JP2009244240A - Method for manufacturing sample for cross-sectional observation by scanning electron microscope - Google Patents

Method for manufacturing sample for cross-sectional observation by scanning electron microscope Download PDF

Info

Publication number
JP2009244240A
JP2009244240A JP2008094511A JP2008094511A JP2009244240A JP 2009244240 A JP2009244240 A JP 2009244240A JP 2008094511 A JP2008094511 A JP 2008094511A JP 2008094511 A JP2008094511 A JP 2008094511A JP 2009244240 A JP2009244240 A JP 2009244240A
Authority
JP
Japan
Prior art keywords
sample
cross
section
ion beam
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008094511A
Other languages
Japanese (ja)
Other versions
JP5046192B2 (en
Inventor
Shinko Yamakawa
真弘 山川
Tokiko Kaji
登紀子 楫
Kuniyasu Kawada
国安 川田
Masashi Hanafusa
正史 花房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008094511A priority Critical patent/JP5046192B2/en
Publication of JP2009244240A publication Critical patent/JP2009244240A/en
Application granted granted Critical
Publication of JP5046192B2 publication Critical patent/JP5046192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a sample for cross-section observation by a scanning electron microscope that is appropriate to smooth cross-section formation of 10-100 μm order, does not require a skilled technique of a worker, has high processing position accuracy, and accurately forms a cross section at a desired specific position. <P>SOLUTION: In this method for manufacturing the sample for cross-section observation by the scanning electron microscope, a rough cross section passing a part to be observed of the sample is formed, a transparent substrate with a thickness of a processing depth or smaller by an ion beam is fixed to the sample so as to cover the part to be observed, then the sample is installed in a sample holder of a device for irradiating the sample with the ion beam, the part to be observed and the ion beam irradiation position of the device are aligned, then the rough cross section existing on the part to be observed is processed by the ion beam irradiation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、走査電子顕微鏡による断面観察のためのサンプルの作製方法であって、大面積で平滑な断面を、優れた加工位置精度で形成することができるサンプル作製方法に関する。   The present invention relates to a method for preparing a sample for observing a cross section with a scanning electron microscope, which can form a smooth cross section with a large area with excellent processing position accuracy.

試料の内部構造の観察、例えば、試料の表面近傍の異常や異物等の検出のために、当該試料の断面を走査電子顕微鏡により観察する方法が行なわれている。断面を形成する方法としては、集束イオンビーム加工観察装置(FIB)を用いる方法、樹脂等に試料を埋め込んで研磨して試料の断面を形成する埋込み研磨の方法、クロスセクションポリッシャー(CP装置)を用いる方法、等が知られている。   In order to observe the internal structure of a sample, for example, to detect abnormalities or foreign matters in the vicinity of the surface of the sample, a method of observing a cross section of the sample with a scanning electron microscope is performed. As a method of forming a cross section, a method using a focused ion beam processing observation apparatus (FIB), a method of embedded polishing in which a sample is embedded in a resin or the like and polished to form a cross section of the sample, a cross section polisher (CP apparatus) is used. The method to be used is known.

FIBを用いる方法は、特開2003−4667号公報(特許文献1)、特許3263920号公報(特許文献2)、特開平4−345740号公報(特許文献3)等に開示されている。特許文献1に記載の方法は、FIBを用いる走査透過電子顕微鏡(STEM)用薄膜試料の作製方法であって、試料を切断して断面を形成すると共に、当該断面に接近した試料の内側を、FIBを用いて穴を開けて薄膜を作製し、穴を開けた面を観察面とする方法である。   Methods using FIB are disclosed in Japanese Patent Application Laid-Open No. 2003-4667 (Patent Document 1), Japanese Patent No. 3263920 (Patent Document 2), Japanese Patent Application Laid-Open No. 4-345740 (Patent Document 3), and the like. The method described in Patent Document 1 is a method for producing a thin film sample for a scanning transmission electron microscope (STEM) using FIB. The sample is cut to form a cross section, and the inside of the sample close to the cross section is formed. In this method, a hole is formed using FIB to form a thin film, and the surface on which the hole is formed is used as an observation surface.

特許文献2に記載の方法は、FIBを用いることを特徴とする透過電子顕微鏡(TEM)用薄片試料の作製方法である。又、特許文献3に記載の方法は、FIBを用いて、試料表面を走査して凹部を形成し、その凹部の側面に観察面を形成する方法であり、当該観察面を優れた加工位置精度で形成するため、正確に位置決めした遮蔽板を設置した状態で走査しながら、試料を加工することを特徴とする方法である。
特開2003−4667号公報 特許3263920号公報 特開平4−345740号公報
The method described in Patent Document 2 is a method for producing a thin-film sample for a transmission electron microscope (TEM), which uses FIB. Further, the method described in Patent Document 3 is a method of forming a concave portion by scanning the sample surface using FIB and forming an observation surface on the side surface of the concave portion. In this method, the sample is processed while scanning in a state where the shield plate positioned accurately is installed.
JP 2003-4667 A Japanese Patent No. 3263920 JP-A-4-345740

上記の方法の中で、FIBを用いる方法は、加工位置精度が優れ断面加工を所望の位置で行うことができるが、加工に使用するビーム径がナノメートルオーダーであるため、大面積加工には適さず100μmを超える大きさの加工には時間がかかりすぎるとの問題がある。例えば、特許文献2の実施例に記載の観察幅は5μmであり、この方法は、広い領域(50〜100μmオーダー以上)の観察には適さないことが示されている。   Among the above methods, the method using FIB has excellent processing position accuracy and can perform cross-sectional processing at a desired position. However, since the beam diameter used for processing is on the nanometer order, There is a problem that it takes too much time to process a size exceeding 100 μm. For example, the observation width described in the example of Patent Document 2 is 5 μm, and this method is not suitable for observation of a wide area (on the order of 50 to 100 μm).

埋込み研磨の方法は、作業者のスキルの影響が大きいとの問題がある。作業者のスキルが低い場合には、ダレや傷が生じるため、特定の位置で平滑な加工面を得るためには、熟練した技術が必要である。   The embedded polishing method has a problem that the skill of the operator is greatly affected. When the operator's skill is low, sagging and scratches occur, and skilled techniques are required to obtain a smooth processed surface at a specific position.

一方、数十〜数百μmサイズ(10μm〜100μmオーダー)の加工には、CP装置が用いられる。しかし、元来CP装置は、特定位置を加工するための装置ではないため、加工位置精度が良くないとの問題がある。   On the other hand, a CP device is used for processing a size of several tens to several hundreds μm (on the order of 10 μm to 100 μm). However, since the CP device is not originally a device for processing a specific position, there is a problem that the processing position accuracy is not good.

本発明は、従来技術が有する上記の問題を解決し、10μm〜100μmオーダーの大きさの平滑な断面形成に適し、作業者の熟練の技術を必要とせず、かつ加工位置精度に優れ、所望の特定位置に正確に断面を形成できる、走査電子顕微鏡による断面観察用サンプルの作製方法を提供することをその課題とする。   The present invention solves the above-mentioned problems of the prior art, is suitable for forming a smooth cross section having a size of the order of 10 μm to 100 μm, does not require the skill of an operator, has excellent processing position accuracy, and is desired. It is an object of the present invention to provide a method for producing a sample for observing a section by a scanning electron microscope, which can accurately form a section at a specific position.

本発明者は鋭意検討の結果、走査電子顕微鏡により観察される部分、すなわち試料の被観察部に薄い透明な基板を固定すれば、当該基板上から被観察部を視認しながら位置合わせをすることができ、CP装置を用いた場合でも、加工位置を所望の位置に調整する作業が容易に行えることを見出した。そして、CP装置のようなイオンビームを試料に照射する装置を用いることにより、走査電子顕微鏡による観察のための断面を、大面積にわたり、平滑にかつ優れた加工位置精度で形成できることを見出し、本発明を完成した。   As a result of intensive studies, the present inventor can align a position while observing the observed portion from the substrate if a thin transparent substrate is fixed to the portion observed by the scanning electron microscope, that is, the observed portion of the sample. It has been found that even when a CP device is used, it is possible to easily adjust the machining position to a desired position. Then, by using a device that irradiates the sample with an ion beam such as a CP device, it was found that a cross section for observation by a scanning electron microscope can be formed smoothly over a large area with excellent processing position accuracy. Completed the invention.

本発明は、その請求項1として、測定対象物から試料を切り出し、切り出された試料に、被観察部又はその近傍を通る断面を形成するとともに、イオンビームによる加工深さ以下の厚さの透明な基板を、前記被観察部を覆うように固定した後、前記試料を、イオンビームを試料に照射する装置の試料ホルダーに設置して、前記被観察部と前記装置のイオンビーム照射位置との位置合わせを行い、その後、前記断面にイオンビームを照射して前記断面を加工することを特徴とする走査電子顕微鏡による断面観察用サンプルの作製方法、を提供する。   According to the first aspect of the present invention, a sample is cut out from an object to be measured, a cross section passing through the observed portion or the vicinity thereof is formed in the cut sample, and the transparent having a thickness equal to or less than the processing depth by the ion beam After fixing a substrate so as to cover the observed portion, the sample is placed on a sample holder of a device that irradiates the sample with an ion beam, and the observed portion and the ion beam irradiation position of the device are Provided is a method for producing a sample for observing a cross section by a scanning electron microscope, characterized by performing alignment and then processing the cross section by irradiating the cross section with an ion beam.

ここで、試料の被観察部とは、試料における、走査電子顕微鏡により観察される部分である。又、イオンビームを試料に照射する装置としては、CP装置等、数十〜数百μmサイズの加工に適するものが好ましく用いられる。本発明の方法によれば、CP装置を使用しても、加工位置精度に優れるので、この被観察部が10μm〜100μmオーダーの大きさの場合でも所望の特定位置に容易に平滑な断面を形成できる。   Here, the observed portion of the sample is a portion of the sample that is observed with a scanning electron microscope. Further, as a device for irradiating the sample with an ion beam, a device suitable for processing of several tens to several hundreds of μm size such as a CP device is preferably used. According to the method of the present invention, even if a CP apparatus is used, the processing position accuracy is excellent, so that even when the observed portion has a size of the order of 10 μm to 100 μm, a smooth cross section can be easily formed at a desired specific position. it can.

本発明の方法では、先ず、測定対象物からイオンビームを試料に照射する装置による加工が可能な大きさの試料が切り出される。この装置によるミクロンオーダーでの特定位置(被観察部)の加工を容易にするために、予め試料の被観察部(この装置による加工位置)近くで切断することが好ましい。切り出される試料の大きさは、通常、縦横がそれぞれ10mm程度以下(好ましくは、縦10mm程度以下、横8mm程度以下)であり、厚みは2mm程度以下であるが、装置により異なるので特に限定されない。測定対象物が、この装置による加工が可能な大きさより小さい場合は、切り出しが不要な場合もある。   In the method of the present invention, first, a sample having a size that can be processed by an apparatus that irradiates the sample with an ion beam is cut out from the measurement object. In order to facilitate the processing of a specific position (observed portion) on the micron order by this apparatus, it is preferable to cut in advance near the observed portion (processing position by this apparatus) of the sample. The size of the sample to be cut is usually about 10 mm or less in length and width (preferably about 10 mm or less and about 8 mm or less), and the thickness is about 2 mm or less, but is not particularly limited because it varies depending on the apparatus. If the measurement object is smaller than the size that can be processed by this apparatus, the cutting may not be necessary.

切り出し(切断)の方法、手段は、試料の材質、切断サイズ等に応じて選択すればよい。例えば、はさみ、バンドソー、剃刀、メス等が挙げられる。   A method and means for cutting (cutting) may be selected according to the material of the sample, the cutting size, and the like. For example, scissors, a band saw, a razor, a scalpel, etc. are mentioned.

好ましくは、切り出しの後、切り出しにより生じた一切断面を特定の加工位置の近くまで研磨する、面出しが行われる(研磨は、被観察部の近傍のみでもよい。)。特定の加工位置の近くまで研磨とは、この研磨により形成された断面を、さらにCP装置等のイオンビームを試料に照射する装置により加工(研磨)して、被観察部を含む加工面を容易に形成できる位置まで研磨するとの意味である。従って、前記の研磨は、研磨により形成される断面が被観察部又はその近傍を通るように行われる。   Preferably, after the cutout, the entire surface generated by the cutout is polished to the vicinity of a specific processing position (surface polishing may be performed only in the vicinity of the portion to be observed). Polishing to the vicinity of a specific processing position means that the cross section formed by this polishing is further processed (polished) by a device that irradiates the sample with an ion beam, such as a CP device, so that the processed surface including the observed portion can be easily obtained. This means that polishing is performed up to a position where it can be formed. Therefore, the polishing is performed so that a cross section formed by polishing passes through the observed portion or the vicinity thereof.

このようにして形成された断面の面精度は、#800程度の粗さでよい。従って、面出しは、平行研磨治具、平行研磨用ガラス板、#800〜2000程度の粗さのサンドペーパーを用いて行うことができる。以下、このようにして形成された断面(面出し後の断面)を、粗断面と言う。   The surface accuracy of the cross section formed in this way may be as rough as # 800. Therefore, the chamfering can be performed using a parallel polishing jig, a parallel polishing glass plate, and sandpaper having a roughness of about # 800 to 2,000. Hereinafter, the cross section formed in this way (the cross section after chamfering) is referred to as a rough cross section.

本発明の方法は、イオンビームによる加工深さ以下の厚さの薄い透明な基板を、前記被観察部を覆うように試料に、固定することを特徴とする。透明な基板が前記被観察部を覆うように固定されているので、基板上から試料の被観察部を視認することが容易であり、被観察部とイオンビームを試料に照射する装置の照射部との位置合わせのための位置調整を、当該装置のスコープ等を用い手被観察部を視認しながらすることができる。   The method of the present invention is characterized in that a thin transparent substrate having a thickness equal to or smaller than a processing depth by an ion beam is fixed to a sample so as to cover the observed portion. Since the transparent substrate is fixed so as to cover the observed portion, it is easy to visually recognize the observed portion of the sample from the substrate, and the irradiated portion of the device that irradiates the sample with the observed portion and the ion beam Can be adjusted while visually recognizing the part to be observed using the scope of the apparatus.

イオンビームを試料に照射する装置による加工は、この透明な基板上から、Ar等のイオンビームを照射する方法により行なわれるので、この基板が厚い場合は、試料の加工が困難になる。そこで、この透明な基板の厚さは、イオンビームによる加工深さ以下の厚さであるが、イオンビームを試料に照射する装置がCP装置の場合、通常、その加工深さは数百μm〜1mm程度であるので、この透明な基板の厚みは、0.5mm以下が好ましい(請求項2)。好ましくは、透明な基板の厚みは0.3mm以下であり、より好ましくは0.2mm以下である。この透明な基板の厚みをより薄くすれば、試料が加工される厚みを増すことができるので、透明な基板の機械的強度が保てる範囲で薄くすることが好ましい。   Processing by the apparatus for irradiating the sample with an ion beam is performed by a method of irradiating an ion beam of Ar or the like from this transparent substrate, so that processing of the sample becomes difficult when the substrate is thick. Therefore, the thickness of the transparent substrate is equal to or less than the processing depth by the ion beam. When the apparatus for irradiating the sample with the ion beam is a CP apparatus, the processing depth is usually several hundred μm to Since the thickness is about 1 mm, the thickness of the transparent substrate is preferably 0.5 mm or less. Preferably, the transparent substrate has a thickness of 0.3 mm or less, more preferably 0.2 mm or less. If the thickness of the transparent substrate is made thinner, the thickness at which the sample is processed can be increased. Therefore, it is preferable to reduce the thickness of the transparent substrate as long as the mechanical strength of the transparent substrate can be maintained.

透明な基板の材質としては、強度、耐薬品性、耐熱性等に優れるガラスが好ましい(請求項3)。カバーグラスとして市販されているガラス板は、厚み0.1mm強であり、しかも安価であり入手しやすいので好ましく用いることができる。   As a material for the transparent substrate, glass excellent in strength, chemical resistance, heat resistance and the like is preferable. A glass plate that is commercially available as a cover glass has a thickness of slightly over 0.1 mm, and is inexpensive and easily available, so that it can be preferably used.

透明な基板を、前記被観察部を覆うように固定する方法としては、接着剤により基板と試料を貼り合せる方法が好ましく挙げられる。接着剤は、透明性、耐熱性、試料との馴染み(親和性)、硬化速度の観点から適切なものが選択される。さらに、CP装置により加工時には、被加工部が昇温するので、接着剤の熱ダメージへの耐久性も考慮することが好ましい。   As a method of fixing the transparent substrate so as to cover the observed portion, a method of bonding the substrate and the sample with an adhesive is preferable. An appropriate adhesive is selected from the viewpoints of transparency, heat resistance, familiarity with the sample (affinity), and curing speed. Furthermore, since the temperature of the workpiece is raised during processing by the CP device, it is preferable to consider durability against thermal damage of the adhesive.

具体的には、速乾性であり、取り扱いも容易である点から、シアノアクリレート系接着剤(例えば、東亜合成社製アロンアルファ)が好適である。   Specifically, a cyanoacrylate adhesive (for example, Aron Alpha manufactured by Toa Gosei Co., Ltd.) is preferable because it is quick-drying and easy to handle.

透明な基板と試料との固定は、粗断面の形成の前に行ってもよい。この場合、面出しにおいては、透明な基板も同時に研磨される。   The transparent substrate and the sample may be fixed before the rough cross section is formed. In this case, a transparent substrate is also polished at the same time.

イオンビームを試料に照射する装置として、CP装置を用いる場合、上記のようにして作製された試料はCP装置の試料ホルダーに設置される。CP装置は、前記試料ホルダーとイオン銃を有し、イオン銃からのイオンビームを試料ホルダー上に設置された試料の加工位置(被観察部)に照射して、試料の加工(断面の研磨等)を行う。従って、試料は透明な基板が、イオン銃側となるように試料ホルダー上に設置される。   When a CP apparatus is used as an apparatus for irradiating a sample with an ion beam, the sample manufactured as described above is placed on a sample holder of the CP apparatus. The CP apparatus has the sample holder and an ion gun, and irradiates an ion beam from the ion gun to a processing position (observed part) of the sample placed on the sample holder to process the sample (cross-section polishing, etc.) )I do. Therefore, the sample is placed on the sample holder so that the transparent substrate is on the ion gun side.

試料ホルダー及び/又はイオン銃は、水平位置移動可能に設けられており、試料の所望の位置、すなわち被観察部にある試料の断面にイオンビームが照射されるように、水平位置の調整が行われる。CP装置は、前記の水平位置の調整を容易にする等のために、試料表面を視認するスコープを通常有している。このスコープにより、試料表面の被観察部を視認しながら、イオンビームによる加工が正確な位置で行えるように、位置調整がされる。   The sample holder and / or the ion gun are provided so as to be movable in the horizontal position, and the horizontal position is adjusted so that the ion beam is irradiated to the desired position of the sample, that is, the cross section of the sample in the observed portion. Is called. The CP device usually has a scope for visually recognizing the sample surface in order to facilitate the adjustment of the horizontal position. With this scope, the position is adjusted so that processing by an ion beam can be performed at an accurate position while visually recognizing the portion to be observed on the sample surface.

CP装置等のイオンビームを試料に照射する装置による加工の際には、試料の被加工部以外のイオンビーム照射による損傷を防ぐために、通常、被加工部及びその近傍以外の部分は、遮蔽板で覆われる。すなわち、本発明においては、透明な基板上に、遮蔽板が設けられる。遮蔽板としては、数時間の加工時間中の温度上昇等により損傷を受けない材料であればよく、コスト、耐久性、加工性等の点から、金属材料がよく用いられており、SUS材、表面にニッケルめっきなどを施した金属板等が用いられている。イオンビームを試料に照射する装置としては、市販されている通常のCP装置を用いることができる。イオンビームとしては、Arイオンのビーム等を挙げることができる。   In order to prevent damage caused by irradiation of the ion beam other than the processed portion of the sample during processing by the apparatus that irradiates the sample with an ion beam such as a CP device, the processed portion and the portions other than the vicinity thereof are usually shield plates. Covered with. That is, in the present invention, a shielding plate is provided on a transparent substrate. The shielding plate only needs to be a material that is not damaged by a temperature rise during a processing time of several hours. From the viewpoint of cost, durability, workability, and the like, a metal material is often used. A metal plate or the like whose surface is nickel-plated is used. As a device for irradiating the sample with an ion beam, a commercially available normal CP device can be used. Examples of the ion beam include an Ar ion beam.

請求項4に記載の発明は、前記試料の外周を、熱伝導性樹脂で覆うとともに、前記試料、前記透明な基板及び試料ホルダーが、前記熱伝導性樹脂により互いに固定されていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の走査電子顕微鏡による断面観察用サンプルの作製方法である。   The invention according to claim 4 is characterized in that the outer periphery of the sample is covered with a heat conductive resin, and the sample, the transparent substrate and the sample holder are fixed to each other by the heat conductive resin. A method for producing a cross-sectional observation sample by a scanning electron microscope according to any one of claims 1 to 3.

イオンビームを試料に照射する装置による加工時に、温度上昇等により試料の加工位置がずれる可能性があるので、この防止のために、試料端部、透明な基板及び試料ホルダーを樹脂等で固定することが好ましい。この固定により試料ホルダーへ試料をよりしっかりと取り付けできるようになる。   When processing with a device that irradiates the sample with an ion beam, the processing position of the sample may shift due to temperature rise, etc. To prevent this, the sample end, transparent substrate, and sample holder are fixed with resin or the like. It is preferable. This fixing allows the sample to be more securely attached to the sample holder.

固定に用いる樹脂としては、熱硬化性樹脂、例えば熱硬化性のペーストを使用することも可能であるが、熱伝導性樹脂を、前記試料の外周を覆うように用いることにより、熱の逃げ道を作り効率よく除熱でき、照射加工時の温度上昇による熱ダメージを低減できるので好ましい。中でも、熱伝導性樹脂が導電性の場合、サンプルを試料ホルダーに付けたままの状態でSEM観察を行うことができ、SEM観察が容易になるので、熱伝導性を有する導電性樹脂が好ましく用いられる。   As the resin used for fixing, it is possible to use a thermosetting resin, for example, a thermosetting paste, but by using a heat conductive resin so as to cover the outer periphery of the sample, a heat escape path can be obtained. It is preferable because it can efficiently remove heat and reduce thermal damage due to temperature rise during irradiation processing. In particular, when the heat conductive resin is conductive, SEM observation can be performed with the sample attached to the sample holder, and SEM observation is facilitated. Therefore, a conductive resin having thermal conductivity is preferably used. It is done.

ここで、熱伝導性を有する導電性樹脂としては、所謂導電ペーストと呼ばれるものがよく用いられる。これは、バインダー樹脂に導電性フィラーを配合したもので、導電性フィラーとして、カーボン粉末や金属フィラーが使用される。具体的には、カーボンペーストや銀ペースト等が挙げられる。又、熱伝導性樹脂も、同様に、熱伝導性のフィラーをバインダー樹脂に配合したもので、窒化アルミやベンガラ等が熱伝導性フィラーとして用いられる。本用途には、ペースト状のものが使いやすく、これを先の細い針状の治具に必要量つけて必要箇所に塗布する方法が作業しやすく好ましい。   Here, what is called a conductive paste is often used as the conductive resin having thermal conductivity. This is a mixture of a binder resin and a conductive filler, and carbon powder or a metal filler is used as the conductive filler. Specific examples include carbon paste and silver paste. Similarly, the heat conductive resin is obtained by blending a heat conductive filler with a binder resin, and aluminum nitride, bengara, or the like is used as the heat conductive filler. For this application, a paste-like material is easy to use, and a method of applying a necessary amount to a thin needle-like jig and applying it to a necessary portion is preferable because it is easy to work.

熱硬化性樹脂(熱硬化性のペースト等)を用いる場合は、硬化温度が低い樹脂の方が硬化の際の熱による試料へのダメージが小さく好ましい。従って、室温硬化品が好ましく用いられる。   In the case of using a thermosetting resin (such as a thermosetting paste), a resin having a low curing temperature is preferable because damage to the sample due to heat during curing is small. Accordingly, room temperature cured products are preferably used.

本発明の走査電子顕微鏡による断面観察用サンプルの作製方法を、CP装置を使用して試料の加工を行えば、10μm〜100μmオーダーの大きさの加工を、作業者の熟練の技術を必要とせずに、容易に作業効率良く行うことができる。例えば、10μm〜100μmオーダーの大きさの異物や異状箇所を含む断面の形成を、熟練の技術を有しない者でも容易に行うことができる。又、イオンビームを用いた加工なので、埋込み研磨等の場合に問題となるダレや傷等の発生も無く、誰でも平滑で綺麗な断面を得ることができ、作製の失敗を大きく低減することができる。   If the sample is processed using the CP apparatus in the method for producing the sample for cross-sectional observation by the scanning electron microscope of the present invention, the processing of the order of 10 μm to 100 μm can be performed without the skill of the operator. In addition, it can be performed easily and efficiently. For example, a person having no skill can easily form a cross-section including a foreign substance or an irregular portion having a size of the order of 10 μm to 100 μm. In addition, since processing is performed using an ion beam, there is no occurrence of sagging or scratches that are problematic in the case of embedding polishing, etc., and anyone can obtain a smooth and clean cross section, greatly reducing production failures. it can.

さらに、加工位置を視認しながらサンプルの位置調整をすることができ、位置合わせが容易なので、加工位置精度が優れている。特に、試料、透明な基板及び試料ホルダーを、樹脂等により互いに固定した場合は、サンプルと試料ホルダーとの固定がしっかりできるので、加工中の位置ズレを防ぐことができ、加工位置精度がより向上し、失敗を低減できる。   Furthermore, the position of the sample can be adjusted while visually recognizing the processing position, and the positioning is easy, so the processing position accuracy is excellent. In particular, when the sample, transparent substrate, and sample holder are fixed to each other with resin, the sample and sample holder can be firmly fixed, preventing misalignment during processing and improving processing position accuracy. And reduce failures.

従って、失敗が許されないような試料の断面作製に適用することもでき、又サンプル作製における歩留まり向上に直結するものであり、例えば、数十〜数百μmサイズの異物や異状箇所を観察するための平滑な断面を得るために非常に有効な方法である。   Therefore, the present invention can be applied to the cross-section preparation of a sample where failure is not allowed, and directly leads to the improvement of the yield in the preparation of the sample, for example, for observing a foreign substance or an abnormal part having a size of several tens to several hundred μm. This is a very effective method for obtaining a smooth cross section.

本発明はさらに、請求項1ないし請求項4のいずれかに記載の走査電子顕微鏡による断面観察用サンプルの作製方法により作製されたことを特徴とする走査電子顕微鏡による断面観察用サンプルを提供する(請求項5)。   The present invention further provides a sample for cross-sectional observation using a scanning electron microscope, which is produced by the method for producing a sample for cross-sectional observation using a scanning electron microscope according to any one of claims 1 to 4. Claim 5).

本発明の走査電子顕微鏡による断面観察用サンプルの作製方法によれば、断面観察用の試料に、10μm〜100μmオーダーの大きさの平滑な断面を、作業効率よく、作業者の熟練の技術を必要とせずに、かつ優れた加工位置精度で行うことができる。   According to the method for producing a sample for observing a section by a scanning electron microscope of the present invention, a smooth section having a size of the order of 10 μm to 100 μm is required for the sample for observing the section, and the skill of the operator is required. It is possible to carry out with excellent machining position accuracy.

次に、本発明を実施するための最良の形態を、図を参照しながら説明するが、本発明は、この形態のみに限定されるものではない。   Next, the best mode for carrying out the present invention will be described with reference to the drawings, but the present invention is not limited to this mode.

図1は、走査電子顕微鏡による断面観察用サンプルの一例の、CP装置による加工前の、イオンビームが照射される部分の近傍の状態を示す模式断面図である。図中の1は走査電子顕微鏡によりその断面の観察がされる試料であり、5(点線で囲まれた部分)は、CP装置によりイオンビームの照射がされる被照射部である。試料1中の被照射部5が、CP装置により加工される被観察部である。   FIG. 1 is a schematic cross-sectional view showing a state in the vicinity of a portion irradiated with an ion beam before processing by a CP apparatus, as an example of a cross-sectional observation sample using a scanning electron microscope. In the figure, reference numeral 1 denotes a sample whose cross section is observed by a scanning electron microscope, and reference numeral 5 (a portion surrounded by a dotted line) denotes an irradiated portion to which an ion beam is irradiated by a CP apparatus. The irradiated part 5 in the sample 1 is an observed part processed by the CP device.

図中の2は、透明な基板であるカバーグラスであり、3は接着剤である。この図に示されるように、試料1とカバーグラス2は、接着剤3により互いに固定されており、試料1の被観察部は、カバーグラス2により覆われている。   In the figure, 2 is a cover glass which is a transparent substrate, and 3 is an adhesive. As shown in this figure, the sample 1 and the cover glass 2 are fixed to each other with an adhesive 3, and the observed portion of the sample 1 is covered with the cover glass 2.

図中の4は、熱伝導性の高い導電性樹脂であり、この図に示されるように、試料1の端部(カバーグラスに近い部分)の外周(及び接着剤3の露出部分)は、熱伝導性の高い導電性樹脂4(導電ペースト)により覆われ、試料1とカバーグラス2は、導電性樹脂4によっても固定されている。   4 in the figure is a conductive resin having high thermal conductivity, and as shown in this figure, the outer periphery (and the exposed part of the adhesive 3) of the end part (part close to the cover glass) of the sample 1 is It is covered with a conductive resin 4 (conductive paste) having high thermal conductivity, and the sample 1 and the cover glass 2 are also fixed by the conductive resin 4.

次に、サンプルの作製方法について説明する。   Next, a method for manufacturing a sample is described.

図2は、測定対象物から、CP装置により加工される試料を切り出す様子を示す模式斜視図である。測定対象物から、10×8×2mm以下の大きさの試料(サンプル作製用試料)が切り出される様子が示されているが、切り出しの断面の中の1つ(図中の断面A)が、被観察部を通るように切り出しが行われている。   FIG. 2 is a schematic perspective view showing a state in which a sample to be processed by the CP device is cut out from the measurement object. A state in which a sample (sample for sample preparation) having a size of 10 × 8 × 2 mm or less is cut out from the measurement object is shown, but one of the cut out cross sections (cross section A in the figure) Cutout is performed so as to pass through the observed portion.

このようにして切り出された試料とカバーグラス(透明な基板)は、接着剤により貼り合わされて互いに固定され、さらに、前記のように、導電性樹脂4によっても固定される。カバーグラスは、試料の被観察部を覆うように貼り合わされるが、カバーグラスの他の部分はCP装置の試料ホルダーに貼り合わされ、試料とカバーグラスと試料ホルダーが固定される。カバーグラスと試料ホルダーの貼り合わせは、導電性樹脂4(導電ペースト)により行うことができる。   The sample and cover glass (transparent substrate) cut out in this way are bonded together by an adhesive and fixed to each other, and further fixed by the conductive resin 4 as described above. The cover glass is bonded so as to cover the observed portion of the sample, but the other part of the cover glass is bonded to the sample holder of the CP device, and the sample, the cover glass, and the sample holder are fixed. Bonding of the cover glass and the sample holder can be performed with the conductive resin 4 (conductive paste).

図3及び図4は、それぞれ、このようにして試料ホルダーに固定されたサンプル(試料とカバーグラス)をCP装置により加工する様子を示す斜視図及び断面図である。これらの図に示されるように、試料は、接着剤及び熱伝導性の高い導電性樹脂によりカバーグラスに固定され、カバーグラスの他の部分は、この熱伝導性の高い導電性樹脂により試料ホルダーに固定されている(なお、図3においては、熱伝導性の高い導電性樹脂の図示は省略されている。)。このように、試料とカバーグラスと試料ホルダーとを導電ペーストで固定することにより、加工中の位置ズレをより確実に防ぐことができるとともに、熱伝導性の高い導電ペーストにより加工中に発生した熱が放熱され、熱による試料のダメージを低減することができる。   FIG. 3 and FIG. 4 are a perspective view and a cross-sectional view, respectively, showing how the sample (sample and cover glass) fixed to the sample holder in this way is processed by the CP device. As shown in these figures, the sample is fixed to the cover glass by an adhesive and a conductive resin having high thermal conductivity, and the other part of the cover glass is fixed to the sample holder by the conductive resin having high thermal conductivity. (In FIG. 3, illustration of a conductive resin having high thermal conductivity is omitted.) In this way, fixing the sample, cover glass, and sample holder with a conductive paste can more reliably prevent misalignment during processing, and heat generated during processing by the conductive paste having high thermal conductivity. Is dissipated and damage to the sample due to heat can be reduced.

前記の切り出しにより形成された断面Aは、サンドペーパー等で研磨されて、被観察部を通る粗断面が形成される(CP加工部の面出し)が、この研磨は、試料をCP装置の試料ホルダーにセットして行うと、試料ホルダーと研磨面の平行が出しやすいので好ましい。従って、好ましくは、前記のようにして、試料とカバーグラスとCP装置の試料ホルダーが互いに固定された後、CP加工部の面出しを行う。   The cross section A formed by the above cutting is polished with sandpaper or the like to form a rough cross section that passes through the observed portion (surface processing of the CP processed portion). It is preferable to set it in a holder because the sample holder and the polished surface are easily parallel. Therefore, preferably, as described above, after the sample, the cover glass, and the sample holder of the CP apparatus are fixed to each other, the surface of the CP processed portion is chamfered.

このようにしてCP加工部の面出しが行われたサンプルは、CP装置により粗断面の被観察部が研磨(加工)されて、走査電子顕微鏡による断面観察用サンプルが作製される。   The sample on which the CP processed portion is surfaced in this way is subjected to polishing (processing) of the observed portion of the rough cross section by the CP apparatus, and a sample for cross section observation using a scanning electron microscope is produced.

図3の斜視図及び図4の断面図が示すように、試料ホルダー上に固定されたサンプルは、イオンビーム照射による損傷を防ぐために、遮蔽板で覆われている。CP装置のイオン銃からArイオンがサンプルの遮蔽板で覆われていない部分(サンプルの遮蔽板からつき出した部分)に照射され、サンプルの加工が行われる。加工の位置(照射位置)はサンプルの1断面(断面A)が通る被観察部であるが、サンプルの上部は透明な基板であるカバーグラスで覆われているので、CP装置のスコープ(図示されていない。)によりこの部分を視認しながらサンプルの水平位置の調整を行うことができ、従って優れた加工位置精度が達成される。   As shown in the perspective view of FIG. 3 and the cross-sectional view of FIG. 4, the sample fixed on the sample holder is covered with a shielding plate in order to prevent damage caused by ion beam irradiation. The portion of the CP device that is not covered with the sample shielding plate (the portion protruding from the sample shielding plate) is irradiated with Ar ions, and the sample is processed. The processing position (irradiation position) is the observed part through which one section (section A) of the sample passes, but the upper part of the sample is covered with a cover glass, which is a transparent substrate, so the scope of the CP device (not shown) The horizontal position of the sample can be adjusted while visually recognizing this portion, so that excellent machining position accuracy is achieved.

CP装置(イオンビームを試料に照射する装置)としては、汎用のCP装置を用いることができ、その条件も汎用の条件を採用することができる。Arガスとしては、グレードBの99.9995%以上のものが用いられるが、グレードSの99.9999%以上のものが推奨される。   As a CP device (device for irradiating a sample with an ion beam), a general-purpose CP device can be used, and general-purpose conditions can also be adopted. As Ar gas, a grade B of 99.9999% or more is used, but a grade S of 99.9999% or more is recommended.

図5は、上記のようにして加工されたサンプルの形状を示す模式斜視図である。図中の加工面とは、CP装置のイオンビームが照射された部分である。加工面は、図2における断面Aに形成されており、従って、被観察部に形成されている。CP装置による加工なので、数十〜数百μm程度のサイズの平滑な加工面を形成することができる。なお、図中のサンプルのaは約10mm、bは約8mm、cは約2mmである。又、この図においては、試料、それに固定されているカバーグラス等の構造は省略され、一体としてのサンプルのみ表わされている。   FIG. 5 is a schematic perspective view showing the shape of the sample processed as described above. The processed surface in the figure is a portion irradiated with the ion beam of the CP apparatus. The processed surface is formed in the cross section A in FIG. 2, and thus is formed in the observed portion. Since the processing is performed by the CP apparatus, a smooth processed surface having a size of about several tens to several hundreds of μm can be formed. In the figure, a of the sample is about 10 mm, b is about 8 mm, and c is about 2 mm. Further, in this figure, the structure of the sample and the cover glass fixed to the sample is omitted, and only the integrated sample is shown.

走査電子顕微鏡による断面観察用サンプルの一例の、CP装置による加工前の状態を示す模式断面図である。It is a schematic cross section which shows the state before a process by CP apparatus of an example of the sample for cross-section observation by a scanning electron microscope. 試料の切り出しの一例を示す模式斜視図であるIt is a model perspective view which shows an example of the cutout of a sample. CP装置による加工の様子を示す斜視図である。It is a perspective view which shows the mode of a process by CP apparatus. CP装置による加工の様子を示す断面図である。It is sectional drawing which shows the mode of a process by CP apparatus. CP装置により加工されたサンプルの形状を示す模式斜視図である。It is a model perspective view which shows the shape of the sample processed with CP apparatus.

符号の説明Explanation of symbols

1.試料
2.カバーグラス
3.接着剤
4.導電性樹脂
5.被照射部
1. Sample 2. Cover glass Adhesive 4. 4. Conductive resin Irradiated part

Claims (5)

測定対象物から試料を切り出し、切り出された試料に、被観察部又はその近傍を通る断面を形成するとともに、イオンビームによる加工深さ以下の厚さの透明な基板を、前記被観察部を覆うように固定した後、前記試料を、イオンビームを試料に照射する装置の試料ホルダーに設置して、前記被観察部と前記装置のイオンビーム照射位置との位置合わせを行い、その後、前記断面にイオンビームを照射して前記断面を加工することを特徴とする走査電子顕微鏡による断面観察用サンプルの作製方法。   A sample is cut out from the object to be measured, and a cross section passing through the observed portion or the vicinity thereof is formed in the cut sample, and a transparent substrate having a thickness equal to or smaller than the processing depth by the ion beam is covered with the observed portion. After fixing the sample, the sample is placed on a sample holder of an apparatus that irradiates the sample with an ion beam, and the portion to be observed is aligned with the ion beam irradiation position of the apparatus. A method for producing a sample for observing a section by a scanning electron microscope, wherein the section is processed by irradiating an ion beam. 前記透明な基板の厚みが、0.5mm以下であることを特徴とする請求項1に記載の走査電子顕微鏡による断面観察用サンプルの作製方法。   The method for producing a sample for cross-sectional observation with a scanning electron microscope according to claim 1, wherein the transparent substrate has a thickness of 0.5 mm or less. 前記透明な基板が、ガラスよりなることを特徴とする請求項1又は請求項2に記載の走査電子顕微鏡による断面観察用サンプルの作製方法。   The method for producing a sample for cross-sectional observation with a scanning electron microscope according to claim 1 or 2, wherein the transparent substrate is made of glass. 前記試料の外周を、熱伝導性樹脂で覆うとともに、前記試料、前記透明な基板及び試料ホルダーが、前記熱伝導性樹脂により互いに固定されていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の走査電子顕微鏡による断面観察用サンプルの作製方法。   The outer periphery of the sample is covered with a heat conductive resin, and the sample, the transparent substrate, and the sample holder are fixed to each other with the heat conductive resin. A method for producing a sample for cross-sectional observation by a scanning electron microscope according to any one of the above items. 請求項1ないし請求項4のいずれか1項に記載の走査電子顕微鏡による断面観察用サンプルの作製方法により作製されたことを特徴とする走査電子顕微鏡による断面観察用サンプル。   A sample for cross-sectional observation using a scanning electron microscope, which is produced by the method for producing a sample for cross-sectional observation using a scanning electron microscope according to any one of claims 1 to 4.
JP2008094511A 2008-04-01 2008-04-01 Method for preparing sample for cross-sectional observation by scanning electron microscope Active JP5046192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094511A JP5046192B2 (en) 2008-04-01 2008-04-01 Method for preparing sample for cross-sectional observation by scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094511A JP5046192B2 (en) 2008-04-01 2008-04-01 Method for preparing sample for cross-sectional observation by scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2009244240A true JP2009244240A (en) 2009-10-22
JP5046192B2 JP5046192B2 (en) 2012-10-10

Family

ID=41306283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094511A Active JP5046192B2 (en) 2008-04-01 2008-04-01 Method for preparing sample for cross-sectional observation by scanning electron microscope

Country Status (1)

Country Link
JP (1) JP5046192B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160552A (en) * 2012-02-02 2013-08-19 Sumitomo Metal Mining Co Ltd Method for preparing sample for electron microscopic observation, the sample for electron microscopic observation, and method for observing cross-section of sample
JP2013233641A (en) * 2012-04-10 2013-11-21 Sumitomo Electric Ind Ltd Polishing jig
CN105225908A (en) * 2014-06-18 2016-01-06 北京北方微电子基地设备工艺研究中心有限责任公司 Pallet component and etching apparatus
CN111721792A (en) * 2020-06-24 2020-09-29 国联汽车动力电池研究院有限责任公司 Preparation method of film material cross-section scanning electron microscope sample
CN112858362A (en) * 2021-01-08 2021-05-28 重庆大学 Preparation method of micron-sized spherical particle section for electron microscope observation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248368A (en) * 2006-03-17 2007-09-27 Jeol Ltd Section sample preparation method using ion beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248368A (en) * 2006-03-17 2007-09-27 Jeol Ltd Section sample preparation method using ion beam

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160552A (en) * 2012-02-02 2013-08-19 Sumitomo Metal Mining Co Ltd Method for preparing sample for electron microscopic observation, the sample for electron microscopic observation, and method for observing cross-section of sample
JP2013233641A (en) * 2012-04-10 2013-11-21 Sumitomo Electric Ind Ltd Polishing jig
CN105225908A (en) * 2014-06-18 2016-01-06 北京北方微电子基地设备工艺研究中心有限责任公司 Pallet component and etching apparatus
CN105225908B (en) * 2014-06-18 2017-07-04 北京北方微电子基地设备工艺研究中心有限责任公司 Pallet component and etching apparatus
CN111721792A (en) * 2020-06-24 2020-09-29 国联汽车动力电池研究院有限责任公司 Preparation method of film material cross-section scanning electron microscope sample
CN111721792B (en) * 2020-06-24 2023-05-30 国联汽车动力电池研究院有限责任公司 Preparation method of thin film material section scanning electron microscope sample
CN112858362A (en) * 2021-01-08 2021-05-28 重庆大学 Preparation method of micron-sized spherical particle section for electron microscope observation
CN112858362B (en) * 2021-01-08 2022-05-27 重庆大学 Preparation method of micron-sized spherical particle section for electron microscope observation

Also Published As

Publication number Publication date
JP5046192B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
TWI757562B (en) Metal plate for manufacturing vapor deposition hood, metal plate manufacturing method, vapor deposition hood, and manufacturing method of vapor deposition hood, and vapor deposition hood device provided with vapor deposition hood
JP5046192B2 (en) Method for preparing sample for cross-sectional observation by scanning electron microscope
JP2008047489A (en) Focused ion beam device, sample cross section manufacturing method, and flake sample manufacturing method
CN109540947B (en) Method for preparing nose tip sample for FIB three-dimensional reconstruction
JP2016100119A (en) Sample holder, and method for observation by transmission type electron microscope
TW201115752A (en) Grooving tool for thin film solar cell
JP2010230518A (en) Thin sample preparing method
JP2008256560A (en) Thin film sample and method of manufacturing the same
US9570269B2 (en) Method for manufacturing a TEM-lamella and assembly having a TEM-lamella protective structure
CN113552144B (en) Method for preparing transmission electron microscope sheet sample of pressurized water reactor spent fuel rod cladding tube
CN107807025A (en) A kind of method for prefabricating of metal material cycles left life-span specimen surface crackle
JP4483957B2 (en) Sample preparation device
JP6498950B2 (en) Surface delamination using a programmed manipulator
KR20150034985A (en) Method for analyzing oxide in outermost surface layer part of steel material
KR20080102877A (en) Method for manufacturing a test sample for transmission electron microscope
JP2018049692A (en) Profile analytical method of specimen, specimen support
JP5893547B2 (en) Wire tool inspection method
JP2009156599A (en) Sample preparing method and sample preparation apparatus
JP2023091949A (en) Pretreatment method for observing rubber metal composite body
JP2012057945A (en) Method for creating sample for electron microscope observation
JP2019066394A (en) Ion beam processing jig and cross section processing method
JP5962248B2 (en) Method for analyzing foreign matter adhering to silicon wafer, and foreign matter transfer device used in this method
JP2019045327A (en) Method for making packaging resin sample for electron microscopy and mold used therefor
KR20180054287A (en) method for manufacturing specimen for internal structure analysis of film comprising inorganic layers
JP2022100068A (en) Pretreatment method for observing rubber metal composite body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120708

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250