JP2009241395A - セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置 - Google Patents

セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置 Download PDF

Info

Publication number
JP2009241395A
JP2009241395A JP2008090403A JP2008090403A JP2009241395A JP 2009241395 A JP2009241395 A JP 2009241395A JP 2008090403 A JP2008090403 A JP 2008090403A JP 2008090403 A JP2008090403 A JP 2008090403A JP 2009241395 A JP2009241395 A JP 2009241395A
Authority
JP
Japan
Prior art keywords
cellulose acylate
film
acylate film
stretching
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008090403A
Other languages
English (en)
Inventor
Takahiro Ono
貴広 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008090403A priority Critical patent/JP2009241395A/ja
Publication of JP2009241395A publication Critical patent/JP2009241395A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】軸ズレの発生が抑えられており、Reが大きくて、トタン板状のシワがなく、製品幅の広いセルロースアシレートフィルムを製造する方法を提供する。
【解決手段】セルロースアシレートフィルムをフィルムの搬送方向に直交する方向に延伸した後、前記延伸をした方向の寸法変化を制御しながらTc≦T<Tm0を満たす温度Tで熱処理する[Tc、Tm0は、熱処理前のセルロースアシレートフィルムの結晶化温度、融点をそれぞれ表す。]
【選択図】なし

Description

本発明は、光学異方性を有しており、軸ズレが無く、偏光膜に直接貼り合わせることが可能なセルロースアシレートフィルムおよびその製造方法に関し、また、該セルロースアシレートフィルムを用いた位相差フィルム、偏光板および液晶表示装置に関する。
ハロゲン化銀写真感光材料、位相差フィルム、偏光板および画像表示装置には、セルロースエステル、ポリエステル、ポリカーボネート、シクロオレフィンポリマービニルポリマー、および、ポリイミド等に代表されるポリマーフィルムが用いられている。これらのポリマーからは、平面性や均一性の点でより優れたフィルムを製造することができるため、光学用途のフィルムとして広く採用されている。
これらのうち、適切な透湿度を有するセルロースアシレートフィルムは、最も一般的なポリビニルアルコール(PVA)/ヨウ素からなる偏光膜とオンラインで直接貼り合わせることが可能である。そのため、特にセルロースアセテートは偏光板の保護フィルムとして広く採用されており、その製造方法が種々検討されている(例えば、特許文献1および2参照)。
一方、セルロースアシレートフィルムを、位相差フィルム、位相差フィルムの支持体、および、偏光板の保護フィルム、並びに、液晶表示装置のような光学用途に使用する場合、その光学異方性の制御は、表示装置の性能(例えば、視認性)を決定する上で非常に重要な要素となる。近年の液晶表示装置の広視野角化要求に伴ってレタデーションの補償性向上が求められるようになっており、偏光膜と液晶セルとの間に配置される位相差フィルムの面内方向のレタデーション値(Re;以下、単に「Re」と称することがある。)と膜厚方向のレタデーション値(Rth;以下、単に「Rth」と称することがある。)を適切に制御することが要求されている。特にReが大きいセルロースアシレートフィルムや、Nzが0〜1であるセルロースアシレートフィルムを簡便に製造することが求められている。このようなフィルムの製造方法として、セルロースアシレートフィルムを熱処理する方法が種々検討されている(例えば、特許文献3および4参照)。
特開2001−188128号公報 特開2000−352620号公報 特開2007−84804号公報 特開2007−86755号公報
しかしながら、セルロースアシレートフィルムを延伸してReが大きなフィルムを製造しようとすると、得られたフィルムに軸ズレが生じたり、フィルムにトタン板状のシワが入ってしまったり、フィルムの製品幅が狭くなったりしてしまうという問題があることが明らかになった。
そこで本発明者らは、このような従来技術の課題を解決するために、セルロースアシレートフィルムを熱処理する際に発生する軸ズレを抑えて、光学的均一性に優れていて、Reが大きくて、トタン板状のシワがなく、なおかつ製品幅の広いセルロースアシレートフィルムを製造する方法を提供することを本発明の目的として検討を進めた。
本発明者らは鋭意検討を重ねた結果、セルロースアシレートフィルムを搬送方向に直交する方向に延伸した後に、その延伸した方向の寸法変化を抑制しながら熱処理を行うことにより従来技術の課題を解決しうることを見出した。すなわち、課題を解決する手段として、以下の本発明を提供するに至った。
[1] セルロースアシレートフィルムをフィルムの搬送方向に直交する方向に延伸した後、前記延伸をした方向の寸法変化を制御しながら、下記式(I)の条件を満たす温度T(単位;℃)で熱処理する工程を含むことを特徴とするセルロースアシレートフィルムの製造方法。
式(I): Tc≦T<Tm0
[式中、Tcは前記熱処理前のセルロースアシレートフィルムの結晶化温度(単位;℃)を表し、Tm0は前記熱処理前のセルロースアシレートフィルムの融点(単位;℃)を表す。]
[2] 前記延伸前のフィルム温度が前記延伸後のフィルム温度よりも高い温度であることを特徴とする[1]に記載のセルロースアシレートフィルムの製造方法。
[3] 前記延伸前のフィルムを予熱するとともに、該予熱時のゾーン温度(T1)と前記延伸時のゾーン温度(T2)の温度差(T1−T2)を1℃〜50℃に保持することを特徴とする[1]または[2]に記載のセルロースアシレートフィルムの製造方法。
[4] 前記延伸は、前記搬送方向に直交する線上にあるセルロースアシレートフィルム両端部をそれぞれクリップで把持し、一方の端部を把持したテンタークリップと他方の端部を把持したテンタークリップとの間の距離を拡げることにより1.01倍〜2.0倍に延伸するものであることを特徴とする[1]〜[3]いずれか一項に記載のセルロースアシレートフィルムの製造方法。
[5] 前記延伸は、下記式(II)で表される延伸速度が1%/min〜100%/minであることを特徴とする[1]〜[4]のいずれか一項に記載のセルロースアシレートフィルムの製造方法。
式(II): 延伸速度(%/min)=[(d1/d2)−1]×100(%)/t
[上式において、d1は延伸後のセルロースアシレートフィルムの前記延伸方向の幅寸法であり、d2は延伸前のセルロースアシレートフィルムの前記延伸方向の幅寸法であり、tは延伸に要する時間(min)である。]
[6] 前記熱処理を、前記延伸した方向に直交する方向に前記セルロースアシレートフィルムを搬送しながら行うことを特徴とする[1]〜[5]のいずれか一項に記載のセルロースアシレートフィルムの製造方法。
[7] 前記搬送方向に直交する線上にあるセルロースアシレートフィルム両端部をそれぞれテンタークリップで把持し、一方の端部を把持したテンタークリップと他方の端部を把持したテンタークリップとの間の距離を制御しながら前記熱処理中の搬送を行うことを特徴とする[6]に記載のセルロースアシレートフィルムの製造方法。
[8] 隣り合う搬送ロール間の隙間が0.1cm〜50cmとなるように設置された複数の搬送ロールに前記セルロースアシレートフィルムを通しながら前記熱処理を行うことを特徴とする[6]に記載のセルロースアシレートフィルムの製造方法。
[9] 前記熱処理時の幅方向の寸法変化率が−10%以上となるように制御しながら前記熱処理を行うことを特徴とする[1]〜[8]のいずれか一項に記載のセルロースアシレートフィルムの製造方法。
[10] [1]〜[9]のいずれか一項に記載の製造方法によって製造されたセルロースアシレートフィルムを少なくとも一枚有することを特徴とする位相差フィルム。
[11] [1]〜[9]のいずれか一項に記載の製造方法によって製造されたセルロースアシレートフィルムを少なくとも一枚有することを特徴とする偏光板。
[12] [1]〜[9]のいずれか一項に記載の製造方法によって製造されたセルロースアシレートフィルム、[10]に記載の位相差フィルム、または[11]に記載の偏光板を、少なくとも1枚有することを特徴とする液晶表示装置。
本発明のセルロースアシレートフィルムは、Reが大きくて、光学的均一性に優れており、トタン板状のシワがなく平面性に優れている。また、本発明にしたがっての製造方法によればしたセルロースアシレートフィルムは、製造過程で軸ズレが発生しにくく、幅方向への収縮率が小さいため、幅の広いフィルムを製造することができる。さらに、本発明のセルロースアシレートフィルムを用いて製造される位相差フィルム、偏光板および液晶表示装置は、優れた光学的性質を示す。
以下において、本発明のセルロースアシレートフィルムの製造方法等について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
《セルロースアシレートフィルムの製造方法》
[セルロースアシレート]
まず、本発明のセルロースアシレートフィルムの製造方法に使用することができるセルロースアシレートについて説明する。
本発明の製造方法で熱処理するセルロースアシレートフィルムは、フィルムを構成する主成分としてのポリマーがセルロースアシレートであるフィルムである。ここで、「主成分としてのポリマー」とは、フィルムが単一のポリマーからなる場合には、そのポリマーのことを示し、複数のポリマーからなる場合には、構成するポリマーのうち最も質量分率の高いポリマーのことを示す。
セルロースアシレートは、セルロースとカルボン酸とのエステルである。前記セルロースアシレートは、セルロースを構成するグルコース単位の2位、3位および6位に存在するヒドロキシル基の水素原子の全部または一部が、アシル基で置換されている。アシル基の炭素原子数は2〜22であることが好ましく、2〜11がより好ましく、2〜4であることが最も好ましい。前記アシル基の例としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘプタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、および、シンナモイル基が挙げられる。前記アシル基としては、アセチル基、プロピオニル基、ブチリル基、ペンタノイル基、ヘキサノイル基、ピバロイル基、オクタノイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基が好ましく、アセチル基、プロピオニル基、ブチリル基が最も好ましい。
セルロースアシレートは、セルロースと複数のカルボン酸とのエステルであってもよい。すなわち、セルロースアシレートは、複数のアシル基で置換されていてもよい。
セルロースアシレートのセルロースの水酸基に置換されているアセチル基(炭素数2)の置換度をSAとし、セルロースの水酸基に置換されている炭素数3以上のアシル基の置換度をSBとしたとき、SAおよびSBを調整することにより、本発明の製造方法により製造されるセルロースアシレートフィルムのレタデーションの発現性、レタデーションの湿度依存性の調整を行うことができる。また、Tcも調整することができ、これにより、熱処理温度を調整することができる。なお、レタデーションの湿度依存性とは、湿度によるレタデーションの変化である。
本発明のフィルムである、本発明の製造方法により製造されるセルロースアシレートフィルムに求める光学特性により、適宜、SA+SBを調整することとなるが、好ましくは2.70<SA+SB≦3.00、より好ましくは2.88≦SA+SB≦3.00であり、さらに好ましくは2.90≦SA+SB≦3.00であり、特に好ましくは2.92≦SA+SB≦3.00である。SA+SBを大きくすることにより熱処理後に得られるReを大きくし、レタデーションの湿度依存性も改善することができる。
また、SBを調整することにより、本発明の製造方法により製造されるセルロースアシレートフィルムのレタデーションの湿度依存性を調整することができる。SBを大きくすることにより、レタデーションの湿度依存性を低減させることができ、融点が下がる。レタデーションの湿度依存性および融点の低下のバランスを考慮すると、SBの範囲は、好ましくは0<SB≦2.0、より好ましくは0.1<SB≦1.0であり、さらに好ましくは0.2<SB≦0.7である。なお、セルロースの水酸基がすべて置換されているとき、上記の置換度は3となる。
セルロースアシレートは公知の方法により合成することができる。
例えば、セルロースアシレートの合成方法について、基本的な原理は、右田伸彦他、木材化学180〜190頁(共立出版、1968年)に記載されている。セルロースアシレートの代表的な合成方法としては、カルボン酸無水物−カルボン酸−硫酸触媒による液相アシル化法が挙げられる。具体的には、まず、綿花リンタや木材パルプ等のセルロース原料を適当量の酢酸などのカルボン酸で前処理した後、予め冷却したアシル化混液に投入してエステル化し、完全セルロースアシレート(2位、3位および6位のアシル置換度の合計が、ほぼ3.00)を合成する。前記アシル化混液は、一般に溶媒としてのカルボン酸、エステル化剤としてのカルボン酸無水物および触媒としての硫酸を含む。また、前記カルボン酸無水物は、これと反応するセルロースおよび系内に存在する水分の合計よりも、化学量論的に過剰量で使用することが普通である。
次いで、アシル化反応終了後に、系内に残存している過剰カルボン酸無水物の加水分解を行うために、水または含水酢酸を添加する。さらに、エステル化触媒を一部中和するために、中和剤(例えば、カルシウム、マグネシウム、鉄、アルミニウムまたは亜鉛の炭酸塩、酢酸塩、水酸化物または酸化物)を含む水溶液を添加してもよい。さらに、得られた完全セルロースアシレートを少量のアシル化反応触媒(一般には、残存する硫酸)の存在下で、20〜90℃に保つことにより鹸化熟成し、所望のアシル置換度および重合度を有するセルロースアシレートまで変化させる。所望のセルロースアシレートが得られた時点で、系内に残存している触媒を前記中和剤などを用いて完全に中和するか、或いは、前記触媒を中和することなく水若しくは希酢酸中にセルロースアシレート溶液を投入(或いは、セルロースアシレート溶液中に、水または希酢酸を投入)してセルロースアシレートを分離し、洗浄および安定化処理により目的物であるセルロースアシレートを得ることができる。
前記セルロースアシレートの重合度は、粘度平均重合度で150〜500が好ましく、200〜400がより好ましく、220〜350がさらに好ましい。前記粘度平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)の記載に従って測定することができる。前記粘度平均重合度の測定方法については、特開平9−95538号公報にも記載がある。
また、低分子成分が少ないセルロースアシレートは、平均分子量(重合度)が高いが、粘度は通常のセルロースアシレートよりも低い値になる。このような低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより行うことができる。また、低分子成分の少ないセルロースアシレートを合成により得ることもできる。低分子成分の少ないセルロースアシレートを合成する場合、アシル化反応における硫酸触媒量を、セルロース100質量に対して0.5〜25質量部に調整することが好ましい。前記硫酸触媒の量を前記範囲にすると、分子量分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。セルロースアシレートの重合度や分子量分布は、ゲル浸透クロマトグラフィー(GPC)等により測定することができる。
セルロースエステルの原料綿や合成方法については、発明協会公開技報(公技番号2001−1745号、2001年3月15日発行、発明協会)7〜12頁にも記載がある。
セルロースアシレートフィルムを製造する際に原料として用いるセルロースアシレートとしては、粉末や粒子状のものを使用することができ、また、ペレット化したものも用いることができる。原料として用いる際のセルロースアシレートの含水率は、1.0質量%以下であることが好ましく、0.7質量%以下であることがさらに好ましく、0.5質量%以下であることが最も好ましい。また、前記含水率は場合により0.2質量%以下であることが好ましい。セルロースアシレートの含水率が好ましい範囲内にない場合には、セルロースアシレートを乾燥風や加熱などにより乾燥してから使用することが好ましい。
セルロースアシレートフィルムを製造する際には、単一種のポリマーを用いてもよいし、複数種のポリマーを用いてもよい。
[セルロースアシレート溶液]
本発明の製造方法に用いるセルロースアシレートフィルム(以下、明細書中において、「熱処理前のセルロースアシレートフィルム」とも称する)は、例えば、上記セルロースアシレートや各種添加剤を含有するセルロースアシレート溶液から溶液流延製膜方法によって作製することができる。以下において、溶液流延製膜方法に用いることができるセルロースアシレート溶液について説明する。
(溶媒)
本発明の製造方法に用いるセルロースアシレートフィルムの作製に用いられるセルロースアシレート溶液の主溶媒としては、該ポリマーの良溶媒である有機溶媒を好ましく用いることができる。このような有機溶媒としては、沸点が80℃以下の有機溶媒が乾燥負荷低減の観点からより好ましい。前記有機溶媒の沸点は、10〜80℃であることがさらに好ましく、20〜60℃であることが特に好ましい。また、場合により沸点が30〜45℃である有機溶媒も前記主溶媒として好適に用いることができる。
このような主溶媒としては、ハロゲン化炭化水素を特に好ましく挙げることができ、場合により、エステル、ケトン、エーテル、アルコールおよび炭化水素などが挙げることもでき、これらは分岐構造若しくは環状構造を有していてもよい。また、前記主溶媒は、エステル、ケトン、エーテルおよびアルコールの官能基(即ち、−O−、−CO−、−COO−、−OH)のいずれかを二つ以上有していてもよい。さらに、前記エステル、ケトン、エーテルおよびアルコールの炭化水素部分における水素原子は、ハロゲン原子(特に、フッ素原子)で置換されていてもよい。なお、本発明の製造方法に用いるセルロースアシレートフィルム」の作製に用いられるセルロースアシレート溶液の主溶媒とは、単一の溶媒からなる場合には、その溶媒のことを示し、複数の溶媒からなる場合には、構成する溶媒のうち、最も質量分率の高い溶媒のことを示す。主溶媒としては、ハロゲン化炭化水素を好適に挙げることができる。
前記ハロゲン化炭化水素としては、塩素化炭化水素がより好ましく、例えば、ジクロロメタンおよびクロロホルムなどが挙げられ、ジクロロメタンがさらに好ましい。
前記エステルとしては、例えば、メチルホルメート、エチルホルメート、メチルアセテート、エチルアセテートなどが挙げられる。
前記ケトンとしては、例えば、アセトン、メチルエチルケトンなどが挙げられる。
前記エーテルとしては、例えば、ジエチルエーテル、メチル−tert−ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、1,3−ジオキソラン、4−メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、1,4−ジオキサンなどが挙げられる。
前記アルコールとしては、例えば、メタノール、エタノール、2−プロパノールなどが挙げられる。
前記炭化水素としては、例えば、n−ペンタン、シクロヘキサン、n−ヘキサン、ベンゼン、トルエンなどが挙げられる。
これら主溶媒と併用される有機溶媒としては、ハロゲン化炭化水素、エステル、ケトン、エーテル、アルコールおよび炭化水素などが挙げられ、これらは分岐構造若しくは環状構造を有していてもよい。また、前記有機溶媒としては、エステル、ケトン、エーテルおよびアルコールの官能基(即ち、−O−、−CO−、−COO−、−OH)のいずれか二つ以上を有していてもよい。さらに、前記エステル、ケトン、エーテルおよびアルコールの炭化水素部分における水素原子は、ハロゲン原子(特に、フッ素原子)で置換されていてもよい。
前記ハロゲン化炭化水素としては、塩素化炭化水素がより好ましく、例えば、ジクロロメタンおよびクロロホルムなどが挙げられ、ジクロロメタンがさらに好ましい。
前記エステルとしては、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテートなどが挙げられる。
前記ケトンとしては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノンなどが挙げられる。
前記エーテルとしては、例えば、ジエチルエーテル、メチル−tert−ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、4−メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトールなどが挙げられる。
前記アルコールとしては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、tert−ブタノール、1−ペンタノール、2−メチル−2−ブタノール、シクロヘキサノール、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノールなどが挙げられる。好ましくは炭素数1〜4のアルコールであり、より好ましくはメタノール、エタノールまたはブタノールであり、最も好ましくはメタノール、ブタノールである。前記炭化水素としては、例えば、n−ペンタン、シクロヘキサン、n−ヘキサン、ベンゼン、トルエン、キシレンなどが挙げられる。
前記2種類以上の官能基を有する有機溶媒としては、例えば、2−エトキシエチルアセテート、2−メトキシエタノール、2−ブトキシエタノール、メチルアセトアセテートなどが挙げられる。
本発明のセルロースアシレートフィルムを構成するポリマーは、水酸基やエステル、ケトン等の水素結合性の官能基を含むため、全溶媒中に5〜30質量%、より好ましくは7〜25質量%、さらに好ましくは10〜20質量%のアルコールを含有することが流延支持体からの剥離荷重低減の観点から好ましい。
アルコール含有量を調整することによって、本発明の製造方法により製造されるセルロースアシレートフィルムのReやRthの発現性を調整しやすくすることができる。具体的には、アルコール含有量を上げることによって、熱処理温度を比較的低く設定したり、ReやRthの到達範囲をより大きくしたりすることが可能となる。
また、本発明の製造方法に用いるセルロースアシレートフィルムの作製に用いられる前記セルロースアシレート溶液は、乾燥過程初期においてハロゲン化炭化水素とともに揮発する割合が小さく、次第に濃縮される沸点が95℃以上であり、且つ、セルロースエステルの貧溶媒である有機溶媒を1〜15質量%、より好ましくは1.5〜13質量%、さらに好ましくは2〜10質量%含有することが好ましい。また、本発明においては、水を少量含有させることも溶液粘度や乾燥時のウェットフィルム状態の膜強度を高めたり、ドラム法流延時のドープ強度を高めるのに有効であり、例えば溶液全体に対して0.1〜5質量%含有させても良く、より好ましくは0.1〜3質量%含有させてもよく、特には0.2〜2質量%含有させてもよい。
本発明の製造方法に用いるセルロースアシレートフィルムの作製に用いられるセルロースアシレート溶液の溶媒として好ましく用いられる有機溶媒の組み合せの例を以下に挙げるが、本発明はこれらに限定されるものではない。なお、比率の数値は、質量部を意味する。
(1)ジクロロメタン/メタノール/エタノール/ブタノール=80/10/5/5
(2)ジクロロメタン/メタノール/エタノール/ブタノール=80/5/5/10
(3)ジクロロメタン/イソブチルアルコール=90/10
(4)ジクロロメタン/アセトン/メタノール/プロパノール=80/5/5/10
(5)ジクロロメタン/メタノール/ブタノール/シクロヘキサン=80/8/10/2
(6)ジクロロメタン/メチルエチルケトン/メタノール/ブタノール=80/10/5/5
(7)ジクロロメタン/ブタノール=90/10
(8)ジクロロメタン/アセトン/メチルエチルケトン/エタノール/ブタノール=68/10/10/7/5
(9)ジクロロメタン/シクロペンタノン/メタノール/ペンタノール=80/2/15/3
(10)ジクロロメタン/メチルアセテート/エタノール/ブタノール=70/12/15/3
(11)ジクロロメタン/メチルエチルケトン/メタノール/ブタノール=80/5/5/10
(12)ジクロロメタン/メチルエチルケトン/アセトン/メタノール/ペンタノール=50/20/15/5/10
(13)ジクロロメタン/1,3−ジオキソラン/メタノール/ブタノール=70/15/5/10
(14)ジクロロメタン/ジオキサン/アセトン/メタノール/ブタノール=75/5/10/5/5
(15)ジクロロメタン/アセトン/シクロペンタノン/エタノール/イソブチルアルコール/シクロヘキサン=60/18/3/10/7/2
(16)ジクロロメタン/メチルエチルケトン/アセトン/イソブチルアルコール=70/10/10/10
(17)ジクロロメタン/アセトン/エチルアセテート/ブタノール/ヘキサン=69/10/10/10/1
(18)ジクロロメタン/メチルアセテート/メタノール/イソブチルアルコール=65/15/10/10
(19)ジクロロメタン/シクロペンタノン/エタノール/ブタノール=85/7/3/5
(20)ジクロロメタン/メタノール/ブタノール=83/15/2
(21)ジクロロメタン=100
(22)アセトン/エタノール/ブタノール=80/15/5
(23)メチルアセテート/アセトン/メタノール/ブタノール=75/10/10/5
(24)1,3−ジオキソラン=100
(25)ジクロロメタン/メタノール/ブタノール/水=85/18/1.5/0.5
(26)ジクロロメタン/アセトン/メタノール/ブタノール/水=87/5/5/2.5/0.5
(27)ジクロロメタン/メタノール=92/8
(28)ジクロロメタン/メタノール=90/10
(29)ジクロロメタン/メタノール=87/13
(30)ジクロロメタン/エタノール=90/10
また、場合により、非ハロゲン系有機溶媒を主溶媒とすることもでき、詳細な記載は発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)に記載がある。
(溶液濃度)
調製する前記セルロースアシレート溶液中のセルロースアシレート濃度は、5〜40質量%が好ましく、10〜30質量%がさらに好ましく、15〜30質量%が最も好ましい。
前記セルロースアシレート濃度は、セルロースアシレートを溶媒に溶解する段階で所定の濃度になるように調整することができる。また予め低濃度(例えば4〜14質量%)の溶液を調製した後に、溶媒を蒸発させる等によって濃縮してもよい。さらに、予め高濃度の溶液を調製後に、希釈してもよい。また、添加剤を添加することで、セルロースアシレートの濃度を低下させることもできる。
(添加剤)
本発明の製造方法に用いるポリマーフィルムの作製に用いられる前記ポリマー溶液は、各調製工程において用途に応じた各種の液体または固体の添加剤を含むことができる。本発明のセルロースアシレートフィルムに好ましく用いられる添加剤は、分子量3000以下の添加剤であり、レタデーションの湿度依存性を低減したり、ReとRthとのバランスを調整したりするのに適宜、用いることができる。特に、Rth/Re値を上昇させたい場合には、前記分子量3000以下の添加剤は、芳香環を1個以上有する化合物であることが好ましい。前記添加剤の例としては、可塑剤(好ましい添加量はポリマーに対して0.01〜10質量%、以下同様)、紫外線吸収剤(0.001〜1質量%)、平均粒子サイズが5〜3000nmである微粒子粉体(0.001〜1質量%)、フッ素系界面活性剤(0.001〜1質量%)、剥離剤(0.0001〜1質量%)、劣化防止剤(0.0001〜1質量%)、光学異方性制御剤(0.01〜10質量%)、赤外線吸収剤(0.001〜1質量%)が含まれる。
前記光学異方性制御剤は、分子量3000以下の有機化合物であり、好ましくは疎水部と親水部とを併せ持つ化合物である。これらの化合物は、ポリマー鎖間で配向することにより、レタデーション値を変化させる。さらに、これらの化合物は、本発明で特に好ましく用いられるセルロースアシレートと併用することで、フィルムの疎水性を向上させ、レタデーションの湿度変化を低減させることができる。また、前記紫外線吸収剤や前記赤外線吸収剤を併用することで、効果的にレタデーションの波長依存性を制御することもできる。本発明のセルロースアシレートフィルムに用いられる添加剤は、いずれも乾燥過程での揮散が実質的にないものが好ましい。
目的とするRe、Rth値によっては、熱処理前のフィルムのRthをあまり変化させなかったり、下降させたりするような効果のある光学異方性制御剤も好ましく用いることができる。このような添加剤を添加することにより、熱処理時のポリマー分子の運動性を向上させることができるため、本発明の製造方法により製造されるセルロースアシレートフィルムのReやRthの発現性をさらに調整することができるため、熱処理温度を比較的低く設定したり、ReやRthの到達範囲をより大きくしたりすることが可能となる。レタデーション上昇剤等の光学異方性制御剤を組み合わせることにより、Nzが0〜1であるセルロースアシレートフィルムだけでなく、Nzが0未満や1より大きいセルロースアシレートフィルムも適宜、製造することができる。
レタデーションの湿度変化低減を図る観点からは、これらの添加剤の添加量は多いほうが好ましいが、添加量の増大に伴い、ポリマーフィルムのガラス転移温度(Tg)低下や、フィルムの製造工程における添加剤の揮散問題を引き起こしやすくなる。従って、本発明においてより好ましく用いられるセルロースアセテートをポリマーとして用いる場合、前記分子量3000以下の添加剤の添加量は、前記セルロースアシレートに対して30質量%以下が好ましく、0.1〜30質量%がより好ましく、2〜20質量%がさらに好ましい。
Rth/Re値を上昇させる観点からは、具体的には、芳香環を1個以上有する化合物が好ましく、2〜15個有することがより好ましく、3〜10個有することがさらに好ましい。化合物中の芳香環以外の各原子は、芳香環と同一平面に近い配置であることが好ましく、芳香環を複数有している場合には、芳香環同士も同一平面に近い配置であることが好ましい。また、Rthを選択的に上昇させるため、添加剤のフィルム中での存在状態は、芳香環平面がフィルム面と平行な方向に存在していることが好ましい。
前記添加剤は、単独で使用しても良いし、2種類以上の添加剤を組み合わせて使用しても良い。
本発明においてポリマーとしてセルロースアシレートを用いる場合に好適に用いることのできる添加剤については、特開2005−104148号公報に記載がある。また、赤外吸収剤については、特開2001−194522号公報に記載がある。添加剤を添加する時期は、添加剤の種類に応じて適宜決定することができる。
また、本発明においては、下記の高分子系可塑剤を添加剤として好ましく用いることもできる。
ここで、本発明における高分子系可塑剤は、その化合物中に繰り返し単位部分を有することを特徴とする。本発明の高分子可塑剤は、その数平均分子量が500〜3000であるが、好ましくは数平均分子量600〜2800であり、さらに好ましくは数平均分子量700〜2500であり、特に好ましくは数平均分子量700〜2000である。ただし、本発明における高分子系可塑剤は、このような繰り返し単位部分を有する化合物のみからなるものに限定されることはなく、繰り返し単位を有さない化合物との混合物であってもよい。
また、本発明の高分子系可塑剤は使用する環境温度あるいは湿度下で(一般には室温状況、所謂25℃、相対湿度60%)、液体であっても固体であっても良い。また、その色味は少ないほど良好であり特に無色であることが好ましい。熱的にはより高温において安定であることが好ましく、分解開始温度が150℃以上、さらに200℃以上が好ましい。
以下、本発明に用いられる高分子系可塑剤について、その具体例を挙げながら詳細に説明するが、本発明で用いることができる高分子系可塑剤はこれらに限定されるものではない。
(高分子系可塑剤の種類)
本発明のポリマーフィルムに用いることのできる高分子系可塑剤としては、特に限定されないが、ポリエステル系可塑剤、ポリエーテル系可塑剤、ポリウレタン系可塑剤、ポリエステルポリウレタン系可塑剤、ポリエステルポリエーテル系可塑剤、ポリエーテルポリウレタン系可塑剤、ポリアミド系可塑剤、ポリスルフォン系可塑剤、ポリスルフォンアミド系可塑剤、後述するその他の高分子系可塑剤から選択される少なくとも1種の数平均分子量が500以上の可塑剤を好ましく挙げることができる。
そのうち少なくとも1種は、ポリエステル系可塑剤、ポリエーテル系可塑剤、ポリウレタン系可塑剤、ポリエステルポリウレタン系可塑剤、ポリエステルポリエーテル系可塑剤、ポリエーテルポリウレタン系可塑剤、ポリアミド系可塑剤、ポリスルフォン系可塑剤、ポリスルフォンアミド系可塑剤であることがさらに好ましく、特にはポリエステル系可塑剤、ポリエステルポリウレタン系可塑剤、ポリエステルポリエーテル系可塑剤であることが好ましい。以下に、本発明で好ましく用いられる高分子系可塑剤について種類別に記述する。
(ポリエステル系可塑剤)
まず、本発明で用いられるポリエステル系可塑剤について説明する。好ましいポリエステル系可塑剤としては、特に限定されないが、ジカルボン酸とグリコールの反応によって得られるものであり、反応物の両末端は反応物のままでもよいが、さらにモノカルボン酸やモノアルコールを反応させて、所謂末端の封止を実施してもよい。この末端封止は、特にフリーなカルボン酸を含有させないために実施されることが、保存性などの点で有効である。本発明のポリエステル系可塑剤に使用されるジカルボン酸は、炭素数4〜12の脂肪族ジカルボン酸残基または炭素数8〜12の芳香族ジカルボン酸残基であることが好ましい。
本発明で好ましく用いられるポリエステル系可塑剤の炭素数4〜12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、1,4−シクロヘキサンジカルボン酸等がある。また炭素数8〜12のアリーレンジカルボン酸成分としては、フタル酸、テレフタル酸、1,5−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸等がある。これらは、それぞれ1種または2種以上の混合物として使用される。次にポリエステル系可塑剤に利用されるグリコールについて記すと、炭素数が2〜12の脂肪族または脂環式グリコール残基、炭素数6〜12の芳香族グリコール残基を表わす。
炭素原子2〜12個の脂肪族グリコールまたは脂環式グリコール類としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、2−メチル−1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、2,2−ジメチル−1,3−プロパンジオール(ネオペンチルグリコール)、2,2−ジエチル−1,3−プロパンジオール(3,3−ジメチロ−ルペンタン)、2−n−ブチル−2−エチル−1,3プロパンジオール(3,3−ジメチロールヘプタン)、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2−メチル−1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,12−オクタデカンジオール等があり、これらのグリコールは、1種または2種以上の混合物として使用される
また、本発明のポリエステル可塑剤の両末端がカルボン酸とならないように、モノアルコール残基やモノカルボン酸残基で保護することが好ましい。その場合、モノアルコール残基としては炭素数1〜30の置換、無置換のモノアルコール残基が好ましく、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ペンタノール、イソペンタノール、ヘキサノール、イソヘキサノール、シクロヘキシルアルコール、オクタノール、イソオクタノール、2−エチルヘキシルアルコール、ノニルアルコール、イソノニルアルコール、tert−ノニルアルコール、デカノール、ドデカノール、ドデカヘキサノール、ドデカオクタノール、アリルアルコール、オレイルアルコールなどの脂肪族アルコール、ベンジルアルコール、3−フェニルプロパノールなどの置換アルコールなどが挙げられる。
好ましく使用され得る末端封止用アルコール残基は、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、イソペンタノール、ヘキサノール、イソヘキサノール、シクロヘキシルアルコール、イソオクタノール、2−エチルヘキシルアルコール、イソノニルアルコール、オレイルアルコール、ベンジルアルコールであり、特にはメタノール、エタノール、プロパノール、、イソブタノール、シクロヘキシルアルコール、2−エチルヘキシルアルコール、イソノニルアルコール、ベンジルアルコールである。
また、モノカルボン酸残基で封止する場合は、モノカルボン酸残基として使用されるモノカルボン酸は、炭素数1〜30の置換、無置換のモノカルボン酸が好ましい。これらは、脂肪族モノカルボン酸でも芳香族カルボン酸でもよい。まず好ましい脂肪族モノカルボン酸について記述すると、酢酸、プロピオン酸、ブタン酸、カプリル酸、カプロン酸、デカン酸、ドデカン酸、ステアリン酸、オレイン酸が挙げられ、芳香族モノカルボン酸としては、例えば安息香酸、p−tert−ブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、これらはそれぞれ1種または2種以上の混合物として使用することができる。
以上、具体的な好ましいポリエステル系可塑剤としては、ポリ(エチレングリコール/アジピン酸)エステル、ポリ(プロピレングリコール/アジピン酸)エステル、ポリ(1,3−ブタンジオール/アジピン酸)エステル、ポリ(プロピレングリコール/セバチン酸)エステル、ポリ(1,3−ブタンジオール/セバチン酸)エステル、ポリ(1,6−ヘキサンジオール/アジピン酸)エステル、ポリ(プロピレングリコール/フタル酸)エステル、ポリ(1,3−ブタンジオール/フタル酸)エステル、ポリ(プロピレングリコール/テレフタル酸)エステル、ポリ(プロピレングリコール/1,5−ナフタレン−ジカルボン酸)エステル、ポリ(プロピレングリコール/テレフタル酸)エステルの両末端が2−エチル−ヘキシルアルコールエステル/ポリ(プロピレングリコール、アジピン酸)エステルの両末端が2−エチル−ヘキシルアルコールエステル、アセチル化ポリ(ブタンジオール/アジピン酸)エステル、などを挙げることができる。
かかるポリエステル類の合成は常法により、上記二塩基性酸またはこれらのアルキルエステル類とグリコール類とのポリエステル化反応またはエステル交換反応による熱溶融縮合法か、あるいはこれら酸の酸クロライドとグリコール類との界面縮合法のいずれかの方法によっても容易に合成し得るものである。これらのポリエステル系可塑剤については、村井孝一編者「可塑剤 その理論と応用」(株式会社幸書房、昭和48年3月1日初版第1版発行)に詳細な記載がある。また、特開平05−155809号、特開平05−155810号、特開平5−197073号、特開2006−259494号、特開平07−330670号、特開2006−342227号、特開2007−003679号各公報などに記載されている素材を利用することもできる。
また、商品として、株式会社ADEKAからポリエステル系可塑剤としてDIARY 2007、55頁〜27頁に記載にアデカサイザー(アデカサイザーPシリーズ、アデカサイザーPNシリーズとして各種あり)を使用でき、また大日本インキ化学工業株式会社「ポリマ関連製品一覧表2007年版」25頁に記載のポリライト各種の商品や、大日本インキ化学工業株式会社「DICのポリマ改質剤」(2004.4.1.000VIII発行)2頁〜5頁に記載のポリサイザー各種を利用できる。さらに、米国 CP HALL 社製のPlasthall Pシリーズとして入手できる。ベンゾイル官能化ポリエーテルは、イリノイ州ローズモントのベルシコルケミカルズ(Velsicol Chemicals)から商品名BENZOFLEXで商業的に販売されている(例えば、BENZOFLEX400、ポリプロピレングリコールジベンゾエート)。
(ポリエステルポリエーテル系可塑剤)
次に、本発明で用いられるポリエステルポリエーテル系可塑剤について説明する。本発明のポリエステルポリエーテル系可塑剤とは、ジカルボン酸とポリエーテルジオールとの縮合ポリマーを示すものである。ジカルボン酸としては、ポリエステル系可塑剤で記述した炭素数4〜12の脂肪族ジカルボン酸残基または炭素数8〜12の芳香族ジカルボン酸残基をそのまま使用するものである。
次に炭素原子2〜12個の脂肪族グリコールを有するポリエーテル類としては、ポリエチレンエーテルグリコール、ポリプロピレンエーテルグリコール、ポリテトラメチレンエーテルグリコールならびにこれらの組み合わせが挙げられる。典型的に有用な市販のポリエーテルグリコール類としては、カーボワックス(Carbowax)レジン、プルロニックス(Pluronics)レジンおよびニアックス(Niax)レジンが挙げられる。本発明に使用されるポリエステルポリエーテル系可塑剤の製造に際しては、当業者に周知の常用されている重合法が使用できる。
これらのポリエステルエーテル系可塑剤としては、米国特許第4,349,469号明細書に記載されているポリエステルポリエーテル系可塑剤などが挙げられる。基本的に、例えばジカルボン酸として1,4−シクロヘキサンジカルボン酸と、ポリエーテルとして1,4−シクロヘキサンジメタノールおよびポリテトラメチレンエーテルグリコールなどから合成されるポリエステルポリエーテル系可塑剤である。その他の有用なポリエステルポリエーテル系可塑剤としては、DuPont製のハイテレル(Hytrel)コポリエステル類やGAF製のガルフレック(Galflex)ポリマーのようなコポリマーのごとき市販のレジンが挙げられる。これらは、特開平5−197073号公報に記載の素材を利用できる。株式会社ADEKAからアデカサイザーRSシリーズとして市販されており利用できる。また、アルキル官能化ポリアルキレンオキシドであるポリエステルエーテル系可塑剤は、デラウェア州ウィルミントンのアイシーアイ(ICI Chemicals)から商品名PYCALで商業的に販売されている(例えば、PYCAL94、ポリエチレンオキシドのフェニルエステル)。
(ポリエステルポリウレタン系可塑剤)
さらに、本発明で用いられるポリエステルポリウレタン系可塑剤について説明する。該可塑剤は、ポリエステルとイソシアナート化合物の縮合で得ることができる。まず、ポリエステルとしては、両末端を封止する前のポリエステル系可塑剤をそのまま使用でき、ポリエステル系可塑剤で前述した素材を好ましく利用できる。
ポリウレタン構造を形成するジイソシアナート成分としては、エチレンジイソシアナート、トリメチレンジイソシアナート、テトラメチレンジイソシアナート、ヘキサメチレンジイソシアナート等で代表されるOCN(CH2p NCO(p=2〜8)ポリメチレンイソシアナート並びに、p−フェニレンジイソシアナート、トリレンジイソシアナート、p,p′−ジフェニルメタンジイソシアナート、1,5−ナフチレンジイソシアナート等の芳香族ジイソシアナート、さらには、m−キシリレンジイソシアナート等が用いられるが、これらに制限されるものではない。これらの中でも、特にトリレンジイソシアナート、m−キシリレンジイソシアナート、テトラメチレンジイソシアナートが好ましいものである。
本発明においてポリエステルポリウレタン系可塑剤の合成は、原料のポリエステルジオール類とジイソシアナートとを混じ攪拌下加熱させる常法の合成法により、容易に得る事ができる。これらは、特開平5−197073号、特開2001−122979号、特開2004−175971号、特開2004−175972号各公報などに記載してある素材を利用できる。
(その他の高分子系可塑剤)
本発明においては、前述したポリエステル系可塑剤、ポリエステルポリエーテル系可塑剤やポリエステルポリウレタン系可塑剤だけでなく、その他の高分子系可塑剤も使用し得るものである。該高分子系可塑剤としては、脂肪族炭化水素系ポリマー、脂環式炭化水素系ポリマー、ポリアクリル酸エステル、ポリメタクリル酸エステル等のアクリル系ポリマー(エステル基としては、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、2−エチルヘキシル基、ノニル基、イソノニル基、tert−ノニル基、ドデシル基、トリデシル基、ステアリル基、オレイル基、ベンジル基、フェニル基など)、ポリビニルイソブチルエーテル、ポリN−ビニルピロリドン等のビニル系ポリマー、ポリスチレン、ポリ4−ヒドロキシスチレン等のスチレン系ポリマー、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリアミド、ポリウレタン、ポリウレア、フェノール−ホルムアルデヒド縮合物、尿素−ホルムアルデヒド縮合物、酢酸ビニル、等が挙げられる。
これらポリマー可塑剤は1種の繰り返し単位からなる単独重合体でも、複数の繰り返し構造体を有する共重合体でも良い。また、上記ポリマーを2種以上併用して用いても良い。これらの高分子量可塑剤は、各々単独で用いても良く、またこれらを混合して用いても同様の効果が得られる。これらの中でも、ポリアクリル酸エステル、ポリメタクリル酸エステルあるいは他のビニルモノマーとの共重合度体が好ましく、特にはポリアクリル酸エステル、ポリメタクリル酸エステル等のアクリル系ポリマー(エステル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、2−エチルヘキシル基、イソノニル基、オレイル基)を基本とする高分子可塑剤が好ましい。
(具体的な高分子可塑剤の例)
以下に、好ましい高分子系可塑剤の具体例を記すが、本発明で用いることができる高分子系可塑剤はこれらに限定されるものではない。
PP−1: エタンジオール/コハク酸(1/1モル比)との縮合物(数平均分子量2500)
PP−2: 1,3−プロパンジオール/グルタル酸(1/1モル比)との縮合物(数平均分子量1500)
PP−3: 1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1300)
PP−4: 1,3−プロパンジオール/エチレングリコール/アジピン酸(1/1/2モル比)との縮合物(数平均分子量1500)
PP−5: 2−メチル−1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1200)
PP−6: 1,4−ブタンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1500)
PP−7: 1,4−シクロヘキサンジオール/コハク酸(1/1モル比)との縮合物(数平均分子量800)
PP−8: 1,3−プロパンジオール/コハク酸(1/1モル比)との縮合物の両末端のブチルエステル化体(数平均分子量1300)
PP−9: 1,3−プロパンジオール/グルタル酸(1/1モル比)との縮合物の両末端のシクロヘキシルエステル化体(数平均分子量1500)
PP−10: エタンジオール/コハク酸(1/1モル比)との縮合物の両末端の2−エチルヘキシルエステル化体(数平均分子量3000)
PP−11: 1,3−プロパンジオール/エチレングリコール/アジピン酸(1/1/2モル比)との縮合物の両末端のイソノニルエステル化体(数平均分子量1500)
PP−12: 2−メチル−1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物の両末端のプロピルエステル化体(数平均分子量1300)
PP−13: 2−メチル−1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物の両末端の2−エチルヘキシルエステル化体(数平均分子量1300)
PP−14: 2−メチル−1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物の両末端のイソノニルエステル化体(数平均分子量1300)
PP−15: 1,4−ブタンジオール/アジピン酸(1/1モル比)との縮合物の両末端のブチルエステル化体(数平均分子量1800)
PP−16: エタンジオール/テレフタル酸(1/1モル比)との縮合物(数平均分子量2000)
PP−17: 1,3−プロパンジオール/1,5−ナフタレンジカルボン酸(1/1モル比)との縮合物(数平均分子量1500)
PP−18: 2−メチル−1,3−プロパンジオール/イソフタル酸(1/1モル比)との縮合物(数平均分子量1200)
PP−19: 1,3−プロパンジオール/テレフタル酸(1/1モル比)との縮合物両末端のベンジルエステル化体(数平均分子量1500)
PP−20: 1,3−プロパンジオール/1,5−ナフタレンジカルボン酸両末端のプロピルエステル化体(1/1モル比)との縮合物(数平均分子量1500)
PP−21: 2−メチル−1,3−プロパンジオール/イソフタル酸(1/1モル比)との縮合物両末端のブチルエステル化体(数平均分子量1200)
PP−22: ポリ(平均重合度5)プロピレンエーテルグリコール/コハク酸(1/1モル比)との縮合物(数平均分子量1800)
PP−23: ポリ(平均重合度3)エチレンエーテルグリコール/グルタル酸(1/1モル比)との縮合物(数平均分子量1600)
PP−24: ポリ(平均重合度4)プロピレンエーテルグリコール/アジピン酸(1/1モル比)との縮合物(数平均分子量2200)
PP−25: ポリ(平均重合度4)プロピレンエーテルグリコール/フタル酸(1/1モル比)との縮合物(数平均分子量1500)
PP−26: ポリ(平均重合度5)プロピレンエーテルグリコール/コハク酸(1/1モル比)との縮合物両末端のブチルエステル化体(数平均分子量1900)
PP−27: ポリ(平均重合度3)エチレンエーテルグリコール/グルタル酸(1/1モル比)との縮合物両末端の2−エチルヘキシルエステル化体(数平均分子量1700)
PP−28: ポリ(平均重合度4)プロピレンエーテルグリコール/アジピン酸(1/1モル比)との縮合物両末端のtert−ノニルエステル化体(数平均分子量1300)
PP−29: ポリ(平均重合度4)プロピレンエーテルグリコール/フタル酸(1/1モル比)との縮合物両末端のプロピルエステル化体(数平均分子量1600)
PP−29’: エタンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1000)
PP−30: 1,3−プロパンジオール/コハク酸(1/1モル比)との縮合物(数平均分子量1500)をトリメチレンジイソシアナート(1モル)で縮合したポリエステルウレタン化合物、
PP−31: 1,3−プロパンジオール/グルタル酸(1/1モル比)との縮合物(数平均分子量1200)をテトラメチレンジイソシアナート(1モル)で縮合したポリエステル−ウレタン化合物
PP−32: 1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1000)をp−フェニレンジイソシアナート(1モル)で縮合したポリエステル−ウレタン化合物
PP−33: 1,3−プロパンジオール/エチレングリコール/アジピン酸(1/1/2モル比)との縮合物(数平均分子量1500)をトリレンジイソシアナート(1モル)で縮合したポリエステル−ウレタン化合物
PP−34: 2−メチル−1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1200)をm−キシリレンジイソシアナート(1モル)で縮合したポリエステル−ウレタン化合物
PP−35: 1,4−ブタンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1500)をテトラメチレンジイソシアナート(1モル)で縮合したポリエステル−ウレタン化合物
PP−36: ポリイソプロピルアクリレート(数平均分子量1300)
PP−37: ポリブチルアクリレート(数平均分子量1300)
PP−38: ポリイソプロピルメタクリレート(数平均分子量1200)
PP−39: ポリ(メチルメタクリレート/ブチルメタクリレート(モル比8/2、数平均分子量1600)
PP−40: ポリ(メチルメタクリレート/2−エチルヘキシルメタクリレート(モル比9/1、数平均分子量1600)
PP−41: ポリ(ビニルアセテート(数平均分子量2400)
(セルロースアシレート溶液の調製)
前記セルロースアシレート溶液の調製は、例えば、特開昭58−127737号公報、同61−106628号公報、特開平2−276830号公報、同4−259511号公報、同5−163301号公報、同9−95544号公報、同10−45950号公報、同10−95854号公報、同11−71463号公報、同11−302388号公報、同11−322946号公報、同11−322947号公報、同11−323017号公報、特開2000−53784号公報、同2000−273184号公報、同2000−273239号公報に記載されている調製方法に準じて行うことができる。具体的には、ポリマーと溶媒とを混合攪拌し膨潤させ、場合により冷却や加熱等を実施して溶解させた後、これをろ過してセルロースアシレート溶液を得る。
本発明においては、ポリマーの溶媒への溶解性を向上させるため、ポリマーと溶媒の混合物を冷却および/または加熱する工程を含むことが好ましい。
溶媒としてハロゲン系有機溶媒を用い、セルロースアシレートと溶媒の混合物を冷却する場合、混合物を−100〜10℃に冷却する工程を含むことが好ましい。また、冷却工程より前の工程に−10〜39℃で膨潤させる工程を含み、冷却より後の工程に0〜39℃に加温する工程を含むことが好ましい。
溶媒としてハロゲン系有機溶媒を用い、セルロースアシレートと溶媒の混合物を加熱する場合、下記(a)または(b)より選択される1以上の方法で溶媒中にセルロースアシレートを溶解する工程を含むことが好ましい。
(a)−10〜39℃で膨潤させ、得られた混合物を0〜39℃に加温する。
(b)−10〜39℃で膨潤させ、得られた混合物を0.2〜30MPaで40〜240℃に加熱し、加熱した混合物を0〜39℃に冷却する。
さらに、溶媒として非ハロゲン系有機溶媒を用い、セルロースアシレートと溶媒の混合物を冷却する場合、混合物を−100〜−10℃に冷却する工程を含むことが好ましい。また、冷却工程より前の工程に−10〜55℃で膨潤させる工程を含み、冷却より後の工程に0〜57℃に加温する工程を含むことが好ましい。
溶媒としてハロゲン系有機溶媒を用い、セルロースアシレートと溶媒の混合物を加熱する場合、下記(c)または(d)より選択される1以上の方法で溶媒中にセルロースアシレートを溶解する工程を含むことが好ましい。
(c)−10〜55℃で膨潤させ、得られた混合物を0〜57℃に加温する。
(d)−10〜55℃で膨潤させ、得られた混合物を0.2〜30MPaで40〜240℃に加熱し、加熱した混合物を0〜57℃に冷却する。
[本発明の製造方法に用いるセルロースアシレートフィルムの製膜]
本発明の製造方法に用いるセルロースアシレートフィルムは、上記のセルロースアシレート溶液を用いて溶液流延製膜方法により製造することができる。溶液流延製膜方法の実施に際しては、従来の方法に従い、従来の装置を用いることができる。具体的には、溶解機(釜)で調製されたドープ(セルロースアシレート溶液)を、ろ過後、貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製することができる。ドープは30℃に保温し、ドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延する(流延工程)。次いで、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離し、続いて乾燥ゾーンへ搬送し、ロール群で搬送しながら乾燥を終了する。溶液流延製膜方法の流延工程、乾燥工程の詳細については、特開2005−104148号公報の120〜146頁にも記載があり、適宜本発明にも適用することができる。
また、本発明の製造方法に用いるセルロースアシレートフィルムは、上記のセルロースアシレート溶液を用いずに溶融流延製膜方法により製造することができる。溶融流延製膜方法は、ポリマーを加熱して溶融したものを支持体上に流延し、冷却してフィルムを形成する方法である。ポリマーの融点、もしくはポリマーと各種添加剤との混合物の融点が、これらの分解温度よりも低くかつ延伸温度よりも高い場合には、溶融流延製膜方法を採用することが可能である。溶融流延製膜方法については、特開2000−352620号公報などに記載がある。
本発明においては、熱処理前のセルロースアシレートフィルムの製膜の際に用いる金属支持体として金属バンドまたは金属ドラムを使用することができる。金属バンドを使用して製膜したセルロースアシレートフィルムを用いる場合は、熱処理後のフィルムのRthが低くなるという傾向があり、前記添加剤等、他のレタデーションを調整する要素にもよるが、Nzが0〜0.5であるフィルムを作製することができる。また、金属ドラムを使用して製膜したセルロースアシレートフィルムを用いる場合は、熱処理後のフィルムのRthが高くなるという傾向があり、前記添加剤等、他のレタデーションの調整する要素にもよるが、Nzが0.4以上、場合によりさらにNzが1未満の条件も満たすフィルムを作製することができる。これらの本発明の製造方法に用いるセルロースアシレートフィルムの熱処理後のRthの違いは、製膜過程でウェブにかかる外力が異なることに起因する、熱処理前のフィルム中に存在するセルロースアシレートポリマー鎖の面配向状態の違いが原因であると推測される。
本発明の製造方法により製造されるセルロースアシレートフィルムのレタデーションを制御する際には、熱処理前のセルロースアシレートフィルムにかかる力学的な履歴、すなわち製膜過程においてセルロースアシレートウェブに与えられる外力を制御しておくことが好ましい。具体的には、本発明の製造方法により製造されるセルロースアシレートフィルムが、大きなReを示し且つ負のRthを示す場合は、セルロースアシレートウェブを、好ましくは0.1%以上15%未満、より好ましくは0.5〜10%、さらに好ましくは1〜8%延伸する。なお、熱処理前のセルロースアシレートフィルムを搬送しながら作製する場合には、当該搬送方向と直交する方向へ、延伸することが好ましい。この延伸の際のセルロースアシレートウェブの残留溶媒量は、下記式に基づいて算出されるもので5〜1000%とする。残留溶媒量は、10〜200%であることが好ましく、30〜150%であることがより好ましく、40〜100%であることがさらに好ましい。
残留溶媒量(質量%)={(M−N)/N}×100
[式中、Mは、延伸ゾーンに挿入される直前のセルロースアシレートフィルムの質量、Nは、延伸ゾーンに挿入される直前のセルロースアシレートフィルムを110℃で3時間乾燥させたときの質量を表す]
また、大きなReを示し且つ正のRthを示す場合は、セルロースアシレートウェブを、好ましくは15〜300%、より好ましくは18〜200%、さらに好ましくは20〜100%延伸する。なお、熱処理前のセルロースアシレートフィルムを搬送しながら作製する場合には、当該搬送方向と直交する方向へ、延伸することが好ましい。この延伸の際のセルロースアシレートウェブの残留溶媒量は、上記式に基づいて算出されるもので5〜1000%とする。残留溶媒量は、30〜500%であることが好ましく、50〜300%であることがより好ましく、80〜250%であることがさらに好ましい。
前記延伸の際のセルロースアシレートウェブの延伸倍率(伸び)は、搬送方向に直交する線上にあるセルロースアシレートフィルム両端部をそれぞれクリップで把持し、一方の端部を把持したテンタークリップと他方の端部を把持したテンタークリップとの間の距離を調節することにより達成することができる。このような延伸を行うことによって、レタデーションの発現性を調整することができる。
残留溶媒量が5%以上の状態で延伸すればヘイズが大きくなりにくく、残留溶媒量が1000%以下の状態で延伸すればセルロースアシレートポリマー鎖に加えられる外力が伝わりやすく、前記溶媒を含有した状態で実施されるセルロースアシレートウェブ延伸によるレタデーション発現性調整の効果が大きくなる傾向がある。なお、セルロースアシレートウェブの残留溶媒量は、前記セルロースアシレート溶液の濃度、金属支持体の温度や速度、乾燥風の温度や風量、乾燥雰囲気中の溶媒ガス濃度等を変更することにより、適宜調整することができる。
さらに、前記セルロースアシレートウェブを伸ばす工程においては、ウェブの膜面温度はセルロースアシレートポリマーに外力を伝える観点から低いほうが好ましく、ウェブの温度を(Ts−100)〜(Ts−0.1)℃とすることが好ましく、(Ts−50)〜(Ts−1)℃とすることがより好ましく、(Ts−20)〜(Ts−3)℃とすることがさらに好ましい。ここで、Tsは流延支持体の表面温度を表し、流延支持体の温度が部分的に異なる温度に設定されている場合には、支持体中央部における表面温度のことを表す。
このようにして伸ばされる工程を経たセルロースアシレートウェブは、続いて乾燥ゾーンへ搬送し、テンターで両端をクリップされたり、ロール群で搬送したりしながら乾燥を終了する。
このようにして乾燥の終了したフィルム中の残留溶剤量は0〜2質量%が好ましく、より好ましくは0〜1質量%である。このフィルムは、そのまま熱処理ゾーンへ搬送してもよいし、フィルムを巻き取ってからオフラインで熱処理を実施してもよい。熱処理前のセルロースアシレートフィルムの好ましい幅は0.5〜5mであり、より好ましくは0.7〜3mである。また、一旦フィルムを巻き取る場合には、好ましい巻長は300〜30000mであり、より好ましくは500〜10000mであり、さらに好ましくは1000〜7000mである。
製膜した本発明の製造方法に用いるセルロースアシレートフィルムの膜厚80μm換算の透湿度は、100g/(m2・day)以上であることが好ましく、100〜1500g/(m2・day)であることがより好ましく、200〜1000g/(m2・day)であることがさらに好ましく、300〜800g/(m2・day)であることが特に好ましい。
本発明における透湿度は、塩化カルシウムを入れたカップを評価するフィルムで蓋をして密閉したものを、40℃・相対湿度90%の条件で24時間放置した際の調湿前後の質量変化(g/(m2・day))から評価した値である。なお、透湿度は、温度の上昇に伴い上昇し、また、湿度の上昇に伴い上昇するが、各条件によらず、フィルム間における透湿度の大小関係は不変である。そのため、本発明においては40℃・相対湿度90%における前記質量変化の値を基準とする。また、透湿度は膜厚の上昇に伴い低下し、膜厚の低下に伴い上昇するため、まず実測した透湿度に実測した膜厚を乗じ、それを80で割った値を本発明における「膜厚80μm換算の透湿度」とした。
[予備延伸]
本発明においては、前記製膜したセルロースアシレートフィルムは、後述の熱処理を行う前に延伸を行う。本明細書では、以下において当該延伸を「予備延伸」とも称するが、本発明の製造方法では当該予備延伸後にさらに延伸を行っても行わなくてもよい。該予備延伸を行うことにより、熱処理工程において、ReやRthの発現性をさらに調整したり、予備延伸の方向に直交する方向への大幅な寸法変化を抑えたりすることができる。具体的には、後述の範囲内で、延伸温度を低下させたり、延伸倍率を上昇させることにより、熱処理温度を比較的低く設定したり、ReやRthの到達範囲をより大きくしたりすることが可能となる。また、本発明の趣旨を逸脱しない範囲内において、予備延伸工程と熱処理工程の間に他の工程を含んでいてもよい。
セルロースアシレートフィルムの延伸は、常温または加熱条件下で実施する。セルロースアシレートフィルムは、上記の乾燥中の処理で延伸することができ、特に溶媒が残存する場合は有効である。予備延伸を行うセルロースアシレートフィルムの残留溶媒量は、5〜90質量%であることが好ましく、10〜90質量%であることがより好ましく、10〜40質量%であることがさらに好ましい。
本発明の製造方法では、予備延伸は、本発明の製造方法に用いるセルロースアシレートフィルムのガラス転移温度をTg(単位;℃)としたとき、(Tg−50)〜(Tg+50)℃で行うことが好ましい。前記予備延伸温度は、より好ましくは(Tg−20)〜(Tg+50)℃であり、さらに好ましくは、(Tg−10)〜(Tg+40)℃であり、最も好ましくは、Tg〜(Tg+35)℃である。ただし、予備延伸温度は後述の熱処理温度を超えることはない。予備延伸温度は熱処理温度よりも5℃以上低い温度で実施することが好ましく、熱処理温度よりも10℃以上低い温度で実施することがより好ましく、熱処理温度よりも15℃以上低い温度で実施することがさらに好ましく、熱処理温度よりも20℃以上低い温度で実施することが特に好ましく、熱処理温度よりも35℃以上低い温度で実施することが最も好ましい。予備延伸は、延伸ゾーン内にて行うことが好ましく、また、延伸ゾーンの前に予熱ゾーンを通過させることが好ましい。予熱ゾーンの温度(T1)と延伸ゾーンの温度(T2)との温度差(T1−T2)は、1〜50℃に設定することが好ましく、10〜45℃に設定することがより好ましく、15〜40℃に設定することがさらに好ましい。
本発明においてガラス転移温度とは、本発明のセルロースアシレートフィルムを構成するポリマーの運動性が大きく変化する境界温度である。本発明におけるガラス転移温度は、示差走査熱量測定装置(DSC)の測定パンにセルロースアシレートフィルムを5〜6mg入れ、これを窒素気流中で20℃/分で25℃から120℃まで昇温し、15分間保持した後、30℃まで−20℃/分で冷却し、この後、再度30℃から250℃まで昇温し、2本のベースラインの中線と試料のサーモグラムとの交点の温度である。
本発明の製造方法は、本発明の製造方法に用いるセルロースアシレートフィルムを結晶化温度(Tc)以上にすることにより、X線回折で観測される構造体を成長させ、レタデーションを調整できると推定されるが、このように予めフィルムに予備延伸を実施することによってポリマーを予備延伸方向にある程度配列させることができるため、後述の熱処理工程において、予備延伸の方向に直交する方向への大きな寸法変化を与えることなく、X線回折で観測される構造体を効率的に、且つ異方的に成長させることができる。また、予備延伸温度を、熱処理温度より低くすることにより、X線回折で観測される構造体を成長させることなくセルロースアシレートポリマーを配向させることができるため、その後の熱処理工程でより効率的にX線回折で観測される構造体を成長させることができるという利点がある。
前記予備延伸の方向はセルロースアシレートフィルムの搬送方向に直交する方向(本明細書ではこの方向を幅方向とも呼ぶ)である。予備延伸倍率は1〜200%であることが好ましく、5〜150%がより好ましく、10〜100%がさらに好ましい。これらの予備延伸は1段で実施しても、多段で実施してもよい。なお、ここでいう「予備延伸倍率(%)」とは、以下の式により求められるものを意味する。
予備延伸倍率(%)=100×{(延伸後の長さ)−(延伸前の長さ)}/延伸前の長さ
前記予備延伸における延伸速度は1〜100%/minが好ましく、5〜80%/minがより好ましく、10〜60%/minがさらに好ましい。ここでいう延伸速度は上記式(II)により求められる。延伸速度は、一定であってもよいし、変化させてもよい。
幅方向の延伸は、搬送方向に直交する線上にあるセルロースアシレートフィルム両端部をそれぞれクリップで把持し、一方の端部を把持したテンタークリップと他方の端部を把持したテンタークリップとの間の距離を徐々に拡げることにより行うことが好ましい。フィルムの乾燥後に、延伸機を用いて延伸することもでき、例えばロング延伸機を用いる一軸延伸が好ましい。
また、特開2006−51804号公報[0033]〜[0046]および実施例の記載も参照することができる。
[熱処理]
本発明のセルロースアシレートフィルムの製造方法は、セルロースアシレートフィルムを、下記式(1)の条件を満たす温度T(単位;℃)で熱処理する工程を含むことを特徴とする。ここで、熱処理は搬送しながら行うことが好ましい。
式(1): Tc≦T<Tm0
式(1)において、Tcは熱処理前のセルロースアシレートフィルムの結晶化温度を表し、単位は℃である。本発明において結晶化温度とは、セルロースアシレートフィルムを構成するポリマーが規則的な周期構造を形成する温度のことを示し、この温度を超えるとX線回折で観測される構造体が成長する。本発明における結晶化温度は、DSCの測定パンにセルロースアシレートフィルムを5〜6mg入れ、これを窒素気流中で20℃/分で30℃から120℃まで昇温して15分保持した後、30℃まで−20℃/分で冷却し、さらにこの後、再度30℃から300℃まで昇温した際に、観測された発熱ピークの開始温度である。なお、この範囲で発熱ピークが観測されない場合は、結晶化温度が観測されないとみなす。Tcは通常、前述のガラス転移温度(Tg)よりも高温側に現れる。例えば、全置換度が2.85のセルローストリアセテートフィルムの結晶化温度は添加剤や製膜条件等により上下するが、約190℃であり、全置換度が2.92のセルローストリアセテートフィルムの結晶化温度は約170℃である。
式(1)において、Tm0は熱処理前のセルロースアシレートフィルムの融点を表し、単位は℃である。本発明における融点は、DSCの測定パンに熱処理前のセルロースアシレートフィルムを5〜6mg入れ、これを窒素気流中で20℃/分で30℃から120℃まで昇温して15分保持した後、30℃まで−20℃/分で冷却し、さらにこの後、再度30℃から300℃まで昇温した際に、観測された吸熱ピークの開始温度である。Tm0は通常、前述の結晶化温度(Tc)よりも高温側に現れる。例えば、全置換度が2.85のセルローストリアセテートフィルムの融点は添加剤や製膜条件等により若干上下するが、約285℃であり、全置換度が2.92のセルローストリアセテートフィルムの融点は約290℃である。
式(1)の条件を満たす温度Tでセルロースアシレートフィルムを熱処理することによって、セルロースアシレートフィルムのレタデーションの発現性を調整することができる。特に、Reを高めることができる。式(1)の条件を満たす温度Tで熱処理することによって、熱処理前よりもReが通常は15nm以上上昇するが、25nm以上上昇することが好ましく、50nm以上上昇することがより好ましい。また、100nm以上上昇することがさらに好ましく、150nm以上上昇することがさらにより好ましく、200nm以上上昇することが特に好ましい。Reの上昇幅は、前述の予備延伸の条件(温度や倍率)や熱処理の条件(特に温度)等により制御することができる。また、式(1)の条件を満たす温度Tで熱処理することによって、従来は製造することが容易ではなかったレタデーション値を有するセルロースアシレートフィルムを簡便な方法で製造することができるようになった。特に、従来は煩雑な製法によらなければ製造することができなかったNzが−0.05〜1.05、特にNzが0より大きく1未満のセルロースアシレートフィルムを簡便な方法でトタン板状のシワなく製造することができるようになった。
本発明の製造方法における熱処理温度は、下記式(1a)を満たすことが好ましく、下記式(1b)を満たすことがより好ましく、下記式(1c)を満たすことがさらに好ましい。これらの式を満たす温度を選択することによって、Re発現性が増大するという利点がある。
式(1a): Tc+5≦T<Tm0−5
式(1b): Tc+10≦T<Tm0−10
式(1c): Tc+15≦T<Tm0−15
本発明の製造方法における熱処理は、セルロースアシレートフィルムを搬送しながら行うことが好ましい。搬送方向は、予備延伸時の延伸方向に直交する方向とすることが好ましい。セルロースアシレートフィルムの搬送手段は特に制限されないが、典型的な例としてニップロールやサクションドラムにより搬送する手段、テンタークリップで把持しながら搬送する手段、空気圧で浮上搬送する手段、隙間が狭い複数の搬送ローラにより搬送する手段などを挙げることができる。好ましいのは、ニップロールにより搬送する手段、テンタークリップで把持しながら搬送する手段、隙間が狭い複数の搬送ローラにより搬送する手段であり、より好ましいのは、テンタークリップで把持しながら搬送する手段、隙間が狭い複数の搬送ローラにより搬送する手段である。
テンタークリップで把持しながら搬送する手段は、具体的には、搬送方向に直交する線上にあるセルロースアシレートフィルム両端部をそれぞれテンタークリップで把持し、一方の端部を把持したテンタークリップと他方の端部を把持したテンタークリップとの間の距離を制御しながら搬送することにより行うことができる。テンタークリップ間の距離は、テンターレールパターンを適宜設定することにより制御することが可能である。このようにして、テンタークリップ間の距離を制御することにより、幅方向の寸法変化率を所望の値に抑制しながらセルロースアシレートフィルムを熱処理することができる。
隙間が狭い複数の搬送ローラにより搬送する手段は、具体的には、隣り合う搬送ロール間の隙間が0.1cm〜50cmとなるように熱処理ゾーン内に設置された複数の搬送ロールにセルロースアシレートフィルムを通して搬送することにより行うことができる。隣り合う搬送ロール間の隙間とは、搬送されるフィルムが1つの搬送ロールから離れてから次の搬送ロールにラップされるまでの間の距離を指す(図1のd)。このような搬送ロール間の隙間の狭い一群の搬送ロール(いわゆる密ロール)の間を通すことにより、フィルム幅方向に搬送ロールによる保持力が作用し、フィルムの幅方向への寸法変化率を抑制することができる。この方法では、テンタークリップ法のような幅方向の拡幅は不可能だが、収縮を最小限に抑制することができる。
搬送ロ−ル間の隙間は通常0.1cm〜50cmとし、より好ましくは0.3cm〜30cmとし、より好ましくは0.5cm〜15cmとするのが好ましい。搬送ロ−ル間の隙間が0.1cm未満では通紙等のハンドリングが行いにくくなり、搬送ロ−ル間の隙間が50cmを越えると搬送ロ−ル間での幅方向の寸法変化率を抑制する効果が小さくなり、いずれも好ましくない。このような隙間で設置する搬送ロ−ルの本数は2本〜100本が好ましく、より好ましくは2本〜50本、さらに好ましくは2本〜30本である。100本を越えるとフィルムの表面に傷が発生しやすいうえ、多大な設備を必要とし好ましくない。熱処理ゾーンの中の隣り合う搬送ロール間の隙間は、すべて同一であっても異なっていてもよい。例えば、図2に示すように、複数の搬送ロールを一列に等間隔となるように配置することができる。
搬送ロ−ルの材質については特に制限は無く、アルミニウム、鉄、ステンレススチール、セラミック等を用いることができる。さらにこれらの表面を、ニッケル、クロム、セラミクス等の無機物や、シリコンゴム、テフロン等の耐熱性有機素材で被覆するのも好ましい。これらのロ−ルは低張力での搬送を実施するためなるべく軽い方が好ましく、中空ロ−ルも好ましく用いられる。また、表面の粗さは0.001μm〜0.1μmのものが好ましく用いられる。表面が粗いものは、この凹凸が高温で柔らかくなった支持体に転写し好ましくない。これらの搬送ロ−ルの直径は1cm〜50cmが好ましく、2cm〜40cmがより好ましく、3cm〜30cmがさらに好ましい。直径が1cm未満ではシワを十分に伸ばすことができずに好ましくない。また直径が50cmを越えると大きな設備を必要とし、好ましくない。また、フィルムが搬送ロールにラップする角度(図1のθ;以下、ラップ角と呼ぶ)が大きい程、幅方向の寸法変化率を抑制する力が大きくなり、好ましい。ラップ角は通常60〜240度とし、90〜225度とすることが好ましい。ロール径、ロール間の隙間、ロールの配置を最適に設計することで、ラップ角を最大限に大きくとることが好ましい。具体的には、図3に示すように搬送ロールを上下に互い違いに配置したり、左右に互い違いに配置したりすることによりラップ角を大きくとることができる。
本発明にしたがって幅方向の寸法変化を抑制することにより、幅方向の寸法変化率を−10%〜+100%とすることが好ましく、−5%〜+40%とすることがより好ましく、−3%〜+10%とすることがさらに好ましい。幅方向の寸法変化を抑制しない場合は、フィルム幅とロール間の隙間の比、搬送テンション等によって変化するが、−40%程度の寸法変化率となり、好ましくない。また、+100%以下とすることで、Rthの上昇(以上によるNZファクターの上昇)を許容範囲内に留めることができ、好ましい。
以上のようにすることにより、レタデーション発現性を確保しつつ、フィルムの割れやすさやトタン板状のシワを改良し、さらに広い製品幅を確保することが可能となる。また、ReやRthの湿度依存性を大幅に改良できる、という効果も得られる。
熱処理工程における、予備延伸の方向への寸法変化率は、例えば予備延伸の方向がフィルムの幅方向である場合、熱処理に伴う幅方向の寸法変化率として以下のようにして求めることができる。
熱処理に伴う幅方向の寸法変化率は、熱処理によってフィルムの全幅が熱処理直前よりも短くなる場合は、熱処理中の最小全幅と熱処理直前の全幅とから、次式で求めることができる。
幅方向への寸法変化率(%)=100×(熱処理中の最小全幅−熱処理直前の全幅)/熱処理直前の全幅
ここでいう熱処理中の最小全幅とは、熱処理工程中においてフィルムが幅方向に最も収縮して短くなったときの幅を意味する。例えば、全幅200cmのフィルムが熱処理中に180cmまで収縮した後に190cmまで膨張した(延伸された)場合は、熱処理中の最小全幅は180cmとなる。
熱処理によってフィルムの全幅が熱処理直前よりも短くならない場合や、熱処理工程中にフィルムが収縮するだけで膨張しない場合は、幅方向への寸法変化率は熱処理ゾーン入口におけるフィルム全幅と熱処理ゾーン出口におけるフィルム全幅とから、次式で求めることもできる。
幅方向への寸法変化率(%)=100×(熱処理直後の全幅−熱処理直前の全幅)/熱処理直前の全幅
搬送の速度は、通常は1〜500m/分であり、5〜300m/分が好ましく、10〜200m/分がより好ましく、20〜100m/分がさらに好ましい。搬送速度が、上記の下限値である1m/分以上であれば産業上、十分な生産性を確保することができるという点で好ましくなる傾向があり、上記の上限値である500m/分以下であれば実用的な熱処理ゾーン長で十分に結晶成長を進行させることができるという点で好ましくなる傾向がある。搬送速度を速くすればフィルムの着色を抑制することができる傾向があり、搬送速度を遅くすれば熱処理ゾーン長を短くすることができる傾向がある。熱処理中の搬送速度(搬送速度を決定するニップロールやサクションドラム等の装置の速度)は一定にしておくことが好ましい。
本発明の製造方法における熱処理の方法として、例えば、セルロースアシレートフィルムを搬送しながら温度Tのゾーン内を通過させる方法、搬送されているセルロースアシレートフィルムに熱風をあてる方法、搬送されているセルロースアシレートフィルムに熱線を照射する方法、セルロースアシレートフィルムを昇温されたロールに接触させる方法などを挙げることができる。
好ましいのは、セルロースアシレートフィルムを搬送しながら温度Tのゾーン内を熱風をあてながら通過させる方法である。この方法によれば、セルロースアシレートフィルムを均一に加熱することができるという利点がある。ゾーン内の温度は、例えば温度センサでモニターしつつヒータで一定温度に制御することにより温度Tに維持することができる。温度Tのゾーン内のセルロースアシレートフィルムの搬送長は、製造しようとするセルロースアシレートフィルムの性質や搬送速度によって異なるが、通常は(搬送長)/(搬送するセルロースアシレートフィルムの幅)の比が0.1〜100となるように設定することが好ましく、より好ましくは0.5〜50であり、さらに好ましくは1〜20である。この比は、本明細書において縦横比と略すこともある。温度Tのゾーンの通過時間(熱処理の時間)は、通常0.01〜60分であり、好ましくは0.03〜10分であり、さらに好ましくは0.05〜5分である。前記範囲とすることにより、レタデーションの発現に優れ、フィルムの着色を抑制することができる。
本発明の製造方法では、場合により、前記予備延伸の方向への寸法変化率の範囲内で、熱処理と同時に延伸してもよい。熱処理時の延伸方向は特に制限されるものではないが、Re湿度依存性の改良の観点からは予備延伸時のセルロースアシレートフィルムの配向方向に直交する方向への延伸であることが好ましい。延伸の方法は特に制限されないが、出口側の周速を速くしたフィルムを搬送方向に保持する2つ以上の装置(例えば、ニップロールやサクションドラム)などにより延伸することができる。また前記延伸における延伸速度は20〜10000%/分が好ましく、より好ましくは40〜1000%/分であり、さらに好ましくは50〜500%/分である。
熱処理の際に、前記予備延伸の方向への寸法変化率の範囲内で、セルロースアシレートフィルムを収縮させてもよい。当該収縮は、熱処理時に行うことが好ましい。熱処理の際にセルロースアシレートフィルムを収縮させることによって、光学特性および/または力学物性を調整することができるようになる。予備延伸の方向に収縮させる工程は、熱処理の際に行うだけでなく、熱処理の前後の工程でも行うことができる。また、予備延伸の方向に収縮させる工程は一段で行ってもよく、収縮工程と延伸工程とを繰り返し実施してもよい。
フィルムに対する収縮の方向は、特に制限されるものではないが、予備延伸方向に、収縮させることが好ましい。収縮率は熱処理温度の調整や、フィルムにかかる外力の調整によって抑制することができる。具体的には、フィルムの端部をテンタークリップで把持している場合にはレールの拡幅率などで抑制することができる。また、フィルムの端部が固定されていない場合には、密ロールゾーンを設置し、そのロール間距離の調整や、そのゾーン間でフィルムにかかるテンションの調整や、ソーン温度の調整などによって抑制することができる。
セルロースアシレートフィルムを熱処理する工程は、本発明の製造方法において1回のみ行ってもよいし、複数回行ってもよい。複数回行うとは、前の熱処理が終了した後に一旦温度をTc未満に下げ、その後、再び温度をTc以上Tm0未満に設定して搬送しながら熱処理を行うことを意味する。また、複数回行うとは、温度の異なる複数のゾーンを用意して搬送しながら熱処理を行うことも意味する。この場合、温度を徐々に上げていっても良い。複数回熱処理を行う場合は、すべての熱処理が完了した段階で上記の延伸倍率の範囲を満たすことが好ましい。本発明の製造方法における熱処理は、3回以下が好ましく、2回以下がより好ましい。
[熱処理後の冷却]
熱処理を終えたポリマーフィルムは、Tc未満の温度に冷却する。このとき、0.1〜500N/mの搬送張力で搬送しながら冷却することによって、最終的に得られるセルロースアシレートフィルムのレタデーション(特にRe)の湿度依存性を効果的に低減することができる。冷却時の搬送張力は、1〜400N/mであることが好ましく、10〜300N/mであることがより好ましく、50〜200N/mであることがさらに好ましい。搬送張力を0.1N/m以上にすることにより、レタデーションの湿度依存性を低減し、さらに面状も良好にしやすくなる傾向がある。また、搬送張力を500N/m以下にすることにより、レタデーションの湿度依存性を低減し、さらにReの絶対値を上げやすくなる傾向がある。
搬送張力の制御は、例えば、冷却ゾーンの直前と冷却ゾーンの後方とに、少なくとも一対の張力制御装置(例えば、ニップロールやサクションドラムなど)を配置し、それぞれの回転数を調整することによって行うことができる。具体的には、一対のテンション制御装置の送出し速度(v1)と巻取り速度(v2)との比(v2/v1)を小さくすると搬送張力は低下し、大きくすると搬送張力は上昇する。
冷却時の冷却速度は特に制限されるものではないが、好ましくは100〜1,000,000℃/分、より好ましくは1,000〜100,000℃/分、さらに好ましくは3,000〜50,000℃/分でフィルムを冷却する。このような冷却速度でフィルムを冷却する温度幅は、50℃以上であることが好ましく、100〜300℃であることがより好ましく、150〜280℃であることがさらに好ましく、180〜250℃であることが特に好ましい。
このように冷却速度を調整することによって、得られるセルロースアシレートフィルムのレタデーションの発現性をさらに調整することができる。具体的には、冷却速度を速くすることによって、レタデーションの発現性を向上させることができる。また、セルロースアシレートフィルム中の、厚み方向のポリマー鎖の配向の分布を低減させることができ、フィルムの湿度カールを抑制することができる。このような効果は、比較的速い冷却速度で冷却する温度幅を上記の好ましい範囲に制御することによって、さらに十分に得ることができる。
前記冷却速度は、加熱ゾーンの後に、加熱ゾーンより低い温度に保持された冷却ゾーンを設けておいて、これらのゾーンにセルロースアシレートフィルムを順次搬送したり、冷却ロールをフィルムと接触させたり、冷却風をフィルムに吹き付けたり、フィルムを冷却された液体に浸漬したりして制御することができる。冷却速度は、冷却工程中において常に一定であることは必要とされず、冷却工程の初期と終盤は冷却速度を小さくし、その間において冷却速度を大きくしてもよい。冷却速度は、後述する実施例に記載されるようにフィルム膜面上に配置した熱電対によって複数地点の温度を測定することにより求めることができる。
[熱処理後の延伸(再延伸)]
本発明の製造方法では、セルロースアシレートフィルムの上記の熱処理後に延伸を行ってもよい(他の延伸と区別するために「再延伸」という)。これにより、最終的に得られる透明フィルムのレタデーション(特にRe)の湿度依存性を効果的に低減することができる。特に、熱処理時の予備延伸の方向への寸法変化率を−10%以上、好ましくは−10〜10%とし、さらに再延伸を行うことにより、一段と効果的にレタデーションの湿度依存性を効果的に低減することができる。再延伸温度は、目的のRe、Rth値に応じて、適宜、設定することができるが、(Tg−20)〜(前記熱処理温度)℃であることが好ましく、(Tg−10)〜(前記熱処理温度−20)℃であることがより好ましく、Tg〜(前記熱処理温度−40)℃であることがさらに好ましい。ここで、Tgは熱処理前のセルロースアシレートフィルムのガラス転移温度(単位;℃)を表す。
再延伸の実施により、結晶部分を大きく動かすことなく、配向した非晶部分を減少させることができると考えられる。したがって、Reを大きく動かすことなく、ΔReを低減させることが可能となる。このような再延伸は、配向した非晶部分を効率的に減少させる観点から、前記熱処理工程において延伸を伴う場合には、当該延伸方向に直交する方向への再延伸であることが好ましく、前記熱処理工程が延伸を伴わない場合には、結晶の配向方向への延伸であることが好ましく、一般に、幅方向への横延伸であることがより好ましい。
再延伸は、熱処理後にセルロースアシレートフィルムがTc未満の温度まで冷却された後に行われてもよく、熱処理温度を保ったまま冷却されることなく行われてもよい。
再延伸の方法としては、上記の熱処理中の延伸の説明にて記載した方法等を採用することができる。再延伸は1段で実施しても、多段で実施してもよい。好ましいのは、上記のニップロールの回転速度を変えることにより搬送方向に延伸する方法とポリマーフィルムの両端をテンタークリップで把持してこれを搬送方向に直交する方向に広げることより延伸する方法である。特に好ましいのは、熱処理の際に延伸を行わないか、あるいは、ニップロールの回転速度を変えることにより搬送方向に延伸しておき、熱処理後にポリマーフィルムの両端をテンタークリップで把持してこれを搬送方向に直交する方向に広げることより再延伸する態様である。
再延伸の延伸倍率はセルロースアシレートフィルムに要求するレタデーションに応じて適宜設定することができ、1〜500%が好ましく、3〜400%がより好ましく、5〜300%がさらに好ましく、10〜100%が特に好ましい。ここでいう再延伸の倍率は、以下の式により求められる。
再延伸倍率(%)=100×{(延伸後の長さ)−(延伸前の長さ)}/延伸前の長さ
再延伸の延伸速度は10〜10000%/分が好ましく、より好ましくは20〜1000%/分であり、さらに好ましくは30〜800%/分である。
熱処理後に再延伸を行うことにより、得られる透明フィルムのReとRthを調整することができる。例えば、再延伸の延伸温度を高くすることによって、Reをあまり変化させずにRthを低下させることができる。また、再延伸の延伸倍率を高くすることによって、Reを低下させRthを上昇させることもできる。これらは、ほぼ線形的な相関関係を示すことから、再延伸の延伸条件を適当に選択することによって、目的とするReやRthを達成しやすくなる。
熱処理が終わった後、再延伸を行う前の状態のセルロースアシレートフィルムのReやRthは特に制限されない。
《セルロースアシレートフィルム》
(本発明のセルロースアシレートフィルムの特徴)
上記の本発明の製造方法によれば、軸ズレや、割れやすさや、フィルムのトタン板状のシワが改善されたセルロースアシレートフィルムを得ることができる。また、本発明の製造方法によれば、レタデーションが良好に発現したセルロースアシレートフィルムを得ることができる。特に、従来の製造方法では製造することが容易ではなかったNzが0〜1のセルロースアシレートフィルムを比較的簡単な方法で製造することもできる。
(レタデーション)
本明細書において、Re、Rth(単位;nm)は次の方法に従って求めたものである。まず、フィルムを25℃、相対湿度60%にて24時間調湿後、プリズムカップラー(MODEL2010 Prism Coupler:Metricon製)を用い、25℃、相対湿度60%において、532nmの固体レーザーを用いて下記式(2)で表される平均屈折率(n)を求める。
式(2): n=(nTE×2+nTM)/3
[式中、nTEはフィルム平面方向の偏光で測定した屈折率であり、nTMはフィルム面法線方向の偏光で測定した屈折率である。]
本明細書において、Re(λnm)、Rth(λnm)は各々、波長λ(単位;nm)における面内レタデーションおよび厚さ方向のレタデーションを表す。Re(λnm)はKOBRA 21ADHまたはWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
測定されるフィルムが一軸または二軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λnm)は算出される。
Rth(λnm)は前記Re(λnm)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレタデーション値と平均屈折率および入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記において、λに関する記載が特になく、Re、Rthとのみ記載されている場合は、波長590nmの光を用いて測定した値のことを表す。また、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレタデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレタデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRが算出する。
なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレタデーション値を測定し、その値と平均屈折率および入力された膜厚値を基に、以下の式(3)および式(4)よりRthを算出することもできる。
式(3)
Figure 2009241395
[式中、Re(θ)は法線方向から角度θ傾斜した方向におけるレタ−デーション値を表す。また、nxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnxおよびnyに直交する厚み方向の屈折率を表し、dはフィルムの膜厚を表す。]
式(4): Rth=((nx+ny)/2−nz)×d
測定されるフィルムが一軸や二軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法によりRth(λnm)は算出される。
Rth(λnm)は前記Re(λnm)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレタデーション値と平均屈折率および入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。これら平均屈折率と膜厚を入力することで、KOBRA 21ADHまたはWRはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx−nz)/(nx−ny)がさらに算出される。
本発明の製造方法によれば、前記Reが50nm以上であるセルロースアシレートフィルムを容易に製造することができる。本発明のセルロースアシレートフィルムのReは60〜400nmであることが好ましく、80〜300nmであることがより好ましい。
本発明の製造方法により製造されるセルロースアシレートフィルムは、上記式(I)で表されるNzが0〜1であることが好ましい。また、本発明のセルロースアシレートフィルムのNzは0.1〜0.9であることがより好ましく、0.2〜0.8であることがさらに好ましく、0.3〜0.7であることが特に好ましい。
これらのNz値は、前述の熱処理されたセルロースアシレートフィルムに対し、前述の熱処理後の延伸(再延伸)工程を適用することによって、適宜、上昇させることができる。
(湿度依存性)
本発明において、Reの湿度依存性(ΔRe)およびRthの湿度依存性(ΔRth)は、相対湿度がH(単位;%)であるときの面内方向および膜厚方向のレタデーション値:Re(H%)およびRth(H%)から、下記式に基づいて算出される。
ΔRe=Re(10%)−Re(80%)
ΔRth=Rth(10%)−Rth(80%)
Re(H%)およびRth(H%)は、フィルムを25℃、相対湿度H%にて24時間調湿後、25℃、相対湿度H%において、前記方法と同様にして、相対湿度H%における測定波長が590nmであるときのレタデーション値を測定、算出したものである。なお、相対湿度を明記せずに単にReと表記されている場合は、相対湿度60%で測定した値である。
本発明のセルロースアシレートフィルムの湿度を変化させた場合のレタデーション値は、以下の関係式を満たすことが好ましい。
|ΔRe/Re|<0.5、且つ、
|ΔRth|<50
また以下の関係式を満たすことがより好ましい。
|ΔRe/Re|<0.3、且つ、
|ΔRth|<40
また以下の関係式を満たすことがさらに好ましい。
|ΔRe/Re|<0.2、且つ、
|ΔRth|<30
また、本発明のセルロースアシレートフィルムの湿度を変化させた場合のレタデーション値は、以下の関係式も満たすことが好ましい。
|ΔRe|<50
また以下の関係式を満たすことがより好ましい。
|ΔRe|<40
また以下の関係式を満たすことがさらに好ましい。
|ΔRe|<30
また以下の関係式を満たすことが最も好ましい。
|ΔRe|<20
上記湿度を変化させた場合のレタデーション値を制御することにより、外部環境が変化した場合のレタデーション変化を低下させることができ、信頼性の高い液晶表示装置を提供することができる。
(均一性)
本発明の製造方法によれば、Re、Rthの幅方向、長手方向の場所による変動をいずれも5%以下、より好ましくは4%以下、さらに好ましくは3%以下であるセルロースアシレートフィルムを製造することができる。さらに配向角が好ましくは90°±5°以下または0°±5°以下、より好ましくは90°±3°以下または0°±3°以下、さらに好ましくは90°±1°以下または0°±1°以下であるセルロースアシレートフィルムを製造することができる。これらは本発明のような延伸と熱処理を行うことでボーイングを低減することができるためであり、具体的には、テンターに入る前のフィルムの面上に幅方向に沿って描いた直線が熱処理終了後には凹型に変形したセンター部のずれを幅で割ったボーイングひずみが10%以下、より好ましくは5%以下さらに好ましくは3%以下とすることができる。
(遅相軸)
本発明の製造方法により製造されるセルロースアシレートフィルムは、製造時の搬送方向とフィルムのReの遅相軸とのなす角度θが0±10°もしくは90±10°であることが好ましく、0±5°もしくは90±5°であることがより好ましく、0±3°もしくは90±3°であることがさらに好ましく、場合により、0±1°もしくは90±1°であることが好ましく、90±1°であることが最も好ましい。
(結晶化熱量)
本発明の製造方法により製造されるセルロースアシレートフィルムの結晶化熱量は、通常2.0J/g以下であり、好ましくは0〜1.5J/gであり、より好ましくは0〜1.0J/gであり、さらに好ましく、0〜0.5J/gである。結晶化熱量とは、DSCの測定パンにフィルムを5〜6mg入れ、これを窒素気流中で20℃/分で30℃から120℃まで昇温し、15分保持した後、30℃まで−20℃/分で冷却し、さらにこの後、再度30℃から300℃まで昇温した際に現れた発熱ピークと試料のベースラインとで囲まれる面積である。
本発明の製造方法により製造されるセルロースアシレートフィルムは、上記発熱ピークの開始温度である結晶化温度が通常は観測されない。すなわち、結晶化熱量が0J/gである。一般に、熱処理を行う前のセルロースアシレートフィルムには結晶化温度が観測されるが、本発明の製造方法にしたがって熱処理を行った後のセルロースアシレートフィルムには、通常は結晶化温度が観測されない。
(融解熱量)
本発明の製造方法により製造されるセルロースアシレートフィルムの融解熱量(ΔHm)は、通常0J/gより大きく、好ましくは5〜45J/gであり、より好ましくは10〜40J/gであり、さらに好ましくは15〜35J/gである。融解熱量とは、DSCの測定パンにフィルムを5〜6mg入れ、これを窒素気流中で20℃/分で30℃から120℃まで昇温し、15分保持した後、30℃まで−20℃/分で冷却し、さらにこの後、再度30℃から300℃まで昇温した際に現れた吸熱ピークと試料のベースラインとで囲まれる面積である。
本発明の製造方法により製造されるセルロースアシレートフィルムは、上記吸熱ピークの頂点である融解温度が観測される。すなわち融解熱量が0J/gより大きい。本発明のセルロースアシレートフィルムは、熱処理により規則的な構造体を形成もしくは肥大化させることで所望のレタデーションを発現させているため、上記融解熱量が観測される。上記の結晶化温度と融解熱量とが観測されないセルロースアシレートフィルムは、そもそも規則構造体を形成することができないため所望のレタデーションを発現することができず、本発明には適していない。すなわち、熱処理を行う前のセルロースアシレートフィルムには結晶化温度と融解温度の両方が観測されるが、熱処理を行った後のセルロースアシレートフィルムには、結晶化温度が観測されないが、融解温度は観測される。
(膜厚)
本発明のセルロースアシレートフィルムの膜厚は20μm〜180μmが好ましく、30μm〜160μmがより好ましく、40μm〜120μmがさらに好ましい。膜厚が20μm以上であれば偏光板等に加工する際のハンドリング性や偏光板のカール抑制の点で好ましい。また、本発明のセルロースアシレートフィルムの膜厚むらは、搬送方向および幅方向のいずれも0〜2%であることが好ましく、0〜1.5%がさらに好ましく、0〜1%であることが特に好ましい。
(セルロースアシレートフィルムの構成)
本発明のセルロースアシレートフィルムは単層構造であっても複数層から構成されていても良いが、単層構造であることが好ましい。ここで、「単層構造」のフィルムとは、複数のフィルム材が貼り合わされているものではなく、一枚のポリマーフィルムを意味する。そして、複数のセルロースアシレート溶液から、逐次流延方式や共流延方式を用いて一枚のポリマーフィルムを製造する場合も含む。この場合、添加剤の種類や配合量、ポリマーの分子量分布やポリマーの種類等を適宜調整することによって厚み方向に分布を有するようなポリマーフィルムを得ることができる。また、それらの一枚のフィルム中に光学異方性部、防眩部、ガスバリア部、耐湿性部などの各種機能性部を有するものも含む。
(表面処理)
本発明のセルロースアシレートフィルムには、適宜、表面処理を行うことにより、各機能層(例えば、下塗層、バック層、光学異方性層)との接着を改善することが可能となる。前記表面処理には、グロー放電処理、紫外線照射処理、コロナ処理、火炎処理、鹸化処理(酸鹸化処理、アルカリ鹸化処理)が含まれ、特にグロー放電処理およびアルカリ鹸化処理が好ましい。ここでいう「グロー放電処理」とは、プラズマ励起性気体存在下でフィルム表面にプラズマ処理を施す処理である。これらの表面処理方法の詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)に記載があり、適宜、使用することができる。
フィルム表面と機能層との接着性を改善するため、表面処理に加えて、或いは表面処理に代えて、本発明のセルロースアシレートフィルム上に下塗層(接着層)を設けることもできる。前記下塗層については、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)32頁に記載があり、これらを適宜、使用することができる。また、セルロースアシレートフィルム上に設けられる機能性層について、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)32頁〜45頁に記載があり、これに記載のものを適宜、本発明のセルロースアシレートフィルム上に使用することができる。
《位相差フィルム》
本発明のセルロースアシレートフィルムは、位相差フィルムとして用いることができる。なお、「位相差フィルム」とは、一般に液晶表示装置等の表示装置に用いられ、光学異方性を有する光学材料のことを意味し、位相差板、光学補償フィルム、光学補償シートなどと同義である。液晶表示装置において、位相差フィルムは表示画面のコントラストを向上させたり、視野角特性や色味を改善したりする目的で用いられる。
本発明のセルロースアシレートフィルムを用いることで、Re値およびRth値を自在に制御した位相差フィルムを容易に作製することができる。また、視認性に優れた位相差フィルムを作製することができる。
また、本発明のセルロースアシレートフィルムを複数枚積層したり、本発明のセルロースアシレートフィルムと本発明外のフィルムとを積層したりしてReやRthを適宜調整して位相差フィルムとして用いることもできる。フィルムの積層は、粘着剤や接着剤を用いて実施することができる。
また、場合により、本発明のセルロースアシレートフィルムを位相差フィルムの支持体として用い、その上に液晶等からなる光学異方性層を設けて位相差フィルムとして使用することもできる。本発明の位相差フィルムに適用される光学異方性層は、例えば、液晶性化合物を含有する組成物から形成してもよいし、複屈折を持つポリマーフィルムから形成してもよいし、本発明のセルロースアシレートフィルムから形成してもよい。
前記液晶性化合物としては、ディスコティック液晶性化合物または棒状液晶性化合物が好ましい。
[ディスコティック液晶性化合物]
本発明において前記液晶性化合物として使用可能なディスコティック液晶性化合物の例には、様々な文献(例えば、C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang etal.,J.Am.Chem.Soc.,vol.116,page 2655(1994))に記載の化合物が含まれる。
前記光学異方性層において、ディスコティック液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。また、ディスコティック液晶性分子の重合については、特開平8−27284公報に記載がある。ディスコティック液晶性分子を重合により固定するためには、ディスコティック液晶性分子の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。重合性基を有するディスコティック液晶性分子については、特開2001−4387号公報に開示されている。
[棒状液晶性化合物]
本発明において前記液晶性化合物として使用可能な棒状液晶性化合物の例には、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が含まれる。また、前記棒状液晶性化合物としては、以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。
前記光学異方性層において、棒状液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。本発明に使用可能な重合性棒状液晶性化合物の例は、例えば、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4,683,327号明細書、同5,622,648号明細書、同5,770,107号明細書、国際公開第95/22586号パンフレット、同95/24455号パンフレット、同97/00600号パンフレット、同98/23580号パンフレット、同98/52905号パンフレット、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、および特開2001−328973号公報等に記載の化合物が含まれる。
《偏光板》
本発明のセルロースアシレートフィルムまたは位相差フィルムは、偏光板(本発明の偏光板)の保護フィルムとして用いることができる。本発明の偏光板は、偏光膜とその両面を保護する二枚の偏光板保護フィルム(セルロースアシレートフィルム)からなり、本発明のセルロースアシレートフィルムまたは位相差フィルムは少なくとも一方の偏光板保護フィルムとして用いることができる。
本発明のセルロースアシレートフィルムを前記偏光板保護フィルムとして用いる場合、本発明のセルロースアシレートフィルムには前記表面処理(特開平6−94915号公報、同6−118232号公報にも記載)を施して親水化しておくことが好ましく、例えば、グロー放電処理、コロナ放電処理、または、アルカリ鹸化処理などを施すことが好ましい。前記表面処理としてはアルカリ鹸化処理が最も好ましく用いられる。
また、前記偏光膜としては、例えば、ポリビニルアルコールフィルムを沃素溶液中に浸漬して延伸したもの等を用いることができる。ポリビニルアルコールフィルムを沃素溶液中に浸漬して延伸した偏光膜を用いる場合、接着剤を用いて偏光膜の両面に本発明のセルロースアシレートフィルムの表面処理面を直接貼り合わせることができる。本発明の製造方法においては、このように前記セルロースアシレートフィルムが偏光膜と直接貼合されていることが好ましい。前記接着剤としては、ポリビニルアルコールまたはポリビニルアセタール(例えば、ポリビニルブチラール)の水溶液や、ビニル系ポリマー(例えば、ポリブチルアクリレート)のラテックスを用いることができる。特に好ましい接着剤は、完全鹸化ポリビニルアルコールの水溶液である。
一般に液晶表示装置は二枚の偏光板の間に液晶セルが設けられるため、4枚の偏光板保護フィルムを有する。本発明のセルロースアシレートフィルムは、4枚の偏光板保護フィルムのいずれに用いてもよいが、本発明のセルロースアシレートフィルムは、液晶表示装置における偏光膜と液晶層(液晶セル)との間に配置される保護フィルムとして、特に有利に用いることができる。また、前記偏光膜を挟んで本発明のセルロースアシレートフィルムの反対側に配置される保護フィルムには、透明ハードコート層、防眩層、反射防止層などを設けることができ、特に液晶表示装置の表示側最表面の偏光板保護フィルムとして好ましく用いられる。
《液晶表示装置》
本発明のセルロースアシレートフィルム、位相差フィルムおよび偏光板は、様々な表示モードの液晶表示装置に用いることができる。以下にこれらのフィルムが用いられる各液晶モードについて説明する。これらのモードのうち、本発明のセルロースアシレートフィルム、位相差フィルムおよび偏光板は特にVAモードおよびIPSモードの液晶表示装置に好ましく用いられる。これらの液晶表示装置は、透過型、反射型および半透過型のいずれでもよい。
(TN型液晶表示装置)
本発明のセルロースアシレートフィルムは、TNモードの液晶セルを有するTN型液晶表示装置の位相差フィルムの支持体として用いてもよい。TNモードの液晶セルとTN型液晶表示装置とについては、古くからよく知られている。TN型液晶表示装置に用いる位相差フィルムについては、特開平3−9325号、特開平6−148429号、特開平8−50206号および特開平9−26572号の各公報の他、モリ(Mori)他の論文(Jpn.J.Appl.Phys.Vol.36(1997)p.143や、Jpn.J.Appl.Phys.Vol.36(1997)p.1068)に記載がある。
(STN型液晶表示装置)
本発明のセルロースアシレートフィルムは、STNモードの液晶セルを有するSTN型液晶表示装置の位相差フィルムの支持体として用いてもよい。一般的にSTN型液晶表示装置では、液晶セル中の棒状液晶性分子が90〜360度の範囲にねじられており、棒状液晶性分子の屈折率異方性(Δn)とセルギャップ(d)との積(Δnd)が300〜1500nmの範囲にある。STN型液晶表示装置に用いる位相差フィルムについては、特開2000−105316号公報に記載がある。
(VA型液晶表示装置)
本発明のセルロースアシレートフィルムは、VAモードの液晶セルを有するVA型液晶表示装置の位相差フィルムや位相差フィルムの支持体として特に有利に用いられる。VA型液晶表示装置は、例えば特開平10−123576号公報に記載されているような配向分割された方式であっても構わない。これらの態様において本発明のセルロースアシレートフィルムを用いた偏光板は視野角拡大、コントラストの良化に寄与する。
(IPS型液晶表示装置およびECB型液晶表示装置)
本発明のセルロースアシレートフィルムは、IPSモードおよびECBモードの液晶セルを有するIPS型液晶表示装置およびECB型液晶表示装置の位相差フィルムや位相差フィルムの支持体、または偏光板の保護フィルムとして特に有利に用いられる。これらのモードは黒表示時に液晶材料が略平行に配向する態様であり、電圧無印加状態で液晶分子を基板面に対して平行配向させて、黒表示する。これらの態様において本発明のセルロースアシレートフィルムを用いた偏光板は視野角拡大、コントラストの良化に寄与する。
(OCB型液晶表示装置およびHAN型液晶表示装置)
本発明のセルロースアシレートフィルムは、OCBモードの液晶セルを有するOCB型液晶表示装置或いはHANモードの液晶セルを有するHAN型液晶表示装置の位相差フィルムの支持体としても有利に用いられる。OCB型液晶表示装置或いはHAN型液晶表示装置に用いる位相差フィルムには、レタデーションの絶対値が最小となる方向が位相差フィルムの面内にも法線方向にも存在しないことが好ましい。OCB型液晶表示装置或いはHAN型液晶表示装置に用いる位相差フィルムの光学的性質も、光学的異方性層の光学的性質、支持体の光学的性質および光学的異方性層と支持体との配置により決定される。OCB型液晶表示装置或いはHAN型液晶表示装置に用いる位相差フィルムについては、特開平9−197397号公報に記載がある。また、モリ(Mori)他の論文(Jpn.J.Appl.Phys.Vol.38(1999)p.2837)に記載がある。
(反射型液晶表示装置)
本発明のセルロースアシレートフィルムは、TN型、STN型、HAN型、GH(Guest−Host)型の反射型液晶表示装置の位相差フィルムとしても有利に用いられる。これらの表示モードは古くからよく知られている。TN型反射型液晶表示装置については、特開平10−123478号、国際公開第98/48320号パンフレット、特許第3022477号公報に記載がある。反射型液晶表示装置に用いる位相差フィルムについては、国際公開第00/65384号パンフレットに記載がある。
(その他の表示装置)
本発明のセルロースアシレートフィルムは、ASM(Axially Symmetric Aligned Microcell)モードの液晶セルを有するASM型液晶表示装置の位相差フィルムの支持体としても有利に用いられる。ASMモードの液晶セルは、セルの厚さが位置調整可能な樹脂スペーサーにより維持されているという特徴がある。その他の性質は、TNモードの液晶セルと同様である。ASMモードの液晶セルとASM型液晶表示装置とについては、クメ(Kume)他の論文(Kume et al.,SID 98 Digest 1089(1998))に記載がある。
また、本発明のセルロースアシレートフィルムは、λ/4波長板として偏光板と組み合わせて有機EL表示装置の内部反射防止用フィルムとして用いることができる。本発明のセルロースアシレートフィルムをこの用途で用いた場合、NZファクターが0.5近辺となり、斜め方向からの外光に対しても内部反射をカットできるため、特に好ましく用いることができる。
(ハードコートフィルム、防眩フィルム、反射防止フィルム)
本発明のセルロースアシレートフィルムは、場合により、ハードコートフィルム、防眩フィルム、反射防止フィルムへ適用してもよい。LCD、PDP、CRT、EL等のフラットパネルディスプレイの視認性を向上する目的で、本発明のセルロースアシレートフィルムの片面または両面にハードコート層、防眩層、反射防止層の何れか或いは全てを付与することができる。このような防眩フィルム、反射防止フィルムとしての望ましい実施態様は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)54頁〜57頁に詳細に記載されており、本発明のセルロースアシレートフィルムにおいても好ましく用いることができる。
以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
《測定法》
まず、特性の測定法および評価法を以下に示す。
[ガラス転移温度(Tg)]
DSC測定装置(DSC8230:(株)リガク製)を用い、DSCのアルミニウム製測定パン(Cat.No.8578:(株)リガク製)にセルロースアシレートフィルムを5〜6mg入れ、これを50mL/分の窒素気流中で25℃から120℃まで20℃/分の昇温速度で昇温して15分保持した後、30℃まで−20℃/分で冷却した。この後、再度30℃から250℃まで20℃/分の昇温速度で昇温した際に2本のベースラインの中線と試料のサーモグラムとの交点の温度をフィルムのガラス転移温度とした。
[融点(Tm0)および融解熱量(ΔHm)]
DSC測定装置(DSC8230:(株)リガク製)を用い、DSCのアルミニウム製測定パン(Cat.No.8578:(株)リガク製)に熱処理前のセルロースアシレートフィルムを5〜6mg入れ、これを50mL/分の窒素気流中で25℃から120℃まで20℃/分の昇温速度で昇温して15分保持した後、30℃まで−20℃/分で冷却した。この後、再度30℃から320℃まで20℃/分の昇温速度で昇温した際に現れた吸熱ピークの頂点における温度をフィルムの融点とし、フィルムの融解熱量は吸熱ピークと試料のベースラインとで囲まれる面積とした。後述の実施例および比較例中、ΔHmが0J/gより大きい場合は「融解熱量あり」と表すことがあり、前記吸熱ピークが観測されない場合は「ΔHmが0J/g」もしくは「融解熱量なし」と表すこともある。
[結晶化温度(Tc)および結晶化熱量(ΔHc)]
DSC測定装置(DSC8230:(株)リガク製)を用い、DSCのアルミニウム製測定パン(Cat.No.8578:(株)リガク製)に熱処理前のセルロースアシレートフィルムを5〜6mg入れ、これを50mL/分の窒素気流中で25℃から120℃まで20℃/分の昇温速度で昇温して15分保持した後、30℃まで−20℃/分で冷却し、さらにこの後、再度30℃から320℃まで20℃/分の昇温速度で昇温した際に現れた発熱ピークの開始温度をフィルムの結晶化温度とし、フィルムの結晶化熱量は発熱ピークと試料のベースラインとで囲まれる面積とした。
[置換度]
セルロースアシレートのアシル置換度は、Carbohydr.Res.273(1995)83−91(手塚他)に記載の方法で13C−NMRにより求めた。
[レタデーション]
フィルムの幅方向5点(フィルムの中央部、端部(両端からそれぞれ全幅の5%の位置)、および中央部と端部の中間部2点)とを長手方向に100mごとにサンプリングし、5cm四方の大きさのサンプルを取り出し、前述の方法に従って評価した各点の平均値を算出し、25℃、相対湿度60%でのRe、Rthを求めた。さらに下記式(A)および(B)からΔReおよびΔRthを算出し、さらにΔRe/Reを算出した。
式(A): ΔRe=|Re(10%RH)−Re(80%RH)|
式(B): ΔRth=|Rth(10%RH)−Rth(80%RH)|
[軸ズレ]
軸ズレは、フィルムの任意の箇所を10cm四方で切り出し、任意に10点測定し、得られた遅相軸角度の最大値から最小値引いて算出した。
[偏光度]
作製した2枚の偏光板を吸収軸を平行に重ね合わせた場合の透過率(Tp)および吸収軸を直交させて重ね合わせた場合の透過率(Tc’)を測定し、下記式から偏光度(P)を算出した。
偏光度P = ((Tp−Tc’)/(Tp+Tc’))0.5
《合成例》 セルロースアセテートプロピオネートの合成
セルロース(広葉樹パルプ)150g、酢酸75gを、反応容器である還流装置を付けた5Lセパラブルフラスコに取り、60℃に調節したオイルバスにて加熱しながら、2時間激しく攪拌した。このような前処理を行ったセルロースは膨潤、解砕されて、フラッフ状を呈した。反応容器を2℃の氷水浴に30分間置き冷却した。
別途、アシル化剤としてプロピオン酸無水物1545g、硫酸10.5gの混合物を作製し、−30℃に冷却した後に、上記の前処理を行ったセルロースを収容する反応容器に一度に加えた。30分経過後、外設温度を徐々に上昇させ、アシル化剤の添加から2時間経過後に内温が25℃になるように調節した。反応容器を5℃の氷水浴にて冷却し、アシル化剤の添加から0.5時間後に内温が10℃、2時間後に内温が23℃になるように調節し、内温を23℃に保ってさらに3時間攪拌した。反応容器を5℃の氷水浴にて冷却し、5℃に冷却した25質量%含水酢酸120gを1時間かけて添加した。内温を40℃に上昇させ、1.5時間攪拌した。次いで反応容器に、50質量%含水酢酸に酢酸マグネシウム4水和物を硫酸の2倍モル溶解した溶液を添加し、30分間攪拌した。25質量%含水酢酸1L、33質量%含水酢酸500mL、50質量%含水酢酸1L、水1Lをこの順に加え、セルロースアセテートプロピオネートを沈殿させた。得られたセルロースアセテートプロピオネートの沈殿は温水にて洗浄を行った。このときの洗浄条件を変化させることで、残硫酸根量を変化させたセルロースアセテートプロピオネートを得ることができる。硫酸根の含有量は、ASTM D−817−96により測定できる。洗浄後、20℃の0.005質量%水酸化カルシウム水溶液中で0.5時間攪拌し、洗浄液のpHが7になるまで、さらに水で洗浄を行った後、70℃で真空乾燥させた。
1H−NMRおよび、GPC測定によれば、得られたセルロースアセテートプロピオネートは、アセチル化度0.30、プロピオニル化度2.63、重合度320であった。
本発明で用いることができる他のセルロースアシレートも同様の方法により製造することができる。
《1》 セルロースアシレートフィルムの製造と評価
(ポリマー溶液の調製)
1)セルロースアシレート
下記のセルロースアシレートA〜Dのうち表1に記載されるものを選択して使用した。各セルロースアシレートは120℃に加熱して乾燥し、含水率を0.5質量%以下とした後、20質量部を使用した。
・セルロースアシレートA:
置換度が2.94のセルロースアセテートの粉体を用いた。セルロースアシレートAの粘度平均重合度は300、6位のアセチル基置換度は0.94であった。
・セルロースアシレートB:
アセチル置換度が2.28、プロピオニル置換度が0.70のセルロースアセテートプロピオネートの粉体を用いた。セルロースアシレートBの粘度平均重合度は280であった。
・セルロースアシレートC:
置換度が2.86のセルロースアセテートの粉体を用いた。セルロースアシレートCの粘度平均重合度は300、6位のアセチル基置換度は0.89、アセトン抽出分は7質量%、質量平均分子量/数平均分子量比は2.3、含水率は0.2質量%、6質量%ジクロロメタン溶液中の粘度は305mPa・s、残存酢酸量は0.1質量%以下、Ca含有量は65ppm、Mg含有量は26ppm、鉄含有量は0.8ppm、硫酸イオン含有量は18ppm、イエローインデックスは1.9、遊離酢酸量は47ppmであった。粉体の平均粒子サイズは1.5mm、標準偏差は0.5mmであった。
・セルロースアシレートD:
置換度が2.70のセルロースアセテートの粉体を用いた。セルロースアシレートDの粘度平均重合度は250、6位のアセチル基置換度は0.84であった。
2)溶媒
ジクロロメタン/メタノール/ブタノール=83/15/2(質量比)を使用した。この溶媒の含水率は0.2質量%以下であった。
3)添加剤
下記の添加剤A〜Dの中から表1に記載されるものを選択して使用した。
・添加剤A
二酸化ケイ素微粒子(粒子サイズ20nm、モース硬度約7)(0.08質量部)
・添加剤B
トリフェニルホスフェート(1.6質量部)
ビフェニルジフェニルホスフェート(0.8質量部)
二酸化ケイ素微粒子(粒子サイズ20nm、モース硬度約7)(0.08質量部)
IRGANOX−1010(チバスペシャリティケミカル社製)(0.4重量部)
・添加剤C
トリフェニルホスフェート(1.6質量部)
ビフェニルジフェニルホスフェート(0.8質量部)
二酸化ケイ素微粒子(粒子サイズ20nm、モース硬度約7)(0.08質量部)
・添加剤D
エタンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1000)
(2.4質量部)
二酸化ケイ素微粒子(粒子サイズ20nm、モース硬度約7)(0.08質量部)
4)溶解
各実施例および比較例において、下記の溶解工程AまたはBから表1に記載されるものを選択して使用して膨潤、溶解を行った。
・溶解工程A
攪拌羽根を有し外周を冷却水が循環する400リットルのステンレス製溶解タンクに、前記溶媒および添加剤を投入して撹拌、分散させながら、前記セルロースアシレートを徐々に添加した。投入完了後、室温にて2時間撹拌し、3時間膨潤させた後に再度撹拌を実施し、セルロースアシレート溶液を得た。
なお、攪拌には、15m/sec(剪断応力5×104kgf/m/sec2〔4.9×105N/m/sec2〕)の周速で攪拌するディゾルバータイプの偏芯攪拌軸および中心軸にアンカー翼を有して周速1m/sec(剪断応力1×104kgf/m/sec2〔9.8×104N/m/sec2〕)で攪拌する攪拌軸を用いた。膨潤は、高速攪拌軸を停止し、アンカー翼を有する攪拌軸の周速を0.5m/secとして実施した。
膨潤した溶液をタンクから、ジャケット付配管で50℃まで加熱し、さらに2MPaの加圧化で90℃まで加熱し、完全溶解した。加熱時間は15分であった。この際、高温にさらされるフィルター、ハウジング、および配管はハステロイ合金製で耐食性の優れたものを利用し保温加熱用の熱媒を流通させるジャケットを有する物を使用した。
次に36℃まで温度を下げ、セルロースアシレート溶液を得た。
・溶解工程B
攪拌羽根を有し外周を冷却水が循環する400リットルのステンレス製溶解タンクに、前記溶媒および添加剤を投入して撹拌、分散させながら、前記セルロースアシレートを徐々に添加した。投入完了後、室温にて2時間撹拌し、3時間膨潤させた後に再度撹拌を実施し、セルロースアシレート混合物を得た。
なお、攪拌には、15m/sec(剪断応力5×104kgf/m/sec2〔4.9×105N/m/sec2〕)の周速で攪拌するディゾルバータイプの偏芯攪拌軸および中心軸にアンカー翼を有して周速1m/sec(剪断応力1×104kgf/m/sec2〔9.8×104N/m/sec2〕)で攪拌する攪拌軸を用いた。膨潤は、高速攪拌軸を停止し、アンカー翼を有する攪拌軸の周速を0.5m/secとして実施した。
膨潤した混合物をタンクから、軸中心部を30℃に加温したスクリューポンプで送液して、そのスクリュー外周部から冷却して−70℃で3分間となるように冷却部分を通過させた。冷却は冷凍機で冷却した−75℃の冷媒を用いて実施した。冷却により得られた混合物は、スクリューポンプで送液柱に30℃に加温し、ステンレス製の容器に移送した。
次に、30℃で2時間撹拌し、セルロースアシレート溶液を得た。
5)ろ過
得られたセルロースアシレート溶液を、絶対濾過精度10μmの濾紙(#63、東洋濾紙(株)製)で濾過し、さらに絶対濾過精度2.5μmの金属焼結フィルター(FH025、ポール社製)にて濾過してポリマー溶液を得た。
(フィルムの作製)
下記の製膜工程AまたはBから表1に記載される方法を選択して使用した。
・製膜工程A
前記セルロースアシレート溶液を30℃に加温し、流延ギーサー(特開平11−314233号公報に記載)を通して15℃に設定したバンド長60mの鏡面ステンレス支持体上に流延した。流延スピードは50m/分、塗布幅は200cmとした。流延部全体の空間温度は、15℃に設定した。そして、流延部の終点部から50cm手前で、流延して回転してきたセルロースアシレートフィルムをバンドから剥ぎ取り、45℃の乾燥風を送風した。次に110 ℃で5分、さらに140℃ で10分乾燥して、セルロースアシレートの膜厚80μmの透明のフィルムを得た。残留溶媒量は、0.4質量%であった。
・製膜工程B
前記ポリマー溶液を30℃に加温し、流延ギーサーを通して直径3mのドラムである鏡面ステンレス支持体上に流延した。支持体の温度は−5℃に設定し、流延スピードは100m/分、塗布幅は200cmとした。流延部全体の空間温度は、15℃に設定した。そして、流延部の終点部から50cm手前で、流延して回転してきたセルロースアシレートフィルムをドラムから剥ぎ取り、両端をピンテンターでクリップした。ピンテンターで保持されたセルロースアシレートフィルムは、乾燥ゾーンに搬送した。初めの乾燥では45℃の乾燥風を送風した。次に110℃で5分、さらに140℃で10分乾燥して、セルロースアシレートの膜厚80μmの透明フィルムを得た。残留溶媒量は、0.5質量%であった。
(延伸)
下記の2つの延伸工程から表1に記載される工程を実施した。
・搬送方向に直交する方向への延伸
上記製膜したセルロースアシレートフィルムの両端をテンタークリップ、またはピンテンターで把持した後、フィルムの搬送方向に直交する方向に延伸した。予熱ゾーンと延伸ゾーンはケーシングでそれぞれ覆い表1に記載の温度(それぞれT1とT2)とし、延伸倍率はテンタークリップ、またはピンテンターの幅を調節することで表1記載のように制御した。延伸速度はフィルムの幅の長さに対して表1記載のようにした。
・搬送方向への延伸
上記製膜したセルロースアシレートフィルムをロール延伸機を用いて搬送方向へ延伸した。ロール延伸機のロールは表面を鏡面処理した誘導発熱ジャケットロールを用い、各ロールの温度は個別に調整できるようにした。予熱ゾーンと延伸ゾーンはケーシングでそれぞれ覆い表1記載の温度(それぞれT1とT2)とした。延伸部の前のロールは徐々に表1記載の延伸温度となるように設定した。縦横比(ニップロール間の距離/ベース入口幅)は0.33となるように調整し、延伸倍率は、ニップロールの周速を調整することで制御した。
フィルムの延伸倍率は、搬送方向に直交する方向への延伸の場合は、延伸ゾーン入口と出口とのテンタークリップ、またはピンテンターの幅より下記式を用いて求めた。
フィルムの延伸倍率(%)=100×(出口でのテンターの幅−入口でのテンターの幅)/入口でのテンターの幅
搬送方向への延伸の場合の延伸倍率は、送り出しのニップロールの速度(v10)と引取りのニップロールの速度(v11)との速度比[100×(v11―v10)/v10]から求めた。
(熱処理)
下記の熱処理工程A、BまたはCから表1に記載される工程を実施した。
・熱処理工程A
得られたフィルムの両端をテンタークリップで把持した後、加熱ゾーン内を通過させた。幅方向の寸法変化率は、テンターの拡縮率を変更することにより調整した。加熱ゾーンの温度、および前述の方法にしたがって求めた幅方向の寸法変化率は、表1に記載した。
・熱処理工程B
得られたフィルムを、表1に記載される温度に設定した加熱ゾーン内に設置された30本の搬送ロール群に通過させた。隣り合う搬送ロール間の隙間は2〜5cmとし、30本の搬送ロールは図2に示すように横一列に配置した。表1に記載される熱処理温度を採用することにより、前述の方法にしたがって求めた幅方向の寸法変化率を表1に記載されるように制御した。
・熱処理工程C
得られたフィルムを、2つのニップロール間に加熱ゾーンを有する装置を用いて熱処理した。縦横比(ニップロール間の距離/ベース幅)は3.3となるように調整し、加熱ゾーンに入る前のベース温度は25℃とし、加熱ゾーンは表1記載の温度とした。送り出しのニップロールの速度(v10)と引取りのニップロールの速度(v11)との速度比(v11/v10)は1.20とした。前述の方法にしたがって求めた幅方向の寸法変化率は、表1に記載した。
(製造されたセルロースアシレートフィルムの評価)
得られた各セルロースアシレートフィルムの評価を行った。結果を下記表1に示す。なお、得られた各セルロースアシレートフィルムには、結晶の融解熱量が観測され、さらには比較例103、104を除いて、結晶化熱量が2.0J/g以下であった。
(歩留りの評価)
熱処理工程において、実施例および比較例のロールを各々50ロールずつ製造したとき、セルロースアシレートフィルムの破断が3回を超える回数生じた場合は評価×とし、2〜3回のセルロースアシレートフィルムの破断が生じた場合は評価△とし、1回のセルロースアシレートフィルムの破断が生じた場合は評価○とし、セルロースアシレートフィルムの破断がなかった場合は評価◎とし、表1に記載した。
Figure 2009241395
表1に示したように、本発明の製造方法に従って製造されたセルロースアシレートフィルムは、軸ズレがなく、光学的均一性に優れたセルロースアシレートフィルムであった。また、特開2008−1097号公報に記載される製造方法よりも容易に広く、製品幅方向に軸ズレのないセルロースアシレートフィルムを確保できるという特徴のあるものであった。
これに対し、本発明外の方法に従って製造されたセルロースアシレートフィルムは、比較例101、102では軸ズレがひどく、比較例103、104では結晶化熱量が2.0J/g以上であり、比較例104、105ではフィルムが割れやすく、さらに比較例105ではフィルムの着色の酷いものであった。
《2》 偏光板の作製と評価
(偏光板の作製)
1)フィルムの鹸化
実施例および比較例で作成した各フィルムおよびフジタックTF80UL(富士フイルム(株)製:以下「タックA」という)を55℃に調温した1.5mol/Lの水酸化ナトリウム水溶液(けん化液)に2分間浸漬した後、フィルムを水洗し、その後、0.05mol/Lの硫酸水溶液に30秒浸漬した後、さらに水洗浴を通した。そして、エアナイフによる水切りを3回繰り返し、水を落とした後に70℃の乾燥ゾーンに15秒間滞留させて乾燥し、鹸化処理したフィルムを作製した。
2)偏光膜の作製
特開2001−141926号公報の実施例1に従い、2対のニップロール間に周速差を与え、長手方向に延伸し、厚み20μmの偏光膜を調製した。
3)貼り合わせ
このようにして得た偏光膜と、前記鹸化処理したフィルムのうちから2枚を選び(それぞれフィルムA、フィルムBとする。)、フィルムの鹸化面を偏光膜側に配置し、これらで前記偏光膜を挟んだ後、PVA((株)クラレ製、PVA−117H)3%水溶液を接着剤として、偏光軸とフィルムの長手方向とが直交するようにロールツーロールで貼り合わせて偏光板を作成した。選択した2枚のフィルムの組み合わせ(フィルムAとフィルムBの組み合わせ)は、実施例101〜135のいずれか1枚とタックAの組み合わせ、比較例101〜105のいずれか1枚とタックAの組み合わせとした。
貼り合わせ工程において50ロール処理した際、実施例101〜135のフィルムを用いた場合はベースの破断が起こらなかった。これに対して、比較例105のフィルムを用いた場合には、1回以上の破断が起こり、歩留りが低下してしまった。
(偏光板の評価)
1)初期偏光度
前記偏光板の偏光度を前述した方法で算出した。結果、全ての偏光板が偏光度99.9%の良好な性能を示した。
2)経時偏光度1
前記偏光板のフィルムA側を粘着剤でガラス板に貼り合わせ、60℃・相対湿度95%の条件で500時間放置し、放置後の偏光度(経時偏光度)を前述の方法で算出した。結果を下記表2に示す。
3)経時偏光度2
前記偏光板のフィルムA側を粘着剤でガラス板に貼り合わせ、90℃・相対湿度0%の条件で500時間放置し、放置後の偏光度(経時偏光度)を前述の方法で算出した。
結果、全ての偏光板が偏光度99.9%の良好な性能を示した。
《3》 IPS型液晶表示装置への実装評価
実施例133のセルロースアシレートフィルムを用いて上記方法により製造した偏光板をIPS型液晶表示装置(37型ハイビジョン液晶テレビモニター(37Z2000)、(株)東芝製)に組み込まれていた偏光板の代わりに組み込み、視認性を確認したところ、十分な視野角補償ができており、良好な視認性を確保できたことが確認できた。これに対し、比較例101〜105のセルロースアシレートフィルムを用いて上記方法により製造した偏光板を組み込んだ場合には、視野角補償が不十分であり、特に斜めから視認した際の光漏れが強く観測された。
搬送ロール間の隙間dとラップ角θを説明する概略図である。 加熱ゾーン中の搬送ロールの配置を説明する概略図である。 加熱ゾーン中の別の搬送ロールの配置を説明する概略図である。
符号の説明
1 セルロースアシレートフィルム
2 加熱ゾーン
3 搬送ロール
R1,R2 搬送ロール
d 搬送ロール間の隙間
θ ラップ角

Claims (10)

  1. セルロースアシレートフィルムをフィルムの搬送方向に直交する方向に延伸した後、前記延伸をした方向の寸法変化を制御しながら、下記式(I)の条件を満たす温度T(単位;℃)で熱処理する工程を含むことを特徴とするセルロースアシレートフィルムの製造方法。
    式(I): Tc≦T<Tm0
    [式中、Tcは前記熱処理前のセルロースアシレートフィルムの結晶化温度(単位;℃)を表し、Tm0は前記熱処理前のセルロースアシレートフィルムの融点(単位;℃)を表す。]
  2. 前記延伸前のフィルムを予熱するとともに、該予熱時のゾーン温度(T1)と前記延伸時のゾーン温度(T2)の温度差(T1−T2)を1℃〜50℃に保持することを特徴とする請求項1に記載のセルロースアシレートフィルムの製造方法。
  3. 前記延伸は、前記搬送方向に直交する線上にあるセルロースアシレートフィルム両端部をそれぞれクリップで把持し、一方の端部を把持したテンタークリップと他方の端部を把持したテンタークリップとの間の距離を拡げることにより1.01倍〜2.0倍に延伸するものであることを特徴とする請求項1または2に記載のセルロースアシレートフィルムの製造方法。
  4. 前記延伸は、下記式(II)で表される延伸速度が1%/min〜100%/minであることを特徴とする請求項1〜3のいずれか一項に記載のセルロースアシレートフィルムの製造方法。
    式(II): 延伸速度(%/min)=[(d1/d2)−1]×100(%)/t
    [上式において、d1は延伸後のセルロースアシレートフィルムの前記延伸方向の幅寸法であり、d2は延伸前のセルロースアシレートフィルムの前記延伸方向の幅寸法であり、tは延伸に要する時間(min)である。]
  5. 前記熱処理を、前記延伸した方向に直交する方向に前記セルロースアシレートフィルムを搬送しながら行うことを特徴とする請求項1〜4のいずれか一項に記載のセルロースアシレートフィルムの製造方法。
  6. 前記搬送方向に直交する線上にあるセルロースアシレートフィルム両端部をそれぞれテンタークリップで把持し、一方の端部を把持したテンタークリップと他方の端部を把持したテンタークリップとの間の距離を制御しながら前記熱処理中の搬送を行うことを特徴とする請求項5に記載のセルロースアシレートフィルムの製造方法。
  7. 隣り合う搬送ロール間の隙間が0.1cm〜50cmとなるように設置された複数の搬送ロールに前記セルロースアシレートフィルムを通しながら前記熱処理を行うことを特徴とする請求項5に記載のセルロースアシレートフィルムの製造方法。
  8. 請求項1〜7のいずれか一項に記載の製造方法によって製造されたセルロースアシレートフィルムを少なくとも一枚有することを特徴とする位相差フィルム。
  9. 請求項1〜7のいずれか一項に記載の製造方法によって製造されたセルロースアシレートフィルムを少なくとも一枚有することを特徴とする偏光板。
  10. 請求項1〜7のいずれか一項に記載の製造方法によって製造されたセルロースアシレートフィルム、請求項8に記載の位相差フィルム、または請求項9に記載の偏光板を、少なくとも1枚有することを特徴とする液晶表示装置。
JP2008090403A 2008-03-31 2008-03-31 セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置 Abandoned JP2009241395A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090403A JP2009241395A (ja) 2008-03-31 2008-03-31 セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090403A JP2009241395A (ja) 2008-03-31 2008-03-31 セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置

Publications (1)

Publication Number Publication Date
JP2009241395A true JP2009241395A (ja) 2009-10-22

Family

ID=41303882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090403A Abandoned JP2009241395A (ja) 2008-03-31 2008-03-31 セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置

Country Status (1)

Country Link
JP (1) JP2009241395A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013027414A1 (ja) * 2011-08-25 2015-03-05 コニカミノルタ株式会社 長尺延伸フィルムの製造方法及び円偏光板の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267840A (ja) * 2001-03-08 2002-09-18 Fuji Photo Film Co Ltd 光学補償シート、偏光板、楕円偏光板および液晶表示装置
WO2006132367A1 (ja) * 2005-06-10 2006-12-14 Fujifilm Corporation セルロースアシレートフィルムおよびその製造方法、偏光板、位相差フィルム、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2007001286A (ja) * 2005-05-27 2007-01-11 Fujifilm Holdings Corp 熱可塑性フィルムの製造方法
JP2007001287A (ja) * 2005-05-27 2007-01-11 Fujifilm Holdings Corp 熱可塑性フィルムの製造方法
JP2007301986A (ja) * 2006-04-13 2007-11-22 Fujifilm Corp 透明熱可塑性フィルムおよびその製造方法
JP2008001097A (ja) * 2006-05-22 2008-01-10 Fujifilm Corp セルロースアシレートフィルムの製造方法およびセルロースアシレートフィルム
WO2008114332A1 (ja) * 2007-02-21 2008-09-25 Fujifilm Corporation 透明ポリマーフィルムの製造方法と該方法により製造される透明ポリマーフィルム、位相差フィルム、偏光板、および液晶表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267840A (ja) * 2001-03-08 2002-09-18 Fuji Photo Film Co Ltd 光学補償シート、偏光板、楕円偏光板および液晶表示装置
JP2007001286A (ja) * 2005-05-27 2007-01-11 Fujifilm Holdings Corp 熱可塑性フィルムの製造方法
JP2007001287A (ja) * 2005-05-27 2007-01-11 Fujifilm Holdings Corp 熱可塑性フィルムの製造方法
WO2006132367A1 (ja) * 2005-06-10 2006-12-14 Fujifilm Corporation セルロースアシレートフィルムおよびその製造方法、偏光板、位相差フィルム、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2007301986A (ja) * 2006-04-13 2007-11-22 Fujifilm Corp 透明熱可塑性フィルムおよびその製造方法
JP2008001097A (ja) * 2006-05-22 2008-01-10 Fujifilm Corp セルロースアシレートフィルムの製造方法およびセルロースアシレートフィルム
WO2008114332A1 (ja) * 2007-02-21 2008-09-25 Fujifilm Corporation 透明ポリマーフィルムの製造方法と該方法により製造される透明ポリマーフィルム、位相差フィルム、偏光板、および液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013027414A1 (ja) * 2011-08-25 2015-03-05 コニカミノルタ株式会社 長尺延伸フィルムの製造方法及び円偏光板の製造方法

Similar Documents

Publication Publication Date Title
JP5210910B2 (ja) セルロースアシレートフィルム、位相差フィルム、偏光板および液晶表示装置
JP4945458B2 (ja) 透明ポリマーフィルムの製造方法と該方法により製造される透明ポリマーフィルム、位相差フィルム、偏光板、および液晶表示装置
JP2009137289A (ja) セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置
KR101521650B1 (ko) 투명 폴리머 필름의 제조 방법과 그 방법에 의해 제조되는투명 폴리머 필름, 위상차 필름, 편광판, 및 액정 표시장치
JP2009155455A (ja) セルロースエステルフィルム、それを用いた位相差フィルム、偏光板、および液晶表示装置
JP5072393B2 (ja) セルロースアシレートフィルムおよびその製造方法、並びに、それを用いた位相差フィルム、偏光板および液晶表示装置
JP5268482B2 (ja) 透明ポリマーフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置
JP2009241397A (ja) セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置
JP2008001097A (ja) セルロースアシレートフィルムの製造方法およびセルロースアシレートフィルム
JP2009132136A (ja) セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置
JP5038777B2 (ja) セルロースアシレートフィルムおよびその製造方法、並びに、それを用いた位相差フィルム、偏光板および液晶表示装置
JP4833109B2 (ja) 透明ポリマーフィルムおよびその製造方法、並びに、それを用いた位相差フィルム、偏光板および液晶表示装置
JP4912009B2 (ja) セルロースアシレートフィルムおよびその製造方法、並びに、それを用いた位相差フィルム、偏光板および液晶表示装置
JP2008266640A (ja) セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板、および液晶表示装置
JP5090020B2 (ja) 偏光板および液晶表示装置
JP2009262551A (ja) セルロースアシレートフィルムおよびその製造方法、位相差フィルム、偏光板、並びに、液晶表示装置
JP2007332367A (ja) セルロースアシレートフィルムおよびその製造方法、並びに、それを用いた位相差フィルム、偏光板および液晶表示装置
JP2007084804A (ja) 透明ポリマーフィルムおよびその製造方法、並びに、それを用いた位相差フィルム、偏光板および液晶表示装置
JP2009119808A (ja) セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置
JP2009241395A (ja) セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置
JP2009067875A (ja) セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置
JP4954035B2 (ja) セルロースアシレートフィルムの製造方法
JP4953668B2 (ja) セルロースアシレートフィルムおよびその製造方法、並びに、それを用いた位相差フィルム、偏光板および液晶表示装置
JP2007331387A (ja) セルロースアシレートフィルムおよびその製造方法、並びに、それを用いた位相差フィルム、偏光板および液晶表示装置
JP2007276455A (ja) 透明ポリマーフィルムおよびその製造方法、並びに、それを用いた位相差フィルム、偏光板および液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130204