JP2009239147A - Integrated semiconductor device, and integrated three-dimensional semiconductor device - Google Patents

Integrated semiconductor device, and integrated three-dimensional semiconductor device Download PDF

Info

Publication number
JP2009239147A
JP2009239147A JP2008085552A JP2008085552A JP2009239147A JP 2009239147 A JP2009239147 A JP 2009239147A JP 2008085552 A JP2008085552 A JP 2008085552A JP 2008085552 A JP2008085552 A JP 2008085552A JP 2009239147 A JP2009239147 A JP 2009239147A
Authority
JP
Japan
Prior art keywords
semiconductor device
integrated
integrated semiconductor
integrated circuit
insulating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008085552A
Other languages
Japanese (ja)
Other versions
JP4538058B2 (en
Inventor
Hiroshi Yamada
浩 山田
Yutaka Onozuka
豊 小野塚
Kazuhiko Itaya
和彦 板谷
Hideyuki Funaki
英之 舟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008085552A priority Critical patent/JP4538058B2/en
Publication of JP2009239147A publication Critical patent/JP2009239147A/en
Application granted granted Critical
Publication of JP4538058B2 publication Critical patent/JP4538058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1035All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the device being entirely enclosed by the support, e.g. high-density interconnect [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide an integrated semiconductor device capable of mounting a high-reliability heterogeneous device by eliminating a through-hole defect; and to provide an integrated three-dimensional semiconductor device. <P>SOLUTION: The integrated semiconductor device includes: a plurality of integrated circuit chips arranged side by side in an inner region; a first insulation part filled in the respective circumferences of the plurality of integrated circuit chips to hold the plurality of integrated circuit chips, and containing a quartz filler; a wiring layer arranged on a surface of the inner region, and connected to at least any of the plurality of integrated circuit chip; an input/output part arranged in the inner region for connecting at least any of the plurality of integrated circuit chips to an external circuit; a second insulation part arranged in at least part of an outer region around the inner region, and having a quartz filler content percentage lower than that of the first insulation part; and a penetrating electrode penetrating the second insulation part to connect its front and backsides to each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の集積回路チップを搭載した集積半導体装置及び集積3次元半導体装置に関する。   The present invention relates to an integrated semiconductor device and an integrated three-dimensional semiconductor device on which a plurality of integrated circuit chips are mounted.

近年、半導体装置の高集積化技術が進行して、その半導体装置を構成する半導体素子の集積化技術も高密度化が求められている。特に、最近の半導体装置の高集積化技術には、各種の高性能半導体素子(LSI:Large Scale Integration)と共に、電気機械素子(MEMS:Micro Electro Mechanical System)を高度に集積化する技術が要求されている。   2. Description of the Related Art In recent years, high integration technology for semiconductor devices has progressed, and the integration technology for semiconductor elements constituting the semiconductor devices is also required to have high density. In particular, recent high integration technologies for semiconductor devices require technologies for highly integrating electromechanical elements (MEMS) as well as various high-performance semiconductor elements (LSI: Large Scale Integration). ing.

MEMSは、ミクロな構造体を有する電気機械素子であり、例えば、シリコン微細加工プロセスを用いて製作される。MEMSは、圧力センサ、加速度センサ、RF(Radio Frequency)フィルターなど、幅広い電子部品分野での応用が期待されている。このようなMEMSをLSIと集積化する技術として、各々のLSIとMEMSとを直接的に積層する高密度3次元実装技術がある。しかし、この技術は、LSIとMEMSとに縦方向の貫通孔を形成する必要があることから、プロセスコストが高い。このため、LSIとMEMSとを同一平面上に高集積化する技術が要求されている。   The MEMS is an electromechanical element having a micro structure and is manufactured using, for example, a silicon microfabrication process. MEMS is expected to be applied in a wide range of electronic component fields such as pressure sensors, acceleration sensors, and RF (Radio Frequency) filters. As a technique for integrating such a MEMS with an LSI, there is a high-density three-dimensional mounting technique in which each LSI and the MEMS are directly stacked. However, this technique requires high process costs because it is necessary to form vertical through holes in LSI and MEMS. For this reason, a technique for highly integrating LSI and MEMS on the same plane is required.

一般的な半導体素子を同一平面上に高集積化する方法として、代表的には、SOC(System on Chip)とSIP(System in Package)の2方式がある。
SOCは、複数のデバイスを1チップ上に直接形成することにより集積する方法である。このSOCは、集積度を高くすることが可能であるが、集積できるデバイスの種類に制限がある。例えば、Si基板上にGaAsなどの別の結晶系からなるデバイスを形成することは、プロセスの違いなどから困難である。また、SOCは、新規デバイスを製作する場合の設計期間が長く、開発コストが高くなるという問題がある。
As a method for highly integrating general semiconductor elements on the same plane, there are typically two systems, SOC (System on Chip) and SIP (System in Package).
The SOC is a method of integrating a plurality of devices by directly forming them on one chip. Although this SOC can increase the degree of integration, there are limitations on the types of devices that can be integrated. For example, it is difficult to form a device made of another crystal system such as GaAs on a Si substrate due to process differences. In addition, the SOC has a problem that the design period for producing a new device is long and the development cost is high.

一方、SIPは、各々のLSIチップを個別に形成した後、それぞれを集積基板上に搭載するものである。このSIPは、各々のデバイスが個別に形成できるため、集積するデバイスに対する制限がない。さらに、新規システムを製作する場合にも、既存のチップの利用が可能であるため、設計期間を短縮できることから開発コストを安価にできる利点がある。しかしながら、SIPにおいては、集積基板上で個々のデバイスを配線により接続することから、高密度化が困難であるという問題がある。   On the other hand, in SIP, after each LSI chip is individually formed, each is mounted on an integrated substrate. Since this SIP can be formed individually for each device, there is no restriction on the devices to be integrated. Furthermore, when a new system is manufactured, since an existing chip can be used, the design period can be shortened, so that the development cost can be reduced. However, in SIP, there is a problem that it is difficult to increase the density because individual devices are connected by wiring on an integrated substrate.

これに対し、例えば、個別の製造技術で完成されたLSIとMEMSをダイシングにより個別のチップとした後、それらをチップレベルで隣接再配置してMEMS集積ウェハとして再構築する集積半導体装置が提案されている(特許文献1)。この再構築型の集積半導体装置は、製造技術の異なる異種デバイスの集積化が可能であり、また、検査選別された正常動作品のみを再集積することにより、製造コストの低下も可能とする。さらに、再構築型の集積半導体装置においては、SIPのように集積基板を用ないため、搭載されるLSIとMEMSとの接続は、微細配線層によって行われる。これにより、再構築型の集積半導体装置によれば、これまでのSIPでは達成できない高集積化と、SOIでは達成できない設計製造の短期間化が実現できる特徴を有している。   On the other hand, for example, there has been proposed an integrated semiconductor device in which an LSI and a MEMS completed by individual manufacturing techniques are made into individual chips by dicing and then rearranged adjacent to each other at a chip level to be reconstructed as a MEMS integrated wafer. (Patent Document 1). This reconfigurable integrated semiconductor device can integrate different types of devices with different manufacturing technologies, and can reduce the manufacturing cost by reintegrating only normal operation products that have been inspected and selected. Further, in a reconfigurable integrated semiconductor device, an integrated substrate is not used unlike SIP, so that the LSI and the MEMS to be mounted are connected by a fine wiring layer. As a result, the reconfigurable integrated semiconductor device has features that can achieve high integration that cannot be achieved by conventional SIP and shortening of design and manufacturing that cannot be achieved by SOI.

この再構築型の集積半導体装置では、大型面積の集積半導体装置を構成することが現実的でない場合、積層方向を実装領域とする3次元実装構造が用いられる。また、集積密度をさらに向上させるためにも、積層方向を実装領域とする3次元実装構造は有利であるため、電子機器システム構成の必要性に応じて、半導体装置を3次元実装することが考えられている。
一般的に、半導体素子を3次元実装する構造では、半導体素子を積層方向に接続するための貫通電極を形成する必要がある。この貫通電極の形成方法として、例えば、シリコン半導体デバイスにRIE(Reactive Ion Etching)などで貫通孔を形成した後、貫通孔を金属充填する方法、すなわち、TSV(Through Silicon Via)法を挙げることができるが、デバイスが形成されていない領域に形成するなどの貫通孔形成領域が限定されることと、貫通孔を形成する場合のプロセスが複雑で製造コストが高価になる課題がある。
このため、再構築型の集積半導体装置においては、半導体素子間に配置する絶縁材料部分に貫通孔を形成することが一般的には有利であるとされている。これは、再構築型の集積半導体装置に用いられる絶縁材料が例えばエポキシ樹脂のような有機系材料である場合、貫通孔を形成するプロセスが、シリコンに貫通孔を配置するTSV構造と比較して容易であるからである。
In this reconfigurable integrated semiconductor device, when it is not practical to construct an integrated semiconductor device having a large area, a three-dimensional mounting structure in which the stacking direction is a mounting region is used. In order to further improve the integration density, a three-dimensional mounting structure in which the stacking direction is a mounting region is advantageous. Therefore, it is considered that a semiconductor device is three-dimensionally mounted according to the necessity of the electronic equipment system configuration. It has been.
Generally, in a structure in which semiconductor elements are three-dimensionally mounted, it is necessary to form through electrodes for connecting the semiconductor elements in the stacking direction. As a method for forming this through electrode, for example, a method of forming a through hole in a silicon semiconductor device by RIE (Reactive Ion Etching) and then filling the through hole with metal, that is, a TSV (Through Silicon Via) method can be mentioned. However, there is a problem that a through hole forming region such as forming in a region where a device is not formed is limited, and a process for forming the through hole is complicated and manufacturing cost is expensive.
For this reason, in a reconfigurable integrated semiconductor device, it is generally considered advantageous to form a through hole in an insulating material portion disposed between semiconductor elements. This is because when the insulating material used in the reconfigurable integrated semiconductor device is an organic material such as an epoxy resin, the process of forming the through hole is compared with the TSV structure in which the through hole is arranged in silicon. This is because it is easy.

このような再構築型の集積半導体装置に用いられる有機系材料としては、応力歪信頼性を向上させるため、熱膨張係数、ヤング率などの機械的な物性の高い石英フィラを含有したものを用いることが好ましい。しかしながら、石英フィラを含有させた場合、絶縁材料中に形成する貫通孔が微細化すると、この石英フィラが障害物となり微細な貫通電極を形成し難く、貫通孔不良が発生する場合があった。さらに、絶縁材料中に貫通電極を形成することで、集積回路チップを保持する集積回路チップ間の絶縁材料の強度が低下して、集積半導体装置が破壊される課題もあった。
特開2007−260866号公報
As an organic material used in such a reconfigurable integrated semiconductor device, a material containing a quartz filler having high mechanical properties such as a thermal expansion coefficient and a Young's modulus is used in order to improve stress strain reliability. It is preferable. However, when a quartz filler is contained, if the through hole formed in the insulating material is miniaturized, this quartz filler becomes an obstacle and it is difficult to form a fine through electrode, and a through hole defect may occur. Furthermore, by forming the through electrode in the insulating material, there is a problem that the strength of the insulating material between the integrated circuit chips holding the integrated circuit chip is reduced and the integrated semiconductor device is destroyed.
JP 2007-260866 A

本発明は、上記の課題に基づいたものであり、その目的は、貫通孔不良を解消して、信頼性の高い異種デバイスが搭載可能な集積半導体装置及び集積3次元半導体装置を提供することである。   The present invention is based on the above-described problems, and an object of the present invention is to provide an integrated semiconductor device and an integrated three-dimensional semiconductor device in which a through hole defect is eliminated and a highly reliable heterogeneous device can be mounted. is there.

本発明の一態様によれば、複数の集積回路チップを備えた集積半導体装置であって、内側領域に並置された前記複数の集積回路チップと、前記複数の集積回路チップのそれぞれの周囲に充填され前記複数の集積回路チップを保持し、石英フィラを含有する第1絶縁部と、前記内側領域の表面に配置され、前記複数の集積回路チップの少なくともいずれかに接続された配線層と、前記内側領域に配置され、前記複数の集積回路チップの少なくともいずれかと外部回路とを接続するための入出力部と、前記内側領域の周囲の外側領域の少なくとも一部に配置され、前記第1絶縁部よりも低い石英フィラ含有比率を有する第2絶縁部と、前記第2絶縁部を貫通し表面と裏面とを接続する貫通電極と、を備えたことを特徴とする集積半導体装置が提供される。   According to one aspect of the present invention, there is provided an integrated semiconductor device including a plurality of integrated circuit chips, the plurality of integrated circuit chips juxtaposed in an inner region, and a filling around each of the plurality of integrated circuit chips. A first insulating portion that holds the plurality of integrated circuit chips and contains a quartz filler; a wiring layer that is disposed on a surface of the inner region and connected to at least one of the plurality of integrated circuit chips; An input / output unit disposed in an inner region, for connecting at least one of the plurality of integrated circuit chips and an external circuit; and disposed in at least a part of an outer region around the inner region; and the first insulating unit There is provided an integrated semiconductor device comprising: a second insulating portion having a lower quartz filler content ratio; and a through electrode that penetrates the second insulating portion and connects the front surface and the back surface. It is.

また、本発明の別の一態様によれば、上記の集積半導体装置と、前記集積半導体装置と積層され、前記複数の集積回路チップの少なくともいずれかと電気的に接続された半導体装置と、を備えた集積3次元半導体装置が提供される。   According to another aspect of the present invention, there is provided the integrated semiconductor device, and a semiconductor device stacked with the integrated semiconductor device and electrically connected to at least one of the plurality of integrated circuit chips. An integrated three-dimensional semiconductor device is provided.

本発明によれば、貫通孔不良を解消して、信頼性の高い異種デバイスが搭載可能な集積半導体装置及び集積3次元半導体装置が提供される。   According to the present invention, there are provided an integrated semiconductor device and an integrated three-dimensional semiconductor device capable of eliminating a through-hole defect and mounting a highly reliable heterogeneous device.

以下、本発明の実施の形態について図面を参照して詳細に説明する。
(第1の実施の形態)
図1は、本発明の第1の実施形態に係る集積半導体装置の構成を例示する模式図である。
すなわち、図1(a)は、第1の実施形態に係る集積半導体装置の模式平面図であり、図1(b)は、図1(a)のA−A’線模式断面図である。
図1(a)、(b)に表したように、本発明の第1の実施形態に係る集積半導体装置10は、複数の集積回路チップ105を備える。集積半導体装置10の場合、面内に並置された5個の集積回路チップ105が配置されている。この集積回路チップ105が搭載されている領域が内側領域101である。
なお、これら集積回路チップ105の上面(表面)は集積回路チップ間を微細配線層で接続する必要から同一の面上に載せられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic view illustrating the configuration of an integrated semiconductor device according to the first embodiment of the invention.
1A is a schematic plan view of the integrated semiconductor device according to the first embodiment, and FIG. 1B is a schematic cross-sectional view taken along line AA ′ of FIG. 1A.
As shown in FIGS. 1A and 1B, the integrated semiconductor device 10 according to the first embodiment of the present invention includes a plurality of integrated circuit chips 105. In the case of the integrated semiconductor device 10, five integrated circuit chips 105 arranged in parallel in the plane are arranged. An area where the integrated circuit chip 105 is mounted is an inner area 101.
The upper surfaces (front surfaces) of these integrated circuit chips 105 are placed on the same surface because the integrated circuit chips need to be connected by a fine wiring layer.

そして、この内側領域101において、集積回路チップ105のそれぞれの周囲に充填されこれら集積回路チップ105を保持する第1絶縁部210が配置されている。この第1絶縁部210は、集積回路チップ105のそれぞれの間、及び、集積回路チップ105の第2主面302側に、配置することができる。   In the inner region 101, first insulating portions 210 that are filled around the integrated circuit chips 105 and hold the integrated circuit chips 105 are disposed. The first insulating portions 210 can be disposed between the integrated circuit chips 105 and on the second main surface 302 side of the integrated circuit chip 105.

そして、この内側領域101において、集積半導体装置10の第1主面(表面)301及び第2主面(裏面)302に、入出力部(I/O電極)170が配置されている。集積半導体装置10においては、集積半導体装置10の第1主面301及び第2主面302の両方に配置されているが、I/O電極170は、集積半導体装置10の第1主面301及び第2主面302の少なくともいずれかに配置することができる。   In the inner region 101, input / output units (I / O electrodes) 170 are arranged on the first main surface (front surface) 301 and the second main surface (back surface) 302 of the integrated semiconductor device 10. In the integrated semiconductor device 10, the I / O electrode 170 is disposed on both the first main surface 301 and the second main surface 302 of the integrated semiconductor device 10. It can be disposed on at least one of the second main surfaces 302.

さらに、内側領域101の第1主面301側には、集積回路チップ105どうしを接続する微細配線層(配線層)280が配置されている。
すなわち、集積半導体装置10は、複数の集積回路チップ105を備える。そして、集積回路チップ105が搭載される内側領域101に配置され、集積回路チップ105を保持する第1絶縁部210と、内側領域101の第1主面301に配置され、集積回路チップの少なくともいずれかに接続された微細配線層280と、内側領域101に配置され、集積回路チップ105の少なくともいずれかと外部回路とを接続するための入出力部170と、をさらに備える。
Further, a fine wiring layer (wiring layer) 280 for connecting the integrated circuit chips 105 is disposed on the first main surface 301 side of the inner region 101.
That is, the integrated semiconductor device 10 includes a plurality of integrated circuit chips 105. The integrated circuit chip 105 is disposed in the inner region 101, and is disposed on the first insulating portion 210 that holds the integrated circuit chip 105 and the first main surface 301 of the inner region 101, and is at least one of the integrated circuit chips. And a fine wiring layer 280 connected to each other, and an input / output unit 170 disposed in the inner region 101 for connecting at least one of the integrated circuit chip 105 and an external circuit.

そして、第1絶縁部210の周囲の外側領域102の少なくとも一部には、第2絶縁部220が配置されている。図1に表した具体例においては、内側領域101よりも外側の外側領域102、すなわち、集積半導体装置10の外周部に、第2絶縁部220が配置されている。
そして、この第2絶縁部220の部分には、集積半導体装置10の第1主面301の例えば配線と、第1主面301の裏面である第2主面302の例えば配線と、を電気的に接続する貫通電極200が配置されている。すなわち、複数の集積半導体装置10が並置された面に対して垂直方向に第2絶縁部220を貫通する貫通電極200が配置されている。
A second insulating part 220 is disposed in at least a part of the outer region 102 around the first insulating part 210. In the specific example shown in FIG. 1, the second insulating portion 220 is disposed in the outer region 102 outside the inner region 101, that is, in the outer peripheral portion of the integrated semiconductor device 10.
In addition, for example, the wiring of the first main surface 301 of the integrated semiconductor device 10 and the wiring of the second main surface 302 that is the back surface of the first main surface 301 are electrically connected to the second insulating portion 220. A through-electrode 200 connected to is disposed. That is, the through electrode 200 penetrating the second insulating portion 220 is arranged in a direction perpendicular to the surface on which the plurality of integrated semiconductor devices 10 are juxtaposed.

すなわち、集積半導体装置10は、内側領域101の周囲の外側領域102に配置され、第1主面301及び第2主面302を電気的に接続する貫通電極200と、外側領域102のうち少なくとも貫通電極200の周りに配置された第2絶縁部220と、をさらに備える。   That is, the integrated semiconductor device 10 is disposed in the outer region 102 around the inner region 101, and penetrates at least the outer region 102 through the through electrode 200 that electrically connects the first main surface 301 and the second main surface 302. And a second insulating part 220 disposed around the electrode 200.

なお、上記において、第2絶縁部220は、外側領域102の全ての領域に配置される必要はなく、後述するように、外側領域102において、少なくとも貫通電極200の周りに配置されることができる。   In the above, the second insulating portion 220 does not have to be disposed in all the regions of the outer region 102, and can be disposed at least around the through electrode 200 in the outer region 102 as described later. .

第1絶縁部210と第2絶縁部220には、例えば、エポキシ樹脂等の有機絶縁材料を用いることができる。
さらに、第2絶縁部220の石英フィラの含有比率は、第1絶縁部210の石英フィラの含有比率と比較して低い構成とする。
例えば、集積半導体装置10の場合、第1絶縁部210には、石英フィラを80%含有したエポキシ樹脂を用い、第2絶縁部220には、石英フィラが含有されないエポキシ樹脂を用いることができる。ただし、本発明はこれに限らず、第2絶縁部220の石英フィラ含有比率が、第1絶縁部210の石英フィラ含有比率より低ければ良い。なお、本発明においては、第2絶縁部220の石英フィラの含有比率が零の場合、すなわち、第2絶縁部220が石英フィラを含有しない場合も含む。
For the first insulating part 210 and the second insulating part 220, for example, an organic insulating material such as an epoxy resin can be used.
Further, the content ratio of the quartz filler in the second insulating portion 220 is set lower than the content ratio of the quartz filler in the first insulating portion 210.
For example, in the case of the integrated semiconductor device 10, an epoxy resin containing 80% quartz filler can be used for the first insulating portion 210, and an epoxy resin containing no quartz filler can be used for the second insulating portion 220. However, the present invention is not limited to this, and the quartz filler content ratio of the second insulating portion 220 may be lower than the quartz filler content ratio of the first insulating portion 210. In addition, in this invention, the case where the content rate of the quartz filler of the 2nd insulation part 220 is zero, ie, the case where the 2nd insulation part 220 does not contain a quartz filler is also included.

例えば、第1絶縁部210の石英フィラの含有比率は、50%以上とすることができ、第2絶縁部の石英フィラの含有比率は50%未満とすることができる、さらに、第1絶縁部210の石英フィラの含有比率は50%以上80%以下、第2絶縁部220の石英フィラの含有比率は20%以下とすることが特に望ましい。   For example, the content ratio of the quartz filler in the first insulating portion 210 can be 50% or more, and the content ratio of the quartz filler in the second insulating portion can be less than 50%. Furthermore, the first insulating portion It is particularly preferable that the content ratio of the quartz filler 210 is 50% or more and 80% or less, and the content ratio of the quartz filler of the second insulating portion 220 is 20% or less.

なお、第1絶縁部210と第2絶縁部220には、エポキシ樹脂、ポリイミド樹脂、ベンゾシクロブテン(BCB)などの有機絶縁材料を用いることができる。さらに、第1絶縁部210及び第2絶縁部220には、異なる系の有機絶縁材料を用いることができる。例えば、第1絶縁部210及び第2絶縁部220には、エポキシ樹脂、ポリイミド樹脂、及び、ベンゾシクロブテン(BCB)からなる群から選ばれた少なくとも1つを含むことができ、同じ材料系の有機絶縁物における石英フィラの含有比率を変化させることも可能であり、また異なる材料系の有機絶縁物を用いて石英フィラの含有比率を変化させることも可能である。
さらに、第1絶縁部210と第2絶縁部220における、含有する石英フィラの種類、形状、粒径などを変化させることも可能である。このとき、第2絶縁部220に含有される石英フィラは、第1絶縁部210に含有される石英フィラよりも、平均粒径及び最大粒径の少なくともいずれかを小さくすることが特に望ましい。
For the first insulating part 210 and the second insulating part 220, an organic insulating material such as an epoxy resin, a polyimide resin, or benzocyclobutene (BCB) can be used. Further, different organic insulating materials can be used for the first insulating part 210 and the second insulating part 220. For example, the first insulating part 210 and the second insulating part 220 may include at least one selected from the group consisting of an epoxy resin, a polyimide resin, and benzocyclobutene (BCB). It is also possible to change the content ratio of the quartz filler in the organic insulator, and it is also possible to change the content ratio of the quartz filler using an organic insulator of a different material system.
Furthermore, it is possible to change the type, shape, particle size, etc. of the quartz filler contained in the first insulating part 210 and the second insulating part 220. At this time, it is particularly desirable that the quartz filler contained in the second insulating portion 220 has at least one of the average particle size and the maximum particle size smaller than the quartz filler contained in the first insulating portion 210.

また、上記の集積半導体装置10は、I/O電極170に接して配置されたバンプ電極等によって、集積半導体装置10とは別の電気回路との電気的接続を行うことで集積半導体装置10を動作させることができる。   In addition, the integrated semiconductor device 10 is configured such that the integrated semiconductor device 10 is electrically connected to an electric circuit different from the integrated semiconductor device 10 by a bump electrode or the like disposed in contact with the I / O electrode 170. It can be operated.

図2は、本発明の第1の実施形態に係る集積半導体装置における貫通孔の形成状態を例示する模式部分断面図である。
なお、本願明細書と図2以降の各図については、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
すなわち、図2(a)、(b)は、第1の実施形態に係る集積半導体装置10における貫通孔形成工程の、前後の状態を各々例示している。
FIG. 2 is a schematic partial cross-sectional view illustrating a through hole formation state in the integrated semiconductor device according to the first embodiment of the invention.
2 and the subsequent drawings, the same reference numerals are given to the same elements as those described above with reference to the previous drawings, and detailed description will be omitted as appropriate.
2A and 2B illustrate the states before and after the through-hole forming step in the integrated semiconductor device 10 according to the first embodiment.

図2(a)に例示したように、集積半導体装置10においては、集積回路チップ105が搭載される内側領域101には、石英フィラ212の含有比率が高い(この例では80%の)第1絶縁部210が配置されている。そして、内側領域101の周囲の外側領域102には、石英フィラの含有比率が低い(この例では0%の)第2絶縁部220が配置されている。
そして、図2(b)に表したように、この構造の第2絶縁部220に、貫通電極200(図示しない)を形成するための貫通孔201を、例えば、レーザ加工によって設ける。この時、第2絶縁部220の石英フィラの含有比率は低い(この例では0%)ので、容易に貫通孔201を形成することができ、貫通孔201の形成不良は実質的に発生しない。
As illustrated in FIG. 2A, in the integrated semiconductor device 10, the inner region 101 on which the integrated circuit chip 105 is mounted has a high content of the quartz filler 212 (80% in this example). An insulating part 210 is arranged. In the outer region 102 around the inner region 101, a second insulating portion 220 having a low quartz filler content (0% in this example) is disposed.
Then, as shown in FIG. 2B, a through hole 201 for forming a through electrode 200 (not shown) is provided in the second insulating portion 220 having this structure by, for example, laser processing. At this time, since the content ratio of the quartz filler in the second insulating portion 220 is low (0% in this example), the through hole 201 can be easily formed, and the formation defect of the through hole 201 does not substantially occur.

このように、本実施形態に係る集積半導体装置10においては、石英フィラの含有比率の低い第2絶縁部220に貫通電極200を配置することで、貫通電極200を形成する際の石英フィラによる貫通孔不良が解消され、結果として貫通電極200の形成不良を低減することができる。   As described above, in the integrated semiconductor device 10 according to the present embodiment, the through electrode 200 is disposed in the second insulating part 220 having a low content of the quartz filler, thereby penetrating the quartz filler when forming the through electrode 200. As a result, the formation failure of the through electrode 200 can be reduced.

なお、第2絶縁部220の熱的及び機械的強度は、貫通電極200を配置することによって低下するが、集積回路チップ105とI/O電極170が配置される内側領域101の外の、熱膨張係数差に起因する発生する熱的及び機械的応力が集中し難い外側領域102に第2絶縁部220が配置されるため、実質的には問題とはならない。   Note that the thermal and mechanical strength of the second insulating portion 220 is reduced by arranging the through electrode 200, but the thermal resistance outside the inner region 101 where the integrated circuit chip 105 and the I / O electrode 170 are arranged is reduced. Since the second insulating portion 220 is disposed in the outer region 102 where the generated thermal and mechanical stress due to the difference in expansion coefficient is difficult to concentrate, there is substantially no problem.

一方、集積回路チップ105及びI/O電極170を、石英フィラ含有比率が高く、熱的及び機械的強度が高い第1絶縁部210を有する内側領域101に配置することで、熱膨張係数差に起因する集積半導体装置10の応力歪みに対する高信頼性を維持することができる。   On the other hand, by disposing the integrated circuit chip 105 and the I / O electrode 170 in the inner region 101 having the first insulating portion 210 having a high quartz filler content ratio and a high thermal and mechanical strength, a difference in thermal expansion coefficient is obtained. It is possible to maintain high reliability against the stress strain of the integrated semiconductor device 10 due to the above.

すなわち、貫通電極200を集積半導体装置10の周辺部分(外側領域102)に配置し、I/O電極170を貫通電極200が配置されない内側領域101に配置することで、応力歪による貫通電極200部分での破壊不良を防止できる。これにより、結果的に集積半導体装置10の応力歪みに対する信頼性を向上させることが可能になる。
外側領域102に貫通電極200を配置することにより、応力変形の影響を受けないため、バンプ電極を用いた接続信頼性が向上する。
貫通電極200を、応力歪みが集中する集積半導体装置10の中心部分に配置しないことにより、熱膨張係数差に起因するバンプ応力歪みの影響を排除できるため、集積半導体装置の信頼性をさらに向上させることができる。
That is, the through electrode 200 is disposed in the peripheral portion (outer region 102) of the integrated semiconductor device 10 and the I / O electrode 170 is disposed in the inner region 101 in which the through electrode 200 is not disposed, whereby the through electrode 200 portion due to stress strain is provided. Destruction failure can be prevented. As a result, the reliability of the integrated semiconductor device 10 with respect to stress strain can be improved.
By disposing the through electrode 200 in the outer region 102, the connection reliability using the bump electrode is improved because it is not affected by stress deformation.
Since the through electrode 200 is not disposed in the central portion of the integrated semiconductor device 10 where stress strain is concentrated, the influence of the bump stress strain caused by the difference in thermal expansion coefficient can be eliminated, thereby further improving the reliability of the integrated semiconductor device. be able to.

このように、本実施形態に係る集積半導体装置10によって、これまで課題になっていた貫通孔不良を解消することができ、信頼性の高い異種デバイスが搭載可能な集積半導体装置が提供できる。   As described above, the integrated semiconductor device 10 according to the present embodiment can eliminate the through-hole defect that has been a problem until now, and can provide an integrated semiconductor device on which a highly reliable heterogeneous device can be mounted.

(第1の比較例)
図3は、第1の比較例の集積半導体装置の構成を例示する模式図である。
図3(a)は、第1の比較例の集積半導体装置の模式平面図であり、図3(b)は、図3(a)のA−A’線模式断面図である。
図3(a)、(b)に表したように、第1の比較例の集積半導体装置91においては、その全部の領域に、石英フィラを高含有比率で含有する絶縁部230が配置されている。すなわち、集積回路チップ105が配置された領域のみならず、その領域の外側の外周部も、石英フィラを高含有比率で含有する絶縁部230が配置されている。この絶縁部230以外は、第1の実施形態に係る集積半導体装置10と同様なので、説明は省略する。
(First comparative example)
FIG. 3 is a schematic view illustrating the configuration of the integrated semiconductor device of the first comparative example.
FIG. 3A is a schematic plan view of the integrated semiconductor device of the first comparative example, and FIG. 3B is a schematic cross-sectional view taken along line AA ′ of FIG.
As shown in FIGS. 3A and 3B, in the integrated semiconductor device 91 of the first comparative example, the insulating portion 230 containing the quartz filler at a high content ratio is arranged in the entire region. Yes. That is, not only the region where the integrated circuit chip 105 is disposed, but also the outer peripheral portion outside the region is provided with the insulating portion 230 containing the quartz filler in a high content ratio. Except for the insulating unit 230, the integrated semiconductor device 10 according to the first embodiment is the same as the integrated semiconductor device 10, and a description thereof is omitted.

図4は、第1の比較例の集積半導体装置における貫通孔の形成状態を例示する模式部分断面図である。
すなわち、図4(a)は、第1の比較例の集積半導体装置における貫通孔形成工程の前の状態を例示している。また、図4(b)は、貫通孔形成工程の後の状態を例示している。
図4(a)に表したように、第1の比較例の集積半導体装置91においては、その全体に、石英フィラ212の含有比率が高い(この例では80%)絶縁部230が配置されている。
そして、図4(b)に表したように、この構造の絶縁部230に、貫通電極200(図示しない)を形成するための貫通孔を、例えば、レーザ加工によって設けようとした時、絶縁部230には高含有比率で石英フィラが充填されているため、貫通孔の形成が困難であり、例えば、図4(b)に例示したように貫通孔が貫通せず深さ方向の途中までが空隙となった孔202が形成される。また、図4(b)に例示したように、孔202の径が不均一になる課題があった。さらに、図4(b)に例示したように、孔202の壁面に石英フィラ212が残存し、孔202の形状が不均一になるなど、貫通孔形成不良が発生する。
FIG. 4 is a schematic partial cross-sectional view illustrating the formation of through holes in the integrated semiconductor device of the first comparative example.
That is, FIG. 4A illustrates the state before the through hole forming step in the integrated semiconductor device of the first comparative example. Moreover, FIG.4 (b) has illustrated the state after a through-hole formation process.
As shown in FIG. 4A, in the integrated semiconductor device 91 of the first comparative example, the insulating portion 230 having a high content ratio of the quartz filler 212 (80% in this example) is disposed throughout. Yes.
Then, as shown in FIG. 4B, when the through hole for forming the through electrode 200 (not shown) is provided in the insulating part 230 having this structure, for example, by laser processing, the insulating part Since 230 is filled with a quartz filler at a high content ratio, it is difficult to form a through hole. For example, as illustrated in FIG. A hole 202 is formed as a void. Further, as illustrated in FIG. 4B, there is a problem that the diameter of the hole 202 is not uniform. Furthermore, as illustrated in FIG. 4B, the quartz filler 212 remains on the wall surface of the hole 202, and the through-hole formation defect occurs, for example, the shape of the hole 202 becomes non-uniform.

これに対し、既に説明したように、本実施形態の集積半導体装置10においては、貫通孔201を形成する第2絶縁部220の石英フィラの含有比率が第1絶縁部210よりも低いため、貫通孔201の形成不良は実質的に発生しない。   On the other hand, as already described, in the integrated semiconductor device 10 of the present embodiment, since the content ratio of the quartz filler of the second insulating part 220 forming the through hole 201 is lower than that of the first insulating part 210, the through-hole is penetrated. The formation failure of the hole 201 does not substantially occur.

(第2の比較例)
第2の比較例の集積半導体装置は、第1の比較例とは逆に、その全部の領域に、石英フィラを低含有比率で含有する絶縁部240(図示しない)が配置されている。すなわち、外側の外周部のみならず、集積回路チップ105が配置された内側の領域も、石英フィラの含有比率が低い(本例では10%の)絶縁部240が配置されている。この絶縁部240以外は、第1の実施形態に係る集積半導体装置10と同様なので、説明は省略する。
(Second comparative example)
In contrast to the first comparative example, the integrated semiconductor device of the second comparative example has an insulating portion 240 (not shown) containing a quartz filler in a low content ratio in the entire region. That is, not only the outer peripheral portion on the outer side but also the inner region where the integrated circuit chip 105 is placed is provided with the insulating portion 240 having a low content of quartz filler (10% in this example). Except for the insulating part 240, the integrated semiconductor device 10 according to the first embodiment is the same as the integrated semiconductor device 10, and a description thereof will be omitted.

このような構成の集積半導体装置92では、集積回路チップ105とI/O電極170などが配置される内側の領域の絶縁部240は、石英フィラの含有比率が低いため、熱膨張係数、ヤング率などの機械的な物性が低く、応力歪信頼性が集積半導体装置としては十分でない課題があった。   In the integrated semiconductor device 92 having such a configuration, the insulating portion 240 in the inner region where the integrated circuit chip 105, the I / O electrode 170, and the like are disposed has a low content of quartz filler. There is a problem that the mechanical properties such as the above are low and the stress strain reliability is not sufficient as an integrated semiconductor device.

これに対し、本実施形態に係る集積半導体装置10においては、集積回路チップ105及びI/O電極170を、石英フィラ含有比率が高く、熱膨張係数、ヤング率などの機械的な物性が高く、熱的及び機械的強度が高い第1絶縁部210を有する内側領域101に配置されていることから、熱膨張係数差に起因する変位量を小さくすることができるため、集積半導体装置10の応力歪みに対する高信頼性を効果的に維持することができる。   On the other hand, in the integrated semiconductor device 10 according to the present embodiment, the integrated circuit chip 105 and the I / O electrode 170 have a high quartz filler content ratio and high mechanical properties such as a thermal expansion coefficient and a Young's modulus. Since it is arranged in the inner region 101 having the first insulating portion 210 having a high thermal and mechanical strength, the amount of displacement due to the difference in thermal expansion coefficient can be reduced, so that the stress strain of the integrated semiconductor device 10 High reliability can be effectively maintained.

(第3の比較例)
図5は、第3の比較例の集積半導体装置の要部の構成を例示する模式断面図である。
第3の比較例である集積半導体装置93は、シリコン基板に貫通孔を形成し、この貫通孔に金属を充填して形成された貫通電極209を有しており、図5は、この貫通電極209及びその周辺領域の拡大模式断面図である。
図5に表したように、第3の比較例の集積半導体装置93においては、シリコン基板109に貫通孔(図示しない)が配置され、その貫通孔に金属を充填することにより、貫通電極209が形成される。この場合、シリコン基板109と貫通電極209との間には、各種のバリアメタルやパッシベーション層208を形成する必要があり、プロセスが複雑で、製造コストが高価になる課題があった。また、この方法では、貫通孔を形成する領域が限定され、電子回路構成または外形寸法の異なる異種デバイスを集積化するのに制限がある。
(Third comparative example)
FIG. 5 is a schematic cross-sectional view illustrating the configuration of the main part of the integrated semiconductor device of the third comparative example.
An integrated semiconductor device 93 as a third comparative example has a through-hole 209 formed by forming a through-hole in a silicon substrate and filling the through-hole with metal. FIG. It is an expansion schematic cross section of 209 and its peripheral region.
As shown in FIG. 5, in the integrated semiconductor device 93 of the third comparative example, a through hole (not shown) is disposed in the silicon substrate 109, and the through electrode 209 is formed by filling the through hole with metal. It is formed. In this case, it is necessary to form various barrier metals and a passivation layer 208 between the silicon substrate 109 and the through electrode 209, which causes a problem that the process is complicated and the manufacturing cost is expensive. Further, in this method, a region where the through hole is formed is limited, and there is a limit to integrating different types of devices having different electronic circuit configurations or external dimensions.

これに対し、本実施形態に係る集積半導体装置10においては、貫通電極200が、主に有機絶縁体からなる第2絶縁部220に配置されるので、貫通電極200を形成するための貫通孔を形成するプロセスが容易であり、製造コストを低減することができる特徴を有している。さらに、貫通孔を形成する領域に関する制限は、外側領域102に形成するという制限のみであり、これを除けば、その形成領域は任意である。これにより、本実施形態に係る集積半導体装置10では、電子回路構成または外形の異なる異種デバイスを集積化することが可能となる。   On the other hand, in the integrated semiconductor device 10 according to the present embodiment, the through electrode 200 is disposed in the second insulating portion 220 mainly made of an organic insulator, so that a through hole for forming the through electrode 200 is formed. The formation process is easy and the manufacturing cost can be reduced. Furthermore, the only limitation regarding the region where the through hole is formed is that the region is formed in the outer region 102. Except this, the region where the through hole is formed is arbitrary. Thereby, in the integrated semiconductor device 10 according to the present embodiment, it is possible to integrate different types of devices having different electronic circuit configurations or external shapes.

本実施形態に係る集積半導体装置の製造方法については、後述の実施例によって詳しく説明するので、以下ではその概要を説明する。
本実施形態に係る集積半導体装置の製造方法においては、まず、集積回路チップ105をガラスマスク(集積転写基板)に搭載する。
次に、集積回路チップ105が搭載される領域に、石英フィラ含有比率が高い第1絶縁材を、例えば、公知の印刷法により形成し、第1絶縁部210を形成する。そして、その外側の領域に、石英フィラ含有比率が低い(または含有しない)第2絶縁材を、例えば、公知の印刷法により形成し、第2絶縁部220を形成する。なお、第1絶縁部210及び第2絶縁部220の形成方法は、印刷法に限らず、例えば、インクジェット法などを用いることができる。また、第1絶縁部210及び第2絶縁部220の形成順序は任意であり、さらにこれらを同時に形成することも可能である。
次に、ガラスマスクを介した露光と、現像により、所定部分に電気接続のための電極部を露出させ、絶縁層を所定パターンで形成する。
次いで、LSIチップ110及びMEMSチップ120の電気接続のための微細配線層280を形成する。
次いで、MEMSチップ120を保護するMEMS封止材(MEMSキャップ290)を形成し、MEMSチップ120を封止する。
このような製造方法により、図1に例示した本実施形態の集積半導体装置10を形成できる。
Since the manufacturing method of the integrated semiconductor device according to this embodiment will be described in detail with reference to examples described later, the outline thereof will be described below.
In the method of manufacturing an integrated semiconductor device according to this embodiment, first, the integrated circuit chip 105 is mounted on a glass mask (integrated transfer substrate).
Next, in the region where the integrated circuit chip 105 is mounted, a first insulating material having a high quartz filler content is formed by, for example, a known printing method to form the first insulating portion 210. Then, a second insulating material having a low (or not containing) quartz filler content is formed in the outer region by, for example, a known printing method to form the second insulating portion 220. In addition, the formation method of the 1st insulating part 210 and the 2nd insulating part 220 is not restricted to a printing method, For example, the inkjet method etc. can be used. Further, the order of forming the first insulating part 210 and the second insulating part 220 is arbitrary, and they can be formed simultaneously.
Next, an electrode portion for electrical connection is exposed at a predetermined portion by exposure through a glass mask and development, and an insulating layer is formed in a predetermined pattern.
Next, a fine wiring layer 280 for electrical connection between the LSI chip 110 and the MEMS chip 120 is formed.
Next, a MEMS sealing material (MEMS cap 290) for protecting the MEMS chip 120 is formed, and the MEMS chip 120 is sealed.
By such a manufacturing method, the integrated semiconductor device 10 of this embodiment illustrated in FIG. 1 can be formed.

図6は、本発明の第1の実施形態に係る別の集積半導体装置の構成を例示する模式平面図である。
図6に表したように、本発明の第1の実施形態に係る別の集積半導体装置11では、集積回路チップ105が搭載される内側領域101に、第1絶縁部210が配置され、内側領域101の上下の2辺の外側領域102に、貫通電極200と第2絶縁部220とが配置されている。そして、この第2絶縁部220は、貫通電極200の周りに配置されている。すなわち、図1に例示した集積半導体装置10においては、第2絶縁部220及び貫通電極200が、集積半導体装置10の外周部の4辺に渡って配置されていたのに対して、図6に例示した集積半導体装置11では、上下の2辺の領域に、第2絶縁部220及び貫通電極200が配置されている。集積半導体装置11は、この平面配置の違い以外は、集積半導体装置10と同様とすることができるので、その他の部分の説明は省略する。
FIG. 6 is a schematic plan view illustrating the configuration of another integrated semiconductor device according to the first embodiment of the invention.
As shown in FIG. 6, in another integrated semiconductor device 11 according to the first embodiment of the present invention, the first insulating portion 210 is arranged in the inner region 101 where the integrated circuit chip 105 is mounted, and the inner region. The through electrode 200 and the second insulating portion 220 are disposed in the outer regions 102 on the upper and lower sides of the 101. The second insulating part 220 is disposed around the through electrode 200. That is, in the integrated semiconductor device 10 illustrated in FIG. 1, the second insulating portion 220 and the through electrode 200 are arranged over the four sides of the outer peripheral portion of the integrated semiconductor device 10, whereas in FIG. In the illustrated integrated semiconductor device 11, the second insulating part 220 and the through electrode 200 are disposed in the upper and lower two side regions. Since the integrated semiconductor device 11 can be the same as the integrated semiconductor device 10 except for the difference in the planar arrangement, description of other parts is omitted.

このように、第2絶縁部220及び貫通電極200は、集積半導体装置の外周部の全辺に渡って配置する必要はなく、貫通電極200は、集積回路チップ105が搭載される内側領域101より外の外側領域102であれば、配置する場所は任意であり、例えば、上下の2辺や左右の2辺、または、上下左右のいずれか1辺に配置することができる。ただし、応力の平均化のために、左右または上下に、実質的に対称な領域に配置することが望ましい。   As described above, the second insulating portion 220 and the through electrode 200 do not need to be disposed over the entire periphery of the integrated semiconductor device, and the through electrode 200 is formed from the inner region 101 on which the integrated circuit chip 105 is mounted. If it is the outer side area | region 102 outside, the place to arrange | position is arbitrary, For example, it can arrange | position to any one side of two upper and lower sides, two right and left sides, or the upper and lower sides and right and left. However, in order to average the stress, it is desirable to arrange it in a substantially symmetrical region on the left and right or top and bottom.

これにより、集積半導体装置11によって貫通孔不良を解消し、信頼性の高い異種デバイスが搭載可能な集積半導体装置が提供できる。   As a result, the integrated semiconductor device 11 can eliminate the through-hole defect and provide an integrated semiconductor device on which a highly reliable heterogeneous device can be mounted.

図7は、本発明の第1の実施形態に係る別の集積半導体装置の構成を例示する模式平面図である。
図7に表したように、本発明の第1の実施形態に係る別の集積半導体装置12では、集積回路チップ105が搭載される内側領域101に、第1絶縁部210が配置され、内側領域101(同図中の破線で例示)の外の外側領域102のうち、集積半導体装置12の4つの角部に、貫通電極200及び第2絶縁部220が配置されている。そして、この例では、貫通電極200が配置されていない外側領域102(4つの角部以外の4辺)には、第1絶縁部210が延在して配置されている。この平面配置の違い以外は、集積半導体装置10と同様とすることができるので、その他の部分の説明は省略する。
FIG. 7 is a schematic plan view illustrating the configuration of another integrated semiconductor device according to the first embodiment of the invention.
As shown in FIG. 7, in another integrated semiconductor device 12 according to the first embodiment of the present invention, the first insulating portion 210 is disposed in the inner region 101 where the integrated circuit chip 105 is mounted, and the inner region In the outer region 102 outside 101 (illustrated by a broken line in the figure), through electrodes 200 and second insulating portions 220 are arranged at four corners of the integrated semiconductor device 12. In this example, the first insulating portion 210 extends and is disposed in the outer region 102 (four sides other than the four corners) where the through electrode 200 is not disposed. Since it can be the same as that of the integrated semiconductor device 10 except the difference in this planar arrangement, description of other parts is abbreviate | omitted.

このように、貫通電極200は、集積回路チップ105が搭載される内側領域101の周囲の外側領域であれば、配置する場所は任意である。また貫通電極200は、必ずしも線状に配列する必要はなく、外側領域102であれば配置する場所は任意であり、また領域として独立して配置することも可能である。   As described above, the through electrode 200 may be arranged in any location as long as it is an outer region around the inner region 101 on which the integrated circuit chip 105 is mounted. Further, the through electrodes 200 are not necessarily arranged in a linear shape, and any location can be arranged as long as they are the outer region 102, and can also be arranged independently as a region.

なお、図7に例示した集積半導体装置12では、貫通電極200を4つの角部に配置した例であるが、上下または左右の2つの角部、左上と右下の2つの角部、右上と左下の角部、または、上下左右のいずれか1つの角部に配置することができる。ただし、応力の平均化のために、例えば、左右または上下に実質的に対称な、または、実質的に点対称な領域に配置することが望ましい。さらに、図7の例では、4つの角部に、それぞれ4つの貫通電極200を配置した例であるが、各角部における貫通電極200の数は任意である。また、貫通電極200は、必ずしも角部に配置する必要はなく、4つの辺のいずれかの、例えば中央部分に配置しても良い。
これにより、集積半導体装置12によって貫通孔不良を解消し、信頼性の高い異種デバイスが搭載可能な集積半導体装置が提供できる。
In the integrated semiconductor device 12 illustrated in FIG. 7, the through electrode 200 is arranged at four corners. However, the upper and lower or left and right corners, the upper left and lower right corners, the upper right and It can be arranged at the lower left corner or at any one of the upper, lower, left and right corners. However, in order to average the stress, for example, it is desirable to arrange in a region that is substantially symmetric in the left-right or up-down direction or substantially point-symmetric. Furthermore, although the example of FIG. 7 is an example in which four through electrodes 200 are arranged at four corners, the number of through electrodes 200 at each corner is arbitrary. Further, the through electrode 200 is not necessarily arranged at the corner, and may be arranged at any one of the four sides, for example, at the central portion.
As a result, the integrated semiconductor device 12 can solve the through-hole defect and provide an integrated semiconductor device on which a highly reliable different device can be mounted.

図8は、本発明の第1の実施形態に係る別の集積半導体装置の構成を例示する模式平面図である。
図8に表したように、本発明の第1の実施形態に係る別の集積半導体装置13では、集積回路チップ105が搭載される内側領域101に、第1絶縁部210が配置され、内側領域101(同図中の破線で例示)の外の外側領域102に、貫通電極200が配置されている。そして、第2絶縁部220は、外側領域102のうち少なくとも貫通電極200の周りに配置されている。そして、この例では、貫通電極200の周り以外の外側領域102には、第1絶縁部210が延在して配置されている。この平面配置の違い以外は、集積半導体装置10と同様とすることができるので、その他の部分の説明は省略する。
FIG. 8 is a schematic plan view illustrating the configuration of another integrated semiconductor device according to the first embodiment of the invention.
As shown in FIG. 8, in another integrated semiconductor device 13 according to the first embodiment of the present invention, the first insulating portion 210 is disposed in the inner region 101 where the integrated circuit chip 105 is mounted, and the inner region A through electrode 200 is disposed in the outer region 102 outside 101 (illustrated by a broken line in the figure). The second insulating portion 220 is disposed at least around the through electrode 200 in the outer region 102. In this example, the first insulating portion 210 extends and is disposed in the outer region 102 other than the periphery of the through electrode 200. Since it can be the same as that of the integrated semiconductor device 10 except the difference in this planar arrangement, description of other parts is abbreviate | omitted.

このように、第2絶縁部220は、貫通電極200の周囲に配置すれば良く、これにより、貫通電極200を形成する際の貫通孔201が容易に形成できる。
これにより、集積半導体装置12によって貫通孔不良を解消し、信頼性の高い、異種デバイスが搭載可能な集積半導体装置が提供できる。
As described above, the second insulating portion 220 may be disposed around the through electrode 200, whereby the through hole 201 when forming the through electrode 200 can be easily formed.
As a result, the integrated semiconductor device 12 can solve the through-hole defect and provide a highly reliable integrated semiconductor device on which different types of devices can be mounted.

図9は、本発明の第1の実施形態に係る別の集積半導体装置の要部の構成を例示する模式断面図である。
図9に表したように、本発明の第1の実施形態に係る別の集積半導体装置14においては、I/O電極170に接して配置されたバンプ電極180をさらに備えている。バンプ電極180は、集積半導体装置10とは別の電気回路との電気的接続を行い、集積半導体装置10を動作させることを目的としている。
なお、同図においては、このI/O電極170及びバンプ電極180は、集積半導体装置14の第1主面301及び第2主面302の両方に配置されているが、どちらか一方に配置しても良い。
また、I/O電極170の一部は、集積回路チップ105どうしの電気的接続を行う微細配線層280と電気的に接続されている。
FIG. 9 is a schematic cross-sectional view illustrating the configuration of the main part of another integrated semiconductor device according to the first embodiment of the invention.
As shown in FIG. 9, another integrated semiconductor device 14 according to the first exemplary embodiment of the present invention further includes a bump electrode 180 arranged in contact with the I / O electrode 170. The bump electrode 180 is intended to operate the integrated semiconductor device 10 by making an electrical connection with an electric circuit different from the integrated semiconductor device 10.
In the figure, the I / O electrode 170 and the bump electrode 180 are arranged on both the first main surface 301 and the second main surface 302 of the integrated semiconductor device 14, but are arranged on either one of them. May be.
A part of the I / O electrode 170 is electrically connected to a fine wiring layer 280 that electrically connects the integrated circuit chips 105.

なお、上記のバンプ電極180には、例えば、Ti、Ni、Al、Cu、Au、Ag、Pb、An及びPdからなる群から選ばれた少なくとも1つを含む材料、及び、その群から選ばれた少なくとも2つを含む合金を用いることができる。   The bump electrode 180 is, for example, a material containing at least one selected from the group consisting of Ti, Ni, Al, Cu, Au, Ag, Pb, An, and Pd, and selected from the group. Further, an alloy containing at least two can be used.

また、バンプ電極180のバリアメタルには、Cu/Ni/Tiを用いることができる。ただし、これら金属に限定されず、例えば、Cu、Ni、Pa及びWからなる群から選ばれた少なくとも1つを含む材料、及び、その群から選ばれた少なくとも2つを含む合金を用いることもできる。   Further, Cu / Ni / Ti can be used for the barrier metal of the bump electrode 180. However, the present invention is not limited to these metals. For example, a material including at least one selected from the group consisting of Cu, Ni, Pa and W, and an alloy including at least two selected from the group may be used. it can.

(第1の実施例)
以下、本実施形態に係る集積半導体装置の第1の実施例を説明する。
第1の実施例は、図1に例示した本実施形態に係る集積半導体装置10と同様の構成を有する。以下図1を参照しながら説明する。
図1(a)、(b)に表したように、第1の実施例に係る集積半導体装置18においては、集積回路チップ105として、5個のLSIチップ110、及び、1個のMEMSチップ120が搭載されている。さらに、LSIチップ110は、本例では、2個のCPU、2個のドライバ及び1個のメモリである。また、LSIチップ110とMEMSチップ120とは、微細配線層280により相互接続されている。
(First embodiment)
A first example of the integrated semiconductor device according to this embodiment will be described below.
The first example has the same configuration as that of the integrated semiconductor device 10 according to this embodiment illustrated in FIG. This will be described below with reference to FIG.
As shown in FIGS. 1A and 1B, in the integrated semiconductor device 18 according to the first embodiment, as the integrated circuit chip 105, five LSI chips 110 and one MEMS chip 120 are used. Is installed. Further, in this example, the LSI chip 110 includes two CPUs, two drivers, and one memory. Further, the LSI chip 110 and the MEMS chip 120 are interconnected by a fine wiring layer 280.

このLSIチップ110とMEMSチップ120との間、それらの裏面(本例では第2主面302)には、第1絶縁部210が配置されている。すなわち、LSIチップ110とMEMSチップ120が搭載された内側領域101に第1絶縁部210が配置されている。そして、集積半導体装置18の外周部には、第2絶縁部220が配置されている。すなわち、内側領域101の周囲の外側領域102に、第2絶縁部220が配置されている。
さらに、この外周部の第2絶縁部220の部分には、集積半導体装置10の第1主面301と第2主面302を電気的に接続する貫通電極200が配置されている。
A first insulating portion 210 is disposed between the LSI chip 110 and the MEMS chip 120 on the back surface thereof (second main surface 302 in this example). That is, the first insulating portion 210 is arranged in the inner region 101 where the LSI chip 110 and the MEMS chip 120 are mounted. A second insulating portion 220 is disposed on the outer peripheral portion of the integrated semiconductor device 18. That is, the second insulating portion 220 is disposed in the outer region 102 around the inner region 101.
Further, a penetrating electrode 200 that electrically connects the first main surface 301 and the second main surface 302 of the integrated semiconductor device 10 is disposed in the portion of the second insulating portion 220 on the outer peripheral portion.

本実施例の場合、第1絶縁部210には、石英フィラが80%含有されたエポキシ樹脂を用い、第2絶縁部220には、石英フィラが含有されないエポキシ樹脂が用いられている。また、微細配線層280には、Al/Tiが用いられている。   In this embodiment, an epoxy resin containing 80% quartz filler is used for the first insulating portion 210, and an epoxy resin containing no quartz filler is used for the second insulating portion 220. Further, Al / Ti is used for the fine wiring layer 280.

また、集積半導体装置18のI/O電極170は、貫通電極200が配置された領域(外側領域102)よりも内側の領域(内側領域101)に配置されており、このI/O電極170の上にはバンプ電極180が配置されている。本実施例では、バンプ電極180として、PbSn合金はんだが用いられ、バンプ電極180のバリアメタルには、Cu/Ni/Tiが用いられている。既に説明したように、これら金属に限定されず、バンプ電極180及びバリアメタルには、既に説明した各種の材料を用いることができる。   Further, the I / O electrode 170 of the integrated semiconductor device 18 is disposed in a region (inner region 101) inside the region (outer region 102) in which the through electrode 200 is disposed. A bump electrode 180 is disposed on the top. In this embodiment, PbSn alloy solder is used as the bump electrode 180, and Cu / Ni / Ti is used as the barrier metal of the bump electrode 180. As already described, the present invention is not limited to these metals, and various materials described above can be used for the bump electrode 180 and the barrier metal.

本実施例の集積半導体装置18の外形寸法は、10mm×15mmである。
なお、本実施例の集積半導体装置18は、集積回路チップ105として、LSIチップ110とMEMS120とが搭載される例であるが、搭載される集積回路チップ105の数は任意である。
さらに、集積半導体装置18においては、LSIチップ110として、CPU、ドライバ(Driver)及びメモリ(Memory)としたが、本発明はこれに限定されるものではない。
The external dimension of the integrated semiconductor device 18 of this embodiment is 10 mm × 15 mm.
The integrated semiconductor device 18 of this embodiment is an example in which the LSI chip 110 and the MEMS 120 are mounted as the integrated circuit chip 105, but the number of integrated circuit chips 105 to be mounted is arbitrary.
Furthermore, in the integrated semiconductor device 18, the LSI chip 110 is a CPU, a driver, and a memory, but the present invention is not limited to this.

以下、本実施例の集積半導体装置18の製造方法について説明する。
図10は、本発明の第1の実施例に係る集積半導体装置の製造方法を例示する工程順模式断面図である。
また、図11は、図10に続く工程順模式断面図であり、図12は、図11に続く工程順模式断面図であり、図13は、図12に続く工程順模式断面図である。
図10(a)は、製造工程における最初の状態を例示しており、図10(b)は、図10(a)に続く図、図10(c)は図10(b)に続く図である。また、図11(a)〜(c)は、図10(c)に続く図であり、図12(a)〜(c)は、図11(c)に続く図であり、図13(a)〜(c)は、図12(c)に続く図である。
Hereinafter, a method for manufacturing the integrated semiconductor device 18 of this embodiment will be described.
FIG. 10 is a schematic cross-sectional view in order of the processes, illustrating the method for manufacturing the integrated semiconductor device according to the first example of the invention.
11 is a schematic cross-sectional view in the order of steps following FIG. 10, FIG. 12 is a schematic cross-sectional view in the order of steps following FIG. 11, and FIG. 13 is a schematic cross-sectional view in the order of steps following FIG.
FIG. 10A illustrates the initial state in the manufacturing process. FIG. 10B is a diagram following FIG. 10A, and FIG. 10C is a diagram following FIG. 10B. is there. 11 (a) to 11 (c) are diagrams subsequent to FIG. 10 (c), and FIGS. 12 (a) to 12 (c) are diagrams subsequent to FIG. 11 (c). )-(C) is a figure following FIG.12 (c).

本発明の第1の実施例の集積半導体装置18の製造方法においては、まず、図10(a)に表したように、5個のLSIチップ110、1個のMEMSチップ120、及び、所定の遮光パターン253を有するガラスマスク(集積転写基板)250を、個別のプロセスで製造する。このガラスマスク250には、LSIチップ110主面に、面内で接着強度差を有する有機絶縁膜252が形成されている。本実施例では、説明のため、有機絶縁膜252としてポリイミド樹脂が用いられている。   In the manufacturing method of the integrated semiconductor device 18 of the first embodiment of the present invention, first, as shown in FIG. 10A, five LSI chips 110, one MEMS chip 120, and a predetermined A glass mask (integrated transfer substrate) 250 having a light shielding pattern 253 is manufactured by an individual process. In the glass mask 250, an organic insulating film 252 having an in-plane adhesive strength difference is formed on the main surface of the LSI chip 110. In this embodiment, a polyimide resin is used as the organic insulating film 252 for explanation.

次いで、図10(b)に表したように、LSIチップ110及びMEMSチップ120をガラスマスク250の上に、LSIチップ110とMEMSチップ120の主面が実質的に同一平面になるように配置する。   Next, as illustrated in FIG. 10B, the LSI chip 110 and the MEMS chip 120 are arranged on the glass mask 250 so that the main surfaces of the LSI chip 110 and the MEMS chip 120 are substantially flush with each other. .

次いで、図10(c)に表したように、LSIチップ110とMEMSチップ120との間の隙間部分、LSIチップ110とMEMSチップ120の裏面を、第1絶縁部210となる第1絶縁材として、石英フィラを80%含有したエポキシ樹脂で被覆する。このエポキシ樹脂の被覆形成には、真空印刷技術を用いることが好ましい。   Next, as illustrated in FIG. 10C, the gap between the LSI chip 110 and the MEMS chip 120 and the back surface of the LSI chip 110 and the MEMS chip 120 are used as the first insulating material that becomes the first insulating unit 210. Then, it is coated with an epoxy resin containing 80% quartz filler. For the coating formation of the epoxy resin, it is preferable to use a vacuum printing technique.

次いで、図11(a)に表したように、同様の方法を用いて、第2絶縁部220となる第2絶縁材として、石英フィラの含有されないエポキシ樹脂を、上記の石英フィラ含有比率80%のエポキシ樹脂の周囲に塗布形成する。
なお、この塗布形成方法として、印刷法を用いた場合、印刷マスクは特に限定されるものではないが、開口径の大きなメタルメッシュマスクを用いることが好ましい。なお、印刷法に限らず、インクジェット法など、樹脂を塗布する各種の手法を用いることもできる。
Next, as shown in FIG. 11A, by using the same method, an epoxy resin containing no quartz filler is used as the second insulating material to be the second insulating portion 220, and the above-mentioned quartz filler content ratio is 80%. The coating is formed around the epoxy resin.
In addition, when a printing method is used as this coating formation method, the printing mask is not particularly limited, but a metal mesh mask having a large opening diameter is preferably used. In addition, not only a printing method but various methods of applying resin, such as an inkjet method, can also be used.

次いで、図11(b)に表したように、この状態で第1絶縁材及び第2絶縁材を、高温クリーンオーブンで硬化させ、第1絶縁部210と第2絶縁部220を形成した後、第2絶縁部220の所定の場所に貫通孔201を形成する。この貫通孔201の形成方法には、レーザ加工を用いることができるが、このレーザ加工に用いるレーザは、特に限定されるものではなく、例えば炭酸ガスレーザなどを用いることができる。   Next, as shown in FIG. 11B, after the first insulating material and the second insulating material are cured in a high temperature clean oven in this state to form the first insulating portion 210 and the second insulating portion 220, A through hole 201 is formed at a predetermined location of the second insulating part 220. Laser processing can be used as a method of forming the through hole 201, but the laser used for the laser processing is not particularly limited, and for example, a carbon dioxide laser can be used.

次いで、図11(c)に表したように、開口された貫通孔201に、導電性材料を充填して、貫通電極200を形成する。本実施例の場合は、電気めっき法により、貫通孔201にCuを充填した。ただし、導電性材料の充填方法は、これに制限されるものではなく、例えば、金属ペースト充填法、はんだなどの溶融金属充填法など、各種の方法を使用することができる。   Next, as illustrated in FIG. 11C, the through electrode 201 is formed by filling the opened through hole 201 with a conductive material. In the case of this example, Cu was filled in the through hole 201 by electroplating. However, the filling method of the conductive material is not limited to this, and various methods such as a metal paste filling method and a molten metal filling method such as solder can be used.

次いで、図12(a)に表したように、絶縁層を形成した後、Al/Tiから構成される微細配線層150の形成を行う。なお、本実施例では、説明のため、Al/Niを使用したが、これら金属に限定されるものではなく、例えば、Ti、Ni、Al、Cu、Au、Pb、Sn、Pd及びWからなる群から選ばれた少なくとも1つ、または、その群から選ばれた少なくとも2つを有する合金を用いることができる。   Next, as shown in FIG. 12A, after forming an insulating layer, a fine wiring layer 150 made of Al / Ti is formed. In the present embodiment, Al / Ni is used for explanation, but it is not limited to these metals. For example, it is made of Ti, Ni, Al, Cu, Au, Pb, Sn, Pd and W. An alloy having at least one selected from a group or at least two selected from the group can be used.

次いで、図12(b)に表したように、このLSIチップ110及びMEMSチップ120が、ガラスマスク250の上に位置合わせ搭載された状態で、ガラスマスク250の主面から露光光254によって露光する。露光は、多層配線を構成する有機絶縁膜252となる感光性樹脂の感度に応じて実施する。なお、有機絶縁膜252となる感光性樹脂としてポリイミド(東レ株式会社製:商標名フォトニースURシリーズ)を使用した場合は、100mJ/cm程度の露光エネルギーが好ましい。 Next, as shown in FIG. 12B, the LSI chip 110 and the MEMS chip 120 are exposed by the exposure light 254 from the main surface of the glass mask 250 in a state where the LSI chip 110 and the MEMS chip 120 are positioned and mounted on the glass mask 250. . The exposure is performed according to the sensitivity of the photosensitive resin that becomes the organic insulating film 252 constituting the multilayer wiring. When polyimide (trade name Photo Nice UR series, manufactured by Toray Industries, Inc.) is used as the photosensitive resin to be the organic insulating film 252, exposure energy of about 100 mJ / cm 2 is preferable.

次いで、図12(c)に表したように、ガラスマスク250を取り外した後、現像液(東レ株式会社製:商標名VD−505)を用いて現像を行い、LSIチップ110とMEMSチップ120とを相互に接続する外部接続端子171に対応する領域上の感光性樹脂を選択的に除去し、開口部255を形成する。   Next, as shown in FIG. 12C, after removing the glass mask 250, development is performed using a developer (trade name: VD-505 manufactured by Toray Industries, Inc.), and the LSI chip 110 and the MEMS chip 120 The photosensitive resin on the region corresponding to the external connection terminal 171 that connects the two is selectively removed to form the opening 255.

さらに、図13(a)に表したように、この有機絶縁膜上に、外部接続端子171を接続する薄膜金属を公知の技術で形成し、コンタクトビア140を形成する。本実施例では、この薄膜金属として、Al/Tiを使用したが、これら金属に限定されるものではなく、例えば、Ti、Ni、Al、Cu、Au、Pb、Sn、Pd及びWからなる群から選ばれた少なくとも1つ、または、その群から選ばれた少なくとも2つを含む合金を用いることができる。
なお、図13(a)〜(c)は、説明のため、12(c)以前の図に対して、上下を反転させて描いている。
Further, as shown in FIG. 13A, a thin film metal for connecting the external connection terminal 171 is formed on the organic insulating film by a known technique, and the contact via 140 is formed. In this embodiment, Al / Ti is used as the thin film metal, but the thin film metal is not limited to these metals. For example, a group consisting of Ti, Ni, Al, Cu, Au, Pb, Sn, Pd, and W is used. An alloy containing at least one selected from the above or at least two selected from the group can be used.
Note that FIGS. 13A to 13C are drawn upside down with respect to the figure before 12C for the sake of explanation.

その後、図13(b)に表したように、感光性ポリイミドとAl/Tiとを相互に積層した後、最上層をポリイミド膜で被覆して、I/O電極に対応する開口部256を形成する。   Thereafter, as shown in FIG. 13B, after photosensitive polyimide and Al / Ti are laminated together, the uppermost layer is covered with a polyimide film to form an opening 256 corresponding to the I / O electrode. To do.

次いで、ポリイミド膜上に、EB(Electron Beam)蒸着でCu/Ti膜を形成した後、厚膜めっきレジストAZ4903(ヘキスト・ジャパン株式会社製)をスピンコート法により膜厚50μmで形成し、露光及び現像により、50μmφの開口寸法を有するI/O電極よりも大きい、80μmの開口部を形成する。露光は、レジストの厚みに対して十分な量のエネルギーを照射し、現像には、AZ400Kデベロッパー(ヘキスト・ジャパン社製)を使用した。   Next, after forming a Cu / Ti film by EB (Electron Beam) vapor deposition on the polyimide film, a thick film plating resist AZ4903 (manufactured by Hoechst Japan Co., Ltd.) is formed with a film thickness of 50 μm by spin coating, and exposure and By development, an opening of 80 μm larger than the I / O electrode having an opening size of 50 μmφ is formed. For the exposure, a sufficient amount of energy was applied to the resist thickness, and for development, an AZ400K developer (manufactured by Hoechst Japan) was used.

次いで、下記のPb/Snめっき液に浸漬して、Ni/Tiを陰極として、下記の電気めっき液に対応する、例えば高純度共晶はんだ板を陽極としてめっきを行う。この時、電流密度は、1〜4(A/dm)で行い、浴温度は25℃とし、緩やかに攪拌しながら、はんだ組成(Pb/Sn)が共晶組成にほぼ等しい、あるいは、Pb側またはSn側にわずかに移行した組成のはんだ合金を、Ni/Ti層の上に50μmの厚さで析出させた。 Next, it is immersed in the following Pb / Sn plating solution, and plating is performed using Ni / Ti as a cathode and a high-purity eutectic solder plate corresponding to the following electroplating solution, for example, as an anode. At this time, the current density is 1 to 4 (A / dm 2 ), the bath temperature is 25 ° C., and the solder composition (Pb / Sn) is approximately equal to the eutectic composition while gently stirring, or Pb A solder alloy having a composition slightly shifted to the Sn or Sn side was deposited on the Ni / Ti layer at a thickness of 50 μm.

スルホン酸はんだめっき液の組成
錫イオン(Sn ) 12vol%
鉛イオン(Pb ) 30vol%
脂肪族スルホン酸 41vol%
ノニオン系界面活性剤 5vol%
カチオン系界面活性剤 5vol%
イソプロピルアルコール 7vol%
次いで、電気めっきレジストをアセトンで除去し、さらに、クエン酸/過酸化水素水から構成される溶液に浸漬して、Cuをエッチング除去した後、エチレンジアミン4酢酸/アンモニア/過酸化水素水/純水から構成される混合溶液に浸漬してTiをエッチング除去した。
上記の工程により、バンプ電極180を設置することにより、図13(c)及び図1に表した集積半導体装置18を製作した。
Composition of sulfonic acid solder plating solution
Tin ions (Sn 2 +) 12vol%
Lead ions (Pb 2 +) 30vol%
Aliphatic sulfonic acid 41 vol%
Nonionic surfactant 5 vol%
Cationic surfactant 5 vol%
Isopropyl alcohol 7vol%
Next, the electroplating resist is removed with acetone, and further immersed in a solution composed of citric acid / hydrogen peroxide solution to remove Cu by etching, and then ethylenediaminetetraacetic acid / ammonia / hydrogen peroxide solution / pure water. Ti was removed by immersion in a mixed solution composed of
By installing the bump electrode 180 by the above process, the integrated semiconductor device 18 shown in FIG. 13C and FIG. 1 was manufactured.

このような工程により製作される実施例の集積半導体装置18により、貫通孔不良が解消でき、信頼性の高い異種デバイスが搭載可能な集積半導体装置を提供することができる。   With the integrated semiconductor device 18 of the embodiment manufactured by such a process, a through-hole defect can be eliminated, and an integrated semiconductor device on which a highly reliable heterogeneous device can be mounted can be provided.

(第2の実施形態)
図14は、本発明の第2の実施形態に係る集積3次元半導体装置の構成を例示する模式断面図である。
図14に表したように、本発明の第2の実施形態に係る集積3次元半導体装置20は、第1の実施形態に係る集積半導体装置18と、集積半導体装置18に積層された別の半導体装置400とを備えている。さらに、集積半導体装置18と半導体装置400とは、バンプ電極180によって接続されている。
すなわち、本実施形態に係る集積3次元半導体装置20は、集積半導体装置と集積半導体装置が3次元実装された集積半導体装置である。
(Second Embodiment)
FIG. 14 is a schematic cross-sectional view illustrating the configuration of an integrated three-dimensional semiconductor device according to the second embodiment of the invention.
As shown in FIG. 14, the integrated three-dimensional semiconductor device 20 according to the second embodiment of the present invention includes an integrated semiconductor device 18 according to the first embodiment and another semiconductor stacked on the integrated semiconductor device 18. Device 400. Further, the integrated semiconductor device 18 and the semiconductor device 400 are connected by a bump electrode 180.
That is, the integrated three-dimensional semiconductor device 20 according to the present embodiment is an integrated semiconductor device in which the integrated semiconductor device and the integrated semiconductor device are three-dimensionally mounted.

本例では、半導体装置400は、2つの半導体基板、すなわち、第1LSI回路配線基板410と第2LSI回路配線基板420とした。ただし、本発明は、これには限定されず、半導体装置400の数は任意である。また、第1の実施形態に係る集積半導体装置を複数積層することも可能である。   In this example, the semiconductor device 400 includes two semiconductor substrates, that is, a first LSI circuit wiring board 410 and a second LSI circuit wiring board 420. However, the present invention is not limited to this, and the number of semiconductor devices 400 is arbitrary. It is also possible to stack a plurality of integrated semiconductor devices according to the first embodiment.

このような集積3次元半導体装置20によって、貫通孔不良が解消された、信頼性の高い異種デバイスが搭載可能な集積3次元半導体装置を提供することができる。   Such an integrated three-dimensional semiconductor device 20 can provide an integrated three-dimensional semiconductor device in which a highly reliable heterogeneous device in which a through hole defect is eliminated can be mounted.

(第2の実施例)
以下、本実施形態に係る第2の実施例の集積3次元半導体装置について説明する。第2の実施例の集積3次元半導体装置21は、図14に例示した構造を有する。
すなわち、第1の実施例の集積半導体装置18と、第1LSI回路配線基板410と、第2LSI回路配線基板420とが積層された集積3次元半導体装置の構造である。第1LSI回路配線基板410にはCPUチップが搭載され、第2LSI回路配線基板420にはメモリチップが搭載されている。ただし、本発明は、これに限定されるものではなく、例えばドライバチップ等を搭載しても良く、LSIチップの種類は特に限定されるものではない。
(Second embodiment)
Hereinafter, the integrated three-dimensional semiconductor device according to the second example of the embodiment will be described. The integrated three-dimensional semiconductor device 21 of the second embodiment has the structure illustrated in FIG.
That is, it is a structure of an integrated three-dimensional semiconductor device in which the integrated semiconductor device 18 of the first embodiment, the first LSI circuit wiring board 410, and the second LSI circuit wiring board 420 are stacked. A CPU chip is mounted on the first LSI circuit wiring board 410, and a memory chip is mounted on the second LSI circuit wiring board 420. However, the present invention is not limited to this. For example, a driver chip or the like may be mounted, and the type of LSI chip is not particularly limited.

以下、本実施例の集積3次元半導体装置21の製造方法を説明する。
まず、公知の技術であるハーフミラーを利用して位置合わせを行うフリップチップボンダーを用いて、集積半導体装置18のバンプ電極180と、第1LSI回路配線基板410の電極端子との位置合わせを行う。なお、集積半導体装置18は、加熱機構を有するコレットに保持され、350℃の窒素雰囲気中で予備加熱されている。
Hereinafter, a method for manufacturing the integrated three-dimensional semiconductor device 21 of this embodiment will be described.
First, the bump electrode 180 of the integrated semiconductor device 18 and the electrode terminal of the first LSI circuit wiring board 410 are aligned using a flip chip bonder that performs alignment using a known half mirror. The integrated semiconductor device 18 is held by a collet having a heating mechanism and preheated in a nitrogen atmosphere at 350 ° C.

次いで、集積半導体装置18のバンプ電極180と第1LSI回路配線基板410の電極端子とが接触した状態で、コレットを下方移動して、30kg/mmの圧力を加え、さらにこの状態で温度を370℃まで上昇させて、はんだを溶融させ、集積半導体装置18と第1LSI回路配線基板410の電極端子とを接続する。
同様の方法を用いて、第2LSI回路配線基板420を第1LSI回路配線基板410と接続する。
以上の工程により、図14に示す、本実施例の集積3次元半導体装置21が形成できる。
Next, with the bump electrode 180 of the integrated semiconductor device 18 and the electrode terminal of the first LSI circuit wiring board 410 in contact with each other, the collet is moved downward, a pressure of 30 kg / mm 2 is applied, and the temperature is increased to 370 in this state. The temperature is raised to ° C. to melt the solder, and the integrated semiconductor device 18 and the electrode terminal of the first LSI circuit wiring board 410 are connected.
The second LSI circuit wiring board 420 is connected to the first LSI circuit wiring board 410 using a similar method.
Through the above steps, the integrated three-dimensional semiconductor device 21 of this embodiment shown in FIG. 14 can be formed.

なお、必要に応じて、集積半導体装置18、第1LSI回路配線基板410及び第2LSI回路配線基板420の相互の隙間部分に、公知の技術である、封止樹脂を配置することもできる。この封止樹脂としては、例えば、ビスフェノール系エポキシ、イミダゾール硬化触媒及び酸無水物硬化剤からなる樹脂に、球状の石英フィラを重量比で45wt%添加したエポキシ樹脂を用いることができる。
また、例えば、クレゾールノボラックタイプのエポキシ樹脂(商標名ECON−195XL:住友化学株式会社製)100重量部、硬化剤としてのフェノール樹脂54重量部、充填剤としての熔融シリカ100重量部、触媒としてのベンジルジメチルアミン0.5重量部、その他添加剤としてカーボンブラック3重量部、シランカップリング剤3重量部を粉砕、混合、溶融したエポキシ樹脂溶融体を用いることも可能であり、その材料は限定されるものではない。
If necessary, a sealing resin, which is a known technique, can be disposed in the gap between the integrated semiconductor device 18, the first LSI circuit wiring board 410, and the second LSI circuit wiring board 420. As this sealing resin, for example, an epoxy resin in which a spherical quartz filler is added at a weight ratio of 45 wt% to a resin composed of a bisphenol-based epoxy, an imidazole curing catalyst, and an acid anhydride curing agent can be used.
Further, for example, 100 parts by weight of a cresol novolac type epoxy resin (trade name ECON-195XL: manufactured by Sumitomo Chemical Co., Ltd.), 54 parts by weight of a phenol resin as a curing agent, 100 parts by weight of fused silica as a filler, and as a catalyst It is also possible to use an epoxy resin melt obtained by pulverizing, mixing, and melting 0.5 part by weight of benzyldimethylamine, 3 parts by weight of carbon black as an additive, and 3 parts by weight of a silane coupling agent. It is not something.

次に、本実施例の集積3次元半導体装置21の接続信頼性の試験結果について説明する。
本接続信頼性試験においては、集積3次元半導体装置21の入出力ピンの数は256ピンであり、この256ピンの中で1箇所でも接続がオープンになった場合を不良と定義した。
Next, a connection reliability test result of the integrated three-dimensional semiconductor device 21 of this embodiment will be described.
In this connection reliability test, the number of input / output pins of the integrated three-dimensional semiconductor device 21 is 256 pins, and a case where the connection is open even at one of the 256 pins is defined as defective.

サンプル数は1000個で、温度サイクル試験条件は、一回の温度サイクルを、−55℃30分間〜25℃5分間〜125℃30分間〜25℃5分間として行った。   The number of samples was 1000, and the temperature cycle test conditions were as follows: one temperature cycle was performed at −55 ° C. for 30 minutes to 25 ° C. for 5 minutes to 125 ° C. for 30 minutes to 25 ° C. for 5 minutes.

また、第4の比較例として、上記の第2の実施例の集積3次元半導体装置21に対して、貫通電極200を石英フィラ含有比率が80%の外側領域とした集積3次元半導体装置94(図3に例示した構成を用いた集積3次元半導体装置)を作製し、本実施例の集積3次元半導体装置21と同様に、温度サイクル試験を行った。   Further, as a fourth comparative example, an integrated three-dimensional semiconductor device 94 in which the through electrode 200 is an outer region having a quartz filler content ratio of 80% with respect to the integrated three-dimensional semiconductor device 21 of the second embodiment described above. An integrated three-dimensional semiconductor device using the configuration illustrated in FIG. 3 was manufactured, and a temperature cycle test was performed in the same manner as the integrated three-dimensional semiconductor device 21 of this example.

その結果、第4の比較例の集積3次元半導体装置94においては、1500サイクルで、LSIチップ110及びMEMSチップ120を固定保持する絶縁材料部分の破壊が、100%の割合で確認された。   As a result, in the integrated three-dimensional semiconductor device 94 of the fourth comparative example, the destruction of the insulating material portion that fixedly holds the LSI chip 110 and the MEMS chip 120 was confirmed at a rate of 100% in 1500 cycles.

これに対し、本実施例の集積3次元半導体装置21では、3000サイクルでも、破壊不良は確認されなかった。
本実施例の集積3次元半導体装置21においては、I/O電極170及びバンプ電極180が内側領域101に配置されることによって、温度サイクルに起因する集積3次元半導体装置21の変形による応力破壊を防止できたと考えられる。
このように、本温度サイクル試験により、本実施例の集積3次元半導体装置21の接続信頼性が極めて高いことが確認できた。
On the other hand, in the integrated three-dimensional semiconductor device 21 of this example, no breakdown failure was confirmed even after 3000 cycles.
In the integrated three-dimensional semiconductor device 21 of the present embodiment, the I / O electrode 170 and the bump electrode 180 are disposed in the inner region 101, thereby causing stress breakdown due to deformation of the integrated three-dimensional semiconductor device 21 due to the temperature cycle. It is thought that it was able to be prevented.
Thus, it was confirmed by the temperature cycle test that the connection reliability of the integrated three-dimensional semiconductor device 21 of this example was extremely high.

以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、集積半導体装置及び集積3次元半導体装置を構成する各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, regarding the specific configuration of each element constituting the integrated semiconductor device and the integrated three-dimensional semiconductor device, those skilled in the art can implement the present invention in the same manner by appropriately selecting from a well-known range and obtain the same effect. Is included in the scope of the present invention as long as possible.
Moreover, what combined any two or more elements of each specific example in the technically possible range is also included in the scope of the present invention as long as the gist of the present invention is included.

その他、本発明の実施の形態として上述した集積半導体装置及び集積3次元半導体装置を基にして、当業者が適宜設計変更して実施し得る全ての集積半導体装置及び修正3次元半導体装置も、本発明の要旨を包含する限り、本発明の範囲に属する。   In addition, based on the integrated semiconductor device and the integrated three-dimensional semiconductor device described above as the embodiments of the present invention, all integrated semiconductor devices and modified three-dimensional semiconductor devices that can be implemented by those skilled in the art with appropriate design changes are also included in this book. As long as the gist of the invention is included, it belongs to the scope of the present invention.

その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。   In addition, in the category of the idea of the present invention, those skilled in the art can conceive various changes and modifications, and it is understood that these changes and modifications also belong to the scope of the present invention. .

本発明の第1の実施形態に係る集積半導体装置の構成を例示する模式図である。1 is a schematic view illustrating the configuration of an integrated semiconductor device according to a first embodiment of the invention. 本発明の第1の実施形態に係る集積半導体装置における貫通孔の形成状態を例示する模式部分断面図である。FIG. 3 is a schematic partial cross-sectional view illustrating a through hole formation state in the integrated semiconductor device according to the first embodiment of the invention. 第1の比較例の集積半導体装置の構成を例示する模式図である。It is a schematic diagram which illustrates the structure of the integrated semiconductor device of a 1st comparative example. 第1の比較例の集積半導体装置における貫通孔の形成状態を例示する模式部分断面図である。It is a typical fragmentary sectional view which illustrates the formation state of the penetration hole in the integrated semiconductor device of the 1st comparative example. 第3の比較例の集積半導体装置の要部の構成を例示する模式断面図である。It is a schematic cross section which illustrates the structure of the principal part of the integrated semiconductor device of a 3rd comparative example. 本発明の第1の実施形態に係る別の集積半導体装置の構成を例示する模式平面図である。FIG. 6 is a schematic plan view illustrating the configuration of another integrated semiconductor device according to the first embodiment of the invention. 本発明の第1の実施形態に係る別の集積半導体装置の構成を例示する模式平面図である。FIG. 6 is a schematic plan view illustrating the configuration of another integrated semiconductor device according to the first embodiment of the invention. 本発明の第1の実施形態に係る別の集積半導体装置の構成を例示する模式平面図である。FIG. 6 is a schematic plan view illustrating the configuration of another integrated semiconductor device according to the first embodiment of the invention. 本発明の第1の実施形態に係る別の集積半導体装置の要部の構成を例示する模式断面図である。FIG. 5 is a schematic cross-sectional view illustrating the configuration of a main part of another integrated semiconductor device according to the first embodiment of the invention. 本発明の第1の実施例に係る集積半導体装置の製造方法を例示する工程順模式断面図である。FIG. 3 is a schematic cross-sectional view in order of the processes, illustrating the method for manufacturing the integrated semiconductor device according to the first example of the invention. 図10に続く工程順模式断面図である。FIG. 11 is a schematic cross-sectional view in order of the steps, following FIG. 10. 図11に続く工程順模式断面図である。FIG. 12 is a schematic cross-sectional view in order of the steps, following FIG. 11. 図12に続く工程順模式断面図である。FIG. 13 is a schematic cross-sectional view in order of the steps, following FIG. 12. 本発明の第2の実施形態に係る集積3次元半導体装置の構成を例示する模式断面図である。FIG. 6 is a schematic cross-sectional view illustrating the configuration of an integrated three-dimensional semiconductor device according to a second embodiment of the invention.

符号の説明Explanation of symbols

10、11、12、13、14、18、91、93 集積半導体装置
20、21、94 集積3次元半導体装置
101 内側領域
102 外側領域
105 集積回路チップ
109 シリコン基板
110 LSIチップ
120 MEMSチップ
140 コンタクトビア
150 微細配線層
170 I/O電極(入出力部)
171 外部接続端子
180 バンプ電極
200、209 貫通電極
201 貫通孔
202 孔
208 パッシベーション層
210 第1絶縁部
212 石英フィラ
220 第2絶縁部
230、240 絶縁部
250 ガラスマスク
252 有機絶縁膜(絶縁層)
253 遮光パターン
254 露光光
255、256 開口部
280 微細配線層
290 MEMS封止材(MEMSキャップ)
301 第1主面
302 第2主面
400 半導体装置
410 第1LSI回路配線基板
420 第2LSI回路配線基板
10, 11, 12, 13, 14, 18, 91, 93 Integrated semiconductor device 20, 21, 94 Integrated three-dimensional semiconductor device 101 Inner region 102 Outer region 105 Integrated circuit chip 109 Silicon substrate 110 LSI chip 120 MEMS chip 140 Contact via 150 Fine wiring layer 170 I / O electrode (input / output unit)
171 External connection terminal 180 Bump electrode 200, 209 Through electrode 201 Through hole 202 Hole 208 Passivation layer 210 First insulating part 212 Quartz filler 220 Second insulating part 230, 240 Insulating part 250 Glass mask 252 Organic insulating film (insulating layer)
253 Light-shielding pattern 254 Exposure light 255, 256 Opening 280 Fine wiring layer 290 MEMS sealing material (MEMS cap)
301 First Main Surface 302 Second Main Surface 400 Semiconductor Device 410 First LSI Circuit Wiring Board 420 Second LSI Circuit Wiring Board

Claims (8)

複数の集積回路チップを備えた集積半導体装置であって、
内側領域に並置された前記複数の集積回路チップと、
前記複数の集積回路チップのそれぞれの周囲に充填され前記複数の集積回路チップを保持し、石英フィラを含有する第1絶縁部と、
前記内側領域の表面に配置され、前記複数の集積回路チップの少なくともいずれかに接続された配線層と、
前記内側領域に配置され、前記複数の集積回路チップの少なくともいずれかと外部回路とを接続するための入出力部と、
前記内側領域の周囲の外側領域の少なくとも一部に配置され、前記第1絶縁部よりも低い石英フィラ含有比率を有する第2絶縁部と、
前記第2絶縁部を貫通し表面と裏面とを接続する貫通電極と、
を備えたことを特徴とする集積半導体装置。
An integrated semiconductor device comprising a plurality of integrated circuit chips,
The plurality of integrated circuit chips juxtaposed in the inner region;
A first insulating portion filled around each of the plurality of integrated circuit chips, holding the plurality of integrated circuit chips, and containing a quartz filler;
A wiring layer disposed on a surface of the inner region and connected to at least one of the plurality of integrated circuit chips;
An input / output unit disposed in the inner region and connecting at least one of the plurality of integrated circuit chips and an external circuit;
A second insulating portion disposed in at least a part of the outer region around the inner region and having a lower quartz filler content ratio than the first insulating portion;
A through electrode penetrating the second insulating portion and connecting the front surface and the back surface;
An integrated semiconductor device comprising:
前記第2絶縁部に石英フィラが含有され、前記第2絶縁部に含有される石英フィラは、前記第1絶縁部に含有される石英フィラよりも、平均粒径及び最大粒径の少なくともいずれかが小さいことを特徴とする請求項1記載の集積半導体装置。   The second insulating portion contains a quartz filler, and the quartz filler contained in the second insulating portion is at least one of an average particle size and a maximum particle size as compared with the quartz filler contained in the first insulating portion. 2. The integrated semiconductor device according to claim 1, wherein: 前記第1絶縁部及び前記第2絶縁部は、エポキシ樹脂、ポリイミド樹脂及びベンゾシクロブテンよりなる群から選ばれた少なくとも1つを含むことを特徴とする請求項1または2に記載の集積半導体装置。   3. The integrated semiconductor device according to claim 1, wherein the first insulating portion and the second insulating portion include at least one selected from the group consisting of epoxy resin, polyimide resin, and benzocyclobutene. . 前記複数の集積回路チップの少なくともいずれか2つは、電子回路構成及び外形寸法の少なくともいずれかが互いに異なることを特徴とする請求項1〜3のいずれか1つに記載の集積半導体装置。   The integrated semiconductor device according to claim 1, wherein at least any two of the plurality of integrated circuit chips are different from each other in at least one of an electronic circuit configuration and an external dimension. 前記複数の集積回路チップのうち少なくとも1つは、電気機械素子であることを特徴とする請求項1〜4のいずれか1つに記載の集積半導体装置。   5. The integrated semiconductor device according to claim 1, wherein at least one of the plurality of integrated circuit chips is an electromechanical element. 前記入出力部と電気的に接続されたバンプ電極をさらに備えたことを特徴とする請求項1〜5のいずれか1つに記載の集積半導体装置。   6. The integrated semiconductor device according to claim 1, further comprising a bump electrode electrically connected to the input / output unit. 前記バンプ電極は、Ti、Ni、Al、Cu、Au、Ag、Pb、Sn、Pd、Pd及びWからなる群から選ばれた少なくとも1つ、または、Ti、Ni、Al、Cu、Au、Ag、Pb、Sn、Pd、Pd及びWからなる群から選ばれた少なくとも2つからなる合金を含むことを特徴とする請求項6記載の集積半導体装置。   The bump electrode is at least one selected from the group consisting of Ti, Ni, Al, Cu, Au, Ag, Pb, Sn, Pd, Pd, and W, or Ti, Ni, Al, Cu, Au, Ag. 7. The integrated semiconductor device according to claim 6, comprising an alloy composed of at least two selected from the group consisting of Pb, Sn, Pd, Pd, and W. 請求項1〜7のいずれか1つに記載の集積半導体装置と、
前記集積半導体装置と積層され、前記複数の集積回路チップの少なくともいずれかと電気的に接続された半導体装置と、
を備えたことを特徴とする集積3次元半導体装置。
An integrated semiconductor device according to any one of claims 1 to 7,
A semiconductor device stacked with the integrated semiconductor device and electrically connected to at least one of the plurality of integrated circuit chips;
An integrated three-dimensional semiconductor device comprising:
JP2008085552A 2008-03-28 2008-03-28 Integrated semiconductor device and integrated three-dimensional semiconductor device Active JP4538058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085552A JP4538058B2 (en) 2008-03-28 2008-03-28 Integrated semiconductor device and integrated three-dimensional semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085552A JP4538058B2 (en) 2008-03-28 2008-03-28 Integrated semiconductor device and integrated three-dimensional semiconductor device

Publications (2)

Publication Number Publication Date
JP2009239147A true JP2009239147A (en) 2009-10-15
JP4538058B2 JP4538058B2 (en) 2010-09-08

Family

ID=41252719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085552A Active JP4538058B2 (en) 2008-03-28 2008-03-28 Integrated semiconductor device and integrated three-dimensional semiconductor device

Country Status (1)

Country Link
JP (1) JP4538058B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159958A (en) * 2010-01-08 2011-08-18 Sony Corp Semiconductor device, solid-state imaging apparatus, and camera system
JP2013162071A (en) * 2012-02-08 2013-08-19 J Devices:Kk Semiconductor device and manufacturing method of the same
JP2015228454A (en) * 2014-06-02 2015-12-17 株式会社東芝 Semiconductor device
EP2930742A3 (en) * 2014-03-20 2016-03-09 Kabushiki Kaisha Toshiba Semiconductor device and electronic circuit device
US9548279B2 (en) 2013-09-25 2017-01-17 Kabushiki Kaisha Toshiba Connection member, semiconductor device, and stacked structure
US9576925B2 (en) 2015-01-26 2017-02-21 Kabushiki Kaisha Toshiba Semiconductor device having a cylindrical shaped conductive portion
US9913367B2 (en) 2014-01-10 2018-03-06 Kabushiki Kaisha Toshiba Wiring board and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260855A (en) * 1996-03-22 1997-10-03 Matsushita Electric Works Ltd Multilayered wiring board manufacturing method
JP2005005632A (en) * 2003-06-16 2005-01-06 Sony Corp Chip-like electronic component, its manufacturing method, and its packaging structure
JP2005101580A (en) * 2003-08-28 2005-04-14 Matsushita Electric Ind Co Ltd Module with built-in circuit components, and its manufacturing method
JP2005347355A (en) * 2004-05-31 2005-12-15 Sanyo Electric Co Ltd Circuit device and its manufacturing method
JP2006100666A (en) * 2004-09-30 2006-04-13 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2007260866A (en) * 2006-03-29 2007-10-11 Toshiba Corp Semiconductor apparatus and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260855A (en) * 1996-03-22 1997-10-03 Matsushita Electric Works Ltd Multilayered wiring board manufacturing method
JP2005005632A (en) * 2003-06-16 2005-01-06 Sony Corp Chip-like electronic component, its manufacturing method, and its packaging structure
JP2005101580A (en) * 2003-08-28 2005-04-14 Matsushita Electric Ind Co Ltd Module with built-in circuit components, and its manufacturing method
JP2005347355A (en) * 2004-05-31 2005-12-15 Sanyo Electric Co Ltd Circuit device and its manufacturing method
JP2006100666A (en) * 2004-09-30 2006-04-13 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2007260866A (en) * 2006-03-29 2007-10-11 Toshiba Corp Semiconductor apparatus and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159958A (en) * 2010-01-08 2011-08-18 Sony Corp Semiconductor device, solid-state imaging apparatus, and camera system
US9093363B2 (en) 2010-01-08 2015-07-28 Sony Corporation Semiconductor device, solid-state image sensor and camera system for reducing the influence of noise at a connection between chips
JP2013162071A (en) * 2012-02-08 2013-08-19 J Devices:Kk Semiconductor device and manufacturing method of the same
KR20130091624A (en) * 2012-02-08 2013-08-19 가부시키가이샤 제이디바이스 Semiconductor device and manufacturing method thereof
KR101653856B1 (en) * 2012-02-08 2016-09-02 가부시키가이샤 제이디바이스 Semiconductor device and manufacturing method thereof
US9548279B2 (en) 2013-09-25 2017-01-17 Kabushiki Kaisha Toshiba Connection member, semiconductor device, and stacked structure
US9913367B2 (en) 2014-01-10 2018-03-06 Kabushiki Kaisha Toshiba Wiring board and method of manufacturing the same
EP2930742A3 (en) * 2014-03-20 2016-03-09 Kabushiki Kaisha Toshiba Semiconductor device and electronic circuit device
US9607949B2 (en) 2014-03-20 2017-03-28 Kabushiki Kaisha Toshiba Semiconductor device having semiconductor chips in resin and electronic circuit device with the semiconductor device
JP2015228454A (en) * 2014-06-02 2015-12-17 株式会社東芝 Semiconductor device
US9397057B2 (en) 2014-06-02 2016-07-19 Kabushiki Kaisha Toshiba Plurality of semiconductor devices in resin with a via
US9576925B2 (en) 2015-01-26 2017-02-21 Kabushiki Kaisha Toshiba Semiconductor device having a cylindrical shaped conductive portion

Also Published As

Publication number Publication date
JP4538058B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP4568337B2 (en) Integrated semiconductor device
JP4504434B2 (en) Integrated semiconductor device
JP4538058B2 (en) Integrated semiconductor device and integrated three-dimensional semiconductor device
JP4865197B2 (en) Semiconductor device and manufacturing method thereof
US7843059B2 (en) Electronic parts packaging structure
US7985663B2 (en) Method for manufacturing a semiconductor device
JP5091221B2 (en) Semiconductor device
JP6356450B2 (en) Semiconductor device and electronic circuit device
US9324677B2 (en) Semiconductor device and method for manufacturing semiconductor device
US9837382B2 (en) Semiconductor package and manufacturing method thereof
JP2010034403A (en) Wiring substrate and electronic component device
JP5378585B2 (en) Semiconductor device
JP4539155B2 (en) Manufacturing method of sensor system
JP2014192386A (en) Interposer, and electronic component package
JP6116476B2 (en) Method for manufacturing a chip stack and carrier for carrying out the method
JP2020053484A (en) Semiconductor device and method of manufacturing the same
KR100874588B1 (en) Manufacturing method of flip chip for electrical function test
JP5171726B2 (en) Semiconductor device
JP4393343B2 (en) Manufacturing method of semiconductor device
JP2020004926A (en) Wiring board and manufacturing method thereof
JP2017126865A (en) Method of manufacturing electronic component, and the electronic component
JP2017037983A (en) Semiconductor device and method of manufacturing the same
JP2006133236A (en) Sensor system
JP2019140149A (en) Semiconductor device and manufacturing method thereof
JP2004266146A (en) Method of forming solder bump, semiconductor device, and method of mounting the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4538058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151