JP2009235177A - Semiconductor-sealing epoxy resin composition and semiconductor device - Google Patents

Semiconductor-sealing epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2009235177A
JP2009235177A JP2008080670A JP2008080670A JP2009235177A JP 2009235177 A JP2009235177 A JP 2009235177A JP 2008080670 A JP2008080670 A JP 2008080670A JP 2008080670 A JP2008080670 A JP 2008080670A JP 2009235177 A JP2009235177 A JP 2009235177A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor
inorganic compound
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008080670A
Other languages
Japanese (ja)
Other versions
JP5125673B2 (en
Inventor
Shingo Ito
慎吾 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2008080670A priority Critical patent/JP5125673B2/en
Publication of JP2009235177A publication Critical patent/JP2009235177A/en
Application granted granted Critical
Publication of JP5125673B2 publication Critical patent/JP5125673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor-sealing epoxy resin composition giving a semiconductor device excellent in moisture resistance reliability, and the semiconductor device by using the same. <P>SOLUTION: This semiconductor-sealing epoxy resin composition is characterized by containing an epoxy resin, a curing agent, an inorganic compound containing a carbonate of a layered double hydroxide and an inorganic filler different from the above inorganic compound. Here, as the above inorganic compound, it is preferable to use an inorganic compound expressed by following general formula (1). Mg<SB>a</SB>M<SB>b</SB>(OH)<SB>2a+3b-2c</SB>(CO<SB>3</SB>)<SB>c</SB>-mH<SB>2</SB>O (1) [wherein, M is a transition metal; 4≤a≤8; 1≤b≤3; 0.5≤c≤2; and (m) is an integer of ≥0]. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体封止用エポキシ樹脂組成物および半導体装置に関する。   The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device.

従来から半導体装置に搭載する半導体素子は、耐熱性・耐湿信頼性に優れたエポキシ樹脂に、フェノール樹脂等の硬化剤、溶融シリカ、結晶シリカ等の無機充填材を配合したエポキシ樹脂組成物を用いて封止されている。
近年、集積回路の高集積化に伴い半導体素子が大型化し、かつ半導体装置はTSOP、TQFP、BGA等の表面実装型に変わってきている。そのため、半田をリフローする際の熱応力は従来よりも厳しくなっている。表面実装型半導体装置では、実装時の熱応力により半導体装置のクラック、半導体素子やその他の構成部材とエポキシ樹脂組成物の硬化物との界面での剥離と言った問題が生じ易く、耐熱性に優れたエポキシ樹脂組成物が強く求められてきた。
更に、近年の環境問題より半導体装置の実装に用いる半田に含まれる鉛を低減する方向になってきており、それに伴い、半田リフロー処理の温度が高くなり、より高い耐半田リフロー性が必要になっている。そのため、これら表面実装型半導体装置に使用されるエポキシ樹脂組成物に用いられている従来のオルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック樹脂系よりも低応力性、低吸湿性に優れた樹脂系が使用されるようになった。
Conventionally, a semiconductor element mounted on a semiconductor device uses an epoxy resin composition in which an epoxy resin excellent in heat resistance and moisture resistance reliability is mixed with a curing agent such as phenol resin, and an inorganic filler such as fused silica and crystalline silica. Are sealed.
In recent years, as integrated circuits have been highly integrated, the size of semiconductor elements has increased, and semiconductor devices have been changed to surface mount types such as TSOP, TQFP, and BGA. Therefore, the thermal stress when reflowing solder is stricter than before. In surface-mount semiconductor devices, problems such as cracks in the semiconductor device due to thermal stress during mounting, and peeling at the interface between the semiconductor elements and other components and the cured epoxy resin composition are likely to occur, resulting in improved heat resistance. An excellent epoxy resin composition has been strongly demanded.
Furthermore, due to environmental problems in recent years, lead contained in solder used for mounting semiconductor devices has been reduced, and accordingly, the temperature of solder reflow processing has increased, and higher solder reflow resistance has become necessary. ing. Therefore, resin systems with lower stress and moisture absorption than conventional ortho-cresol novolak epoxy resins and phenol novolac resin systems used in epoxy resin compositions used in these surface mount semiconductor devices are used. It came to be.

しかし、これらのエポキシ樹脂を使用すると、その化学構造からエポキシ樹脂組成物の硬化物のガラス転移温度が従来のエポキシ樹脂を使用した場合よりも低くなるため、多湿下ではエポキシ樹脂組成物に含まれるClイオン等のイオン性不純物が動きやすくなる影響により半導体回路の腐食が進み易く、半導体装置がその機能を維持できる耐湿信頼性に難点があった。耐湿信頼性の不良原因となるエポキシ樹脂組成物に含まれるイオン性不純物を捕捉するために、Bi系無機化合物を含んだイオン捕捉剤を配合する提案(例えば、特許文献1参照。)、酸化Mg、Al系イオン捕捉剤を配合する提案(例えば、特許文献2参照。)、ジルコニウム系イオン捕捉剤を配合する提案(例えば、特許文献3参照。)がなされているが、耐湿信頼性の向上が認められるものの必ずしも充分でなかった。   However, when these epoxy resins are used, the glass transition temperature of the cured product of the epoxy resin composition is lower than the case where a conventional epoxy resin is used due to its chemical structure, so it is included in the epoxy resin composition under high humidity. Corrosion of the semiconductor circuit is likely to proceed due to the influence of ionic impurities such as Cl ions, and there is a problem in moisture resistance reliability that allows the semiconductor device to maintain its function. Proposal of blending an ion scavenger containing a Bi-based inorganic compound in order to trap ionic impurities contained in the epoxy resin composition that causes poor moisture resistance reliability (for example, see Patent Document 1), Mg oxide There are proposals for blending an Al-based ion scavenger (for example, see Patent Document 2) and proposals for blending a zirconium-based ion scavenger (for example, see Patent Document 3). Although recognized, it was not always sufficient.

特開平11−240937号公報(第2〜11頁)Japanese Patent Laid-Open No. 11-240937 (pages 2 to 11) 特開昭60−42418号公報(第2〜4頁)JP-A-60-42418 (pages 2 to 4) 特開2002−371194号公報(第2〜6頁)JP 2002-371194 (pages 2-6)

本発明の目的は、耐湿信頼性に優れた半導体装置を与える半導体封止用エポキシ樹脂組成物およびこれを用いた半導体装置を提供することにある。   The objective of this invention is providing the epoxy resin composition for semiconductor sealing which provides the semiconductor device excellent in moisture-proof reliability, and a semiconductor device using the same.

本発明の半導体封止用エポキシ樹脂組成物は、エポキシ樹脂と、硬化剤と、層状複水酸化物の炭酸塩を含む無機化合物と、前記無機化合物と異なる無機充填材と、を含むことを特徴とする。
本発明の半導体封止用エポキシ樹脂組成物は、前記無機化合物が、下記一般式(1)で示される無機化合物とすることができる。
Mg(OH)2a+3b−2c(CO・mHO (1)
(式中Mが遷移金属で4≦a≦8、1≦b≦3、0.5≦c≦2、mは0以上の整数である。)
本発明の半導体封止用エポキシ樹脂組成物は、前記無機化合物の平均粒径が、0.1μm以上、50μm以下であるものとすることができる。
本発明の半導体封止用エポキシ樹脂組成物は、前記無機化合物が、半導体封止用エポキシ樹脂組成物全体に対し、0.01質量%以上、5質量%以下含有されているものとすることができる。
本発明の半導体装置は、上述の半導体封止用エポキシ樹脂組成物の硬化物で、半導体素子が封止されてなることを特徴とする。
The epoxy resin composition for semiconductor encapsulation of the present invention comprises an epoxy resin, a curing agent, an inorganic compound containing a carbonate of a layered double hydroxide, and an inorganic filler different from the inorganic compound. And
In the epoxy resin composition for semiconductor encapsulation of the present invention, the inorganic compound can be an inorganic compound represented by the following general formula (1).
Mg a M b (OH) 2a + 3b-2c (CO 3 ) c · mH 2 O (1)
(In the formula, M is a transition metal, 4 ≦ a ≦ 8, 1 ≦ b ≦ 3, 0.5 ≦ c ≦ 2, and m is an integer of 0 or more.)
In the epoxy resin composition for semiconductor encapsulation of the present invention, the inorganic compound may have an average particle size of 0.1 μm or more and 50 μm or less.
In the epoxy resin composition for semiconductor encapsulation of the present invention, the inorganic compound is contained in an amount of 0.01% by mass or more and 5% by mass or less based on the entire epoxy resin composition for semiconductor encapsulation. it can.
A semiconductor device of the present invention is characterized in that a semiconductor element is sealed with a cured product of the above-described epoxy resin composition for sealing a semiconductor.

本発明の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止すると、耐湿信頼性が優れている半導体装置を得ることができる。   When a semiconductor element is encapsulated using the epoxy resin composition for encapsulating a semiconductor of the present invention, a semiconductor device having excellent moisture resistance reliability can be obtained.

以下、本発明の半導体封止用エポキシ樹脂組成物および半導体装置について説明する。
本発明の半導体封止用エポキシ樹脂組成物は、エポキシ樹脂と、硬化剤と、層状複水酸化物の炭酸塩を含む無機化合物と、前記無機化合物と異なる無機充填材と、を含むことを特徴とする半導体封止用エポキシ樹脂組成物である。
また、本発明の半導体装置は、上記に記載の半導体封止用エポキシ樹脂組成物の硬化物で、半導体素子が封止されてなることを特徴とする。
Hereinafter, the epoxy resin composition for semiconductor encapsulation and the semiconductor device of the present invention will be described.
The epoxy resin composition for semiconductor encapsulation of the present invention comprises an epoxy resin, a curing agent, an inorganic compound containing a carbonate of a layered double hydroxide, and an inorganic filler different from the inorganic compound. An epoxy resin composition for semiconductor encapsulation.
The semiconductor device of the present invention is characterized in that a semiconductor element is sealed with a cured product of the above-described epoxy resin composition for sealing a semiconductor.

まず、半導体封止用エポキシ樹脂組成物(以下、エポキシ樹脂組成物とする)について説明する。
本発明のエポキシ樹脂組成物は、エポキシ樹脂を含む。
前記エポキシ樹脂としては、1分子中にエポキシ基を2個以上有するモノマー、オリゴマーおよびポリマー全般を指し、特に限定するものではない。具体的には、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、トリアジン核含有エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。これらの中でも特に耐半田リフロー性が求められる場合には、常温では結晶性の固体であるが、融点以上では極めて低粘度の液状となり、無機充填材を高充填化できるビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂等の結晶性エポキシ樹脂が好ましい。
また、無機充填材の高充填化という観点からは、その他のエポキシ樹脂の場合も極力粘度の低いものを使用することが望ましい。
また、可撓性、低吸湿化が求められる場合には、エポキシ基が結合した芳香環の間にエポキシ基を有さず、疎水性を示すジシクロペンタジエン骨格を有するジシクロペンタジエン型エポキシ樹脂が望ましい。
さらに高い耐半田リフロー性が求められる場合には、エポキシ基が結合した芳香環の間に疎水性と高い耐熱性を併せ持つフェニレン骨格やビフェニレン骨格等を有するフェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂が好ましい。
First, an epoxy resin composition for semiconductor encapsulation (hereinafter referred to as an epoxy resin composition) will be described.
The epoxy resin composition of the present invention contains an epoxy resin.
The epoxy resin refers to monomers, oligomers and polymers generally having two or more epoxy groups in one molecule, and is not particularly limited. Specifically, biphenyl type epoxy resins, stilbene type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins and other bisphenol type epoxy resins, triphenolmethane type epoxy resins, alkyl-modified triphenolmethane type epoxy resins, Examples include cyclopentadiene-modified phenol type epoxy resins, triazine nucleus-containing epoxy resins, phenol aralkyl type epoxy resins, naphthol type epoxy resins, phenol novolac type epoxy resins, and cresol novolac type epoxy resins. One type may be used alone, or two or more types may be used in combination. Among these, especially when solder reflow resistance is required, it is a crystalline solid at room temperature, but it becomes a liquid with extremely low viscosity above the melting point, and it can be highly filled with inorganic fillers. Biphenyl type epoxy resin, bisphenol type Crystalline epoxy resins such as epoxy resins and stilbene type epoxy resins are preferred.
Further, from the viewpoint of increasing the filling of the inorganic filler, it is desirable to use other epoxy resins having a viscosity as low as possible.
In addition, when flexibility and low moisture absorption are required, a dicyclopentadiene type epoxy resin having a dicyclopentadiene skeleton exhibiting hydrophobicity without an epoxy group between aromatic rings to which an epoxy group is bonded is used. desirable.
When higher solder reflow resistance is required, phenol aralkyl type epoxy resins and naphthol aralkyl type epoxy resins having a phenylene skeleton or a biphenylene skeleton having hydrophobicity and high heat resistance between aromatic rings to which epoxy groups are bonded. Aralkyl type epoxy resins such as

半導体封止用に用いるために、高い耐湿信頼性を考慮すると、イオン性不純物であるNaイオンやClイオンが極力少ない方が好ましい。具体的には、イオン性不純物の含有量が前記エポキシ樹脂全体の2質量%以下であることが好ましく、特に1質量%以下であることが好ましい。これにより、より優れた耐湿信頼性を得ることができる。   Considering high moisture resistance reliability for use in semiconductor encapsulation, it is preferable that Na ions and Cl ions, which are ionic impurities, be as small as possible. Specifically, the content of ionic impurities is preferably 2% by mass or less, and particularly preferably 1% by mass or less, based on the entire epoxy resin. Thereby, more excellent moisture resistance reliability can be obtained.

前記エポキシ樹脂の含有量は、特に限定されないが、前記エポキシ樹脂組成物全体の1質量%以上、30質量%以下が好ましく、特に3質量%以上、20質量%以下が好ましい。含有量が前記範囲内であると、特に流動性、硬化性に優れる。   Although content of the said epoxy resin is not specifically limited, 1 mass% or more and 30 mass% or less of the whole said epoxy resin composition are preferable, and 3 mass% or more and 20 mass% or less are especially preferable. When the content is within the above range, the fluidity and curability are particularly excellent.

前記エポキシ樹脂組成物は、硬化剤を含む。
前記硬化剤としては、例えば重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤の3タイプに大別される。
重付加型の硬化剤としては例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)等の脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m−フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)等の芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジド等を含むポリアミン化合物、ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)等の脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)等の芳香族酸無水物等を含む酸無水物、ノボラック型フェノール樹脂、フェノールポリマー等のポリフェノール化合物、ポリサルファイド、チオエステル、チオエーテル等のポリメルカプタン化合物、イソシアネートプレポリマー、ブロック化イソシアネート等のイソシアネート化合物、カルボン酸含有ポリエステル樹脂等の有機酸類等が挙げられる。
The epoxy resin composition includes a curing agent.
The curing agent is roughly classified into three types, for example, a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent.
Examples of the polyaddition type curing agent include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylene diamine (MXDA), diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), In addition to aromatic polyamines such as diaminodiphenylsulfone (DDS), polyamine compounds including dicyandiamide (DICY), organic acid dihydralazide, and the like, alicyclic acids such as hexahydrophthalic anhydride (HHPA), and methyltetrahydrophthalic anhydride (MTHPA) Polymers such as anhydrides, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), aromatic anhydrides such as benzophenone tetracarboxylic acid (BTDA), novolac phenolic resins, phenolic polymers, etc. Phenolic compounds, polysulfide, thioester, polymercaptan compounds such as thioether, an isocyanate prepolymer, the isocyanate compounds such as blocked isocyanates, and organic acids such as carboxylic acid-containing polyester resins.

触媒型の硬化剤としては、例えば、ベンジルジメチルアミン(BDMA)、2,4,6−トリスジメチルアミノメチルフェノール(DMP−30)等の3級アミン化合物、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール(EMI24)等のイミダゾール化合物、BF3錯体等のルイス酸等が挙げられる。   Examples of the catalyst type curing agent include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30), 2-methylimidazole, and 2-ethyl-4. -Imidazole compounds such as methylimidazole (EMI24), Lewis acids such as BF3 complexes, and the like.

縮合型の硬化剤としては、例えばフェノール樹脂、メチロール基含有尿素樹脂のような尿素樹脂、メチロール基含有メラミン樹脂のようなメラミン樹脂等が挙げられる。
これらの硬化剤は、用いるエポキシ樹脂の種類や目的とする硬化物の物性により、単独または2種類以上組み合わせて使用することができる。これらの硬化剤の中でもフェノール樹脂が好ましい。
Examples of the condensation type curing agent include phenol resins, urea resins such as methylol group-containing urea resins, and melamine resins such as methylol group-containing melamine resins.
These curing agents can be used alone or in combination of two or more depending on the type of epoxy resin used and the physical properties of the desired cured product. Of these curing agents, phenol resins are preferred.

前記硬化剤の含有量は、特に限定されないが、前記エポキシ樹脂組成物全体の1質量%以上、30質量%以下が好ましく、特に2質量%以上、20質量%以下が好ましい。   Although content of the said hardening | curing agent is not specifically limited, 1 mass% or more and 30 mass% or less of the whole said epoxy resin composition are preferable, and 2 mass% or more and 20 mass% or less are especially preferable.

前記フェノール樹脂としては、1分子中にフェノール性水酸基を2個以上有するモノマー、オリゴマーおよびポリマー全般を指し、特に限定するものではない。例えばジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。   The phenol resin refers to monomers, oligomers and polymers in general having two or more phenolic hydroxyl groups in one molecule, and is not particularly limited. For example, dicyclopentadiene-modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin, phenol novolac resin, cresol novolac resin, terpene modified phenol resin, triphenolmethane type resin and the like can be mentioned. More than one type may be used in combination.

配合量としては、全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数との当量比で0.8以上、1.4以下が好ましく、特に0.95以上、1.3以下が好ましく、最も好ましくは1.0以上、1.25以下である。当量比が前記範囲内であると、特に耐半田リフロー性に優れる。   The blending amount is preferably 0.8 or more and 1.4 or less, particularly preferably 0.95 or more and 1.3 or less, by the equivalent ratio of the number of epoxy groups of all epoxy resins and the number of phenolic hydroxyl groups of all phenol resins. Most preferably, it is 1.0 or more and 1.25 or less. When the equivalent ratio is within the above range, the solder reflow resistance is particularly excellent.

本発明のエポキシ樹脂組成物は、層状複水酸化物の炭酸塩を含む無機化合物を含むことを特徴とする。層状複水酸化物の炭酸塩は、金属水酸化物のプラスに荷電した層とマイナスに荷電した層とが複層積み重なってなる層状構造を有する水酸化物の炭酸塩である。
層状複水酸化物の炭酸塩を含む無機化合物は、耐湿信頼性を向上するために使用される。この無機化合物を含むことにより耐湿信頼性を向上できる理由は、次のように考えられる。耐湿信頼性の低下は、半導体回路のAl配線の腐食が原因であり、その腐食は主にエポキシ樹脂組成物中のCIイオンに起因しているものである。層状複水酸化物の炭酸塩を含む無機化合物は上記のように金属水酸化物のプラスに荷電した層とマイナスに荷電した層とが複層積み重なってなる層状の化合物であるため、層間にエポキシ樹脂組成物中のClイオンを吸着することができる。このように腐食の原因となるClイオンを捕捉することにより、Al配線の腐食防止効果を示すと考えられる。
The epoxy resin composition of the present invention includes an inorganic compound containing a carbonate of a layered double hydroxide. The layered double hydroxide carbonate is a hydroxide carbonate having a layered structure in which a positively charged layer and a negatively charged layer of metal hydroxide are stacked.
An inorganic compound containing a carbonate of a layered double hydroxide is used to improve moisture resistance reliability. The reason why the moisture resistance reliability can be improved by including this inorganic compound is considered as follows. The decrease in moisture resistance reliability is caused by corrosion of the Al wiring of the semiconductor circuit, and the corrosion is mainly caused by CI ions in the epoxy resin composition. An inorganic compound containing a carbonate of a layered double hydroxide is a layered compound in which a positively charged layer and a negatively charged layer of a metal hydroxide are stacked as described above. Cl ions in the resin composition can be adsorbed. Thus, it is thought that the corrosion prevention effect of Al wiring is shown by capturing Cl ions that cause corrosion.

層状複水酸化物は次のようにして合成される。金属の塩、例えば硝酸塩の水溶液を水酸化ナトリウム、炭酸ナトリウムの水溶液に攪拌しながら室温で添加する。生成した沈殿物を60〜200℃で数時間加熱して結晶化させる。洗浄及び乾燥により層状複水酸化物の炭酸塩を含む無機化合物が得られる。   The layered double hydroxide is synthesized as follows. An aqueous solution of a metal salt such as nitrate is added to an aqueous solution of sodium hydroxide or sodium carbonate at room temperature with stirring. The formed precipitate is crystallized by heating at 60 to 200 ° C. for several hours. By washing and drying, an inorganic compound containing a carbonate of a layered double hydroxide is obtained.

前記無機化合物の炭酸塩を含む化合物の平均粒径は、特に限定されないが、0.1μm以上、50μm以下であることが好ましく、特に0.5μm以上、20μm以下であることが好ましい。平均粒径が前記範囲内であると、Clイオンの吸着性、エポキシ樹脂組成物の流動性に優れる。平均粒径は市販のレーザー式粒度分布計(例えば、(株)島津製作所製、SALD−7000等)を用いて測定することができる。   The average particle size of the compound containing the carbonate of the inorganic compound is not particularly limited, but is preferably 0.1 μm or more and 50 μm or less, and particularly preferably 0.5 μm or more and 20 μm or less. When the average particle size is within the above range, the adsorptivity of Cl ions and the fluidity of the epoxy resin composition are excellent. The average particle diameter can be measured using a commercially available laser particle size distribution meter (for example, SALD-7000 manufactured by Shimadzu Corporation).

本発明では、前記無機化合物としては、下記一般式(1)で示される無機化合物であることが好ましい。
Mg(OH)2a+3b−2c(CO・mHO (1)
(式中Mが遷移金属で4≦a≦8、1≦b≦3、0.5≦c≦2、mは0以上の整数である。)
この一般式(1)で示される無機化合物を含むことにより、層間にエポキシ樹脂組成物中のClイオンをより効率よく吸着性することができ、Al配線の腐食防止効果を向上させることができる。
In the present invention, the inorganic compound is preferably an inorganic compound represented by the following general formula (1).
Mg a M b (OH) 2a + 3b-2c (CO 3 ) c · mH 2 O (1)
(In the formula, M is a transition metal, 4 ≦ a ≦ 8, 1 ≦ b ≦ 3, 0.5 ≦ c ≦ 2, and m is an integer of 0 or more.)
By including the inorganic compound represented by the general formula (1), the Cl ions in the epoxy resin composition can be more efficiently adsorbed between the layers, and the corrosion prevention effect of the Al wiring can be improved.

一般式(1)で示される無機化合物は次のようにして合成される。マグネシウム及び式中(1)の遷移金属Mの塩、例えば硝酸塩の水溶液を水酸化ナトリウム、炭酸ナトリウムの水溶液に攪拌しながら室温で添加する。生成した沈殿物を60〜200℃で数時間加熱して結晶化させる。洗浄及び乾燥により一般式(1)で示される無機化合物が得られる。   The inorganic compound represented by the general formula (1) is synthesized as follows. An aqueous solution of magnesium and a transition metal M salt of formula (1) such as nitrate is added to an aqueous solution of sodium hydroxide and sodium carbonate at room temperature with stirring. The formed precipitate is crystallized by heating at 60 to 200 ° C. for several hours. An inorganic compound represented by the general formula (1) is obtained by washing and drying.

また、本発明では、式中(1)の遷移金属MとしてはFe、Mn、Cr等が挙げられる。これらのうち金属毒性の低いFeであるのが好ましい。
遷移金属MがFeである一般式(1)で示される無機化合物としては、例えば、パイロオーライト(Pyroaurite)などが挙げられる。
In the present invention, the transition metal M in the formula (1) includes Fe, Mn, Cr and the like. Of these, Fe having low metal toxicity is preferable.
Examples of the inorganic compound represented by the general formula (1) in which the transition metal M is Fe include pyroaulite.

前記無機化合物の含有量は、特に限定されないが、前記エポキシ樹脂組成物全体の0.01質量%以上、5質量%以下が好ましく、特に0.05質量%以上、3質量%以下が好ましい。含有量が前記下限値を下回るとアルミニウム腐食防止効果が小さく耐湿信頼性を向上する効果が不充分となる場合があり、前記上限値を超えると吸湿率が大きくなり、耐半田リフロー性が低下する場合がある。
なお、前記無機化合物と、アルミニウム腐食防止剤等を併用してもよい。
Although content of the said inorganic compound is not specifically limited, 0.01 mass% or more and 5 mass% or less of the whole said epoxy resin composition are preferable, and 0.05 mass% or more and 3 mass% or less are especially preferable. If the content is below the lower limit, the effect of preventing aluminum corrosion is small and the effect of improving the moisture resistance reliability may be insufficient. If the content exceeds the upper limit, the moisture absorption rate is increased and the solder reflow resistance is reduced. There is a case.
The inorganic compound and an aluminum corrosion inhibitor may be used in combination.

前記エポキシ樹脂組成物は、前記無機化合物と異なる無機充填材を含む。これにより、低吸水性、強度、および寸法の安定性を向上することができる。
前記無機充填材としては、タルク、焼成クレー等のケイ酸塩、シリカ、溶融シリカ等の酸化物、水酸化アルミニウム、水酸化マグネシウム等の水酸化物等が挙げられる。より具体的に前記ケイ酸塩としては、タルク、焼成クレー以外に、未焼成クレー、マイカ、ガラス等が挙げられる。前記酸化物としては、シリカ、溶融シリカ以外に球状シリカ、結晶シリカ、2次凝集シリカ、多孔質シリカ、2次凝集シリカまたは多孔質シリカを粉砕したシリカ、酸化チタン、アルミナ等が挙げられる。
また、前記水酸化物としては、水酸化アルミニウム、水酸化マグネシウム以外に水酸化カルシウム等が挙げられる。これらの水酸化物は、後述する難燃剤としても用いることができる。これらは、1種または2種以上を併用しても構わない。
これらの中でもシリカ、溶融シリカに代表される酸化物であるのが好ましい。さらにその中でも、特に溶融シリカであることが好ましい。これにより、成形時の流動性を向上することができる。
The epoxy resin composition includes an inorganic filler different from the inorganic compound. Thereby, low water absorption, intensity | strength, and stability of a dimension can be improved.
Examples of the inorganic filler include silicates such as talc and calcined clay, oxides such as silica and fused silica, hydroxides such as aluminum hydroxide and magnesium hydroxide, and the like. More specifically, examples of the silicate include unfired clay, mica, and glass in addition to talc and fired clay. Examples of the oxide include silica, fused silica, spherical silica, crystalline silica, secondary agglomerated silica, porous silica, silica obtained by pulverizing secondary agglomerated silica or porous silica, titanium oxide, and alumina.
Moreover, as said hydroxide, calcium hydroxide etc. are mentioned besides aluminum hydroxide and magnesium hydroxide. These hydroxides can also be used as a flame retardant described later. These may be used alone or in combination of two or more.
Among these, oxides represented by silica and fused silica are preferable. Of these, fused silica is particularly preferable. Thereby, the fluidity | liquidity at the time of shaping | molding can be improved.

前記無機充填材の形状としては、破砕状でも球状でもかまわないが、球状が好ましく、流動特性、機械強度及び熱的特性のバランスの点から球状溶融シリカが好ましい。更に、カップリング剤等で予め表面処理をしたものを用いても差し支えない。   The shape of the inorganic filler may be crushed or spherical, but is preferably spherical, and spherical fused silica is preferred from the viewpoint of balance between flow characteristics, mechanical strength, and thermal characteristics. Furthermore, it is possible to use one that has been surface-treated with a coupling agent or the like in advance.

前記無機充填材と前記無機化合物とを合わせた合計物の含有量は、特に限定されないが、前記エポキシ樹脂組成物全体の70質量%以上、98質量%以下が好ましく、特に75質量%以上、95質量%以下が好ましい。含有量が前記範囲内であると、成形性と信頼性のバランスに優れる。   The total content of the inorganic filler and the inorganic compound is not particularly limited, but is preferably 70% by mass or more and 98% by mass or less, particularly 75% by mass or more and 95% by mass of the entire epoxy resin composition. The mass% or less is preferable. When the content is within the above range, the balance between moldability and reliability is excellent.

無機充填材の最大粒径とその量については、特に限定されないが、無機充填材の粗大粒子が狭くなったワイヤー間に挟まることによって生じるワイヤー流れ等の不具合の防止を考慮すると、105μm以上の粒子が1%以下であることが好ましく、75μm以下の粒子が1%以下であることがより好ましい。   The maximum particle size and the amount of the inorganic filler are not particularly limited, but considering the prevention of problems such as wire flow caused by the coarse particles of the inorganic filler being sandwiched between narrow wires, particles of 105 μm or more Is preferably 1% or less, and more preferably 75% or less of particles are 1% or less.

前記エポキシ樹脂組成物には、特に限定されないが、硬化促進剤を含むことが好ましい。
前記硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであれば良く、一般に封止材料に使用されているものを広く使用することができる。例えば1,8−ジアザビシクロ(5,4,0)ウンデセン−7,2−メチルイミダゾール、トリフェニルホスフィン、テトラフェニルホスホニウム、テトラフェニルボレート塩等が挙げられるが、これらに限定するものではない。硬化促進剤は1種類を単独で用いても2種類以上を併用してもよい。
Although it does not specifically limit to the said epoxy resin composition, It is preferable that a hardening accelerator is included.
The curing accelerator is not particularly limited as long as it accelerates the curing reaction between an epoxy group and a phenolic hydroxyl group, and those generally used for sealing materials can be widely used. Examples thereof include, but are not limited to, 1,8-diazabicyclo (5,4,0) undecene-7,2-methylimidazole, triphenylphosphine, tetraphenylphosphonium, and tetraphenylborate salts. A hardening accelerator may be used individually by 1 type, or may use 2 or more types together.

本発明のエポキシ樹脂組成物は、上述のエポキシ樹脂、硬化剤、層状複水酸化物の炭酸塩を含む無機化合物、及び前記無機化合物と異なる無機充填材の他に、必要に応じてシランカップリング剤等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、天然ワックス、合成ワックス等の離型剤、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤、シリコーンオイル、ゴム等の低応力添加剤等の種々の添加剤を適宜配合しても差し支えない。   The epoxy resin composition of the present invention includes a silane coupling as required in addition to the above-described epoxy resin, a curing agent, an inorganic compound containing a carbonate of a layered double hydroxide, and an inorganic filler different from the inorganic compound. Coupling agents such as carbon blacks, colorants such as carbon black and bengara, mold release agents such as natural wax and synthetic wax, flame retardants such as aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, silicone oil Various additives such as low-stress additives such as rubber may be appropriately blended.

なお、本発明のエポキシ樹脂組成物は、ミキサー等を用いて原料を充分に均一に混合したもの、更にその後、熱ロール又はニーダー等で溶融混練し、冷却後粉砕したもの等、必要に応じて適宜分散度等を調整したものを用いることができる。これらのエポキシ樹脂組成物は、電気部品あるいは電子部品であるトランジスタ、集積回路等の被覆、絶縁、封止等に適用することができる。   In addition, the epoxy resin composition of the present invention is obtained by mixing raw materials sufficiently uniformly using a mixer or the like, and then melt-kneaded with a hot roll or a kneader, pulverized after cooling, etc. as necessary. What adjusted the dispersion degree etc. suitably can be used. These epoxy resin compositions can be applied to coating, insulation, sealing, etc. of transistors and integrated circuits that are electrical or electronic components.

次に、本発明の半導体装置について説明する。
本発明のエポキシ樹脂組成物を用いて半導体素子等の各種の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
Next, the semiconductor device of the present invention will be described.
In order to encapsulate various electronic components such as semiconductor elements using the epoxy resin composition of the present invention and to manufacture a semiconductor device, it is cured and molded by conventional molding methods such as transfer molding, compression molding, injection molding and the like. That's fine.

封止を行う素子としては、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子等で特に限定されるものではなく、素子を封止して得られる半導体装置の形態も特に限定されない。低圧トランスファー成形などの方法で封止された半導体装置は、そのまま、或いは80〜200℃の温度で15秒〜10時間かけて完全硬化させた後、電子機器等に搭載される。   The element for sealing is not particularly limited to, for example, an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, a solid-state imaging element, and the like, and a form of a semiconductor device obtained by sealing the element is also possible. There is no particular limitation. A semiconductor device sealed by a method such as low-pressure transfer molding is mounted on an electronic device or the like as it is or after being completely cured at a temperature of 80 to 200 ° C. for 15 seconds to 10 hours.

本発明の半導体装置の形態としては、例えば、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリヤ(PLCC)、クワッド・フラット・パッケージ(QFP)、スモール・アウトライン・パッケージ(SOP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)等が挙げられる。   As a form of the semiconductor device of the present invention, for example, dual in-line package (DIP), chip carrier with plastic lead (PLCC), quad flat package (QFP), small outline package (SOP), Small outline J lead package (SOJ), thin small outline package (TSOP), thin quad flat package (TQFP), tape carrier package (TCP), ball grid array (BGA), A chip size package (CSP), etc. are mentioned.

図1は、本発明に係るエポキシ樹脂組成物を用いた半導体装置の一例について、断面構造を示した断面図である。ダイパッド3上に、ダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドとリードフレーム5との間は金線4によって接続されている。半導体素子1は、エポキシ樹脂組成物の硬化体6によって封止されている。   FIG. 1 is a cross-sectional view showing a cross-sectional structure of an example of a semiconductor device using the epoxy resin composition according to the present invention. The semiconductor element 1 is fixed on the die pad 3 via the die bond material cured body 2. The electrode pad of the semiconductor element 1 and the lead frame 5 are connected by a gold wire 4. The semiconductor element 1 is sealed with a cured body 6 of an epoxy resin composition.

以下に本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれらに限定されるものではない。なお、配合は、質量部とする。
(実施例1)
層状複水酸化物の炭酸塩を含む無機化合物の合成
P−1の合成:Mg(NO)・6HO、12.8gとFe(NO)・9HO、28.3gを200mlのイオン交換水に溶解した。これを4Nの水酸化ナトリウム水溶液に無水炭酸ナトリウム8.5gを溶解した水溶液によく攪拌しながら室温でゆっくりと加えた。これを90℃12hrで加熱処理した後、室温まで放冷し、沈殿物をろ過した。得られた結晶をイオン交換水で洗浄し、200℃8hrで乾燥させた。化学分析で求めた化学式はMgFe(OH)16(CO)・4HOであった。
P−2の合成:Mg(NO)・6HO、12.8gとFe(NO)・9HO、20.2gを200mlのイオン交換水に溶解した。これを4Nの水酸化ナトリウム水溶液に無水炭酸ナトリウム5.3gを溶解した水溶液によく攪拌しながら室温でゆっくりと加えた。これを80℃10hrで加熱処理した後、室温まで放冷し、沈殿物をろ過した。得られた結晶をイオン交換水で洗浄し、150℃12hrで乾燥させた。化学分析で求めた化学式はMg4.5Fe1.3(OH)11.5(CO0.7・4HOであった。
P−3の合成:Mg(NO)・6HO、12.8gとFe(NO)・9HO、40.4gを200mlのイオン交換水に溶解した。これを4Nの水酸化ナトリウム水溶液に無水炭酸ナトリウム10.6gを溶解した水溶液によく攪拌しながら室温でゆっくりと加えた。これを65℃20hrで加熱処理した後、室温まで放冷し、沈殿物をろ過した。得られた結晶をイオン交換水で洗浄し、220℃12hrで乾燥させた。化学分析で求めた化学式はMgFe2.6(OH)18.8(CO1.5・4HOであった。
エポキシ樹脂組成物の製造
エポキシ樹脂としてオルソクレゾールノボラック型エポキシ樹脂(E−1:日本化薬(株)製、EOCN1020、軟化点55℃、エポキシ当量196)9.13質量部と、硬化剤としてフェノールノボラック樹脂(H−1:住友ベークライト(株)製、PR−HF−3、軟化点80℃、水酸基当量104)4.79質量部と、無機充填材として溶融球状シリカ(株式会社マイクロン・HS−104、平均粒径26.5μm、105μm以上の粒子1%以下)85.00質量部と、MgFe(OH)16(CO)・4HO(P−1:平均粒径1.3μm、105μm以上の粒子1%以下)0.08質量部と、着色剤としてカーボンブラック0.30質量部と、シランカップリング剤(エポキシシラン:γ−グリシドキシプロピルトリメトキシシラン)0.20質量部と、硬化促進剤としてトリフェニルホスフィン(TPP)0.10質量部と、離型剤としてカルナバワックス0.40質量部と、を常温でミキサーを用いて混合し、次に70〜100℃でロール混練し、冷却後粉砕してエポキシ樹脂組成物を得た。
Hereinafter, the present invention will be described in detail based on Examples and Comparative Examples, but the present invention is not limited thereto. In addition, a mixing | blending shall be a mass part.
Example 1
Synthesis of inorganic compound containing carbonate of layered double hydroxide Synthesis of P-1: Mg (NO 3 ) · 6H 2 O, 12.8 g and Fe (NO 3 ) · 9H 2 O, 28.3 g in 200 ml Dissolved in ion exchange water. This was slowly added at room temperature with good stirring to an aqueous solution in which 8.5 g of anhydrous sodium carbonate was dissolved in 4N aqueous sodium hydroxide solution. This was heat-treated at 90 ° C. for 12 hours, then allowed to cool to room temperature, and the precipitate was filtered. The obtained crystal was washed with ion exchange water and dried at 200 ° C. for 8 hours. The chemical formula determined by chemical analysis was Mg 6 Fe 2 (OH) 16 (CO 3 ) · 4H 2 O.
Synthesis of P-2: Mg (NO 3 ) · 6H 2 O, 12.8 g and Fe (NO 3 ) · 9H 2 O, 20.2 g were dissolved in 200 ml of ion-exchanged water. This was slowly added to an aqueous solution in which 5.3 g of anhydrous sodium carbonate was dissolved in 4N aqueous sodium hydroxide solution at room temperature with good stirring. This was heat-treated at 80 ° C. for 10 hours, then allowed to cool to room temperature, and the precipitate was filtered. The obtained crystals were washed with ion-exchanged water and dried at 150 ° C. for 12 hours. The chemical formula determined by chemical analysis was Mg 4.5 Fe 1.3 (OH) 11.5 (CO 3 ) 0.7 · 4H 2 O.
Synthesis of P-3: Mg (NO 3 ) · 6H 2 O, 12.8 g and Fe (NO 3 ) · 9H 2 O, 40.4 g were dissolved in 200 ml of ion-exchanged water. This was slowly added to an aqueous solution in which 10.6 g of anhydrous sodium carbonate was dissolved in 4N aqueous sodium hydroxide solution at room temperature with good stirring. This was heat-treated at 65 ° C. for 20 hours, then allowed to cool to room temperature, and the precipitate was filtered. The obtained crystals were washed with ion exchange water and dried at 220 ° C. for 12 hours. The chemical formula determined by chemical analysis was Mg 7 Fe 2.6 (OH) 18.8 (CO 3 ) 1.5 · 4H 2 O.
Production of Epoxy Resin Composition Orthocresol novolac type epoxy resin as epoxy resin (E-1: Nippon Kayaku Co., Ltd., EOCN1020, softening point 55 ° C., epoxy equivalent 196) 9.13 parts by mass, phenol as curing agent 4.79 parts by mass of novolak resin (H-1: manufactured by Sumitomo Bakelite Co., Ltd., PR-HF-3, softening point 80 ° C., hydroxyl group equivalent 104) and fused spherical silica (Micron HS-Co., Ltd.) as an inorganic filler 104, average particle size 26.5 μm, particles 1% or less of 105 μm or more) 85.00 parts by mass and Mg 6 Fe 2 (OH) 16 (CO 3 ) · 4H 2 O (P-1: average particle size 1. 0.08 parts by mass of particles of 3 μm or 105 μm or more and 1% or less), 0.30 parts by mass of carbon black as a colorant, and a silane coupling agent (epoxysilane: (γ-glycidoxypropyltrimethoxysilane) 0.20 parts by mass, triphenylphosphine (TPP) 0.10 parts by mass as a curing accelerator, and carnauba wax 0.40 parts by mass as a release agent. The mixture was mixed using a mixer, then roll kneaded at 70 to 100 ° C., cooled and ground to obtain an epoxy resin composition.

(実施例2〜7)
エポキシ樹脂組成物の組成を表1に記載の配合とした以外は、実施例1と同様にしてエポキシ樹脂組成物を得た。下記に使用したエポキシ樹脂等について説明する(すでに説明済みのものは、省略する)。
エポキシ樹脂:
ビフェニル型エポキシ樹脂(E−2:ジャパンエポキシレジン(株)製、YX−4000、エポキシ当量190、融点105℃)
ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(E−3:日本化薬(株)製、NC3000、軟化点58℃、エポキシ当量274)
(Examples 2 to 7)
An epoxy resin composition was obtained in the same manner as in Example 1 except that the composition of the epoxy resin composition was as shown in Table 1. The epoxy resin used below will be described (those already described are omitted).
Epoxy resin:
Biphenyl type epoxy resin (E-2: manufactured by Japan Epoxy Resin Co., Ltd., YX-4000, epoxy equivalent 190, melting point 105 ° C.)
Phenol aralkyl type epoxy resin having biphenylene skeleton (E-3: Nippon Kayaku Co., Ltd., NC3000, softening point 58 ° C., epoxy equivalent 274)

硬化剤:
フェノールアラルキル樹脂(H−2:三井化学(株)製、XLC−4L、軟化点62℃、水酸基当量168)
ビフェニレン骨格を有するフェノールアラルキル樹脂(H−3:明和化成(株)製、MEH−7851SS、軟化点65℃、水酸基当量203)
Curing agent:
Phenol aralkyl resin (H-2: Mitsui Chemicals, XLC-4L, softening point 62 ° C., hydroxyl equivalent 168)
Phenol aralkyl resin having a biphenylene skeleton (H-3: manufactured by Meiwa Kasei Co., Ltd., MEH-7851SS, softening point 65 ° C., hydroxyl group equivalent 203)

無機化合物:
Mg4.5Fe1.3(OH)11.5(CO0.7・4HO、(P−2:平均粒径3.6μm、105μm以上の粒子1%以下)
MgFe2.6(OH)18.8(CO1.5・4HO、(P−3:平均粒径6.3μm、105μm以上の粒子1%以下)
Inorganic compounds:
Mg 4.5 Fe 1.3 (OH) 11.5 (CO 3 ) 0.7 · 4H 2 O, (P-2: average particle size 3.6 μm, particles 1% or less of 105 μm or more)
Mg 7 Fe 2.6 (OH) 18.8 (CO 3 ) 1.5 · 4H 2 O, (P-3: average particle size 6.3 μm, particles 1% or less of 105 μm or more)

(比較例1〜4)
エポキシ樹脂組成物の組成を表1に記載の配合とした以外は、実施例1と同様にしてエポキシ樹脂組成物を得た。下記に使用したエポキシ樹脂等について説明する(すでに説明済みのものは、省略する)。 なお、これらI−1〜I−3の陰イオン捕捉剤については層状複水酸化物の炭酸塩を含む無機化合物を含んでいない。
陰イオン捕捉剤:
陰イオン捕捉剤(I−1:東亞合成株式会社製、IXE−550、ビスマス系陰イオン捕捉剤)
陰イオン捕捉剤(I−2:東亞合成株式会社製、IXE−800、ジルコニウム系陰イオン捕捉剤)
陰イオン捕捉剤(I−3:東亞合成株式会社製、IXE−700F、酸化マグネシウム、アルミニウム系陰イオン捕捉剤)
(Comparative Examples 1-4)
An epoxy resin composition was obtained in the same manner as in Example 1 except that the composition of the epoxy resin composition was as shown in Table 1. The epoxy resin used below will be described (those already described are omitted). These anion scavengers I-1 to I-3 do not contain an inorganic compound containing a carbonate of a layered double hydroxide.
Anion scavenger:
Anion scavenger (I-1: Toagosei Co., Ltd., IXE-550, bismuth anion scavenger)
Anion scavenger (I-2: Toagosei Co., Ltd., IXE-800, zirconium anion scavenger)
Anion scavenger (I-3: Toagosei Co., Ltd., IXE-700F, magnesium oxide, aluminum-based anion scavenger)

各実施例および各比較例で得られたエポキシ樹脂組成物について、以下の評価を行った。得られた結果を表1に示す。   The following evaluation was performed about the epoxy resin composition obtained by each Example and each comparative example. The obtained results are shown in Table 1.

1.吸湿率
得られたエポキシ樹脂組成物を低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)で、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件で成形し、直径50mm、厚さ3mmの円盤状試験片を作製した。ポストキュアとして175℃で8時間加熱処理した。加熱処理後、試験片の吸湿処理前の質量と、85℃、相対湿度60%の環境下で168時間加湿処理した後の質量を測定し、試験片の吸湿率を百分率で示した。単位は質量%。吸湿率が、0.20%以下であるときを良好とした。
1. Moisture absorption rate The resulting epoxy resin composition was molded with a low-pressure transfer molding machine (KTS-30, manufactured by Kotaki Seiki Co., Ltd.) under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds. A disc-shaped test piece having a thickness of 50 mm and a thickness of 3 mm was produced. Heat treatment was performed at 175 ° C. for 8 hours as a post cure. After the heat treatment, the mass before the moisture absorption treatment of the test piece and the mass after the humidification treatment for 168 hours in an environment of 85 ° C. and a relative humidity of 60% were measured, and the moisture absorption rate of the test piece was shown as a percentage. The unit is mass%. A case where the moisture absorption rate was 0.20% or less was regarded as good.

2.耐半田リフロー性
低圧トランスファー成形機(第一精工製、GP−ELF)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件で、半導体素子(半導体素子サイズ6.0mm×6.0mm)を搭載したリードフレームがインサートされた金型キャビティ内に、得られたエポキシ樹脂組成物を注入、硬化させ、80ピンQFP(パッケージサイズ20mm×14mm、厚さ2.0mm)を成形した。ポストキュアとして175℃で8時間加熱処理した半導体装置6個を、30℃、相対湿度60%の環境下で192時間加湿処理した後、IRリフロー処理(240℃)を行った。処理後の内部の剥離又はクラックの有無を超音波探傷装置(日立建機ファインテック社製 mi−scope 10)で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/6と表示する。不良数(n/6)が、1/6以下であるとき耐半田リフロー性は良好であるとした。
2. Solder reflow resistance Using a low-pressure transfer molding machine (Daiichi Seiko, GP-ELF), under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds, a semiconductor element (semiconductor element size of 6. The resulting epoxy resin composition is injected into a mold cavity in which a lead frame having a 0 mm × 6.0 mm) is inserted and cured, and then 80-pin QFP (package size 20 mm × 14 mm, thickness 2.0 mm) Was molded. Six semiconductor devices subjected to heat treatment at 175 ° C. for 8 hours as post-cure were humidified for 192 hours in an environment of 30 ° C. and 60% relative humidity, and then IR reflow treatment (240 ° C.) was performed. The presence or absence of internal peeling or cracks after the treatment was observed with an ultrasonic flaw detector (mi-scope 10 manufactured by Hitachi Construction Machinery Finetech Co., Ltd.), and the number of defective packages was counted. When the number of defective packages is n, n / 6 is displayed. When the number of defects (n / 6) is 1/6 or less, the solder reflow resistance is considered good.

3.耐湿信頼性
低圧トランスファー成形機(コータキ精機株式会社製、KTS−125)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件で、半導体素子(半導体素子サイズ3.0mm×3.5mm、厚さ0.48mm。配線部とメタルパッド部がアルミニウム層(純度:99.99%、1.0μm厚)で構成されている。保護膜は無し。陽極配線と陰極配線の1対を1評価回路とし、3評価回路(総回路面積4.8mm2)が1半導体素子上に形成されている。各々の陽極配線及び陰極配線は配線幅10μmで両端がそれぞれ120μm角のメタルパッドに接続されている。対となる陽極配線と陰極配線の間隔は10μm。評価回路の各々のメタルパッドは金製(純度:99.99%)の1本のワイヤ(25μm径)で対応する各々のリードに接続されている。)を搭載したリードフレームがインサートされた金型キャビティ内に得られたエポキシ樹脂組成物を注入、硬化させ、16ピンSOP(パッケージサイズ7.2mm×11.5mm、厚さ1.95mm)を成形した。ポストキュアとして175℃で4時間加熱処理した後、プレッシャークッカー試験(130℃、圧力2.3×105Pa、500時間、陽極陰極間の印加電圧20V)を行った。プレッシャークッカー試験後、オープンチェッカーで判定を行った。オープンチェッカーの陽極の判定回路は、抵抗(2.2KΩ)1個とLED(1.85V、20mA)1個と1本の陽極配線を配線したものであり、1本の陽極配線におけるメタルパッド間の断線の有無を判定するものである。オープンチェッカーの陰極の判定回路は、抵抗(2.2KΩ)1個とLED(1.85V、20mA)1個と1本の陰極配線を配線したものであり、1本の陰極配線におけるメタルパッド間の断線の有無を判定するものである。オープンチェッカーは1パッケージ中の3本の陽極配線と3本の陰極配線を同時に測定できるよう電源(単3形乾電池4個直列)に3本の陽極判定回路と3本の陰極判定回路が並列に接続されている。3評価回路の陽極判定回路、陰極判定回路のLEDが全て点灯した場合を良、それ以外を不良とした。15個のパッケージ中の不良個数を示す。
3. Moisture resistance reliability Using a low-pressure transfer molding machine (KTS-125, manufactured by Kotaki Seiki Co., Ltd.) under the conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds, the semiconductor element (semiconductor element size 3. 0mm × 3.5mm, 0.48mm thickness Wiring part and metal pad part are composed of aluminum layer (purity: 99.99%, 1.0μm thickness) No protective film, anode wiring and cathode wiring One evaluation circuit is used as one evaluation circuit, and three evaluation circuits (total circuit area: 4.8 mm 2) are formed on one semiconductor element.Each anode wiring and cathode wiring each have a wiring width of 10 μm and both ends are 120 μm square metal. Connected to the pad, the distance between the anode wiring and the cathode wiring to be paired is 10 μm, and each metal pad of the evaluation circuit is a single wire (25 μm diameter) made of gold (purity: 99.99%) The epoxy resin composition obtained is injected into a mold cavity in which a lead frame having a lead frame mounted thereon is inserted, cured, and 16-pin SOP (package size 7.2 mm × 11.5 mm and thickness 1.95 mm). After post-cure heat treatment at 175 ° C. for 4 hours, a pressure cooker test (130 ° C., pressure 2.3 × 105 Pa, 500 hours, applied voltage between anode and cathode 20 V) was performed. After the pressure cooker test, an open checker was used for determination. The open checker anode judgment circuit consists of one resistor (2.2KΩ), one LED (1.85V, 20mA) and one anode wiring, and between the metal pads in one anode wiring. The presence or absence of disconnection is determined. The open checker cathode judgment circuit is composed of one resistor (2.2 KΩ), one LED (1.85 V, 20 mA) and one cathode wiring, and between the metal pads in one cathode wiring. The presence or absence of disconnection is determined. The open checker has 3 anode determination circuits and 3 cathode determination circuits in parallel with the power supply (4 AA batteries in series) so that 3 anode wirings and 3 cathode wirings in one package can be measured simultaneously. It is connected. 3 The case where all the LEDs of the anode judgment circuit of the evaluation circuit and the cathode judgment circuit were turned on was judged good, and the others were judged as defective. The number of defects in 15 packages is shown.

Figure 2009235177
Figure 2009235177

表1から明らかなように、実施例1〜7における樹脂組成物は吸湿率が低く、耐湿信頼性に優れていることが示された。また、実施例1〜7における樹脂組成物は、耐半田リフロー性にも特に優れていた。
一方、本発明を逸脱する比較例1〜4における樹脂組成物は、いずれの場合も耐湿信頼性に劣っていた。
As is apparent from Table 1, the resin compositions in Examples 1 to 7 have a low moisture absorption rate and are excellent in moisture resistance reliability. In addition, the resin compositions in Examples 1 to 7 were particularly excellent in solder reflow resistance.
On the other hand, the resin compositions in Comparative Examples 1 to 4 that depart from the present invention were inferior in moisture resistance reliability in any case.

本発明によると、従来技術では得られなかった、耐湿信頼性に優れた半導体装置を得ることができる。そのため、高い耐湿信頼性が求められる車載用等の屋外使用機器に使用される半導体装置に好適に用いることができる。   According to the present invention, it is possible to obtain a semiconductor device excellent in moisture resistance reliability, which was not obtained in the prior art. Therefore, it can be suitably used for a semiconductor device used for outdoor equipment such as in-vehicle use that requires high moisture resistance reliability.

本発明に係るエポキシ樹脂組成物を用いた半導体装置の一例について、断面構造を示した断面図である。It is sectional drawing which showed the cross-section about an example of the semiconductor device using the epoxy resin composition which concerns on this invention.

符号の説明Explanation of symbols

1 半導体素子
2 ダイボンド材硬化体
3 ダイパッド
4 金線
5 リードフレーム
6 半導体封止用エポキシ樹脂組成物の硬化体
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Die-bonding material hardening body 3 Die pad 4 Gold wire 5 Lead frame 6 Hardening body of epoxy resin composition for semiconductor sealing

Claims (5)

エポキシ樹脂と、硬化剤と、層状複水酸化物の炭酸塩を含む無機化合物と、前記無機化合物と異なる無機充填材と、を含むことを特徴とする半導体封止用エポキシ樹脂組成物。   An epoxy resin composition for semiconductor encapsulation, comprising an epoxy resin, a curing agent, an inorganic compound containing a carbonate of a layered double hydroxide, and an inorganic filler different from the inorganic compound. 前記無機化合物が、下記一般式(1)で示される無機化合物である請求項1に記載の半導体封止用エポキシ樹脂組成物。
Mg(OH)2a+3b−2c(CO・mHO (1)
(式中Mが遷移金属で4≦a≦8、1≦b≦3、0.5≦c≦2、mは0以上の整数である。)
The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the inorganic compound is an inorganic compound represented by the following general formula (1).
Mg a M b (OH) 2a + 3b-2c (CO 3 ) c · mH 2 O (1)
(In the formula, M is a transition metal, 4 ≦ a ≦ 8, 1 ≦ b ≦ 3, 0.5 ≦ c ≦ 2, and m is an integer of 0 or more.)
前記無機化合物の平均粒径が、0.1μm以上、50μm以下である請求項1または請求項2に記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein an average particle size of the inorganic compound is 0.1 µm or more and 50 µm or less. 前記無機化合物が、半導体封止用エポキシ樹脂組成物全体に対し、0.01質量%以上、5質量%以下含有されている請求項1〜請求項3のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。   The semiconductor sealing of any one of Claims 1-3 in which the said inorganic compound is contained 0.01 mass% or more and 5 mass% or less with respect to the whole epoxy resin composition for semiconductor sealing. Epoxy resin composition. 請求項1〜請求項4のいずれか1項に記載の半導体封止用エポキシ樹脂組成物の硬化物で、半導体素子が封止されてなることを特徴とする半導体装置。   A semiconductor device, wherein a semiconductor element is sealed with a cured product of the epoxy resin composition for sealing a semiconductor according to any one of claims 1 to 4.
JP2008080670A 2008-03-26 2008-03-26 Epoxy resin composition for semiconductor encapsulation and semiconductor device Active JP5125673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080670A JP5125673B2 (en) 2008-03-26 2008-03-26 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080670A JP5125673B2 (en) 2008-03-26 2008-03-26 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Publications (2)

Publication Number Publication Date
JP2009235177A true JP2009235177A (en) 2009-10-15
JP5125673B2 JP5125673B2 (en) 2013-01-23

Family

ID=41249543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080670A Active JP5125673B2 (en) 2008-03-26 2008-03-26 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Country Status (1)

Country Link
JP (1) JP5125673B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145609A1 (en) * 2012-03-30 2013-10-03 住友ベークライト株式会社 Epoxy resin composition for semiconductor sealing, cured body thereof, and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249377A (en) * 2005-03-14 2006-09-21 Nitto Denko Corp Resin composition for sealing semiconductor and semiconductor device using the same
JP2007002206A (en) * 2005-05-24 2007-01-11 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2007023273A (en) * 2005-06-17 2007-02-01 Hitachi Chem Co Ltd Epoxy resin molding compound for sealing use and electronic component device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249377A (en) * 2005-03-14 2006-09-21 Nitto Denko Corp Resin composition for sealing semiconductor and semiconductor device using the same
JP2007002206A (en) * 2005-05-24 2007-01-11 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2007023273A (en) * 2005-06-17 2007-02-01 Hitachi Chem Co Ltd Epoxy resin molding compound for sealing use and electronic component device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145609A1 (en) * 2012-03-30 2013-10-03 住友ベークライト株式会社 Epoxy resin composition for semiconductor sealing, cured body thereof, and semiconductor device

Also Published As

Publication number Publication date
JP5125673B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
US8963344B2 (en) Epoxy resin composition for semiconductor encapsulation, cured product thereof, and semiconductor device
JP5359274B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO2011043058A1 (en) Semiconductor device
JP5070972B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
US9230892B2 (en) Semiconductor device and method of manufacturing the same
JP5507477B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP6094573B2 (en) Semiconductor device
JP2013209450A (en) Epoxy resin composition for sealing semiconductor
JP2020152844A (en) Sealing resin composition and electronic device
JP2007002206A (en) Epoxy resin composition for sealing and electronic part device
JP7343096B2 (en) Encapsulating resin composition, semiconductor device, and method for manufacturing semiconductor device
JP6341203B2 (en) Semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP5125673B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO2019078024A1 (en) Resin composition for sealing and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP2008231242A (en) Epoxy resin composition and semiconductor device
JP2008214559A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2015000941A (en) Epoxy resin composition and electronic part device
JP2008045075A (en) Epoxy resin composition for sealing and electronic component device
JP3811154B2 (en) Resin composition for sealing and resin-sealed semiconductor device
JP2021187868A (en) Thermosetting resin composition and electronic device
JP2008208176A (en) Epoxy resin composition and semiconductor device
JP2007009166A (en) Epoxy resin composition for sealing, and electronic component apparatus
JP6832519B2 (en) Encapsulating resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3