JP4568337B2 - Integrated semiconductor device - Google Patents

Integrated semiconductor device Download PDF

Info

Publication number
JP4568337B2
JP4568337B2 JP2008040878A JP2008040878A JP4568337B2 JP 4568337 B2 JP4568337 B2 JP 4568337B2 JP 2008040878 A JP2008040878 A JP 2008040878A JP 2008040878 A JP2008040878 A JP 2008040878A JP 4568337 B2 JP4568337 B2 JP 4568337B2
Authority
JP
Japan
Prior art keywords
semiconductor device
chip
integrated semiconductor
mems
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008040878A
Other languages
Japanese (ja)
Other versions
JP2009200274A (en
Inventor
浩 山田
和彦 板谷
豊 小野塚
英之 舟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008040878A priority Critical patent/JP4568337B2/en
Publication of JP2009200274A publication Critical patent/JP2009200274A/en
Application granted granted Critical
Publication of JP4568337B2 publication Critical patent/JP4568337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Description

本発明は、複数個の半導体素子を搭載して構成される集積半導体装置に関する。   The present invention relates to an integrated semiconductor device configured by mounting a plurality of semiconductor elements.

近年、集積半導体装置は高集積化技術が進行しており、その集積半導体装置を構成する半導体素子の集積化技術も高密度化が求められている。特に、最近の集積半導体装置の高集積化技術には、高性能半導体素子(LSI)の集積化技術とともに、電気機械素子(MEMS)の集積化技術が必要になっている。   In recent years, high integration technology has progressed in integrated semiconductor devices, and high integration density is also required for the integration technology of semiconductor elements constituting the integrated semiconductor devices. In particular, recent high integration technologies for integrated semiconductor devices require integration technologies for electromechanical elements (MEMS) as well as high-performance semiconductor element (LSI) integration technologies.

MEMS(Micro Electro Mechanical System)はシリコン微細加工プロセスを用いて製作される、ミクロな構造体を有する電気機械素子である。MEMSは、圧力センサ、加速度センサ、RFフィルターなど幅広い電子部品分野で応用が期待されている。このようなMEMSをLSIと一緒に集積化する技術として複数のLSIとMEMSとを積層する高密度3次元実装技術があるが、LSIとMEMSとに縦方向の貫通穴を形成する必要があることからプロセスコストが高いという課題があり、同一平面上に高集積化する技術が要求されている。   A micro electro mechanical system (MEMS) is an electromechanical element having a micro structure manufactured using a silicon micromachining process. MEMS is expected to be applied in a wide range of electronic parts such as pressure sensors, acceleration sensors, and RF filters. As a technology for integrating such MEMS together with LSI, there is a high-density three-dimensional mounting technology in which a plurality of LSIs and MEMS are stacked, but it is necessary to form vertical through holes in the LSI and MEMS. Therefore, there is a problem that the process cost is high, and there is a demand for a technology for high integration on the same plane.

同一平面上に高集積化する方法には、代表的には、SOC(System on a Chip)とSIP(System in a Package)の2方式がある。SOCは、複数のデバイスを1チップ上に形成することにより集積する方法である。SOCはデバイス集積度を高くすることは可能であるが、集積できるデバイスの種類に制限があるという課題がある。例えば、Si基板上にGaAsなどの別の結晶系からなるデバイスを形成することは、プロセスの違いなどから困難である。また、SOCは新規デバイスを実現する場合の設計期間が長く、開発コストが高くなるという課題もある。 As a method of highly integrating on the same plane, there are typically two systems, SOC (System on a Chip) and SIP ( System in a Package ). The SOC is a method of integrating a plurality of devices by forming them on one chip. Although it is possible to increase the degree of device integration in the SOC, there is a problem that there are limitations on the types of devices that can be integrated. For example, it is difficult to form a device made of another crystal system such as GaAs on a Si substrate due to process differences. In addition, the SOC has a problem that the design period for realizing a new device is long and the development cost becomes high.

一方、SIPは、複数のLSIチップとMEMSチップとを個別に形成した後、それぞれを集積基板上に搭載するものである。SIPは、各デバイスを個別に形成することができるため、集積するデバイスに対する制限がない。さらに、新規システムを実現する場合にも、既存のチップの利用が可能であり設計期間を短縮できるので、開発コストを安価にできるという利点がある。しかしながら、素子集積密度は、複数のLSIチップとMEMSチップとを搭載する集積基板に依存するため、デバイス配置の高密度化が困難であるという課題がある。   On the other hand, in SIP, after a plurality of LSI chips and MEMS chips are individually formed, each is mounted on an integrated substrate. In SIP, since each device can be formed individually, there is no restriction on the devices to be integrated. Further, when a new system is realized, there is an advantage that the development cost can be reduced because the existing chip can be used and the design period can be shortened. However, since the element integration density depends on an integrated substrate on which a plurality of LSI chips and MEMS chips are mounted, there is a problem that it is difficult to increase the device arrangement density.

この課題に対して、例えば特許文献1では、各々独自の製造技術で完成された複数のLSIとMEMSの各ウェハを検査選別してダイシングにより個別のチップとした後、それらを隣接させた形で再配置してMEMS集積ウェハとして再構築することを提案している。このMEMS再構築ウェハは、デバイス製造技術の異なる異種デバイスの集積を可能にすること、および、検査選別された動作デバイスのみを大面積で再集積することで製造コストの低下を可能にしている。さらに、MEMS再構築ウェハ上に搭載された複数のLSIとMEMSとは、微細配線層で電気的接続が行われる。このように、複数のLSIとMEMSとをチップレベルで再配置してMEMS集積ウェハとして再構築する擬似SOC技術は、これまでのSIPでは達成できない高集積化と、SOCでは達成できない複合化とを短期間で実現可能にしている。   For example, in Patent Document 1, a plurality of LSI and MEMS wafers, each completed with their own manufacturing technology, are inspected and sorted into individual chips by dicing, and then adjacent to each other. It has been proposed to rearrange and reconstruct as a MEMS integrated wafer. This MEMS reconstructed wafer makes it possible to integrate different types of devices having different device manufacturing techniques, and to reduce the manufacturing cost by reintegrating only the inspection-selected operation devices in a large area. Further, the plurality of LSIs mounted on the MEMS reconstructed wafer and the MEMS are electrically connected by a fine wiring layer. As described above, the pseudo SOC technology in which a plurality of LSIs and MEMSs are rearranged at a chip level and reconstructed as a MEMS integrated wafer has a high integration that cannot be achieved by conventional SIP and a composite that cannot be achieved by SOC. Make it feasible in a short period of time.

特開2007−260866号公報JP 2007-260866 A

しかしながら、擬似SOC技術では、擬似SOCチップを回路配線基板にフリップチップ実装する場合、回路配線基板と擬似SOCチップの熱膨張係数の差により擬似SOCチップが変形して、異種デバイス間を固定する絶縁材料である有機樹脂が破壊されるという問題があった。具体的には、擬似SOC上の周辺(Peripheral)に配置されたバンプ電極を用いてフリップチップ実装された擬似SOCチップと、擬似SOCチップを搭載する回路配線基板の熱膨張係数の相違に起因する変位差により、擬似SOCチップに反りが発生して、擬似SOCチップの異種デバイス間に配置する有機樹脂が応力破壊されるというものである。これは主に、バンプ電極ピッチを緩和することとを目的に、擬似SOCチップ上の周辺(Peripheral)にI/O電極を配置していたことが原因として挙げられる。   However, in the pseudo SOC technology, when the pseudo SOC chip is flip-chip mounted on the circuit wiring board, the pseudo SOC chip is deformed due to the difference in thermal expansion coefficient between the circuit wiring board and the pseudo SOC chip, so that the insulation between different devices is fixed. There was a problem that the organic resin as a material was destroyed. Specifically, this is caused by a difference in thermal expansion coefficient between a pseudo SOC chip that is flip-chip mounted using a bump electrode arranged in the periphery (Peripheral) on the pseudo SOC and a circuit wiring board on which the pseudo SOC chip is mounted. Due to the difference in displacement, the pseudo SOC chip is warped, and the organic resin disposed between different devices of the pseudo SOC chip is stress-destructed. This is mainly because the I / O electrodes are arranged on the periphery of the pseudo SOC chip (Peripheral) for the purpose of relaxing the bump electrode pitch.

本発明は、上記に鑑みてなされたものであって、異種デバイス間を固定する絶縁材料である有機樹脂部分での応力破壊をなくし、擬似SOCチップである集積半導体装置の接続信頼性を向上させることを可能とする集積半導体装置を提供することを目的とする。   The present invention has been made in view of the above, and eliminates stress breakdown in an organic resin portion, which is an insulating material that fixes different devices, and improves connection reliability of an integrated semiconductor device that is a pseudo SOC chip. An object of the present invention is to provide an integrated semiconductor device that can do this.

上述した課題を解決し、目的を達成するために、本発明は、集積素子回路または素子外形寸法の異なる複数個の半導体素子と、前記複数個の半導体素子の間に配置される絶縁材料と、前記複数個の半導体素子と前記絶縁材料上に全体的に配置される有機絶縁膜と、前記有機絶縁膜上に配置され、前記複数個の半導体素子を互いに接続する微細薄膜配線と、前記複数個の半導体素子が配置されている領域上のみに選択的に配置されるI/O電極と、前記I/O電極上に形成されるバンプ電極と、を備え、前記I/O電極は、前記半導体素子の角部を除いて配置されること、を特徴とする。 In order to solve the above-described problems and achieve the object, the present invention includes an integrated element circuit or a plurality of semiconductor elements having different element outer dimensions, and an insulating material disposed between the plurality of semiconductor elements, The plurality of semiconductor elements, an organic insulating film disposed entirely on the insulating material, a fine thin film wiring disposed on the organic insulating film and connecting the plurality of semiconductor elements to each other, and the plurality An I / O electrode selectively disposed only on a region where the semiconductor element is disposed, and a bump electrode formed on the I / O electrode, wherein the I / O electrode includes the semiconductor It is characterized by being arranged excluding the corners of the element.

本発明によれば、擬似SOCチップである集積半導体装置のI/O電極が異種デバイスの上側に配置され、さらにI/O電極の上に形成されたバンプ電極で回路配線基板に固定される構造であることから、異種デバイスで固定された集積半導体装置が異種デバイス間を固定する絶縁材料で効果的に応力緩和されるため、集積半導体装置と回路配線基板の熱膨張係数の違いによる集積半導体装置全体の応力変形を防止することができる。これにより異種デバイス間を固定する絶縁材料である有機樹脂部分での応力破壊を防止することができ、接続信頼性が向上するという効果を奏する。   According to the present invention, the I / O electrode of the integrated semiconductor device which is a pseudo SOC chip is arranged on the upper side of the dissimilar device, and is further fixed to the circuit wiring board by the bump electrode formed on the I / O electrode. Therefore, since the integrated semiconductor device fixed with the dissimilar device is effectively relieved of stress by the insulating material that fixes the dissimilar devices, the integrated semiconductor device due to the difference in thermal expansion coefficient between the integrated semiconductor device and the circuit wiring board Overall stress deformation can be prevented. As a result, it is possible to prevent stress breakdown in the organic resin portion which is an insulating material for fixing different devices, and the effect of improving the connection reliability is achieved.

以下に添付図面を参照して、この発明にかかる集積半導体装置の最良な実施の形態を詳細に説明する。なお、以下において示す図面では、説明の便宜上、図面の各部材の縮尺を異ならせて記載してある場合がある。図1は、本発明の実施の形態にかかる集積半導体装置の上面図であり、図2は、図1のA−A矢視断面図である。なお、図1では説明の便宜上、集積半導体装置1の内部に存在するLSIチップ2、MEMSチップ3、および、絶縁材料4と、集積半導体装置1の表面に存在するバンプ電極5とを実線で描いている。さらに図2では、バンプ電極5の数は、図1のA−A矢視断面図に実際に存在する数より少なくなっている。   Exemplary embodiments of an integrated semiconductor device according to the present invention will be explained below in detail with reference to the accompanying drawings. In the drawings shown below, for convenience of explanation, the scales of the members of the drawings may be described differently. FIG. 1 is a top view of an integrated semiconductor device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG. In FIG. 1, for convenience of explanation, the LSI chip 2, the MEMS chip 3, and the insulating material 4 existing inside the integrated semiconductor device 1 and the bump electrodes 5 existing on the surface of the integrated semiconductor device 1 are drawn with solid lines. ing. Further, in FIG. 2, the number of bump electrodes 5 is smaller than the number actually present in the cross-sectional view taken along the line AA in FIG.

集積半導体装置(擬似SOCチップ)1は、LSIチップ2とMEMSチップ3とをチップレベルで再配置して、MEMS集積ウェハとして再構築したものであり、擬似SOC技術により製造されている。そのため、LSIチップ2とMEMSチップ3などを電気的に接続する配線基板(インターポーザ基板)は存在しない。なお、実際には、MEMS集積ウェハである擬似SOCウェハをダイシングにより個別のチップにしたものが集積半導体装置(擬似SOCチップ)1となる。集積半導体装置(擬似SOCチップ)1は、LSIチップ2、MEMSチップ3、絶縁材料4、バンプ電極5、コンタクト部6、有機絶縁膜7、微細薄膜配線8、有機絶縁膜9、I/O電極10、MEMS封止材料11、および、MEMSキャビティ12を備えて構成されている。   An integrated semiconductor device (pseudo-SOC chip) 1 is obtained by rearranging an LSI chip 2 and a MEMS chip 3 at a chip level and reconstructing them as a MEMS integrated wafer, and is manufactured by a pseudo-SOC technology. Therefore, there is no wiring substrate (interposer substrate) that electrically connects the LSI chip 2 and the MEMS chip 3 or the like. Actually, an integrated semiconductor device (pseudo SOC chip) 1 is obtained by dicing a pseudo SOC wafer, which is a MEMS integrated wafer, into individual chips. An integrated semiconductor device (pseudo SOC chip) 1 includes an LSI chip 2, a MEMS chip 3, an insulating material 4, a bump electrode 5, a contact portion 6, an organic insulating film 7, a fine thin film wiring 8, an organic insulating film 9, and an I / O electrode. 10, a MEMS sealing material 11, and a MEMS cavity 12.

LSIチップ2は、半導体素子であるLSIが形成されたウェハを検査選別後ダイシングにより個別のチップにしたものである。MEMSチップ3は、電気機械素子であるMEMSが形成されたウェハを検査選別後ダイシングにより個別のチップにしたものである。なお、本例では、集積半導体装置(擬似SOCチップ)1は、5個のLSIチップ2(CPU:2個、Driver:2個、Memory:1個)と、1個のMEMSチップ3とを搭載しているが、各LSIチップ2とMEMSチップ3とは互いに異種デバイスである。但し、本例では説明のため上記の構成としたが、集積半導体装置(擬似SOCチップ)1に搭載されるLSIチップ2とMEMSチップ3は、必ずしも本例に限定されるものではない。   The LSI chip 2 is obtained by dicing a wafer on which an LSI as a semiconductor element is formed into an individual chip after inspection and sorting. The MEMS chip 3 is obtained by dicing a wafer on which a MEMS, which is an electromechanical element, is formed into individual chips after inspection and sorting. In this example, the integrated semiconductor device (pseudo SOC chip) 1 includes five LSI chips 2 (CPU: 2, Driver: 2, Memory: 1) and one MEMS chip 3. However, each LSI chip 2 and MEMS chip 3 are different devices. However, in this example, the above-described configuration is used for explanation. However, the LSI chip 2 and the MEMS chip 3 mounted on the integrated semiconductor device (pseudo SOC chip) 1 are not necessarily limited to this example.

絶縁材料4は、LSIチップ2とMEMSチップ3の間、および、必要に応じてLSIチップ2とMEMSチップ3の下面および集積半導体装置(擬似SOCチップ)1としての外周部に配置され、LSIチップ2とMEMSチップ3とを絶縁するとともに、それらを固定している。なお、集積半導体装置(擬似SOCチップ)1と回路配線基板200の接続後に、絶縁材料4での熱変位が小さくなるように、LSIチップ2とMEMSチップ3の隙間は、できるだけ狭くするように設計することが好ましい。特に、発熱量が多いチップ(例えばCPU)と他のチップとの隙間は、できるだけ狭くするように設計することがより好ましい。また、絶縁材料4は、有機樹脂であり、具体的には、少なくともシリカフィラを含有するエポキシ樹脂、ポリイミド樹脂、および、ベンゾシクロブテン(BCB)のうち少なくとも1つで構成されていることが好ましい。   The insulating material 4 is disposed between the LSI chip 2 and the MEMS chip 3, and if necessary, on the lower surface of the LSI chip 2 and the MEMS chip 3 and on the outer peripheral portion as the integrated semiconductor device (pseudo SOC chip) 1. 2 and the MEMS chip 3 are insulated and fixed to each other. The gap between the LSI chip 2 and the MEMS chip 3 is designed to be as narrow as possible so that the thermal displacement in the insulating material 4 becomes small after the integrated semiconductor device (pseudo SOC chip) 1 and the circuit wiring board 200 are connected. It is preferable to do. In particular, it is more preferable to design the gap between a chip (for example, CPU) that generates a large amount of heat and another chip as narrow as possible. The insulating material 4 is an organic resin, and specifically, it is preferably composed of at least one of an epoxy resin containing at least silica filler, a polyimide resin, and benzocyclobutene (BCB). .

バンプ電極5は、集積半導体装置(擬似SOCチップ)1と後述する回路配線基板200とを電気的および機械的に接続する。バンプ電極5は、集積半導体装置(擬似SOCチップ)1のLSIチップ2およびMEMSチップ3の上側に形成されたI/O電極10の上面に形成されている。なお、設計によっては、バンプ電極5(I/O電極10)とLSIチップ2およびMEMSチップ3との間に、有機絶縁膜7、微細薄膜配線8、および、有機絶縁膜9などが形成される場合があるが、本発明の主旨から、バンプ電極5(I/O電極10)は、必ずLSIチップ2およびMEMSチップ3の上側に選択的に形成される。   The bump electrode 5 electrically and mechanically connects the integrated semiconductor device (pseudo SOC chip) 1 and a circuit wiring board 200 described later. The bump electrode 5 is formed on the upper surface of the I / O electrode 10 formed on the LSI chip 2 and the MEMS chip 3 of the integrated semiconductor device (pseudo SOC chip) 1. Depending on the design, an organic insulating film 7, a fine thin film wiring 8, an organic insulating film 9 and the like are formed between the bump electrode 5 (I / O electrode 10) and the LSI chip 2 and the MEMS chip 3. In some cases, the bump electrode 5 (I / O electrode 10) is always selectively formed above the LSI chip 2 and the MEMS chip 3 for the purpose of the present invention.

なお、図に示すように、バンプ電極5(I/O電極10)は、LSIチップ2およびMEMSチップ3の角部には配置されていないことがわかる。従って、バンプ電極5(I/O電極10)は、集積半導体装置(擬似SOCチップ)1の角部にも配置されていないことになる。これは、LSIチップ2およびMEMSチップ3の角部にバンプ電極5(I/O電極10)を配置した場合、集積半導体装置(擬似SOCチップ)1と回路配線基板200の接続することで、集積半導体装置(擬似SOCチップ)1と回路配線基板200の熱膨張係数の違いによる応力がこれらのバンプ電極5(I/O電極10)に集中するため、この部分で剥離が発生する課題を防止するためである。このバンプ電極5は、具体的には、少なくとも、Ti、Ni、Al、Cu、Au、Ag、Pb、Sn、Pd、Wを含む金属、または、これらの合金で構成されていることが好ましい。   As shown in the figure, it can be seen that the bump electrodes 5 (I / O electrodes 10) are not arranged at the corners of the LSI chip 2 and the MEMS chip 3. Therefore, the bump electrode 5 (I / O electrode 10) is not arranged at the corner of the integrated semiconductor device (pseudo SOC chip) 1. This is because when the bump electrodes 5 (I / O electrodes 10) are arranged at the corners of the LSI chip 2 and the MEMS chip 3, the integrated semiconductor device (pseudo SOC chip) 1 and the circuit wiring board 200 are connected to each other. Since stress due to the difference in thermal expansion coefficient between the semiconductor device (pseudo SOC chip) 1 and the circuit wiring board 200 is concentrated on these bump electrodes 5 (I / O electrodes 10), it is possible to prevent a problem that peeling occurs at this portion. Because. Specifically, the bump electrode 5 is preferably made of at least a metal including Ti, Ni, Al, Cu, Au, Ag, Pb, Sn, Pd, and W, or an alloy thereof.

コンタクト部6は、LSIチップ2と微細薄膜配線8の電気的な接続、および、MEMSチップ3と微細薄膜配線8の電気的な接続をするために、LSIチップ2およびMEMSチップ3の上面に設けられている。   The contact portion 6 is provided on the upper surface of the LSI chip 2 and the MEMS chip 3 in order to electrically connect the LSI chip 2 and the fine thin film wiring 8 and to electrically connect the MEMS chip 3 and the fine thin film wiring 8. It has been.

有機絶縁膜7は、LSIチップ2およびMEMSチップ3と、微細薄膜配線8とを電気的に絶縁する。有機絶縁膜7は、LSIチップ2のコンタクト部6以外と、MEMSチップ3のコンタクト部6以外の上面に全体的に設けられている。有機絶縁膜7は、例えば、ポリイミド樹脂などが用いられる。   The organic insulating film 7 electrically insulates the LSI chip 2 and the MEMS chip 3 from the fine thin film wiring 8. The organic insulating film 7 is entirely provided on the upper surface other than the contact part 6 of the LSI chip 2 and the contact part 6 of the MEMS chip 3. For example, polyimide resin is used for the organic insulating film 7.

微細薄膜配線8は、LSIチップ2とMEMSチップ3とを電気的に接続するため、コンタクト部6および有機絶縁膜7の上面に設けられている。微細薄膜配線8は、具体的には、少なくとも、Ti、Ni、Al、Cu、Au、Pb、Sn、Pd、Wを含む金属、または、これらの合金で成されていることが好ましい。   The fine thin film wiring 8 is provided on the upper surface of the contact portion 6 and the organic insulating film 7 in order to electrically connect the LSI chip 2 and the MEMS chip 3. Specifically, the fine thin film wiring 8 is preferably made of a metal containing at least Ti, Ni, Al, Cu, Au, Pb, Sn, Pd, and W, or an alloy thereof.

有機絶縁膜9は、微細薄膜配線8を保護するため、I/O電極10が形成されている部分以外の微細薄膜配線8の上面に全体的に設けられている。有機絶縁膜9は、例えば、ポリイミド樹脂などが用いられる。なお、微細薄膜配線8と有機絶縁膜9は、設計によっては、有機絶縁膜7上に各1層だけではなく、多層配線層として複数層が配置される場合がある。   The organic insulating film 9 is entirely provided on the upper surface of the fine thin film wiring 8 other than the portion where the I / O electrode 10 is formed in order to protect the fine thin film wiring 8. For example, a polyimide resin is used for the organic insulating film 9. Depending on the design, the fine thin film wiring 8 and the organic insulating film 9 are not limited to one layer on the organic insulating film 7 but may be a plurality of layers as a multilayer wiring layer.

I/O電極10は、バンプ電極5を形成するために、微細薄膜配線8の上面に設けられ、バンプ電極5と微細薄膜配線8とを電気的に接続する。さらに詳しく説明すると、I/O電極10は、集積半導体装置(擬似SOCチップ)1のLSIチップ2およびMEMSチップ3の上側に形成される。なお、I/O電極10の上面に形成されるバンプ電極5のバリアメタルには、Cu/Ni/TiまたはCu/Tiなどが用いられる。   The I / O electrode 10 is provided on the upper surface of the fine thin film wiring 8 in order to form the bump electrode 5, and electrically connects the bump electrode 5 and the fine thin film wiring 8. More specifically, the I / O electrode 10 is formed above the LSI chip 2 and the MEMS chip 3 of the integrated semiconductor device (pseudo SOC chip) 1. In addition, Cu / Ni / Ti or Cu / Ti is used for the barrier metal of the bump electrode 5 formed on the upper surface of the I / O electrode 10.

MEMS封止材料11は、MEMSチップ3のMEMS可動部分を封止しており、MEMSキャビティ12は、MEMSチップ3とMEMS封止材料11とに囲まれたMEMS可動部分が配置される空洞の部分である。   The MEMS sealing material 11 seals the MEMS movable part of the MEMS chip 3, and the MEMS cavity 12 is a cavity part in which the MEMS movable part surrounded by the MEMS chip 3 and the MEMS sealing material 11 is arranged. It is.

次に、集積半導体装置(擬似SOCチップ)1が上述のように形成されている理由を、従来の集積半導体装置と比較して説明する。図3は、従来の集積半導体装置の上面図であり、図4は、図3のA−A矢視断面図である。なお、図3では説明の便宜上、従来の集積半導体装置(擬似SOCチップ)100の内部に存在するLSIチップ2、MEMSチップ3、および、絶縁材料4と、集積半導体装置(擬似SOCチップ)100の表面に存在するバンプ電極5とを実線で描いている。   Next, the reason why the integrated semiconductor device (pseudo SOC chip) 1 is formed as described above will be described in comparison with a conventional integrated semiconductor device. FIG. 3 is a top view of a conventional integrated semiconductor device, and FIG. 4 is a cross-sectional view taken along line AA in FIG. In FIG. 3, for convenience of explanation, the LSI chip 2, the MEMS chip 3, and the insulating material 4 existing in the conventional integrated semiconductor device (pseudo SOC chip) 100 and the integrated semiconductor device (pseudo SOC chip) 100 are shown. The bump electrode 5 existing on the surface is drawn by a solid line.

従来の集積半導体装置(擬似SOCチップ)100は、本実施の形態にかかる集積半導体装置(擬似SOCチップ)1と同様に、LSIチップ2、MEMSチップ3、絶縁材料4、バンプ電極5、コンタクト部6、有機絶縁膜7、微細薄膜配線8、有機絶縁膜9、I/O電極10、MEMS封止材料11、および、MEMSキャビティ12を備えて構成されている。   Similar to the integrated semiconductor device (pseudo SOC chip) 1 according to the present embodiment, the conventional integrated semiconductor device (pseudo SOC chip) 100 is an LSI chip 2, a MEMS chip 3, an insulating material 4, a bump electrode 5, and a contact portion. 6, an organic insulating film 7, a fine thin film wiring 8, an organic insulating film 9, an I / O electrode 10, a MEMS sealing material 11, and a MEMS cavity 12.

この従来の集積半導体装置(擬似SOCチップ)100が集積半導体装置(擬似SOCチップ)1と異なっている点は、I/O電極10(バンプ電極5)の配置されている位置である。集積半導体装置(擬似SOCチップ)1では、前述したように、I/O電極10(バンプ電極5)が集積半導体装置(擬似SOCチップ)1のLSIチップ2およびMEMSチップ3の上側に選択的に配置されている。これに対して、従来の集積半導体装置(擬似SOCチップ)100では、I/O電極10(バンプ電極5)は、集積半導体装置(擬似SOCチップ)100の外周部にある絶縁材料4領域の上面(真上)のみに配置されている。   The conventional integrated semiconductor device (pseudo SOC chip) 100 differs from the integrated semiconductor device (pseudo SOC chip) 1 in the position where the I / O electrode 10 (bump electrode 5) is disposed. In the integrated semiconductor device (pseudo SOC chip) 1, as described above, the I / O electrode 10 (bump electrode 5) is selectively provided above the LSI chip 2 and the MEMS chip 3 of the integrated semiconductor device (pseudo SOC chip) 1. Has been placed. On the other hand, in the conventional integrated semiconductor device (pseudo SOC chip) 100, the I / O electrode 10 (bump electrode 5) is the upper surface of the insulating material 4 region in the outer peripheral portion of the integrated semiconductor device (pseudo SOC chip) 100. It is arranged only (above).

ここで、従来の集積半導体装置(擬似SOCチップ)100を回路配線基板200にフリップチップ実装する場合を説明する。図5は、従来の集積半導体装置(擬似SOCチップ)100を回路配線基板にフリップチップ実装した場合の断面図である。   Here, a case where the conventional integrated semiconductor device (pseudo SOC chip) 100 is flip-chip mounted on the circuit wiring board 200 will be described. FIG. 5 is a cross-sectional view when a conventional integrated semiconductor device (pseudo SOC chip) 100 is flip-chip mounted on a circuit wiring board.

この場合、従来の集積半導体装置(擬似SOCチップ)100の熱膨張係数と回路配線基板200の熱膨張係数とが違うため、その違いを原因として集積半導体装置と回路配線基板の間に変位差が生じる。特に、回路配線基板200と接続しているI/O電極10(バンプ電極5)が集積半導体装置(擬似SOCチップ)100の外周部にある絶縁材料4の上面(真上)のみに配置されていることから、集積半導体装置(擬似SOCチップ)100にそり(応力変形)300が発生し、集積半導体装置(擬似SOCチップ)100のLSIチップ2およびMEMSチップ3の間に配置されている部分の絶縁材料4が応力破壊される課題があった。   In this case, since the coefficient of thermal expansion of the conventional integrated semiconductor device (pseudo SOC chip) 100 and the coefficient of thermal expansion of the circuit wiring board 200 are different, there is a difference in displacement between the integrated semiconductor device and the circuit wiring board due to the difference. Arise. In particular, the I / O electrode 10 (bump electrode 5) connected to the circuit wiring board 200 is disposed only on the upper surface (directly above) of the insulating material 4 on the outer periphery of the integrated semiconductor device (pseudo SOC chip) 100. Therefore, a warp (stress deformation) 300 occurs in the integrated semiconductor device (pseudo-SOC chip) 100, and a portion of the integrated semiconductor device (pseudo-SOC chip) 100 disposed between the LSI chip 2 and the MEMS chip 3 There was a problem that the insulating material 4 was subjected to stress fracture.

さらに、これに対して、本実施の形態にかかる集積半導体装置(擬似SOCチップ)1を回路配線基板200にフリップチップ実装する場合を説明する。図6は、本実施の形態にかかる集積半導体装置(擬似SOCチップ)1を回路配線基板にフリップチップ実装した場合の断面図である。この場合も、集積半導体装置(擬似SOCチップ)1の熱膨張係数と回路配線基板200の熱膨張係数とが違うため、その違いを原因として集積半導体装置と回路配線基板の間に変位差は生じる。しかしながら、回路配線基板200と接続しているI/O電極10(バンプ電極5)が、集積半導体装置(擬似SOCチップ)1のLSIチップ2およびMEMSチップ3の上側に選択的に配置されているため、集積半導体装置(擬似SOCチップ)1に発生するそり(応力変形)300が、LSIチップ2とMEMSチップ3の隙間に配置された絶縁材料4で応力緩和される。そのため、集積半導体装置(擬似SOCチップ)1のそり(応力変形)300を効果的に抑制することができ、集積半導体装置(擬似SOCチップ)1のLSIチップ2およびMEMSチップ3の隙間に配置されている部分の絶縁材料4が集積半導体装置(擬似SOCチップ)1のそり(応力変形)により応力破壊される課題を解決することができる。従って、本実施の形態にかかる集積半導体装置(擬似SOCチップ)1は、フリップチップ実装される回路配線基板200との間の接続信頼性を向上させることが可能となる。   Further, on the other hand, a case where the integrated semiconductor device (pseudo SOC chip) 1 according to the present embodiment is flip-chip mounted on the circuit wiring board 200 will be described. FIG. 6 is a cross-sectional view when the integrated semiconductor device (pseudo SOC chip) 1 according to the present embodiment is flip-chip mounted on a circuit wiring board. Also in this case, since the thermal expansion coefficient of the integrated semiconductor device (pseudo SOC chip) 1 and the thermal expansion coefficient of the circuit wiring board 200 are different, a difference in displacement occurs between the integrated semiconductor device and the circuit wiring board due to the difference. . However, the I / O electrode 10 (bump electrode 5) connected to the circuit wiring board 200 is selectively disposed above the LSI chip 2 and the MEMS chip 3 of the integrated semiconductor device (pseudo SOC chip) 1. Therefore, the warp (stress deformation) 300 generated in the integrated semiconductor device (pseudo SOC chip) 1 is relieved by the insulating material 4 disposed in the gap between the LSI chip 2 and the MEMS chip 3. Therefore, the warp (stress deformation) 300 of the integrated semiconductor device (pseudo SOC chip) 1 can be effectively suppressed, and the integrated semiconductor device (pseudo SOC chip) 1 is disposed in the gap between the LSI chip 2 and the MEMS chip 3. It is possible to solve the problem that the portion of the insulating material 4 is subjected to stress fracture due to warpage (stress deformation) of the integrated semiconductor device (pseudo SOC chip) 1. Therefore, the integrated semiconductor device (pseudo SOC chip) 1 according to the present embodiment can improve the connection reliability with the circuit wiring board 200 that is flip-chip mounted.

なお、回路配線基板200としては、例えば、米国特許4811082号公報に記載された基板、あるいは、通常のガラスエポキシ基板上に絶縁層と導体層とを相互にビルドアップさせた方式のプリントSLC(Surface Laminar Circuit)基板を用いることができる。さらに、ポリイミド樹脂を基板主材として表面に銅配線が形成されている公知のフレキシブル基板などを用いることも可能であり、電子回路装置を構成する回路配線基板200は特に限定されるものではない。   In addition, as the circuit wiring board 200, for example, a printed SLC (Surface) of a system in which an insulating layer and a conductor layer are built up on a substrate described in US Pat. No. 4,811,082 or a normal glass epoxy substrate. Laminar Circuit) substrate can be used. Furthermore, it is also possible to use a known flexible substrate having a copper wiring formed on the surface using polyimide resin as a main material of the substrate, and the circuit wiring substrate 200 constituting the electronic circuit device is not particularly limited.

(集積半導体装置の製造方法)
次に、本実施の形態にかかる集積半導体装置の製造方法について説明する。図7−1〜図7−13は、本実施の形態にかかる集積半導体装置(擬似SOCチップ)1の工程断面図であり、図1のA−A矢視断面部分に相当する。
(Method for manufacturing integrated semiconductor device)
Next, a method for manufacturing the integrated semiconductor device according to the present embodiment will be described. 7A to 7C are process cross-sectional views of the integrated semiconductor device (pseudo SOC chip) 1 according to the present embodiment, and correspond to a cross-sectional view taken along line AA in FIG.

初めに、図7−1に示すようにLSIチップ2、MEMSチップ3、および、ガラスマスク(集積転写基板)13を準備する。ガラスマスク13には、LSIチップ2とMEMSチップ3とが搭載される面に、接着強度差を有する有機絶縁膜7が形成されており、その反対面には、微細配線パターン14が形成されている。本例では、説明のため、有機絶縁膜7に感光性樹脂であるポリイミド(東レ:UR3140)樹脂を使用している。   First, as shown in FIG. 7A, an LSI chip 2, a MEMS chip 3, and a glass mask (integrated transfer substrate) 13 are prepared. The glass mask 13 has an organic insulating film 7 having a difference in adhesive strength formed on the surface on which the LSI chip 2 and the MEMS chip 3 are mounted, and a fine wiring pattern 14 is formed on the opposite surface. Yes. In this example, for the purpose of explanation, polyimide (Toray: UR3140) resin, which is a photosensitive resin, is used for the organic insulating film 7.

そして、図7−2に示すように、LSIチップ2とMEMSチップ3とをガラスマスク13に搭載して、LSIチップ2とMEMSチップ3の表面(図の下面)を同一平面に配置する。なお、実際には、ガラスマスク13上に多数のLSIチップ2とMEMSチップ3とが配置され、全体として擬似SOCのウェハを構成している。   Then, as shown in FIG. 7B, the LSI chip 2 and the MEMS chip 3 are mounted on the glass mask 13, and the surfaces of the LSI chip 2 and the MEMS chip 3 (lower surface in the figure) are arranged on the same plane. In practice, a large number of LSI chips 2 and MEMS chips 3 are arranged on the glass mask 13 to constitute a pseudo SOC wafer as a whole.

次に、図7−3に示すように、LSIチップ2とMEMSチップ3の裏面(図の上面)を絶縁材料4で被覆する。本例では、説明のため、絶縁材料4にシリカフィラの含有されたエポキシ樹脂を使用している。なお、絶縁材料4の被覆形成には、半導体素子間の微細領域にボイドを形成しないで絶縁材料を配置することから、真空印刷技術を用いることが好ましい。   Next, as shown in FIG. 7C, the back surfaces (upper surfaces in the drawing) of the LSI chip 2 and the MEMS chip 3 are covered with an insulating material 4. In this example, an epoxy resin containing silica filler is used for the insulating material 4 for explanation. For forming the coating of the insulating material 4, it is preferable to use a vacuum printing technique because the insulating material is disposed without forming voids in the fine regions between the semiconductor elements.

次に、図7−4に示すように、LSIチップ2とMEMSチップ3とがガラスマスク13上に位置合わせされ、搭載された状態で、ガラスマスク13の微細配線パターン14が形成されている面から露光エネルギー15で露光する。露光量は、有機絶縁膜7となる感光性樹脂の感度に応じて調整する。本例に記載したポリイミド(東レ:UR3140)樹脂を使用する場合は100mJ/cm程度が好ましい。 Next, as shown in FIG. 7-4, the surface on which the fine wiring pattern 14 of the glass mask 13 is formed in a state where the LSI chip 2 and the MEMS chip 3 are aligned and mounted on the glass mask 13. To exposure energy 15. The exposure amount is adjusted according to the sensitivity of the photosensitive resin that will be the organic insulating film 7. When using the polyimide (Toray: UR3140) resin described in this example, about 100 mJ / cm 2 is preferable.

次に、図7−5に示すように、ガラスマスク13を剥離後、現像を行い、コンタクト部6の表面(図の下面)領域に存在する有機絶縁膜7を選択的に開口し、コンタクトビア16を形成する。現像は、現像液(東レ:DV−505)を使用して行った。なお、有機絶縁膜7の表面(図の下面)は、本例のこれまでの製造工程により構造上平坦となっている。   Next, as shown in FIG. 7-5, after the glass mask 13 is peeled off, development is performed to selectively open the organic insulating film 7 existing on the surface (lower surface in the drawing) region of the contact portion 6 to form contact vias. 16 is formed. Development was performed using a developer (Toray: DV-505). Note that the surface of the organic insulating film 7 (the lower surface in the drawing) is structurally flat by the manufacturing steps so far in this example.

次に、図7−6に示すように、有機絶縁膜7の表面(図の上面)に微細薄膜配線8を、EB(電子ビーム)蒸着、あるいはスパッタ法などの公知の技術で形成し、コンタクトビア16を通してコンタクト部6、すなわち、LSIチップ2およびMEMSチップ3と電気的に接続する。本例では、微細薄膜配線8にAl/Tiを使用している。なお、有機絶縁膜7の表面(図の上面)は平坦であるため、微細薄膜配線8は、段差による断線を生じることがないとともに、以後の工程で積層される層についても平坦となるため、最終的に平坦なI/O電極10を形成することができ、I/O電極10上にバンプ電極5を高精度に形成することが可能となる   Next, as shown in FIG. 7-6, a fine thin film wiring 8 is formed on the surface of the organic insulating film 7 (upper surface in the figure) by a known technique such as EB (electron beam) evaporation or sputtering, and contact is made. The contact portion 6, that is, the LSI chip 2 and the MEMS chip 3 are electrically connected through the via 16. In this example, Al / Ti is used for the fine thin film wiring 8. Since the surface of the organic insulating film 7 (upper surface in the figure) is flat, the fine thin film wiring 8 does not cause disconnection due to a step, and the layers stacked in the subsequent steps also become flat. Finally, the flat I / O electrode 10 can be formed, and the bump electrode 5 can be formed on the I / O electrode 10 with high accuracy.

次に、図7−7に示すように、微細薄膜配線8の表面(図の上面)に有機絶縁膜9を被覆し、さらに、微細薄膜配線8と有機絶縁膜9とを重ねて形成する。従って、微細薄膜配線8および有機絶縁膜9は、本例の場合は有機絶縁膜7上に各2層が形成される。さらに、最表面(図の最上面)にある有機絶縁膜9にI/O電極10となる開口部17を形成する。ここで、開口部17の開口寸法は直径50μmであり、開口部17から露出している微細薄膜配線8がI/O電極10の一部となる。本例では、有機絶縁膜9に感光性樹脂であるポリイミド(東レ:UR3140)樹脂を使用した。   Next, as shown in FIG. 7-7, the surface of the fine thin film wiring 8 (upper surface in the figure) is covered with the organic insulating film 9, and the fine thin film wiring 8 and the organic insulating film 9 are formed so as to overlap each other. Therefore, the fine thin film wiring 8 and the organic insulating film 9 are formed in two layers on the organic insulating film 7 in this example. Further, an opening 17 to be the I / O electrode 10 is formed in the organic insulating film 9 on the outermost surface (uppermost surface in the drawing). Here, the opening size of the opening 17 is 50 μm in diameter, and the fine thin film wiring 8 exposed from the opening 17 becomes a part of the I / O electrode 10. In this example, a polyimide (Toray: UR3140) resin that is a photosensitive resin is used for the organic insulating film 9.

次に、図7−8に示すように、有機絶縁膜9の表面(図の上面)に、Cu/Tiの多層金属層18をEB(電子ビーム)蒸着で被覆する。多層金属層18は、Tiの表面(図の上面)にCuが形成されている多層構造であり、最終的に、開口部17に形成された多層金属層18はI/O電極10の一部となり、バンプ電極5のバリアメタルの役割を果たす。   Next, as shown in FIGS. 7-8, the surface of the organic insulating film 9 (upper surface in the figure) is covered with a multilayer metal layer 18 of Cu / Ti by EB (electron beam) deposition. The multilayer metal layer 18 has a multilayer structure in which Cu is formed on the surface of Ti (upper surface in the figure). Finally, the multilayer metal layer 18 formed in the opening 17 is a part of the I / O electrode 10. Thus, it serves as a barrier metal for the bump electrode 5.

次に、図7−9に示すように、多層金属層18の表面(図の上面)に、膜厚50μmのレジスト膜19をスピンコート法で形成後、露光現像により開口部17の開口寸法より大きい直径80μmの開口部20を形成する。露光は、レジスト膜19の膜厚に対して充分な量のエネルギーを照射して行い、現像は、本例では、現像液(AZ400Kデベロッパー:ヘキストジャパン社)を使用して行っている。また本例では、レジスト膜19に、厚膜レジスト(ヘキストジャパン社製:AZ4903)を使用した。   Next, as shown in FIG. 7-9, a resist film 19 having a thickness of 50 μm is formed on the surface of the multilayer metal layer 18 (upper surface in the figure) by spin coating, and then exposed and developed from the opening dimension of the opening 17. An opening 20 having a large diameter of 80 μm is formed. The exposure is performed by irradiating a sufficient amount of energy with respect to the film thickness of the resist film 19, and the development is performed using a developer (AZ400K developer: Hoechst Japan) in this example. In this example, a thick film resist (Hoechst Japan Co., Ltd .: AZ4903) was used for the resist film 19.

次に、図7−10に示すように、I/O電極10(開口部17)に対応する部分のレジスト膜19が、開口部20により開口されている擬似SOCウェハを、本例では、下記のように組成されたPb/Snめっき液(スルホン酸はんだめっき液)に浸漬してCu/Tiを陰極として、高純度共晶はんだ板を陽極として電気めっきを行う。電流密度は1〜4(A/dm)で行い、浴温度25℃で緩やかに攪拌しながら、はんだ組成(Pb/Sn)が共晶組成にほぼ等しい、あるいはPb側またはSn側にわずかに移行した組成のPbSnはんだ合金21を、開口部20の多層金属層18上に50μm析出させる。最終的に、PbSnはんだ合金21はバンプ電極5となる。 Next, as shown in FIG. 7-10, a pseudo SOC wafer in which a portion of the resist film 19 corresponding to the I / O electrode 10 (opening 17) is opened by the opening 20 is formed in the following example. It is immersed in a Pb / Sn plating solution (sulfonic acid solder plating solution) having a composition as described above, and electroplating is performed using Cu / Ti as a cathode and a high-purity eutectic solder plate as an anode. The current density is 1 to 4 (A / dm 2 ), and while gently stirring at a bath temperature of 25 ° C., the solder composition (Pb / Sn) is almost equal to the eutectic composition, or slightly on the Pb side or Sn side. The PbSn solder alloy 21 having the transferred composition is deposited on the multilayer metal layer 18 in the opening 20 by 50 μm. Finally, the PbSn solder alloy 21 becomes the bump electrode 5.

スルホン酸はんだめっき液の組成
錫イオン(Sn2+) 12Vol%
鉛イオン(Pb2+) 30Vol%
脂肪族スルホン酸 41Vol%
ノニオン系界面活性剤 5Vol%
カチオン系界面活性剤 5Vol%
イソプロピルアルコール 7Vol%
Composition of sulfonic acid solder plating solution
Tin ion (Sn2 +) 12Vol%
Lead ion (Pb2 +) 30Vol%
Aliphatic sulfonic acid 41 Vol%
Nonionic surfactant 5Vol%
Cationic surfactant 5Vol%
Isopropyl alcohol 7Vol%

次に、図7−11に示すように、電気めっきを行なうためのレジストとして形成したAZ4903からなるレジスト膜19を、アセトンで除去する。   Next, as shown in FIGS. 7-11, the resist film 19 made of AZ4903 formed as a resist for electroplating is removed with acetone.

次に、図7−12に示すように、クエン酸/過酸化水素水から構成される溶液に浸漬してCuをエッチング除去し、さらに、エレンジアミン4酢酸/アンモニア/過酸化水素水/純水から構成される混合溶液に浸漬してTiをエッチング除去することにより、多層金属層18を除去する。この結果、PbSnはんだ合金21の裏面(図の下面)に存在する多層金属層18以外は、全て除去される。   Next, as shown in FIGS. 7-12, Cu is etched away by dipping in a solution composed of citric acid / hydrogen peroxide solution, and further, diamine amine 4 acetic acid / ammonia / hydrogen peroxide solution / pure water. The multilayer metal layer 18 is removed by immersing it in a mixed solution consisting of the above and etching away Ti. As a result, all but the multilayer metal layer 18 existing on the back surface (lower surface in the figure) of the PbSn solder alloy 21 is removed.

次に、図7−13に示すように、擬似SOCのウェハをリフローすることにより、PbSnはんだ合金21は球状のバンプ電極5となる。   Next, as shown in FIG. 7-13, the PbSn solder alloy 21 becomes a spherical bump electrode 5 by reflowing the pseudo-SOC wafer.

最後に、以上の工程を経て完成した擬似SOCウェハをダイシングにより個別のチップにすることにより集積半導体装置(擬似SOCチップ)1が完成する。   Finally, the integrated semiconductor device (pseudo SOC chip) 1 is completed by dicing the pseudo SOC wafer completed through the above steps into individual chips.

(フリップチップ実装)
さらに、図7−1〜図7−13で説明した集積半導体装置の製造方法で製造した集積半導体装置(擬似SOCチップ)1を回路配線基板200にフリップチップ実装する方法について説明する。具体的には、公知の技術であるハーフミラーを有して位置合わせを行うフリップチップボンダーを用いて、回路配線基板200の電極端子と集積半導体装置(擬似SOCチップ)1のバンプ電極5との位置合わせを行う。なお、集積半導体装置(擬似SOCチップ)1は加熱機構を有するコレットに保持され、350℃の窒素雰囲気中で予備加熱されている。
(Flip chip mounting)
Further, a method of flip-chip mounting the integrated semiconductor device (pseudo SOC chip) 1 manufactured by the integrated semiconductor device manufacturing method described with reference to FIGS. 7-1 to 7-13 on the circuit wiring board 200 will be described. Specifically, using a flip chip bonder that has a half mirror, which is a known technique, and performs alignment, the electrode terminals of the circuit wiring board 200 and the bump electrodes 5 of the integrated semiconductor device (pseudo SOC chip) 1 are used. Perform alignment. The integrated semiconductor device (pseudo SOC chip) 1 is held by a collet having a heating mechanism and preheated in a nitrogen atmosphere at 350 ° C.

次に、集積半導体装置(擬似SOCチップ)1のバンプ電極5と回路配線基板200の電極端子とが接触された状態で、コレットをさらに下方移動して、圧力30kg/mmを加え、さらにこの状態で温度を370℃まで上昇させてはんだを溶融させ、集積半導体装置(擬似SOCチップ)1と回路配線基板200の電極端子とを接続する。以上の様な工程を実施することにより、図6に示したように、集積半導体装置(擬似SOCチップ)1を回路配線基板200にフリップチップ実装することができる。 Next, with the bump electrode 5 of the integrated semiconductor device (pseudo SOC chip) 1 and the electrode terminal of the circuit wiring board 200 being in contact with each other, the collet is further moved downward to apply a pressure of 30 kg / mm 2. In this state, the temperature is raised to 370 ° C. to melt the solder, and the integrated semiconductor device (pseudo SOC chip) 1 and the electrode terminal of the circuit wiring board 200 are connected. By performing the steps as described above, the integrated semiconductor device (pseudo SOC chip) 1 can be flip-chip mounted on the circuit wiring board 200 as shown in FIG.

なお、必要に応じて集積半導体装置(擬似SOCチップ)1と回路配線基板200との隙間部分に公知の技術である、封止樹脂を配置することも可能である。封止する樹脂として、例えば、ビスフェノール系エポキシとイミダゾール効果触媒、酸無水物効果剤と球状の石英フィラを重量比で45wt%含有するエポキシ樹脂を用いることができる。   In addition, it is also possible to arrange sealing resin, which is a known technique, in a gap portion between the integrated semiconductor device (pseudo SOC chip) 1 and the circuit wiring board 200 as necessary. As the resin to be sealed, for example, an epoxy resin containing 45 wt% of a bisphenol-based epoxy and an imidazole effect catalyst, an acid anhydride effect agent, and a spherical quartz filler can be used.

また、例えばクレゾールノボラックタイプのエポキシ樹脂(ECON−195XL;住友化学社製)100重量部、硬化剤としてのフェノール樹脂54重量部、充填剤としての熔融シリカ100重量部、触媒としてのベンジルジメチルアミン0.5重量部、その他添加剤としてカーボンブラック3重量部、シランカップリング剤3重量部を粉砕、混合、溶融したエポキシ樹脂溶融体を用いることも可能であり、その材料は特に限定されるものではない。   Further, for example, 100 parts by weight of a cresol novolak type epoxy resin (ECON-195XL; manufactured by Sumitomo Chemical Co., Ltd.), 54 parts by weight of phenol resin as a curing agent, 100 parts by weight of fused silica as a filler, benzyldimethylamine 0 as a catalyst It is also possible to use an epoxy resin melt obtained by pulverizing, mixing and melting 3 parts by weight of carbon black and 3 parts by weight of a silane coupling agent as other additives, and the material is not particularly limited. Absent.

次に、従来の集積半導体装置(擬似SOCチップ)100を上述した方法で回路配線基板200にフリップチップ実装した場合の接続信頼性と、図7−1〜図7−13で説明した集積半導体装置の製造方法で製造した集積半導体装置(擬似SOCチップ)1を上述した方法で回路配線基板200にフリップチップ実装した場合の接続信頼性とを比較評価した結果について説明する。   Next, connection reliability when the conventional integrated semiconductor device (pseudo SOC chip) 100 is flip-chip mounted on the circuit wiring board 200 by the method described above, and the integrated semiconductor device described with reference to FIGS. The result of comparative evaluation of connection reliability when the integrated semiconductor device (pseudo SOC chip) 1 manufactured by the above manufacturing method is flip-chip mounted on the circuit wiring board 200 by the above-described method will be described.

具体的には、20mm×5mmの寸法内にバンプ電極5を256ピン有する従来の集積半導体装置(擬似SOCチップ)100と、20mm×5mmの寸法内にバンプ電極5を256ピン有する本実施の形態にかかる集積半導体装置(擬似SOCチップ)1とを、それぞれ回路配線基板200にフリップチップ実装した場合の試料の接続信頼性を評価した。サンプル数は各1000個で、温度サイクル試験条件は、いずれの場合も「−55℃(30min)〜25℃(5min)〜125℃(30min)〜25℃(5min)」で行った。そして、256ピンの中で1箇所でも接続がオープンになった場合を不良とした。   Specifically, the conventional integrated semiconductor device (pseudo SOC chip) 100 having 256 pins of bump electrodes 5 within a dimension of 20 mm × 5 mm and the present embodiment having 256 pins of bump electrodes 5 within a dimension of 20 mm × 5 mm. The connection reliability of the sample when the integrated semiconductor device (pseudo SOC chip) 1 according to the above was flip-chip mounted on the circuit wiring board 200 was evaluated. The number of samples was 1000, and the temperature cycle test conditions were “-55 ° C. (30 min) to 25 ° C. (5 min) to 125 ° C. (30 min) to 25 ° C. (5 min)” in any case. A case where the connection was opened even at one of the 256 pins was regarded as defective.

その結果、従来の集積半導体装置(擬似SOCチップ)100では、1500サイクル終了の段階で集積半導体装置(擬似SOCチップ)100のLSIチップ2およびMEMSチップ3の間に配置されている部分の絶縁材料4の応力破壊による不良が100%の割合で確認された。   As a result, in the conventional integrated semiconductor device (pseudo SOC chip) 100, the insulating material of the portion disposed between the LSI chip 2 and the MEMS chip 3 of the integrated semiconductor device (pseudo SOC chip) 100 at the end of 1500 cycles. Failure due to stress fracture of 4 was confirmed at a rate of 100%.

これに対し、本実施の形態にかかる集積半導体装置(擬似SOCチップ)1では、3000サイクル終了の段階でも集積半導体装置(擬似SOCチップ)1のLSIチップ2およびMEMSチップ3の間に配置されている部分の絶縁材料4の応力破壊による不良は確認されず、接続信頼性が極めて向上されていることが確認された。   In contrast, in the integrated semiconductor device (pseudo SOC chip) 1 according to the present embodiment, the integrated semiconductor device (pseudo SOC chip) 1 is arranged between the LSI chip 2 and the MEMS chip 3 of the integrated semiconductor device (pseudo SOC chip) 1 even at the end of the 3000 cycles. It was confirmed that the failure due to the stress fracture of the insulating material 4 in the existing portion was not confirmed, and the connection reliability was extremely improved.

このように、本実施の形態にかかる集積半導体装置によれば、擬似SOCチップである集積半導体装置のI/O電極が異種デバイスの上側に選択的に配置され、さらにI/O電極の上に形成されたバンプ電極で回路配線基板に固定される構造であることから、異種デバイスで固定された集積半導体装置が異種デバイス間を固定する絶縁材料で応力緩和されるため、集積半導体装置と回路配線基板の熱膨張係数の違いにより集積半導体装置全体が応力変形することがなくなり、異種デバイス間を固定する絶縁材料部分での応力破壊を防止することができ、容易に集積半導体装置の接続信頼性を向上させることが可能になる。   As described above, according to the integrated semiconductor device according to the present embodiment, the I / O electrode of the integrated semiconductor device which is a pseudo SOC chip is selectively arranged on the upper side of the different device, and further on the I / O electrode. Because the structure is fixed to the circuit wiring board by the formed bump electrodes, the integrated semiconductor device fixed by the dissimilar device is relieved of stress by the insulating material that fixes between the dissimilar devices. The entire integrated semiconductor device is not subjected to stress deformation due to the difference in thermal expansion coefficient of the substrate, and it is possible to prevent stress breakdown in the insulating material part that fixes between different devices, thereby easily improving the connection reliability of the integrated semiconductor device It becomes possible to improve.

なお、本発明は、上記実施例に限定されるものではなく、複数個の半導体素子を搭載して構成されるすべての集積半導体装置に有効である。   The present invention is not limited to the above embodiments, but is effective for all integrated semiconductor devices configured by mounting a plurality of semiconductor elements.

本発明の実施の形態にかかる集積半導体装置の上面図。1 is a top view of an integrated semiconductor device according to an embodiment of the present invention. 図1のA−A矢視断面図。AA arrow sectional drawing of FIG. 従来の集積半導体装置の上面図。The top view of the conventional integrated semiconductor device. 図3のA−A矢視断面図。AA arrow sectional drawing of FIG. 従来の集積半導体装置を回路配線基板にフリップチップ実装した場合の断面図。Sectional drawing at the time of flip-chip mounting the conventional integrated semiconductor device on a circuit wiring board. 本実施の形態にかかる集積半導体装置を回路配線基板にフリップチップ実装した場合の断面図。Sectional drawing at the time of flip-chip mounting the integrated semiconductor device concerning this Embodiment on a circuit wiring board. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment. 本実施の形態にかかる集積半導体装置の工程断面図。FIG. 10 is a process cross-sectional view of the integrated semiconductor device according to the embodiment.

符号の説明Explanation of symbols

1、31 集積半導体装置(擬似SOCチップ)
2 LSIチップ
3 MEMSチップ
4 絶縁材料
5 バンプ電極
6 コンタクト部
7、9 有機絶縁膜
8 微細薄膜配線
10 I/O電極
11 MEMS封止材料
12 MEMSキャビティ
13 ガラスマスク(集積転写基板)
14 微細配線パターン
15 露光エネルギー
16 コンタクトビア
17、20 開口部
18 多層金属層
19 レジスト膜
21 PbSnはんだ合金
100 従来の集積半導体装置(擬似SOCチップ)
200 回路配線基板
300 そり(応力変形)
1, 31 Integrated semiconductor device (pseudo SOC chip)
2 LSI chip 3 MEMS chip 4 Insulating material 5 Bump electrode 6 Contact part 7, 9 Organic insulating film 8 Fine thin film wiring 10 I / O electrode 11 MEMS sealing material 12 MEMS cavity 13 Glass mask (integrated transfer substrate)
DESCRIPTION OF SYMBOLS 14 Fine wiring pattern 15 Exposure energy 16 Contact via | veer 17, 20 Opening part 18 Multilayer metal layer 19 Resist film 21 PbSn solder alloy 100 Conventional integrated semiconductor device (pseudo SOC chip)
200 Circuit wiring board 300 Warpage (stress deformation)

Claims (5)

集積素子回路または素子外形寸法の異なる複数個の半導体素子と、
前記複数個の半導体素子の間に配置される絶縁材料と、
前記複数個の半導体素子と前記絶縁材料上に全体的に配置される有機絶縁膜と、
前記有機絶縁膜上に配置され、前記複数個の半導体素子を互いに接続する微細薄膜配線と、
前記複数個の半導体素子が配置されている領域上のみに選択的に配置されるI/O電極と、
前記I/O電極上に形成されるバンプ電極と、を備え、
前記I/O電極は、前記半導体素子の角部を除いて配置されること、
を特徴とする集積半導体装置。
A plurality of semiconductor devices having different integrated device circuits or device outer dimensions;
An insulating material disposed between the plurality of semiconductor elements;
An organic insulating film disposed entirely on the plurality of semiconductor elements and the insulating material;
A fine thin film wiring disposed on the organic insulating film and connecting the semiconductor elements to each other;
An I / O electrode selectively disposed only on a region where the plurality of semiconductor elements are disposed;
A bump electrode formed on the I / O electrode,
The I / O electrode is disposed excluding a corner of the semiconductor element;
An integrated semiconductor device characterized by the above.
前記複数個の半導体素子のうち、少なくとも1つは電気機械素子であること、を特徴とする請求項1に記載の集積半導体装置。   The integrated semiconductor device according to claim 1, wherein at least one of the plurality of semiconductor elements is an electromechanical element. 前記集積半導体装置は、
前記バンプ電極により、回路配線基板上にフリップチップ実装されること、を特徴とする請求項1〜2のいずれか一項に記載の集積半導体装置。
The integrated semiconductor device includes:
3. The integrated semiconductor device according to claim 1, wherein the bump electrode is flip-chip mounted on a circuit wiring board.
前記絶縁材料は、少なくともシリカフィラを含有するエポキシ樹脂、ポリイミド樹脂、および、ベンゾシクロブテン(BCB)のうち、少なくとも1つで構成されていること、を特徴とする請求項1〜3のいずれか一項に記載の集積半導体装置。   4. The insulating material according to claim 1, wherein the insulating material is composed of at least one of an epoxy resin containing at least silica filler, a polyimide resin, and benzocyclobutene (BCB). The integrated semiconductor device according to one item. 前記バンプ電極は、少なくともTi、Ni、Al、Cu、Au、Ag、Pb、Sn、Pd、Wを含む金属、または、これらの合金で構成されていること、を特徴とする請求項1〜4のいずれか一項に記載の集積半導体装置。   The bump electrode is made of a metal containing at least Ti, Ni, Al, Cu, Au, Ag, Pb, Sn, Pd, or W, or an alloy thereof. The integrated semiconductor device according to any one of the above.
JP2008040878A 2008-02-22 2008-02-22 Integrated semiconductor device Active JP4568337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008040878A JP4568337B2 (en) 2008-02-22 2008-02-22 Integrated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008040878A JP4568337B2 (en) 2008-02-22 2008-02-22 Integrated semiconductor device

Publications (2)

Publication Number Publication Date
JP2009200274A JP2009200274A (en) 2009-09-03
JP4568337B2 true JP4568337B2 (en) 2010-10-27

Family

ID=41143456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008040878A Active JP4568337B2 (en) 2008-02-22 2008-02-22 Integrated semiconductor device

Country Status (1)

Country Link
JP (1) JP4568337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9607949B2 (en) 2014-03-20 2017-03-28 Kabushiki Kaisha Toshiba Semiconductor device having semiconductor chips in resin and electronic circuit device with the semiconductor device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973461B2 (en) * 2011-11-16 2016-08-23 パナソニック株式会社 Expandable semiconductor chip and semiconductor device
JP5670392B2 (en) * 2012-07-27 2015-02-18 株式会社東芝 Circuit board
JP6338157B2 (en) * 2012-08-13 2018-06-06 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Liquid compression molding sealing material
JP6317629B2 (en) 2014-06-02 2018-04-25 株式会社東芝 Semiconductor device
CN109844938B (en) * 2016-08-12 2023-07-18 Qorvo美国公司 Wafer level package with enhanced performance
US11152363B2 (en) 2018-03-28 2021-10-19 Qorvo Us, Inc. Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process
US11646242B2 (en) 2018-11-29 2023-05-09 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US20200235040A1 (en) 2019-01-23 2020-07-23 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11705428B2 (en) 2019-01-23 2023-07-18 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11387157B2 (en) 2019-01-23 2022-07-12 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
KR20210129656A (en) 2019-01-23 2021-10-28 코르보 유에스, 인크. RF semiconductor device and method of forming same
US11646289B2 (en) 2019-12-02 2023-05-09 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923238B2 (en) 2019-12-12 2024-03-05 Qorvo Us, Inc. Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017530A (en) * 2001-06-28 2003-01-17 Hitachi Ltd Semiconductor device and its mounting method
JP2004153130A (en) * 2002-10-31 2004-05-27 Olympus Corp Semiconductor device and its manufacturing method
JP2005064274A (en) * 2003-08-13 2005-03-10 Sony Corp Printed circuit board and manufacturing method thereof
JP2007260866A (en) * 2006-03-29 2007-10-11 Toshiba Corp Semiconductor apparatus and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017530A (en) * 2001-06-28 2003-01-17 Hitachi Ltd Semiconductor device and its mounting method
JP2004153130A (en) * 2002-10-31 2004-05-27 Olympus Corp Semiconductor device and its manufacturing method
JP2005064274A (en) * 2003-08-13 2005-03-10 Sony Corp Printed circuit board and manufacturing method thereof
JP2007260866A (en) * 2006-03-29 2007-10-11 Toshiba Corp Semiconductor apparatus and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9607949B2 (en) 2014-03-20 2017-03-28 Kabushiki Kaisha Toshiba Semiconductor device having semiconductor chips in resin and electronic circuit device with the semiconductor device

Also Published As

Publication number Publication date
JP2009200274A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4568337B2 (en) Integrated semiconductor device
JP4504434B2 (en) Integrated semiconductor device
US8513818B2 (en) Semiconductor device and method for fabricating the same
TWI496259B (en) Flip chip package assembly and process for making same
JP6356450B2 (en) Semiconductor device and electronic circuit device
US20090298228A1 (en) Method for manufacturing a semiconductor device
JP2010171377A (en) Through-hole electrode substrate and method of manufacturing the same
JP2005327780A (en) Wiring board and semiconductor package using same
JP5378585B2 (en) Semiconductor device
JP4538058B2 (en) Integrated semiconductor device and integrated three-dimensional semiconductor device
JP2002170904A (en) Csp semiconductor device and its manufacturing method and semiconductor module
US6936927B2 (en) Circuit device having a multi-layer conductive path
JP4550102B2 (en) Semiconductor package, manufacturing method thereof, and semiconductor device including semiconductor package
JP2004363573A (en) Semiconductor chip mounted body and its manufacturing method
JP4393343B2 (en) Manufacturing method of semiconductor device
JP2011082531A (en) Through-hole electrode substrate, and method of manufacturing the same
JP2008153696A (en) Semiconductor package and manufacturing method therefor
CN114171467A (en) Semiconductor packaging structure
JPH1098044A (en) Semiconductor device, circuit wiring substrate and structure with semiconductor device mounted thereon
JP2001118959A (en) Connection terminal and semiconductor device equipped therewith
KR101003658B1 (en) Stacked wafer level package and method manufacturing the same
JP2005268442A (en) Semiconductor device and its manufacturing method
JP3373752B2 (en) Semiconductor device
JP4188752B2 (en) Semiconductor package and manufacturing method thereof
JP4374691B2 (en) Chip size semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R151 Written notification of patent or utility model registration

Ref document number: 4568337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3