JPH01165709A - Method for refining molten iron - Google Patents

Method for refining molten iron

Info

Publication number
JPH01165709A
JPH01165709A JP32386087A JP32386087A JPH01165709A JP H01165709 A JPH01165709 A JP H01165709A JP 32386087 A JP32386087 A JP 32386087A JP 32386087 A JP32386087 A JP 32386087A JP H01165709 A JPH01165709 A JP H01165709A
Authority
JP
Japan
Prior art keywords
slag
gas
refining
hot metal
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32386087A
Other languages
Japanese (ja)
Inventor
Susumu Mukawa
進 務川
Yoshimasa Mizukami
水上 義正
Isao Kobayashi
功 小林
Kaoru Ichikawa
馨 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32386087A priority Critical patent/JPH01165709A/en
Publication of JPH01165709A publication Critical patent/JPH01165709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To enable refining in single furnace under good efficiency by adding refining agent into molten iron, blowing gas adjusting equilibrium oxygen partial pressure on slag surface, desulfurizing and successively, executing desiliconizing and dephosphorizing treatments without slag off. CONSTITUTION:Refining agent of lime, etc., and slagging promoting agent fluorite, etc., are added on the molten metal in the converter, etc., and oxidizing gas controlling the equilibrium oxygen partial pressure to 0.2-0.8atm. is blown on the slag surface. Gasified desulfurizing reaction between gas and slag is promoted and sulfur is removed from the slag and successively, the desiliconization and dephosphorization are executed without slag off. Then, at the time of gradually increasing oxygen potential in the blowing gas, the desulfurizing reaction from the molten iron into the slag is mainly developed at the initial stage of the refining and the desulfurizing reaction from the slag into the gas is mainly developed after middle stage and as the whole, the desiliconizing and dephosphorizing reactions are promoted at the same time of desulfurizing reaction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、溶銑かも鋼を製造するにあたり、効率良く、
かつ、経済的に精錬を行う方法に関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention is useful for efficiently producing hot metal or steel.
It also relates to an economical method of refining.

従来の技術 従来溶銑より鋼を製造するにあたり、純酸素上底吹き転
炉の例にみるように、脱珪、脱りん、脱炭は、鉄鉱石等
の固体酸化物、または、酸素ガスにより酸化、除去する
方法が採られて来た。更に、最近、鋼材特性要求レベル
の厳格化に伴い、脱珪した後、スラグを除去し、脱りん
を低温の溶銑で行い、転炉において脱炭のみを行う分割
精錬法が開発されてきた(例えば、特開昭57−188
810号公報)、これは、溶銑段階で、珪素、りん、硫
黄を低減することにより、スラグ−溶銑間のりん分配比
を高く保つことができ、かつ転炉製鋼においては、生石
灰等の精錬剤使用量を低減でき、結果として、生成する
スラグ総量が低減出来ること、また、少ないスラグ量の
下に転炉製鋼が行われるため転炉の生産性が向上し、温
度が確保できる等の利点があるためである。
Conventional technology Conventionally, when producing steel from hot metal, desiliconization, dephosphorization, and decarburization are performed using solid oxides such as iron ore or oxidation with oxygen gas, as seen in the example of a pure oxygen top-bottom blowing converter. , methods have been adopted to remove it. Furthermore, in recent years, with the stricter requirements for steel properties, a split refining method has been developed in which after desiliconization, slag is removed, dephosphorization is performed using low-temperature hot metal, and only decarburization is performed in a converter ( For example, JP-A-57-188
No. 810), by reducing silicon, phosphorus, and sulfur at the hot metal stage, the phosphorus distribution ratio between slag and hot metal can be maintained high, and in converter steelmaking, refining agents such as quicklime can be used. The amount of slag used can be reduced, and as a result, the total amount of slag generated can be reduced, and since converter steelmaking is performed with a small amount of slag, the productivity of the converter improves and the temperature can be maintained. This is because there is.

発明が解決しようとする周間点 しかし、脱りん後のスラグは排滓する必要があり、スラ
グ中への鉄ロス、熱ロスの問題がある。
However, the slag after dephosphorization must be slaged off, and there is a problem of iron loss and heat loss in the slag.

また、脱珪、脱りん、脱炭を行うための設備、脱珪後、
および、脱9ん後に排滓するための設備がそれぞれ必要
になり、設備が過大なものになるという問題がある。ま
た、精錬が長時間に及ぶため、熱ロスが大さという問題
があった。
In addition, we also provide equipment for desiliconization, dephosphorization, and decarburization, and after desiliconization,
Additionally, equipment for discharging the sludge after de-9ing is required, resulting in a problem that the equipment becomes oversized. Additionally, since refining takes a long time, there is a problem of large heat loss.

また、一般に、脱珪、脱りん、脱炭反応を効率良く行う
場合には、酸化精錬法が採られ、生石灰8、等の精声剤
を、酸素ガス、または鉄鉱石等の固体酸素源とともに添
加して、りんを酸化除去し、CaOによってスラグ中に
固定する方法が採られている。
In addition, generally, when desiliconization, dephosphorization, and decarburization reactions are to be carried out efficiently, an oxidation refining method is adopted, in which a spirit agent such as quicklime 8 is used together with oxygen gas or a solid oxygen source such as iron ore. A method of adding CaO to oxidize and remove phosphorus and fixing it in the slag with CaO has been adopted.

一方、脱硫反応は還元雰囲気において進み易いことから
、生石灰を用いた脱りんの際の同時脱硫反応は、余り期
待できず、特に低硫黄濃度の溶銑を得るためには、脱り
んスラグを排滓し、新たに、生石灰、カルシウムカーバ
イト、蛍石等からなる脱硫剤を添加する方法もみられる
(例えば、特開昭53−70020号公報)。
On the other hand, since the desulfurization reaction tends to proceed in a reducing atmosphere, simultaneous desulfurization reaction during dephosphorization using quicklime is not very promising. However, there is also a new method of adding a desulfurizing agent made of quicklime, calcium carbide, fluorite, etc. (for example, JP-A-53-70020).

しかし、この方法においては、更に、溶銑温度の低下、
フラックス原単位の増加によるコスト増があり、また、
脱硫設備が必要になる等の問題があった。また、脱りん
スラグを排滓しない場合には、ソーダ灰を添加する方法
が開発されている。
However, in this method, the temperature of the hot metal is further reduced,
There is an increase in costs due to an increase in flux intensity, and
There were problems such as the need for desulfurization equipment. Furthermore, when the dephosphorization slag is not discharged, a method of adding soda ash has been developed.

しかし、この方法においても、高価な精錬フラックスを
用いるためコスト上の問題があり、また、耐火物の溶損
が大きく、さらに精錬コストを高める結果となる。
However, even in this method, there is a cost problem since expensive refining flux is used, and the refractory material suffers from large amounts of erosion, which further increases the refining cost.

問題点を解決するための手段 本発明者らは、これらの点に鑑み、精錬コストの大幅な
削減を目的に、単一炉内における同時脱珪、脱りん、脱
炭方法を発明した。
Means for Solving the Problems In view of these points, the present inventors invented a method for simultaneous desiliconization, dephosphorization, and decarburization in a single furnace, with the aim of significantly reducing refining costs.

その要旨とするところは、生石灰等の精錬剤および、蛍
石等の滓化促進剤を適性量添加したのち、酸素ポテンシ
ャルを適性にコントロールした酢化性ガスを吹きつける
ことにより、スラグからの硫黄除去を行いつつ、さらに
、脱珪、脱りんを行い、低珪素濃度、低りん濃度、低硫
黄濃度の溶銑を溶製する方法である。吹きつけガスの酸
素ポテンシャルをコントロールするためには、酸素等の
酸化性ガスを例えば、窒素等のガスにより希釈しても良
いし、COとC02の混合ガスを用いても良いし、雰囲
気を減圧下においても良い。
The gist of this is that after adding appropriate amounts of refining agents such as quicklime and slag accelerators such as fluorite, sulfur is removed from the slag by blowing acetylating gas with an appropriately controlled oxygen potential. This is a method of removing silicon and further performing desilicification and dephosphorization to produce hot metal with a low silicon concentration, low phosphorus concentration, and low sulfur concentration. In order to control the oxygen potential of the blown gas, an oxidizing gas such as oxygen may be diluted with a gas such as nitrogen, a mixed gas of CO and CO2 may be used, or the atmosphere may be reduced in pressure. You can also place it below.

一般に、CaOを用いたスラグ−溶銑量反応における脱
硫反応は、以下に示す反応によって進行する。
Generally, the desulfurization reaction in the slag-hot metal reaction using CaO proceeds by the following reaction.

C+ ((:aO) +S +(CaS)  +ll:
0  −611 (1)ここに、q :溶銑中の炭素 (Cab)  ニスラグ中の酸化カルシウムCO:ガス
中の一酸化炭素 ミニ溶銑中の硫黄 (CaS)  ニスラグ中の硫化カルシウムを表す。
C+ ((:aO) +S +(CaS) +ll:
0 -611 (1) Here, q: Carbon in hot metal (Cab) Calcium oxide in varnish slag CO: Carbon monoxide in gas Sulfur in mini hot metal (CaS) Represents calcium sulfide in varnish slag.

(1)式の反応は、スラグ−溶銑間の酸素ポテンシャル
P(12が低い程進行し易い。
The reaction of formula (1) progresses more easily as the oxygen potential P (12) between the slag and hot metal is lower.

しかし、一般に、炭素飽和溶鉄の酸化脱珪、脱りん反応
を起こす場合には、スラグ−溶銑界面の酸素ポテンシャ
ルPψは1G−12〜1 g−14気圧程度であり、こ
の場合には、(1)式の反応は余り進行せず、低珪素濃
度、低りん濃度で、かつ、低硫黄濃度の溶銑を得る場合
においては、脱珪・脱りんと同時に脱硫を行う場合には
、フラックスコストの高いソーダ灰を使用する、または
、脱珪・脱りんと脱硫精錬を更に分割する方法がとられ
ていた。
However, in general, when oxidative desiliconization and dephosphorization reactions occur in carbon-saturated molten iron, the oxygen potential Pψ at the slag-hot metal interface is approximately 1 G-12 to 1 g-14 atm. ) reaction does not proceed much, and when obtaining hot metal with low silicon concentration, low phosphorus concentration, and low sulfur concentration, when desulfurization is performed at the same time as desiliconization and dephosphorization, soda, which has a high flux cost, is used. The methods used were to use ash or to further separate desiliconization/dephosphorization and desulfurization refining.

ここで、本発明者らは、ガス−スラグ間における気化反
応に注目し、電気炉を用いた小規模実験を行ったところ
、吹きつけガス中の酸素ポテンシャルを適性化すること
により、(2)式で示される硫黄の気化反応が起こるこ
とを見出した。
Here, the present inventors focused on the vaporization reaction between gas and slag, and conducted a small-scale experiment using an electric furnace. By optimizing the oxygen potential in the blown gas, (2) It was discovered that the sulfur vaporization reaction shown by the formula occurs.

((:aS)  +%(x+1)02−+(CaO) 
 +SOX  拳 拳 ・ (1)ここに、(Gas)
  ニスラグ中の硫化カルシウム(Cab)  ニスラ
グ中の酸化カルシウム02:酸素ガス SOX:ガス中の硫黄酸化物 を表す。
((:aS) +%(x+1)02-+(CaO)
+SOX Fist Fist ・ (1) Here, (Gas)
Calcium sulfide (Cab) in Nisslag Calcium oxide in Nisslag 02: Oxygen gas SOX: Represents sulfur oxide in gas.

(2)式の反応を促進するには、ガス−スラグ間の酸素
ポテンシャルが高い程進行するため、吹きつけガス中の
酸素ポテンシャルを高めるのが良いが、一方、(1)式
の反応は進行しないため、まず、精錬フラックスを添加
して、溶銑中のミがスラグに移行する(1)式の反応を
行わせ、引き続き、(2)式の反応を促進するために酸
化性ガスを吹きつけることを考えた。パ その実験結果の例を第1図に示す0本実験においては、
スラグ量は、単位溶銑量あたり、10kg/l−pであ
った。また、溶銑量は、400gであった。フラックス
の初期組成は1表1に示すものを使用した。温度は、1
400℃であった。この場合、始めは、吹きつけガスを
Arとし、吹きつけガス中の酸素濃度を漸次増加させる
ことにより、復硫を起こすことなく脱珪および、脱りん
を進行させることが出来ることが確認された。
In order to promote the reaction in equation (2), the higher the oxygen potential between the gas and slag, the faster the reaction progresses, so it is better to increase the oxygen potential in the blown gas, but on the other hand, the reaction in equation (1) progresses. To avoid this, first, refining flux is added to cause the reaction of formula (1) in which the metal in the hot metal transfers to slag, and then oxidizing gas is blown to promote the reaction of formula (2). I thought about that. In this experiment, an example of the experimental results is shown in Figure 1.
The amount of slag was 10 kg/l-p per unit amount of hot metal. Moreover, the amount of hot metal was 400g. The initial composition of the flux shown in Table 1 was used. The temperature is 1
The temperature was 400°C. In this case, it was confirmed that by initially using Ar as the blown gas and gradually increasing the oxygen concentration in the blown gas, desiliconization and dephosphorization could proceed without causing resulfurization. .

表1  実験条件 、 本坊においては、スラグ−溶銑界面における酸素ポ
テンシャルに比べ、ガス−スラグ界面における酸素ポテ
ンシャルが高く保たれ、スラグ−溶銑界面においては、
(1)式の反応が進行し、一方ガスースラグ間界面にお
いては、(2)式の反応が進行するため、脱珪・脱りん
と同時に脱硫も進行させることができる。また、吹きつ
けガスの酸素ポテンシャルを漸次増加することにより、
精錬初期には(i)溶銑からスラグへの脱硫反応が主体
に起こり中期以降は(Illスラグからガス中への脱硫
反応が主体に起こり、全体として、脱珪・脱りんと同時
に脱硫反応も促進できる。
Table 1 Experimental conditions At Honbo, the oxygen potential at the gas-slag interface was kept higher than that at the slag-hot metal interface, and at the slag-hot metal interface,
The reaction of formula (1) progresses, while the reaction of formula (2) progresses at the gas-slag interface, so that desulfurization can proceed simultaneously with desiliconization and dephosphorization. In addition, by gradually increasing the oxygen potential of the blown gas,
In the early stage of refining, (i) the desulfurization reaction from hot metal to slag mainly occurs, and from the middle stage onward (Ill) the desulfurization reaction from slag to gas mainly occurs, and as a whole, the desulfurization reaction can be promoted at the same time as desiliconization and dephosphorization. .

本発明を実施するに当たっては、従来設備の大幅な改造
、および、新たに大きな設備を設置することなく、例え
ば、転炉、あるいは、溶銑鍋等を利用し、単にガス吹き
つけ設備を設置、あるいは改造すれば良い、従って、安
価かつ容易に高純度溶銑を製造出来るという利点をかあ
る。また、温度降下等、操業上好ましくない不利を伴う
ことなく高純度溶銑を溶製可能にする。
In carrying out the present invention, it is possible to simply install gas blowing equipment by using a converter, hot metal pot, etc., without significantly modifying conventional equipment or installing new large equipment. It only needs to be modified, so it has the advantage of being able to easily produce high-purity hot metal at low cost. Furthermore, it is possible to produce high-purity hot metal without undesirable operational disadvantages such as temperature drop.

また1本法は、第2図に示すように、転炉3の上吹きラ
ンス4に不活性ガスを供給するための酸素流路7に不活
性ガスの流路5、および、ガス供給源6を設置すれば実
施可能である。ここに、lは溶銑、2は精錬剤である。
Furthermore, as shown in FIG. 2, the single method includes an inert gas flow path 5 and a gas supply source 6 in the oxygen flow path 7 for supplying inert gas to the top blowing lance 4 of the converter 3. It is possible to implement it by installing . Here, l is hot metal and 2 is a refining agent.

また、第3図に示すように、溶銑鍋8を利用する場合も
、ガスを吹きつけるランス4、及び、ガス供給源6を設
置し、溶銑1に浮かべた精錬剤2の上から酸化性ガスを
吹きつけるためのランス4、および、酸素流路7に、不
活性ガスの流路5、および、不活性ガス源6を付属する
ことにより、実施可能である。
Also, as shown in FIG. 3, when using the hot metal ladle 8, a lance 4 for blowing gas and a gas supply source 6 are installed, and the oxidizing gas is poured over the refining agent 2 floating on the hot metal 1. This can be carried out by attaching an inert gas flow path 5 and an inert gas source 6 to the lance 4 for spraying and the oxygen flow path 7.

更に、第4図に示すように、トーピードカー9を利用す
ることも可能である。また、酸化性ガスは、酸素7と不
活性ガス5の混合ガスを用いてもよいし、C02とCO
ガスの混合ガスを使用しても良いし、雰囲気を減圧下に
おいても良い。
Furthermore, as shown in FIG. 4, it is also possible to use a torpedo car 9. Further, as the oxidizing gas, a mixed gas of oxygen 7 and inert gas 5 may be used, or a mixture of CO2 and CO2 may be used.
A mixture of gases may be used, or the atmosphere may be under reduced pressure.

実施例 次に、本坊を表2に実施例をあげ、従来法と比較しつつ
説明する。
EXAMPLES Next, examples of the present invention will be described in Table 2 and compared with the conventional method.

実施例1は、溶銑tsotを転炉において精錬する試験
を行った結果を示す、この場合、精錬初期に生石灰、蛍
石より成る精錬フラックスを添加した後、酸素ガスを3
0%含むガスを吹きつけ、10分経過後、ガス中の酸素
濃度を100%として、脱珪、脱りんを促進して20分
で精錬を終了した。この結果、珪素濃度0.012%、
マンガン濃度0.04%、りん濃度o、ots%、硫黄
濃度0.004%の低りん溶銑を得ることができた。
Example 1 shows the results of a test in which hot metal tsot was refined in a converter.
A gas containing 0% was blown, and after 10 minutes, the oxygen concentration in the gas was increased to 100% to promote desiliconization and dephosphorization, and the refining was completed in 20 minutes. As a result, the silicon concentration was 0.012%,
It was possible to obtain low-phosphorus hot metal with a manganese concentration of 0.04%, a phosphorus concentration of o, ots%, and a sulfur concentration of 0.004%.

実施例2は、溶銑180tを転炉において精錬する試験
を行った結果を示す、この場合、精錬初期に、精錬フラ
ックス添加後、底吹きガスによる攪拌を行い3分経過後
、引き続き酸素20%を含む酸化性ガスを吹きつけ開始
し、20分間の精錬時間の最後には、吹きつけガス中の
酸素濃度が100%となるよう、漸次吹きつけガス中の
酸素濃度を増加させた場合である。この結果、珪素濃度
0.01%、マンガン濃度0.06%、りん濃度0.0
08%、硫黄濃度0.003%の高純度溶銑が溶製でき
た。
Example 2 shows the results of a test in which 180 tons of hot metal was refined in a converter. In this case, in the early stage of refining, after adding refining flux, stirring was performed using bottom-blown gas, and after 3 minutes, 20% oxygen was added. This is a case in which the oxygen concentration in the blown gas is gradually increased so that the oxidizing gas containing the oxidizing gas is started to be blown and the oxygen concentration in the blown gas reaches 100% at the end of the 20-minute refining time. As a result, silicon concentration was 0.01%, manganese concentration was 0.06%, and phosphorus concentration was 0.0%.
High purity hot metal with a sulfur concentration of 0.08% and a sulfur concentration of 0.003% was produced.

実施例3は、溶銑180tを転炉において精錬する試験
を行った結果を示す、この場合、精錬初期に、生石灰、
蛍石からなる精錬フラックスに加え、精錬開始後10分
を経過した後、鉄マンガン鉱石5kg/l−p添加し、
脱珪、脱りん、脱硫と同時に、Mn鉱石の還元をおこな
った場合の例を示す。
Example 3 shows the results of a test in which 180 tons of hot metal was refined in a converter. In this case, in the early stage of refining, quicklime,
In addition to the refining flux made of fluorite, 5 kg/l-p of ferromanganese ore was added after 10 minutes from the start of refining.
An example will be shown in which Mn ore is reduced at the same time as desiliconization, dephosphorization, and desulfurization.

この場合にも、精錬後の珪素濃度は0.01%、マンガ
ン濃度は、0.15%、りん濃度0.010%、硫黄濃
度0.004%の高純度溶銑が溶製できた。
In this case as well, high-purity hot metal with a silicon concentration of 0.01%, a manganese concentration of 0.15%, a phosphorus concentration of 0.010%, and a sulfur concentration of 0.004% after refining was produced.

実施例4は、末法をトーピードカーにて適用した例であ
る。トーピードカー内の溶銑270tに生石灰、蛍石か
らなる精錬フラックスを添加し、上吹きランスより浴面
ヘガスを吹きつけた。始めは。
Example 4 is an example in which the final method is applied to a torpedo car. Refining flux consisting of quicklime and fluorite was added to 270 tons of hot metal in a torpedo car, and gas was blown onto the bath surface from a top blowing lance. To start with.

吹き付はガス中の酸素濃度を20%とし、5分経過後 
吹き付はガス中の酸素濃度が80%となるように、吹き
付はガス中の酸素濃度を漸次変化させた。更にガス吹き
込みランスにより、生石灰及び酸素ガスの吹き込みを行
い、脱珪、脱りん処理を行った。
Spray at 20% oxygen concentration in the gas, after 5 minutes.
During the spraying, the oxygen concentration in the gas was gradually changed so that the oxygen concentration in the gas was 80%. Furthermore, quicklime and oxygen gas were blown in using a gas blowing lance to perform desiliconization and dephosphorization treatments.

比較例1は、従来性われてきた溶銑の予備処理方法にて
精錬した例を示す、脱珪をトーピードカー内で行い、か
つ、排滓を行った後、別ステーシッンで脱りんを行なう
ため、スラグへの鉄ロス、熱ロス、処理時間が長いこと
による温度低下、耐火物の溶損があり、かつ、脱硫が余
り進行しないため、 P 、 Siは低減できても、硫
黄濃度の低い溶銑を溶製することはできず、これ以降の
溶銑脱硫、または、溶鋼段階における脱硫処理が必要で
あった。
Comparative Example 1 shows an example of refining using a conventional hot metal pretreatment method. Desiliconization is performed in a torpedo car, and after slag is removed, dephosphorization is performed in a separate station. There is iron loss, heat loss, temperature drop due to long processing time, melting of refractories, and desulfurization does not progress very much. Therefore, subsequent desulfurization of hot metal or desulfurization treatment at the molten steel stage was required.

比較例2は、溶銑160tを転炉において精錬した場合
の例を示す、この場合には、精錬初期に生石灰、蛍石か
らなる精錬フラックスを添加した後、純酸素ガスを吹き
つけ、精錬を行ったため、脱珪、脱りんは促進されたが
、精錬初期より、スラグ−溶銑界面の酸素ポテンシャル
を高める結果となるため、脱硫反応は殆ど進行しない。
Comparative Example 2 shows an example in which 160 tons of hot metal was refined in a converter. In this case, after adding a refining flux consisting of quicklime and fluorite at the initial stage of refining, pure oxygen gas was blown to perform refining. Therefore, desiliconization and dephosphorization were promoted, but since the oxygen potential at the slag-hot metal interface was increased from the early stage of refining, the desulfurization reaction hardly progressed.

比較例3は、溶銑180tを転炉において精錬した場合
の例を示す、この場合には、精錬初期に生石灰、蛍石か
らなる精錬フラックスを添加した後、酸素30%を含む
酸素と窒素の混合ガスを吹きつけた場合であり、脱珪、
脱りんが促進するが、脱硫速度が小さく、精錬時間は4
0分と長時間を要した。
Comparative Example 3 shows an example in which 180 tons of hot metal was refined in a converter. In this case, after adding refining flux consisting of quicklime and fluorite at the initial stage of refining, a mixture of oxygen and nitrogen containing 30% oxygen was added. This is the case when gas is blown, and the desiliconization and
Although dephosphorization is promoted, the desulfurization rate is low and the refining time is 4
It took a long time, 0 minutes.

(以下余白) 発明の効果 本発明によれば、効率よく精錬を行うことができる。(Margin below) Effect of the invention According to the present invention, refining can be performed efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を検証する実験結果の一例を示し、溶
銑成分の推移を示す図、第2図は、本発明を転炉を用い
た溶銑の精錬方法に適用する際の設備概要の例を示す立
面図、第3図は、本発明を溶銑鍋を用いた溶銑の精錬方
法に適用する際の設@i!1要の例を示す立面図、第4
図は1本発明をトーピードカーを用いた溶銑の精錬方法
に適用する場合の設備概要を示す立面図である。 i−・・溶銑、2・φφ精錬7ラツクス、3a・・転炉
、4・・・ガス吹きつけランス、5・・・不活性ガス、
6・・・不活性ガスホルダー、7・・11酸素ガス、8
・・・溶銑鍋、9・・・トーピードカー。
Figure 1 shows an example of experimental results for verifying the present invention, and shows the transition of hot metal components. Figure 2 shows an outline of equipment when applying the present invention to a method for refining hot metal using a converter. An elevational view showing an example, FIG. 3, shows a setup for applying the present invention to a hot metal refining method using a hot metal pot! Elevation showing an example of 1.
The figure is an elevational view showing an outline of equipment when the present invention is applied to a method for refining hot metal using a torpedo car. i--Hot metal, 2-φφ refining 7 racks, 3a-Converter, 4-Gas blowing lance, 5-Inert gas,
6...Inert gas holder, 7...11 Oxygen gas, 8
...hot metal pot, 9...torpedo car.

Claims (1)

【特許請求の範囲】[Claims] 溶銑を精錬するにあたり、精錬剤を添加し、平衡酸素分
圧を0.2〜0.8気圧に制御したガスをスラグ面に吹
きつけ、ガス−スラグ間の気化脱硫反応を促進し、次い
で、排滓すること無く脱珪、脱りん処理を行うことによ
り、低硫黄濃度、低りん濃度、低珪素濃度の高純度溶銑
を得ることを特徴とする溶銑の精錬方法。
When refining hot metal, a refining agent is added and a gas whose equilibrium oxygen partial pressure is controlled at 0.2 to 0.8 atmospheres is blown onto the slag surface to promote the vaporization desulfurization reaction between the gas and the slag. A hot metal refining method characterized by obtaining high-purity hot metal with low sulfur concentration, low phosphorus concentration, and low silicon concentration by performing desiliconization and dephosphorization treatment without discharging slag.
JP32386087A 1987-12-23 1987-12-23 Method for refining molten iron Pending JPH01165709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32386087A JPH01165709A (en) 1987-12-23 1987-12-23 Method for refining molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32386087A JPH01165709A (en) 1987-12-23 1987-12-23 Method for refining molten iron

Publications (1)

Publication Number Publication Date
JPH01165709A true JPH01165709A (en) 1989-06-29

Family

ID=18159395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32386087A Pending JPH01165709A (en) 1987-12-23 1987-12-23 Method for refining molten iron

Country Status (1)

Country Link
JP (1) JPH01165709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249678A (en) * 2008-04-04 2009-10-29 Nippon Steel Corp Desulfurization refining method for molten
JP2011017047A (en) * 2009-07-08 2011-01-27 Nippon Steel Corp Method for desulfurization refining molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249678A (en) * 2008-04-04 2009-10-29 Nippon Steel Corp Desulfurization refining method for molten
JP2011017047A (en) * 2009-07-08 2011-01-27 Nippon Steel Corp Method for desulfurization refining molten iron

Similar Documents

Publication Publication Date Title
CA1230740A (en) Process of makingsteel in converter using a great amount of iron-bearing cold material
JPH01165709A (en) Method for refining molten iron
JP2912963B2 (en) Slag reforming method as desulfurization pretreatment
JPH01165710A (en) Method for desulfurizing molten iron
JP4759832B2 (en) Hot phosphorus dephosphorization method
JP3496545B2 (en) Hot metal desulfurization method
JP7235070B2 (en) Method for secondary refining of molten steel and method for manufacturing steel
JPH0860221A (en) Converter steelmaking method
JPH0512405B2 (en)
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JPH08225824A (en) Desulfurization of molten steel
JPH0941015A (en) Pretreatment of molten iron
JP2022189514A (en) Molten steel denitrification method and steel production method
JPS61201712A (en) Pretreatment of molten pig iron
JPH03274216A (en) Dephosphorize pre-treating method for molten iron
JPS63157809A (en) Blowing method for converter
JPH111714A (en) Steelmaking method
JPH07109507A (en) Method for pretreating molten iron
JPH10102120A (en) Steelmaking method
JPH055115A (en) Method for pre-treating molten iron
JPH07188722A (en) Treatment of simultaneous dephosphorization at cold iron source melting time
JPH03120307A (en) Steelmaking method
JPS6056201B2 (en) Hot metal processing method
JPS62109908A (en) Desiliconizing, dephosphorizing and desulfurizing method for molten iron
JPS6140005B2 (en)