整器の高さ(連結部111M,112Mの間の距離)を300mmとした状態を示す。
図6に示すように、全て全閉の場合、つまり、L調整器12A〜12Dを全開にした場合、最前段の加熱コイル10A,10Dの電流量が増加した。この場合、L調整器12A〜12Dは、電気経路111を迂回させておらず、上述で説明した加熱コイル10A〜10Dを近接配置した結果の相互インダクタンスによる影響により、両端の加熱コイル10A,10Dの電流量を増加させることができる。つまり、両端の加熱コイル10A,10Dでのインダクタンスが、それらの間の加熱コイル10B,10Cでのインダクタンスよりも小さくなった結果、両端の加熱コイル10A,10Dの電流量を増加させることができる。
一方、中央全開の場合、つまり、両端のL調整器12A,12Dを全閉とし、それらの間の中央のL調整器12B,12Cを全開とした場合、更に最前段の加熱コイル10A,10Dの電流量が増加した。この場合、中央のL調整器12B,12Cで発生するインダクタンスにより、それに接続された加熱コイル10B,10Cに流れる電流は減少する。そして、L調整器12A〜12D間の相互インダクタンス及び加熱コイル10A〜10D間の相互インダクタンスにより、両端の加熱コイル10A,10Dに流れる電流量を増加させることができる。
他方、両端全開の場合、つまり、両端のL調整器12A,12Dを全開とし、それらの間の中央のL調整器12B,12Cを全閉とした場合、この加熱コイル10A〜10Dにおける電流量の差は減少し、略同一の電流が、加熱コイル10A〜10Dに流れる。この場合、両端のL調整器12A,12Dで発生するインダクタンスにより、それに接続された加熱コイル10A,10Dに流れる電流は減少する。しかしながら、L調整器12A〜12D間の相互インダクタンス及び加熱コイル10A〜10D間の相互インダクタンスにより、中央の加熱コイル10B,10Cに流れる電流量を増加させることができる。その結果、各加熱コイル10A〜10Dで流れる電流を、ほぼ一定に調整することができる。
このようなL調整器12A〜12Dの高さ調整による加熱コイル10A〜10Dの電流量の変化は、相隣接する加熱コイル10A〜10Dの相互距離D1が加熱コイル10A〜10Dの高さ方向の内側の距離W1の1/10倍以上1/3倍以下に変更し、加熱コイル10A〜10Dの幅を1000mm,1500mm,2000mmと変更しても同様の傾向が得られる。
この場合、中央全開とした方が、全温度領域での昇温速度を均一化することができる。このことについて、図7〜図9を参照して、説明する。
(中央全開)
図7は、本実施形態に係る誘導加熱装置1による鋼板2の長手方向における昇温速度を概略的に説明するための説明図であり、図8は、両端全開における昇温速度を表したグラフであり、図9は、中央全開における昇温速度を表したグラフである。
図7(A)に示す、長手方向における鋼板2の位置x1,x2,x3は、それぞれ加熱コイル10A〜加熱コイル10Dの中央、x1から100mm後方(加熱コイル10Bの中心)、x3から300mm後方(加熱コイル10Aの中心)を示す。そして、図8及び図9に示す、測定値L1,L2,L3は、それぞれ位置x1,x2,x3における鋼板2の温度変化を示す。
図8に示すように、両端全開として、各加熱コイル10A〜10Dに流れる電流量を一定とした場合、位置x3における昇温速度(L3の傾き)は、位置x1,x2における昇温速度(L1,L2の傾き)よりも小さくなる。これは、鋼板2の温度がキュリー点(例えば約770℃)近傍(例えば約650℃)の高温領域となり、鋼板2の透磁率が低下した結果、昇温速度が低下したことによる。一方、図9に示すように、中央全開として、両端の加熱コイル10A,10Dに流れる電流量を増加させた場合、位置x3における昇温速度(L3の傾き)は、位置x1,x2における昇温速度(L1,L2の傾き)の約100℃/sに近づく。よって、キュリー点近傍の温度領域における鋼板2の昇温速度の低下を減少させることができる。
この場合の鋼板2の昇温速度を誘導加熱装置1の全体にわたり概略的に説明すると、以下のようになる。
つまり、図7(B)に示すように、L調整器12A〜12Dを両端全開として電流を一定とした場合、鋼板2の入側の加熱コイル10Dは、加熱開始時に必要な加熱密度が得られずに昇温速度が低下する。一方、出側の加熱コイル10Aは、鋼板2の温度が高温域に達した結果、透磁率が低下して昇温速度が低下する。これらに対して、L調整器12A〜12Dを中央全開とした場合、中央の加熱コイル10B,10Cにおける電流量が低下して昇温速度が減少するものの、両端の加熱コイル10A,10Dにおける電流量が増加して昇温速度を増加させることができる。この際、中央の加熱コイル10B,10Cにおける昇温速度の減少は、両端の加熱コイル10A,10Dにおける昇温速度の増加による効果よりも影響が少なくて済む。これは、L調整器12〜12D間において相互リアクタンスが働くことによる。
つまり、中央全開とした場合、両端の加熱コイル10A,10Dには、中央の加熱コイル10B,10Cよりも大きな電流を流すことができ、昇温速度の変化を低減することが可能である。尚、このような昇温速度を実現するために、本実施形態に係る誘導加熱装置1では、コイル電流は最高でも、約3000Aであった。一方、例えば可変抵抗を利用した上記特許文献では、各コイル電圧を同じ値に使用とする場合、約4500Aもの電流を必要とした。つまり、本実施形態に係る誘導加熱装置1によれば、消費電力で約33%のエネルギーを削減することができる。この削減量は、家庭用消費電力の約数千戸分の電力に相当する。また、このエネルギー削減は、L調整器12A〜12Dの相互インダクタンスによる効果が大きく、例えば特許文献1のように可変コンデンサを使用したとしても、このようなエネルギー削減を実現することは難しい。
このことを、図10を参照して、L調整器12A〜12Dの面積比で考察する。
図10は、L調整器12A〜12Dの面積比に対する加熱コイル10A〜10Dの電流比を表したグラフである。
尚、図10の横軸には、中央のL調整器12B,12Cの面積に対する両端のL調整器12A,12Dの面積の比を示し、縦軸には、両端の加熱コイル10A,10Dの電流に対する中央の加熱コイル10B,10Cの電流の比を示す。そして、この場合、各測定点の近似直線は、横軸をxとし縦軸をyとすると、y=1.22x−0.50で表される。
図10に示すように、L調整器の面積比を変更することにより、加熱コイルの電流比を変更することができる。具体的には、中央のL調整器12B,12Cと両端のL調整器12A,12Dの面積を等しくすると(面積比を1にすると)、中央の加熱コイル10B,10Cよりも両端の加熱コイル10A,10Dに流れる電流の方が大きくなる。一方、中央のL調整器12B,12Cの面積を、両端のL調整器12A,12Dよりも大きくすると(例えば面積比を0.8にすると)、両端の加熱コイル10A,10Dの電流は、更に増加して、中央の加熱コイル10B,10Cの電流の約2倍となる(電流比が約0.5となる。)。他方、中央のL調整器12B,12Cの面積を、両端のL調整器12A,12Dよりも小さくすると(例えば面積比を1.2にすると)、両端の加熱コイル10A,10Dの電流は、減少して、中央の加熱コイル10B,10Cの電流とほぼ等しくなる(電流比が約1となる。)。
つまり、面積比を0.8から1.2として約1.5倍に増加させると、電流は、0.5から1.0へと約2倍に増加させることができる。つまり、L調整器12A〜12Dの面積を変化させることにより、電流量を効率よく制御することができることが判る。これは、L調整器12A〜12Dが自己インダクタンスが発生するだけでなく、互いの間で相互インダクタンスを発生させることによる。
(印可電圧の周波数)
次に、図11を参照して、本実施形態に係るL調整器12A〜12Dを有する誘導加熱装置1に印可する交流電圧の周波数(運転周波数ともいう。)について説明する。図11は、本実施形態に係る誘導加熱装置1において、交流電源3の交流電圧の周波数に対する交流電圧を示すグラフである。
加熱する鋼板1の昇温範囲/昇温速度等の使用によって、加熱コイル10A〜10Dに流されるべき電流Iが決定される。この電流及びその周波数(電圧の周波数)と、各コイル及びブスバー等によるコイルのインダクタンスとにより、加熱コイル10A〜10Dのコイル電圧とブスバーとの間の電圧が発生する。このコイル電圧には、装置の許容電圧又は供給電圧等の関係上、下記の(数式1)の制約が係る。
(数1)
コイル電圧[V]=2×π×(運転周波数f[Hz])
×(コイルのインダクタンスL[H])×コイル電流I
≦30kV ・・・(数式1)
この(数式1)の制約上、運転周波数fと、L×I(つまり、コイル電圧)との関係は、図11のグラフのようになる。
一方、各コイルのインダクタンスは、対地間耐圧、コイル電流I、及び運転周波数fにより範囲を決定する必要がある。よって、上記のようにL調整器12A〜12Dのインダクタンスを調整するためには、運転周波数fは、例えば50kHz〜500kHzの範囲に設定することが好ましい。50kHz〜500kHzの範囲では、L調整器12A〜12Dを含めたコイルによるインダクタンスが全体のインダクタンスの99%以上となるので、コアとしての鋼板2による負荷による影響を抑えて、L調整器12A〜12Dによって各加熱コイル10A〜10Dに流れる電流を調整することができる。
尚、運転周波数fが50kHz未満では、コアとしての鋼板2による抵抗の影響を受け、L調整器12A〜12Dによる電流の調整の効果が小さくなる。一方、運転周波数fが500kHz超過では、L調整器12A〜12Dによるインダクタンスの変化に対して、対地間耐圧の余裕が少なくなり、L調整器12A〜12Dの高さ調整の範囲が狭い範囲に限定されてしまい、適切に電流を調整することが難しくなる。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されないことは言うまでもない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても当然に本発明の技術的範囲に属するものと了解される。
例えば、上記実施形態では、L調整器12A〜12Dにおいて、連結部111M,112Mの締結手段は、例えばボルトであるとしたが、本発明はかかる例に限定されない。例えば、連結手段は、連結部と立設部との間を電気的に接続することが可能であればよく、例えばラッチ等を使用してもよい。ラッチ等を使用する場合、例えばモータ等の駆動手段により、ラッチを外して締結状態を解除することができ、他の駆動手段により、自動で連結部111M,112Mを上下動させることも可能である。この場合、例えば、各加熱コイル10A〜10Dでの電流量や対応した位置での鋼板2の温度などを測定して、所望の昇温速度などが実現されるように、自動で連結部111M,112Mを上下動させることも可能である。
本発明の第1実施形態に係る誘導加熱装置を示す斜視図である。 同実施形態に係る誘導加熱装置を鋼板の通板方向から見た側面図である。 同実施形態に係る誘導加熱装置を上方から見た上面図である。 同実施形態に係る誘導加熱装置において、加熱コイルにより発生する鋼板上の加熱密度を説明するための説明図 同実施形態に係る誘導加熱装置において、L調整器の調整方法を説明するための説明図である。 同実施形態に係る誘導加熱装置において、L調整器を調整した際の加熱コイルを流れる電流量を表したグラフである。 同実施形態に係る誘導加熱装置による鋼板の長手方向における昇温速度を概略的に説明するための説明図 両端全開における昇温速度を表したグラフである。 中央全開における昇温速度を表したグラフである。 L調整器の面積比に対する加熱コイルの電流比を表したグラフである。 同実施形態に係る誘導加熱装置において、交流電源の交流電圧の周波数に対する交流電圧を示すグラフである。
符号の説明
1 誘導加熱装置
2 鋼板
3 交流電源
10A〜10D 加熱コイル
11 電気経路
12A〜12D L調整器
111,112 入出力端子
111B,112B 立設部
111C,112C 立設部
111M,112M 連結部

Claims (13)

  1. ソレノイド方式により鋼板を連続的に加熱する誘導加熱装置であって、
    前記鋼板が内部を通過するように、前記鋼板の長手方向に沿って配置された少なくとも3つの加熱コイルと、
    各前記加熱コイルと当該各加熱コイルに電圧を印可する電源とを電気的に接続する電気経路上に配置され、自己誘導を発生させ、かつ、当該自己誘導における自己インダクタンスを調整可能なインダクタンス調整器と、
    を有し、
    各前記インダクタンス調整器は、少なくとも相隣接した前記インダクタンス調整器の間に相互誘導が発生するように配置されることを特徴とする、誘導加熱装置。
  2. 前記鋼板の長手方向における最前段の前記加熱コイル及び最後段の前記加熱コイルの各前記インダクタンス調整器が発生させる自己インダクタンスは、前記最前段の加熱コイルと前記最後段の加熱コイルとの間に配置された前記加熱コイルの前記インダクタンス調整器が発生させる自己インダクタンスよりも小さくなるように調整されることを特徴とする、請求項1に記載の誘導加熱装置。
  3. 相隣接した前記加熱コイルの相互距離は、前記加熱コイルの高さ方向の内側の距離の1/10以上1/3以下であり、
    前記各インダクタンス調整器は、前記電気経路に対して交差する方向に沿って配置され、
    前記相隣接したインダクタンス調整器同士の間隙は、50mm〜500mmであることを特徴とする、請求項1又は2に記載の誘導加熱装置。
  4. 前記各インダクタンス調整器は、当該インダクタンス調整器が配置された前記電気経路を略コイル状に迂回させることにより前記自己誘導を発生させ、かつ、迂回させた前記電気経路の略コイル状の迂回経路に囲まれた領域の断面積を変更することにより前記自己誘導における自己インダクタンスを調整することを特徴とする、請求項1〜3のいずれかに記載の誘導加熱装置。
  5. 前記各加熱コイルと前記電源とを接続する前記電気経路のそれぞれは、前記各加熱コイルから長尺状に延設された一対の入出力端子により構成され、
    前記インダクタンス調整器は、前記一対の入出力端子の一方と他方とが互いに離隔するように前記一対の入出力端子を迂回させ、かつ、前記迂回経路における前記一対の入出力端子の一方と他方との間の距離を変更して前記迂回経路に囲まれた領域の前記断面積を変更することを特徴とする、請求項4に記載の誘導加熱装置。
  6. 前記各加熱コイルと当該加熱コイルに接続された前記インダクタンス調整器との間隙は、500mm〜2000mmであることを特徴とする、請求項1〜5のいずれかに記載の誘導加熱装置。
  7. 前記各加熱コイルは、シングルターンコイル又はダブルターンコイルであることを特徴とする、請求項1〜6のいずれかに記載の誘導加熱装置。
  8. ソレノイド方式により鋼板を連続的に加熱する誘導加熱方法であって、
    少なくとも3つの加熱コイルを、前記鋼板が内部を通過するように前記鋼板の長手方向に沿って配置し、
    自己誘導を発生させ、かつ、当該自己誘導における自己インダクタンスを調整可能なインダクタンス調整器を、各前記加熱コイルと当該各加熱コイルに電圧を印可する電源とを電気的に接続する電気経路上において、少なくとも相隣接した前記インダクタンス調整器の間に相互誘導が発生するように配置して、
    前記鋼板の長手方向の最前段の前記加熱コイル及び最後段の前記加熱コイルの各前記インダクタンス調整器が発生させる自己インダクタンスを、前記最前段の加熱コイルと前記最後段の加熱コイルとの間に配置された前記加熱コイルの前記インダクタンス調整器が発生させる自己インダクタンスよりも小さくなるように調整することを特徴とする、誘導加熱方法。
  9. 相隣接した前記加熱コイルの相互距離は、前記加熱コイルの高さ方向の内側の距離の1/10以上1/3以下であり、
    前記各インダクタンス調整器は、前記電気経路に対して交差する方向に沿って配置され、
    前記相隣接したインダクタンス調整器同士の間隙は、50mm〜500mmであることを特徴とする、請求項8に記載の誘導加熱方法。
  10. 前記各インダクタンス調整器は、当該インダクタンス調整器が配置された前記電気経路を略コイル状に迂回させることにより前記自己誘導を発生させ、かつ、迂回させた前記電気経路の略コイル状の迂回経路に囲まれた領域の断面積を変更することにより前記自己誘導における自己インダクタンスを調整することを特徴とする、請求項8又は9に記載の誘導加熱方法。
  11. 前記各加熱コイルと前記電源とを接続する前記電気経路のそれぞれは、前記各加熱コイルから長尺状に延設された一対の入出力端子により構成され、
    前記インダクタンス調整器は、前記一対の入出力端子の一方と他方とが互いに離隔するように前記一対の入出力端子を迂回させ、かつ、前記迂回経路における前記一対の入出力端子の一方と他方との間の距離を変更して前記迂回経路に囲まれた領域の前記断面積を変更することを特徴とする、請求項10に記載の誘導加熱方法。
  12. 前記各加熱コイルと当該加熱コイルに接続された前記インダクタンス調整器との間隙は、500mm〜2000mmであることを特徴とする、請求項8〜11のいずれかに記載の誘導加熱方法。
  13. 前記各加熱コイルは、シングルターンコイル又はダブルターンコイルであることを特徴とする、請求項8〜12のいずれかに記載の誘導加熱方法。
JP2008101622A 2008-04-09 2008-04-09 誘導加熱装置及び誘導加熱方法 Active JP5038962B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2008101622A JP5038962B2 (ja) 2008-04-09 2008-04-09 誘導加熱装置及び誘導加熱方法
US12/918,555 US8420990B2 (en) 2008-04-09 2009-03-12 Induction heating apparatus and induction heating method
PL09730349T PL2265089T3 (pl) 2008-04-09 2009-03-12 Urządzenie do ogrzewania indukcyjnego i sposób ogrzewania indukcyjnego
BRPI0911174-3A BRPI0911174B1 (pt) 2008-04-09 2009-03-12 Aparelho de aquecimento por indução e método de aquecimento por indução
RU2010145273/07A RU2449510C1 (ru) 2008-04-09 2009-03-12 Устройство и способ индукционного нагрева
CN2009801115724A CN102100124B (zh) 2008-04-09 2009-03-12 感应加热装置及感应加热方法
KR1020107022532A KR101215662B1 (ko) 2008-04-09 2009-03-12 유도 가열 장치 및 유도 가열 방법
PCT/JP2009/054734 WO2009125645A1 (ja) 2008-04-09 2009-03-12 誘導加熱装置及び誘導加熱方法
EP09730349.9A EP2265089B1 (en) 2008-04-09 2009-03-12 Induction heating apparatus and induction heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101622A JP5038962B2 (ja) 2008-04-09 2008-04-09 誘導加熱装置及び誘導加熱方法

Publications (2)

Publication Number Publication Date
JP2009252643A true JP2009252643A (ja) 2009-10-29
JP5038962B2 JP5038962B2 (ja) 2012-10-03

Family

ID=41161780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101622A Active JP5038962B2 (ja) 2008-04-09 2008-04-09 誘導加熱装置及び誘導加熱方法

Country Status (9)

Country Link
US (1) US8420990B2 (ja)
EP (1) EP2265089B1 (ja)
JP (1) JP5038962B2 (ja)
KR (1) KR101215662B1 (ja)
CN (1) CN102100124B (ja)
BR (1) BRPI0911174B1 (ja)
PL (1) PL2265089T3 (ja)
RU (1) RU2449510C1 (ja)
WO (1) WO2009125645A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048387A (ja) * 2016-09-23 2018-03-29 新日鐵住金株式会社 連続溶融亜鉛めっき方法及び連続溶融亜鉛めっき装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5473127B2 (ja) * 2009-12-16 2014-04-16 株式会社ミヤデン 誘導加熱コイル
JP5659094B2 (ja) * 2011-07-04 2015-01-28 東芝三菱電機産業システム株式会社 誘導加熱装置
JP6071653B2 (ja) * 2013-03-06 2017-02-01 トクデン株式会社 誘導加熱装置
KR101600555B1 (ko) * 2014-06-11 2016-03-08 주식회사 다원시스 도전성의 판재를 가열하기 위한 유도 가열 장치
JP6561953B2 (ja) * 2016-09-21 2019-08-21 株式会社オートネットワーク技術研究所 磁性コア、及びリアクトル
SE1750017A1 (sv) * 2017-01-11 2018-07-03 Tc Tech Sweden Ab Publ Method and arrangement for metal hardening
RU180828U1 (ru) * 2018-01-25 2018-06-26 Александр Владимирович Гладышев Волновая энергетическая установка
CN108486316B (zh) * 2018-03-30 2019-07-26 燕山大学 一种变径式线圈对重载凸轮轴感应加热的装置及方法
JP2022044338A (ja) * 2020-09-07 2022-03-17 トヨタ自動車株式会社 熱処理装置および熱処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106388A (en) * 1980-01-25 1981-08-24 Meidensha Electric Mfg Co Ltd Induction heater
JP2000100552A (ja) * 1998-09-24 2000-04-07 Shimada Phys & Chem Ind Co Ltd 誘導加熱装置
JP2004259665A (ja) * 2003-02-27 2004-09-16 Mitsui Eng & Shipbuild Co Ltd 誘導加熱方法及び装置
JP2005206906A (ja) * 2004-01-26 2005-08-04 Nippon Steel Corp 鋼板の誘導加熱方法
JP2007012482A (ja) * 2005-06-30 2007-01-18 Mitsubishi Electric Corp 誘導加熱調理器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114477A (en) * 1979-02-26 1980-09-03 Nippon Kokan Kk <Nkk> Method and device for production of electric welded tube
US4357512A (en) * 1980-07-23 1982-11-02 Sumitomo Kinzoku Kogyo Kabushiki Kaisha Apparatus for continuous manufacture of butt-welded pipe
US4778971A (en) * 1986-05-23 1988-10-18 Kabushiki Kaisha Meidensha Induction heating apparatus
JPH0349561A (ja) * 1989-07-14 1991-03-04 Mitsubishi Heavy Ind Ltd 合金化用誘導加熱における電源制御装置
JPH0751755Y2 (ja) 1989-07-25 1995-11-22 株式会社明電舎 平板加熱装置
JP3155241B2 (ja) 1998-03-10 2001-04-09 奈良県 誘電加熱方法及び装置
JP2001021270A (ja) 1999-07-12 2001-01-26 Nkk Corp 三相交流アーク式電気炉
WO2001007890A2 (en) * 1999-07-21 2001-02-01 Dako A/S A method of controlling the temperature of a specimen in or on a solid support member
FR2808163B1 (fr) * 2000-04-19 2002-11-08 Celes Dispositif de chauffage par induction a flux transverse a circuit magnetique de largeur variable
JP3676215B2 (ja) * 2000-09-22 2005-07-27 電気興業株式会社 カムシャフトの低歪高周波焼入方法とその装置
US6570141B2 (en) * 2001-03-26 2003-05-27 Nicholas V. Ross Transverse flux induction heating of conductive strip
JP2003243137A (ja) 2002-02-15 2003-08-29 Mitsubishi Electric Corp 誘導加熱装置
RU2240659C2 (ru) * 2002-09-23 2004-11-20 Общество с ограниченной ответственностью (ООО) "Магнит" Устройство индукционного нагрева с секционированным индуктором (варианты)
DE10312623B4 (de) * 2003-03-19 2005-03-24 Universität Hannover Querfeld-Erwärmungsanlage
JP4295141B2 (ja) * 2004-03-12 2009-07-15 株式会社吉野工作所 ワーク加熱装置及びワーク加熱方法
TWI326713B (en) * 2005-02-18 2010-07-01 Nippon Steel Corp Induction heating device for heating a traveling metal plate
US9888529B2 (en) * 2005-02-18 2018-02-06 Nippon Steel & Sumitomo Metal Corporation Induction heating device for a metal plate
JP5114671B2 (ja) * 2007-04-16 2013-01-09 新日鐵住金株式会社 金属板の誘導加熱装置および誘導加熱方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106388A (en) * 1980-01-25 1981-08-24 Meidensha Electric Mfg Co Ltd Induction heater
JP2000100552A (ja) * 1998-09-24 2000-04-07 Shimada Phys & Chem Ind Co Ltd 誘導加熱装置
JP2004259665A (ja) * 2003-02-27 2004-09-16 Mitsui Eng & Shipbuild Co Ltd 誘導加熱方法及び装置
JP2005206906A (ja) * 2004-01-26 2005-08-04 Nippon Steel Corp 鋼板の誘導加熱方法
JP2007012482A (ja) * 2005-06-30 2007-01-18 Mitsubishi Electric Corp 誘導加熱調理器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048387A (ja) * 2016-09-23 2018-03-29 新日鐵住金株式会社 連続溶融亜鉛めっき方法及び連続溶融亜鉛めっき装置

Also Published As

Publication number Publication date
US8420990B2 (en) 2013-04-16
BRPI0911174B1 (pt) 2019-02-12
KR101215662B1 (ko) 2012-12-26
PL2265089T3 (pl) 2019-01-31
EP2265089B1 (en) 2018-08-22
WO2009125645A1 (ja) 2009-10-15
EP2265089A4 (en) 2014-07-23
KR20100121545A (ko) 2010-11-17
US20100326984A1 (en) 2010-12-30
JP5038962B2 (ja) 2012-10-03
BRPI0911174A2 (pt) 2015-10-13
CN102100124B (zh) 2013-06-12
EP2265089A1 (en) 2010-12-22
RU2449510C1 (ru) 2012-04-27
BRPI0911174A8 (pt) 2018-12-04
CN102100124A (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
JP5038962B2 (ja) 誘導加熱装置及び誘導加熱方法
US6546039B2 (en) Simultaneous induction heating and stirring of a molten metal
WO2011074383A1 (ja) 誘導加熱装置の制御装置、誘導加熱システム及び誘導加熱装置の制御方法
AU2002255551A1 (en) Simultaneous induction heating and stirring of a molten metal
US6798822B2 (en) Simultaneous induction heating and stirring of a molten metal
EP2311296A2 (en) Electric induction edge heating of electrically conductive slabs
CN108702096B (zh) 用于加热工件的具有高度稳定输出的高频电源系统
RU2375722C1 (ru) Устройство для создания мощного высокочастотного переменного магнитного поля
CN109074937B (zh) 电感调整装置
CN107926085B (zh) 横向磁通感应加热装置
JP2004119230A (ja) 電磁誘導加熱装置
JP2019186101A (ja) 鋼板の誘導加熱装置、誘導加熱方法、合金化溶融亜鉛メッキ鋼板の製造方法および鋼板の製造方法
Soni State-of-the-Art of an Induction Furnace: Design, Construction and Control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5038962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250