JP2009249678A - Desulfurization refining method for molten - Google Patents

Desulfurization refining method for molten Download PDF

Info

Publication number
JP2009249678A
JP2009249678A JP2008098218A JP2008098218A JP2009249678A JP 2009249678 A JP2009249678 A JP 2009249678A JP 2008098218 A JP2008098218 A JP 2008098218A JP 2008098218 A JP2008098218 A JP 2008098218A JP 2009249678 A JP2009249678 A JP 2009249678A
Authority
JP
Japan
Prior art keywords
desulfurization
molten iron
slag
concentration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008098218A
Other languages
Japanese (ja)
Other versions
JP5272480B2 (en
Inventor
Yuji Ogawa
雄司 小川
Akifumi Seze
昌文 瀬々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008098218A priority Critical patent/JP5272480B2/en
Publication of JP2009249678A publication Critical patent/JP2009249678A/en
Application granted granted Critical
Publication of JP5272480B2 publication Critical patent/JP5272480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refining method for highly efficiently and stably performing desulfurization in a simpler and easier manner, without using an LF apparatus or vacuum degassing apparatus having high equipment cost and high treating cost and without adversely affecting environment. <P>SOLUTION: When molten iron is desulfurization-refined, in the first process, the molten iron is desulfurized by adding a desulfurizing agent thereto and in the second process a part or the whole of desulfurization slag generated at the first process and covering the molten iron surface is left, and oxygen gas or inert gas containing ≥81 vol% the oxygen gas is blown from above the left desulfurizationis slag, and S concentration in the molten iron after the second process is set to be lower than the S concentration after the first process, and further in the third process succeeding to the second process, the molten iron and the slag are deoxidized with a deoxidizing agent. Furthermore, as the desulfurizing agent, flux substantially containing no fluorine is used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、極低硫鋼を溶製するための溶鉄の脱硫精錬方法に関する。   The present invention relates to a method for desulfurizing and refining molten iron for melting ultra-low sulfur steel.

一般に、炭素鋼で極低硫鋼(溶鋼の硫黄濃度で[S]≦14ppm)を製造するには、まず溶銑の段階で、ソーダ灰、金属Mg系あるいは石灰系の脱硫剤を用い、強力に予備脱硫を行ない、溶銑の硫黄濃度を20〜50ppm程度に低下させる。そして、該溶銑を転炉等で脱炭精錬を行なった後、得られた溶鋼に対し更に二次精錬を行って脱硫し、最終目標の硫黄濃度にする。その二次精錬で行う脱硫には、下記のような方法が利用される。
(1)取鍋、蓋及び加熱用電極からなる所謂「LF装置」を用い、電気エネルギーによる昇熱とスラグ−メタル精錬とを行い脱硫する方法
(2)取鍋に保持した溶鋼に、ガス吹き込みノズルを介して脱硫剤を大気下で吹き込み脱硫する方法
(3)取鍋に保持した溶鋼をRH等の真空脱ガス槽内で環流させ、上方より脱硫剤を吹き付け、脱硫する方法
(4)取鍋に保持した溶鋼をVOD真空脱ガス槽内にセットし、強撹拌して脱硫する方法
In general, in order to produce extremely low sulfur steel ([S] ≦ 14ppm in the molten steel sulfur concentration) with carbon steel, first, at the hot metal stage, soda ash, metallic Mg-based or lime-based desulfurizing agent is used to Pre-desulfurization is performed to reduce the sulfur concentration of the hot metal to about 20 to 50 ppm. Then, after the hot metal is decarburized and refined in a converter or the like, the obtained molten steel is further subjected to secondary refining to desulfurize to a final target sulfur concentration. The following methods are used for desulfurization performed in the secondary refining.
(1) A method of desulfurization using a so-called “LF device” consisting of a ladle, a lid, and a heating electrode, and performing desulfurization by heating with electric energy and slag-metal refining (2) Gas blowing into the molten steel held in the ladle A method of desulfurization by blowing a desulfurizing agent in the atmosphere through a nozzle (3) A method of desulfurizing the molten steel held in the ladle in a vacuum degassing tank such as RH and spraying the desulfurizing agent from above (4) A method in which molten steel held in a pan is set in a VOD vacuum degassing tank and desulfurized by vigorous stirring.

LF装置やVOD真空脱ガス槽を用いない方法としては、予め溶銑の予備処理段階で硫黄濃度を10〜35ppmに低下させた後、プリメルトフラックスの利用と溶鋼中Al濃度の制御により、2ppm以下の硫黄濃度を安定して溶製する方法も提案されている(特許文献1)。   As a method that does not use an LF device or a VOD vacuum degassing tank, the sulfur concentration is reduced to 10 to 35 ppm in advance in the hot metal pretreatment stage, and then 2 ppm or less by using premelt flux and controlling the Al concentration in the molten steel. There has also been proposed a method for producing a stable sulfur concentration (Patent Document 1).

また、簡便に極低硫鋼を製造する方法として、フリーボード内の酸素濃度を低く制御しつつCaO系フラックスとAlを添加する方法も提案されている(特許文献2)。   In addition, as a method for easily producing ultra-low sulfur steel, a method of adding CaO-based flux and Al while controlling the oxygen concentration in the free board low has been proposed (Patent Document 2).

また、特許文献3には、平衡酸素分圧を0.2〜0.8気圧に制御したガスをスラグに吹き付けることで、溶鉄からスラグへの脱硫に併せてスラグからの気化脱硫を進行させる方法が提案されている。   Patent Document 3 discloses a method in which vaporized desulfurization from slag proceeds in conjunction with desulfurization from molten iron to slag by blowing a gas whose equilibrium oxygen partial pressure is controlled to 0.2 to 0.8 atm to slag. Has been proposed.

なお、極低硫鋼を製造する場合には、スラグの脱硫能を高めるために、蛍石などのフッ素を含む脱硫剤を使用するのが一般的となっている。   When producing ultra-low sulfur steel, it is common to use a desulfurization agent containing fluorine such as fluorite in order to enhance the desulfurization ability of slag.

特開平9−217110号公報JP-A-9-217110 特開2004−107716号公報JP 2004-107716 A 特開平1−165709号公報JP-A-1-165709

LF装置を用いる方法は、電力エネルギーで精錬用フラックスを溶かし、溶鋼浴面を覆い、保温に有効な技術である。また、溶融し難い精錬用フラックスでも利用でき、スラグの硫黄保持能力(サルファイドキャパシティ)を高めることができるので、脱硫反応効率が高いという利点がある。しかしながら、LF装置を用いる場合は、多大な電力エネルギーを使うために、製造コストが高くなるばかりでなく、溶製時間が長く、生産性も低いという問題点があった。   The method using the LF apparatus is a technique effective for heat insulation by melting the refining flux with electric power energy and covering the molten steel bath surface. In addition, it can be used even in refining fluxes that are difficult to melt, and the sulfur retention capacity (sulfide capacity) of slag can be increased, which has the advantage of high desulfurization reaction efficiency. However, when the LF apparatus is used, there is a problem in that not only the manufacturing cost increases because of the use of a large amount of electric energy, but also the melting time is long and the productivity is low.

また、VOD真空脱ガス槽を用いる方法は、撹拌力が大きいので、脱硫反応効率は大きいが、溶製時間が長く、処理コストが高いという問題があった。また、溶鋼の強撹拌により、取鍋の内張り耐火物の溶損が著しく大きくなるという問題も生じていた。   In addition, the method using a VOD vacuum degassing tank has a problem that the desulfurization reaction efficiency is large because the stirring force is large, but the melting time is long and the processing cost is high. Moreover, the problem that the melting loss of the refractory lining the ladle becomes remarkably large due to the strong stirring of the molten steel has occurred.

特許文献1に記載の方法では、溶銑予備処理と二次精錬での二段精錬が必須となるため、溶銑予備処理に要する時間と費用が莫大になる。また、目標達成が不十分の時には、RH真空脱ガス槽を用いたさらなる脱硫処理、つまり二次精錬だけで2段階の脱硫処理が必要とされるという課題があった。   In the method described in Patent Document 1, since two-stage refining in hot metal pretreatment and secondary refining is essential, the time and cost required for hot metal pretreatment are enormous. Further, when the achievement of the target is insufficient, there is a problem that further desulfurization treatment using the RH vacuum degassing tank, that is, two-stage desulfurization treatment is required only by secondary refining.

また、特許文献2に記載の方法では、硫黄濃度5ppm以下の極低硫鋼の溶製は不可能であり、またAlを使用するため、材質上Al濃度規制がある鋼種やアルミナ系介在物の存在が許されない鋼種には適用できないという課題もあった。   In addition, in the method described in Patent Document 2, it is impossible to melt extremely low-sulfur steel with a sulfur concentration of 5 ppm or less, and since Al is used, the steel type and alumina inclusions that have Al concentration restrictions on the material are used. There was also a problem that it could not be applied to steel types that were not allowed to exist.

特許文献3に記載の方法では、脱硫と同時に脱珪や脱りん精錬も行うため、脱硫能力に限界があり、硫黄濃度30ppm未満の低硫鋼には適用できないという課題があった。   In the method described in Patent Document 3, since desiliconization and dephosphorization are performed simultaneously with desulfurization, there is a limit in desulfurization capability, and there is a problem that it cannot be applied to low-sulfur steel with a sulfur concentration of less than 30 ppm.

さらに、極低硫鋼製造時に一般的に使用されるフッ素を含有するフラックスで脱硫処理を行うと、処理後のスラグにもフッ素が残留する。そのため、スラグ中のフッ素が環境に及ぼす影響を考慮し、鋼の精錬においてもフッ素源の使用を抑えることが要請されている。   Furthermore, when the desulfurization process is performed with a flux containing fluorine that is generally used when manufacturing ultra-low sulfur steel, fluorine remains in the slag after the process. Therefore, in consideration of the influence of fluorine in the slag on the environment, it is required to suppress the use of a fluorine source in steel refining.

本発明は、設備費や処理コストの高いLF装置や真空脱ガス装置を使うことなく、また環境に悪影響を与えることなく、より簡便に、高効率でかつ安定して脱硫処理する精錬方法を提供することを課題とする。   The present invention provides a refining method for performing a desulfurization process more simply, efficiently and stably without using an LF apparatus or a vacuum degassing apparatus with high equipment costs and processing costs and without adversely affecting the environment. The task is to do.

かかる課題を解決するため、本発明の要旨とするところは、以下の通りである。
(1)溶鉄を脱硫精錬するに際し、第一工程として脱硫剤を添加して脱硫を施し、第二工程として溶鉄表面を覆った第一工程の脱硫スラグの一部あるいは全部を残し、該スラグ上部から酸素ガスまたは酸素ガスを81体積%以上含むガスを吹き付けて、第二工程後の溶鉄中S濃度を第一工程後のS濃度よりも低くすることを特徴とする溶鉄の脱硫精錬方法。
(2)脱炭精錬後の溶鋼に対して脱硫精錬を行い、前記した第一工程ならびに第二工程を実施した後、第三工程として脱酸剤により溶鉄とスラグを脱酸することを特徴とする上記(1)記載の溶鉄の脱硫精錬方法。
(3)脱硫剤として実質的にフッ素を含まないフラックスを使用することを特徴とする上記(1)または(2)記載の溶鉄の脱硫精錬方法。
(4)上記(1)〜(3)のいずれかに記載の溶鉄の脱硫精練方法で発生したスラグを、前記脱硫剤として用いることを特徴とする上記(1)〜(3)のいずれかに記載の溶鉄の脱硫精練方法。
In order to solve this problem, the gist of the present invention is as follows.
(1) When desulfurizing and refining molten iron, desulfurization is performed by adding a desulfurizing agent as the first step, leaving a part or all of the desulfurization slag of the first step covering the surface of the molten iron as the second step, A method for desulfurizing and refining molten iron, characterized in that oxygen gas or a gas containing 81% by volume or more of oxygen gas is sprayed to make the S concentration in molten iron after the second step lower than the S concentration after the first step.
(2) The desulfurization refining is performed on the molten steel after decarburization refining, and after performing the first step and the second step, the molten iron and slag are deoxidized by a deoxidizer as a third step. The method for desulfurizing and refining molten iron according to (1) above.
(3) The method for desulfurizing and refining molten iron according to (1) or (2) above, wherein a flux containing substantially no fluorine is used as a desulfurizing agent.
(4) The slag generated by the method for desulfurizing and smelting molten iron according to any one of (1) to (3) is used as the desulfurizing agent. The method for desulfurizing and smelting molten iron as described.

本発明により、設備費や処理コストの高いLF装置や真空脱ガス装置を使うことなく、また環境に悪影響を与えることなく、より簡便に、かつ高効率で、安定した極低硫鋼を製造することが可能となった。   According to the present invention, a stable ultra-low-sulfur steel is manufactured more easily, efficiently, and stably without using an LF apparatus or a vacuum degassing apparatus with high equipment costs and processing costs, and without adversely affecting the environment. It became possible.

通常の脱硫処理においては、CaO源を添加し、下記(A)式で脱硫反応を進行させる。
CaO+→CaS+ (A)
フラックスとの反応性を向上させるために、またスラグの脱硫能を高めるために、アルミナ源やフッ素源をCaOに混合したり、鉄中の酸素活量を下げるために金属Al等を添加して脱酸したり、雰囲気を減圧化、不活性ガス化したり、という工夫がなされている。溶銑段階では金属Mgを添加して脱酸しつつMgSの形で脱硫する場合もあるが、MgSは不安定であり、最終的にCaSの形でスラグ中に固定される。
In a normal desulfurization treatment, a CaO source is added, and the desulfurization reaction proceeds according to the following formula (A).
CaO + S → CaS + O (A)
In order to improve the reactivity with the flux and to improve the desulfurization ability of the slag, an alumina source or a fluorine source is mixed with CaO, or metal Al or the like is added to lower the oxygen activity in iron. Ingenuity has been made such as deoxidation, decompression of the atmosphere, and inert gas. In the hot metal stage, Mg may be desulfurized in the form of MgS while adding metal Mg, but MgS is unstable and is finally fixed in the slag in the form of CaS.

いずれにしても、平衡硫黄濃度はスラグの硫黄保持能力(サルファイドキャパシティ)と鉄中の酸素活量に依存し、フラックス(スラグ)のみでの脱硫能力には限界があった。   In any case, the equilibrium sulfur concentration depends on the sulfur retention capacity (sulfide capacity) of slag and the oxygen activity in iron, and the desulfurization capacity with flux (slag) alone is limited.

これに対し、本発明者らは、種々の脱硫実験を行う中で、脱硫処理後の硫黄を含むスラグに高酸素濃度のガスを吹き付けると下記(B)式で示される反応により極めて高い気化脱硫能力を有することを知見した。
CaS+O2→CaO+SO2↑ (B)
本発明は、その酸素によるスラグからの気化脱硫反応を最も効率的に活用したものである。
On the other hand, the present inventors conducted various desulfurization experiments, and when high oxygen concentration gas was sprayed on slag containing sulfur after desulfurization treatment, extremely high vaporization desulfurization was achieved by the reaction represented by the following formula (B). It was found to have the ability.
CaS + O 2 → CaO + SO 2 ↑ (B)
The present invention makes the most efficient use of the vaporization desulfurization reaction from slag by oxygen.

以下、本発明の詳細と好ましい実施形態について説明する。   Hereinafter, details and preferred embodiments of the present invention will be described.

本発明では、脱硫処理を施していない、またはある程度事前脱硫処理を施した溶銑や溶鋼を精錬容器に装入する。精錬容器は、トーピードカーでも転炉でも取鍋でも良いが、本発明は転炉のように大きなフリーボードを必須としないことから、トーピードカーや取鍋で実施できる点が特徴である。更に、取鍋は、浸漬方式の円筒状の蓋(浸漬管)を溶湯表面に浸漬させ、浸漬管内部の溶湯表面を脱硫に有利なアルゴンや窒素といった不活性ガス雰囲気にし易い利点がある。取鍋内の溶湯表面全体を不活性ガス雰囲気とすることも可能である。   In the present invention, hot metal or molten steel that has not undergone desulfurization treatment or has undergone some degree of preliminary desulfurization treatment is charged into a refining vessel. The smelting vessel may be a torpedo car, a converter, or a ladle. However, the present invention does not require a large free board as in the converter, and is characterized in that it can be implemented with a torpedo car or a ladle. Furthermore, the ladle has an advantage that a cylindrical lid (immersion pipe) of an immersion method is immersed in the molten metal surface, and the molten metal surface inside the immersion pipe is easily made into an inert gas atmosphere such as argon or nitrogen that is advantageous for desulfurization. It is also possible to make the entire molten metal surface in the ladle an inert gas atmosphere.

上記溶銑や溶鋼を精錬容器に装入した後、処理段階(溶銑もしくは溶鋼)や鋼種に応じて適宜選択した生石灰、生石灰とアルミナ源の混合物、生石灰と金属Mgの混合物、生石灰と蛍石の混合物等の脱硫剤を添加し、底吹きガスによる攪拌や機械式攪拌により脱硫剤と溶鉄を混合しつつ第一工程である脱硫処理を施す。なお第一工程の脱硫は、上記の通り脱硫処理によりSがCaSとして溶鉄上のスラグに含まれるものであれば特に脱硫方法や形態は問わない。   After charging the above hot metal or molten steel into the refining vessel, quick lime, a mixture of quick lime and alumina source, a mixture of quick lime and metal Mg, a mixture of quick lime and metal Mg, a mixture of quick lime and fluorite A desulfurization treatment as the first step is performed while mixing the desulfurization agent and the molten iron by bottom blowing gas or mechanical stirring. The desulfurization in the first step is not particularly limited as long as S is contained in the slag on the molten iron as CaS by the desulfurization treatment as described above.

次に、第二工程として、精錬容器上に設置したランスより高酸素濃度のガスをスラグ上に吹き付ける。溶鉄中の硫黄は鉄との親和力が強いため、酸素ガスを吹き付けても気化脱硫が進行しないが、スラグ中の硫黄は上記(B)式の反応により迅速に気化する。本発明者らの実験から、酸素濃度が81体積%以上のガスを用いることで大幅に気化脱硫速度が向上することを知見した。この気化脱硫反応により、溶鉄中のS濃度は第一工程後よりも第二工程後で更に低減する。第二工程後の溶鉄中S濃度を第一工程後のS濃度の50%以下とすることが、本発明の効果が大きく発揮される好適な条件である。   Next, as a second step, a gas having a higher oxygen concentration is blown onto the slag than the lance installed on the refining vessel. Since sulfur in molten iron has a strong affinity with iron, vapor desulfurization does not proceed even when oxygen gas is blown, but sulfur in slag is rapidly vaporized by the reaction of the above formula (B). From the experiments by the present inventors, it has been found that the vaporization desulfurization rate is significantly improved by using a gas having an oxygen concentration of 81% by volume or more. By this vaporization desulfurization reaction, the S concentration in the molten iron is further reduced after the second step than after the first step. Setting the S concentration in the molten iron after the second step to 50% or less of the S concentration after the first step is a suitable condition for greatly exerting the effect of the present invention.

上記第二工程において、高酸素濃度のガスをスラグ上に吹き付けることが重要である。スラグで覆われていない溶鉄表面が露出している場合、この露出している溶鉄に高酸素濃度のガスを吹き付けると、溶鉄が酸化され、生成した酸化鉄がスラグ中に移行してスラグ/メタル界面の酸素ポテンシャルを増加させ、メタルからスラグへの還元脱硫の進行が妨げられることとなる。ガスがスラグを突き破ってスラグ下の溶鉄に直接接触する場合も同様である。溶鉄攪拌にアルゴンガス吹き込みを用いる場合には、吹き込んだアルゴンガスが浮上する際に、溶湯表面にスラグで被覆されていない溶鉄露出面が形成されることがある。高酸素濃度のガス吹き付けに際しては、ガスを溶鉄露出面に吹き付けないことが重要である。また、高酸素濃度ガスの噴射圧力が高すぎると、ガスがスラグを突き抜けることとなるので、ガスの噴射圧力が高すぎないように配慮することが必要である。ガス吹き付け時の溶湯表面の状況を確認しながらガス圧力を調整することにより、ガスをスラグの上に吹き付けることが可能である。   In the second step, it is important to blow a gas having a high oxygen concentration on the slag. When the surface of the molten iron that is not covered with slag is exposed, when a gas with a high oxygen concentration is blown onto the exposed molten iron, the molten iron is oxidized, and the generated iron oxide moves into the slag and slag / metal. This increases the oxygen potential at the interface and prevents the progress of reductive desulfurization from metal to slag. The same applies when the gas breaks through the slag and directly contacts the molten iron under the slag. When argon gas blowing is used for stirring molten iron, when the blown argon gas rises, a molten iron exposed surface not covered with slag may be formed on the surface of the molten metal. When spraying a gas with a high oxygen concentration, it is important not to spray the gas onto the exposed surface of the molten iron. Further, if the injection pressure of the high oxygen concentration gas is too high, the gas will penetrate through the slag, so it is necessary to consider that the gas injection pressure is not too high. By adjusting the gas pressure while confirming the condition of the molten metal surface at the time of gas spraying, it is possible to spray gas on the slag.

また、第二工程処理は、溶鉄中のS量(質量%)が処理前S量(質量%)の20〜70%に低減した後に実施することが望ましい。この理由は以下の2点である。1点目は、溶鉄中のS量が処理前S量の70%超、すなわち脱硫率が30%未満の段階では、未だスラグ中のS濃度が低いために気化脱硫率が低く、十分な気化脱硫効果が得られない、ということである。2点目は、溶鉄中のS量が処理前S量の20%未満、すなわち脱硫率が80%超の段階まで第一工程を続けると、脱硫の進行が緩慢もしくは停滞しているために、処理時間がかかり過ぎる、ということである。   Moreover, it is desirable to implement a 2nd process process, after the S amount (mass%) in molten iron reduces to 20 to 70% of S amount (mass%) before a process. There are two reasons for this. The first point is that when the amount of S in molten iron exceeds 70% of the amount of S before treatment, that is, when the desulfurization rate is less than 30%, the vaporization desulfurization rate is low because the S concentration in the slag is still low, and sufficient vaporization is achieved. This means that the desulfurization effect cannot be obtained. The second point is that when the first step is continued until the S amount in the molten iron is less than 20% of the pre-treatment S amount, that is, the desulfurization rate exceeds 80%, the progress of desulfurization is slow or stagnant. It takes too much processing time.

第二工程において、処理する溶鉄が溶銑を含む高炭素溶鉄の場合(溶鉄のC濃度が2.0質量%以上飽和濃度以下を指す)、酸素濃度が高いガスをスラグに吹き付けても、炭素濃度が高いために溶鉄−スラグ界面の酸素活量は低く維持され、スラグからの気化により硫黄が抜けた分、溶鉄からスラグへの脱硫は更に進行し、極低硫域まで硫黄濃度が低下する。スラグへ吹き付けるガスも、溶銑を脱硫処理する場合は純酸素ガスが最良の実施の形態である。   In the second step, when the molten iron to be treated is high-carbon molten iron containing molten iron (the C concentration of molten iron indicates 2.0 mass% or more and a saturated concentration or less), even if a gas having a high oxygen concentration is blown onto the slag, the carbon concentration Therefore, the oxygen activity at the interface between the molten iron and the slag is kept low, and the desulfurization from the molten iron to the slag further proceeds by the amount of sulfur released by vaporization from the slag, and the sulfur concentration is lowered to the extremely low sulfur region. The gas blown onto the slag is also the best embodiment when pure iron gas is desulfurized.

一方、処理する溶鉄が溶鋼を含む低炭素溶鉄の場合(溶鉄のC濃度が2.0質量%未満を指す)、酸素濃度が高いガスを吹き付けると酸素がスラグ内を透過し、溶鉄−スラグ界面の酸素活量が増加する。この場合、第二工程では、スラグからの気化脱硫は進行するが、溶鉄からスラグへの更なる脱硫が停滞し、場合によってはスラグから溶鉄への復硫も一部進行する。この場合は、第三工程として、高酸素濃度のガスのスラグへの吹き付けを止め、脱酸剤を添加して溶鉄とスラグの酸素活量を低下するのが望ましい実施の形態である。酸素活量の低下により、再びスラグの脱硫能が復帰し、第二工程でのスラグからの気化脱硫により系内の総硫黄量が低下するために、第一工程終了後よりも更に溶鉄中の硫黄濃度は低下する。ここで、溶鉄中S(質量%)が0.0030質量%(30ppm)以下を製造する場合に復硫が認められたことから、Sが30ppm以下を製造する場合に第三工程を施すことが好適である。   On the other hand, when the molten iron to be processed is low-carbon molten iron containing molten steel (the C concentration of molten iron indicates less than 2.0% by mass), oxygen is permeated through the slag when a gas having a high oxygen concentration is blown, and the molten iron-slag interface Increased oxygen activity. In this case, vapor desulfurization from slag proceeds in the second step, but further desulfurization from molten iron to slag stagnate, and in some cases, part of sulfurization from slag to molten iron also proceeds. In this case, as a third step, it is desirable to stop blowing high oxygen concentration gas to the slag and add a deoxidizer to lower the oxygen activity of the molten iron and slag. Due to the decrease in the oxygen activity, the desulfurization ability of the slag is restored, and the total sulfur amount in the system decreases due to the vaporization desulfurization from the slag in the second step. The sulfur concentration decreases. Here, when S (mass%) in molten iron produces 0.0030 mass% (30 ppm) or less, since the resulfurization was recognized, when S produces 30 ppm or less, the third step may be performed. Is preferred.

ここで脱酸剤としては、通常は強脱酸元素であるAlを使用するのが硫黄濃度低減の点では望ましいが、材質上Al濃度制約がある鋼種やアルミナ系介在物の存在に規制がある鋼種に関しては、SiやMn、Ti、Zr、Ca等を適宜選択可能である。また、この場合、第二工程で吹き付ける酸素濃度が低い方が、気化脱硫速度はやや低下するものの、第三工程での脱酸剤原単位の削減の観点からは、気化脱硫速度が大幅に低下しない81体積%以上の酸素濃度まで、吹き付けガスを不活性ガスで希釈する方が望ましい実施の形態である。   Here, it is desirable to use Al, which is a strong deoxidizing element, as a deoxidizing agent in terms of reducing the sulfur concentration, but there are restrictions on the presence of steel types and alumina inclusions that have Al concentration restrictions on the material. As for the steel type, Si, Mn, Ti, Zr, Ca and the like can be appropriately selected. In this case, the lower the oxygen concentration sprayed in the second step, the vaporization desulfurization rate is slightly reduced, but the vaporization desulfurization rate is significantly reduced from the viewpoint of reducing the deoxidizer basic unit in the third step. It is a preferred embodiment to dilute the blowing gas with an inert gas to an oxygen concentration of 81% by volume or higher.

なお、第二工程での酸素ガスを希釈するガスは不活性ガスとする。不活性ガスは、溶銑を処理する場合には、後の脱炭精錬工程で脱窒が進行するため、安価な窒素ガスが望ましいが、溶鋼を処理する場合には吸窒を避けるためアルゴンガスが望ましい。   Note that the gas for diluting the oxygen gas in the second step is an inert gas. The inert gas is preferably a cheap nitrogen gas because denitrification proceeds in the subsequent decarburization and refining process when treating the hot metal, but when treating the molten steel, the argon gas is used to avoid nitrogen absorption. desirable.

本発明ではまた、フッ素を実質的に添加しなくても十分に高い脱硫能が得られることを特徴としている。実質的に添加しないこととは、脱硫精錬後のスラグからフッ素(F)の溶出が顕著には認められないことを指すもので、本発明者らの知見では精錬後のスラグ組成においてFが1質量%以下となる場合を指す。Fが0.5質量%以下であれば更に好ましい。   The present invention is also characterized in that a sufficiently high desulfurization ability can be obtained without substantially adding fluorine. The fact that it is not substantially added means that the elution of fluorine (F) is not recognized remarkably from the slag after desulfurization refining. According to the knowledge of the present inventors, F is 1 in the slag composition after refining. The case where it becomes below mass%. More preferably, F is 0.5% by mass or less.

さらに、本発明においては、大部分の硫黄は気化してスラグから抜けるため、脱硫精錬後のスラグは、次の脱硫精錬処理の脱硫剤として再利用することも可能となる。再利用が可能となることで、新しい脱硫剤を使用する量や、脱硫精練スラグの排出量を大幅に低減することができ、脱硫処理コストや脱硫精練スラグの処理コスト低減に顕著な効果が発揮できる。   Furthermore, in the present invention, most of the sulfur is vaporized and escapes from the slag, so that the slag after desulfurization refining can be reused as a desulfurization agent for the next desulfurization refining treatment. By reusing it, the amount of new desulfurizing agent used and the amount of desulfurized slag slag discharged can be greatly reduced, and it has a significant effect on reducing the desulfurization treatment cost and desulfurization slag treatment cost. it can.

(実施例1)
高炉から出銑した溶銑を溶銑鍋(350トン)に装入し、機械攪拌であるKR装置を用いて脱硫精錬処理を行った。脱硫精錬前の溶銑中S濃度は、0.020〜0.024質量%であった。第一工程において、脱硫精錬剤としては、粒径1mm以下の生石灰粉を溶銑1トン当り5kg使用した。生石灰粉の上方添加後7〜15分間のインペラーによる機械攪拌を行った。その後、インペラーを引き上げ、第二工程として、酸素ガス吹き付け用のランスを挿入して、スラグ上面に酸素濃度の異なる酸素、窒素混合ガスを30Nm3/時の供給速度で5分間吹き付けた。第二工程において、溶銑鍋底部に設置したポーラスプラグより100Nlのアルゴンガス攪拌を行った。アルゴンガスが溶湯表面に浮上する部分にはスラグで覆われない溶銑露出面が形成されるが、ガス吹き付けランスからの吹き付けガスがこの溶銑露出面に接触しないよう、吹き付け方向に配慮した。
Example 1
The hot metal discharged from the blast furnace was charged into a hot metal ladle (350 tons) and subjected to desulfurization and refining treatment using a KR apparatus that was mechanical stirring. The S concentration in the hot metal before desulfurization refining was 0.020 to 0.024 mass%. In the first step, as the desulfurization refining agent, 5 kg of quick lime powder having a particle size of 1 mm or less was used per 1 ton of hot metal. Mechanical stirring with an impeller for 7 to 15 minutes was performed after the addition of quicklime powder. Thereafter, the impeller was pulled up, and as a second step, a lance for blowing oxygen gas was inserted, and oxygen and nitrogen mixed gases having different oxygen concentrations were blown onto the upper surface of the slag for 5 minutes at a supply rate of 30 Nm 3 / hour. In the second step, 100 Nl of argon gas was stirred from a porous plug installed at the bottom of the hot metal pan. Although the molten metal exposed surface that is not covered with slag is formed at the portion where the argon gas floats on the molten metal surface, the blowing direction was considered so that the blowing gas from the gas spray lance does not contact the molten metal exposed surface.

各実施例の結果を、脱硫処理条件とともに表1に示す。なお、表1に示す各平均値は各条件での10〜20chの脱硫処理での値を平均したものである。いずれも本発明例である実施例では安定して処理後のS濃度0.003質量%未満となっており、処理後のスラグ中S濃度も再利用が可能な低濃度となっていることが確認された。   The results of each example are shown in Table 1 together with the desulfurization treatment conditions. In addition, each average value shown in Table 1 averages the value in 10-20ch desulfurization process in each condition. In each of the examples of the present invention, the S concentration after the treatment is stably less than 0.003 mass%, and the S concentration in the slag after the treatment is also a low concentration that can be reused. confirmed.

一方、比較例No.7、8は吹き付けガス中の酸素濃度が低すぎたため、No.9は第二工程のガス吹き付けを行わなかったため、処理後S濃度が十分に低減しなかった。   On the other hand, Comparative Example No. In Nos. 7 and 8, the oxygen concentration in the blowing gas was too low. No. 9 did not perform gas spraying in the second step, so the S concentration after treatment was not sufficiently reduced.

Figure 2009249678
Figure 2009249678

(実施例2)
転炉から出鋼した溶鋼を溶鋼鍋(350トン)に装入し、浸漬管を有するCAS装置を用いて脱硫精錬処理を行った。CAS装置とは、溶鋼鍋内の溶鋼上部から円筒形状の浸漬管を挿入し、浸漬管を溶鋼表面に浸漬し、取鍋底からアルゴンガスを吹き込み、アルゴンガスが円筒状の浸漬管内部に浮上することで浸漬管内部をアルゴンガス雰囲気とした上で、浸漬管内部の溶湯に合金添加等の二次精錬を行う装置である。脱硫精錬前の溶鋼中S濃度は、0.005〜0.020質量%であった。第一工程において、脱硫精錬剤としては、粒径1mm以下の生石灰粉とアルミナ粉を質量比6:4で混合したものを溶鋼1トン当り5kg使用した浸漬管内の雰囲気をアルゴンガスで置換した後、精錬剤を上方から浸漬管内部の溶湯上に添加し、溶鋼鍋底部に設置したポーラスプラグより100Nl/分のアルゴンガスで7〜15分間攪拌した。その後、第二工程として、酸素ガス吹き付け用のランスを挿入して、浸漬管内部のスラグ上面に酸素濃度の異なる酸素、アルゴン混合ガスを15Nm3/時の供給速度で5分間吹き付けた。第二工程においてもアルゴンガス底吹きを継続した。浸漬管内部のアルゴンガス浮上部分には溶鋼が露出するので、吹き付けガスが露出した溶鋼に接触しないように配慮してガスを吹き付けた。その結果、吹き付けたガスはスラグ表面にのみ接触した。一部の水準では、ガス吹き付け終了後、金属Alを添加して脱酸を行い、100Nl/分の底吹きアルゴンガスによる3分間の攪拌を行った。
(Example 2)
The molten steel discharged from the converter was charged into a molten steel pan (350 tons), and desulfurization refining treatment was performed using a CAS apparatus having a dip tube. The CAS device is a cylindrical dip tube inserted from the top of the molten steel in the molten steel pan, the dip tube is immersed in the molten steel surface, argon gas is blown from the bottom of the ladle, and the argon gas floats inside the cylindrical dip tube. This is an apparatus for performing secondary refining such as addition of an alloy to the molten metal inside the dip tube after setting the inside of the dip tube to an argon gas atmosphere. The S concentration in the molten steel before desulfurization refining was 0.005 to 0.020 mass%. In the first step, as the desulfurization refining agent, a mixture of quick lime powder having a particle size of 1 mm or less and alumina powder in a mass ratio of 6: 4 was used at 5 kg per ton of molten steel . After substituting the atmosphere in the dip tube with argon gas, a refining agent was added onto the molten metal inside the dip tube from above, and stirred for 7 to 15 minutes with argon gas at 100 Nl / min from a porous plug installed at the bottom of the molten steel pan. Thereafter, as a second step, an oxygen gas spraying lance was inserted, and oxygen and argon mixed gases having different oxygen concentrations were sprayed onto the upper surface of the slag inside the dip tube at a supply rate of 15 Nm 3 / hour for 5 minutes. Also in the second step, argon gas bottom blowing was continued. Since the molten steel was exposed at the floating part of the argon gas inside the dip tube, the gas was sprayed in consideration of the spray gas not contacting the exposed molten steel. As a result, the sprayed gas contacted only the slag surface. At some levels, after the gas was blown, metal Al was added for deoxidation, and stirring was performed with 100 Nl / min bottom blown argon gas for 3 minutes.

各実施例の結果を、脱硫処理条件とともに表2に示す。なお、表2に示す各平均値は各条件での10〜20chの脱硫処理での値を平均したものである。いずれも本発明例である実施例では安定して処理後のS濃度0.003質量%未満となっており、高酸素濃度ガスの吹き付け後に脱酸を行った水準では5ppm以下の極低硫鋼が製造可能なことが確認された。   The results of each example are shown in Table 2 together with the desulfurization treatment conditions. In addition, each average value shown in Table 2 averages the value in the desulfurization process of 10-20ch in each condition. In all of the examples which are examples of the present invention, the S concentration after the treatment is stably less than 0.003% by mass, and at a level where deoxidation is performed after the high oxygen concentration gas is sprayed, an extremely low sulfur steel of 5 ppm or less It was confirmed that can be manufactured.

一方、比較例No.11、12は吹き付けガス中の酸素濃度が低すぎたため、No.13、14は第二工程のガス吹き付けを行わなかったため、処理後S濃度が十分に低減しなかった。   On the other hand, Comparative Example No. In Nos. 11 and 12, the oxygen concentration in the blowing gas was too low. Since 13 and 14 did not perform gas spraying of the second step, the S concentration after the treatment was not sufficiently reduced.

Figure 2009249678
Figure 2009249678

Claims (4)

溶鉄を脱硫精錬するに際し、第一工程として脱硫剤を添加して脱硫を施し、第二工程として溶鉄表面を覆った第一工程の脱硫スラグの一部あるいは全部を残し、該スラグ上部から酸素ガスまたは酸素ガスを81体積%以上含むガスを吹き付けて、第二工程後の溶鉄中S濃度を第一工程後のS濃度よりも低くすることを特徴とする溶鉄の脱硫精錬方法。   When the molten iron is desulfurized and refined, a desulfurizing agent is added as a first step to perform desulfurization, and as a second step, part or all of the desulfurized slag of the first step covering the surface of the molten iron is left, and oxygen gas is supplied from the upper part of the slag Or the gas containing 81 volume% or more of oxygen gas is sprayed, S concentration in the molten iron after a 2nd process is made lower than the S concentration after a 1st process, The desulfurization refining method of the molten iron characterized by the above-mentioned. 脱炭精錬後の溶鋼に対して脱硫精錬を行い、前記した第一工程ならびに第二工程を実施した後、第三工程として脱酸剤により溶鉄とスラグを脱酸することを特徴とする請求項1記載の溶鉄の脱硫精錬方法。   The desulfurization refining is performed on the molten steel after decarburization refining, and after performing the first step and the second step, the molten iron and slag are deoxidized by a deoxidizing agent as a third step. The method for desulfurizing and refining molten iron according to 1. 脱硫剤として実質的にフッ素を含まないフラックスを使用することを特徴とする請求項1または2記載の溶鉄の脱硫精錬方法。   The method for desulfurizing and refining molten iron according to claim 1 or 2, wherein a flux containing substantially no fluorine is used as the desulfurizing agent. 請求項1〜3のいずれかに記載の溶鉄の脱硫精練方法で発生したスラグを、前記脱硫剤として用いることを特徴とする請求項1〜3のいずれかに記載の溶鉄の脱硫精練方法。   The method for desulfurizing and purifying molten iron according to any one of claims 1 to 3, wherein slag generated by the method for desulfurizing and refining molten iron according to any one of claims 1 to 3 is used as the desulfurizing agent.
JP2008098218A 2008-04-04 2008-04-04 Method for desulfurizing and refining molten iron Expired - Fee Related JP5272480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098218A JP5272480B2 (en) 2008-04-04 2008-04-04 Method for desulfurizing and refining molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098218A JP5272480B2 (en) 2008-04-04 2008-04-04 Method for desulfurizing and refining molten iron

Publications (2)

Publication Number Publication Date
JP2009249678A true JP2009249678A (en) 2009-10-29
JP5272480B2 JP5272480B2 (en) 2013-08-28

Family

ID=41310650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098218A Expired - Fee Related JP5272480B2 (en) 2008-04-04 2008-04-04 Method for desulfurizing and refining molten iron

Country Status (1)

Country Link
JP (1) JP5272480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016718A1 (en) * 2014-07-31 2016-02-04 Sabic Global Technologies B.V. Methods and compositions for deoxidized steel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151716A (en) * 1974-05-29 1975-12-05
JPS5329216A (en) * 1976-08-31 1978-03-18 Ibiden Co Ltd Desulfurizing method for molten iron
JPS5452611A (en) * 1977-10-05 1979-04-25 Nippon Steel Corp Hot iron desulfurization method including regeneration of desulfurizing agent by gasification desulfurization
JPS5562112A (en) * 1978-11-02 1980-05-10 Nippon Steel Corp Dephosphorizing, desulfurizing treatment method of molten pig iron
JPH01165710A (en) * 1987-12-23 1989-06-29 Nippon Steel Corp Method for desulfurizing molten iron
JPH01165709A (en) * 1987-12-23 1989-06-29 Nippon Steel Corp Method for refining molten iron
JPH0710616A (en) * 1993-06-29 1995-01-13 Toyota Motor Corp Treatment of desulfurization slag
JPH0987721A (en) * 1995-09-29 1997-03-31 Kawasaki Steel Corp Method for desulfurizing chromium-containing molten steel in decarburize-refining
JPH11293327A (en) * 1998-04-14 1999-10-26 Nippon Steel Corp Steelmaking with dc electric furnace
JP2001073021A (en) * 1999-08-31 2001-03-21 Nisshin Steel Co Ltd Flux for refining metal and production thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151716A (en) * 1974-05-29 1975-12-05
JPS5329216A (en) * 1976-08-31 1978-03-18 Ibiden Co Ltd Desulfurizing method for molten iron
JPS5452611A (en) * 1977-10-05 1979-04-25 Nippon Steel Corp Hot iron desulfurization method including regeneration of desulfurizing agent by gasification desulfurization
JPS5562112A (en) * 1978-11-02 1980-05-10 Nippon Steel Corp Dephosphorizing, desulfurizing treatment method of molten pig iron
JPH01165710A (en) * 1987-12-23 1989-06-29 Nippon Steel Corp Method for desulfurizing molten iron
JPH01165709A (en) * 1987-12-23 1989-06-29 Nippon Steel Corp Method for refining molten iron
JPH0710616A (en) * 1993-06-29 1995-01-13 Toyota Motor Corp Treatment of desulfurization slag
JPH0987721A (en) * 1995-09-29 1997-03-31 Kawasaki Steel Corp Method for desulfurizing chromium-containing molten steel in decarburize-refining
JPH11293327A (en) * 1998-04-14 1999-10-26 Nippon Steel Corp Steelmaking with dc electric furnace
JP2001073021A (en) * 1999-08-31 2001-03-21 Nisshin Steel Co Ltd Flux for refining metal and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016718A1 (en) * 2014-07-31 2016-02-04 Sabic Global Technologies B.V. Methods and compositions for deoxidized steel

Also Published As

Publication number Publication date
JP5272480B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
JP2008063647A (en) Method for desulfurizing molten steel
JP5272479B2 (en) Method for desulfurizing and refining molten iron
JP6645374B2 (en) Melting method of ultra low sulfur low nitrogen steel
JP5458706B2 (en) Method for desulfurizing and refining molten iron
JP5200324B2 (en) Desulfurization method for molten steel
JP5338124B2 (en) Method for desulfurizing and refining molten iron
JP5200380B2 (en) Desulfurization method for molten steel
JP5272480B2 (en) Method for desulfurizing and refining molten iron
JP2020180341A (en) Melting method of ultra-low nitrogen steel
JP2000073116A (en) Production of high clean extra-low sulfur steel
WO2007116939A1 (en) Method of smelting highly clean steel with extremely low sulfur content
JP5493878B2 (en) Method for desulfurizing and refining molten iron
JP4534734B2 (en) Melting method of low carbon high manganese steel
JP4984928B2 (en) Hot metal desulfurization method
JP2005344129A (en) Method for refining molten steel
JP6273947B2 (en) Desulfurization treatment method for molten steel
EP4353842A1 (en) Molten steel denitrification method and steel production method
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP2008260997A (en) Desulfurization method of molten steel
JP3577989B2 (en) High-speed desulfurization of molten steel
CN117529566A (en) Method for denitriding molten steel, method for simultaneously denitriding and desulfurizing molten steel, and method for producing steel
JP2005200762A (en) Method for desulfurizing molten pig iron
CN117441032A (en) Secondary refining method of molten steel and manufacturing method of steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R151 Written notification of patent or utility model registration

Ref document number: 5272480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees