WO2019078024A1 - Resin composition for sealing and semiconductor device - Google Patents

Resin composition for sealing and semiconductor device Download PDF

Info

Publication number
WO2019078024A1
WO2019078024A1 PCT/JP2018/037240 JP2018037240W WO2019078024A1 WO 2019078024 A1 WO2019078024 A1 WO 2019078024A1 JP 2018037240 W JP2018037240 W JP 2018037240W WO 2019078024 A1 WO2019078024 A1 WO 2019078024A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
sealing
sealing resin
mass
semiconductor device
Prior art date
Application number
PCT/JP2018/037240
Other languages
French (fr)
Japanese (ja)
Inventor
洋史 黒田
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020207013624A priority Critical patent/KR102166183B1/en
Priority to JP2019525037A priority patent/JP6628010B2/en
Priority to CN201880067422.7A priority patent/CN111247206A/en
Publication of WO2019078024A1 publication Critical patent/WO2019078024A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a sealing resin composition and a semiconductor device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-161990 describes a technique for improving the electrical characteristics of a semiconductor package.
  • the same document describes a sealing epoxy resin molding material containing an epoxy resin, a curing agent, and a colorant resin mixture prepared by mixing a resin and a colorant having a specific electric resistance in a specific range in advance.
  • an epoxy resin molding material for sealing has good flowability, curability and colorability, and even when used as a sealing material in an electronic component device in which the distance between pads or between wires is narrow. It is supposed that an electronic component device having excellent electrical characteristics can be obtained.
  • the content of S in the cured product of the sealing resin composition obtained by measuring a test piece obtained by the following production method by the following method is 10 ppm or less based on the entire cured product And a sealing resin composition.
  • sample preparation method Using a transfer molding machine, a molded article with a diameter of 50 mm and a thickness of 3 mm is molded at a mold temperature of 175 ° C, an injection pressure of 7.4MPa, and a curing time of 2 minutes, and post cured at 175 ° C for 4 hours
  • the sample is obtained in the form of (Method of measuring the content of S)
  • the sulfur concentration in the sample is measured under the conditions of a tube voltage of 40 kV and a tube current of 95 mA using a wavelength dispersive fluorescent X-ray analyzer (XRF-1800 manufactured by Shimadzu Corporation).
  • the semiconductor device formed by sealing a semiconductor element with the resin composition for sealing in the said invention is provided.
  • the present invention even when applied to a semiconductor device containing a Cu wire, it is possible to obtain a semiconductor device which is excellent in HTSL characteristics of the obtained semiconductor device and excellent in laser sealability.
  • the sealing resin composition contains the following components (A) to (C).
  • the resin composition for sealing obtained by measuring the test piece obtained by the following manufacturing method by the following method
  • the content of S (sulfur) in the cured product is 10 ppm or less based on the entire cured product.
  • sample preparation method Using a transfer molding machine, a molded article with a diameter of 50 mm and a thickness of 3 mm is molded at a mold temperature of 175 ° C, an injection pressure of 7.4MPa, and a curing time of 2 minutes, and post cured at 175 ° C for 4 hours
  • the sample is obtained in the form of (Method of measuring the content of S)
  • the sulfur concentration in the above sample is measured under the conditions of a tube voltage of 40 kV and a tube current of 95 mA using a wavelength dispersive fluorescent X-ray analyzer (XRF-1800 manufactured by Shimadzu Corporation).
  • the components (A) to (C) are used in combination in the sealing resin composition, and the content of S in the cured product of the sealing resin composition is the above-mentioned specific range and Do.
  • the sealing resin composition is, for example, in the form of particles or a sheet. Specifically as a particulate-form resin composition for sealing, the thing of tablet-form or a granular material is mentioned. Among these, when the resin composition for sealing is tablet-like, for example, the resin composition for sealing can be shape
  • the substrate is, for example, a wiring board such as an interposer or a lead frame. In addition, the semiconductor element is electrically connected to the base material by wire bonding or flip chip connection.
  • the semiconductor device obtained by sealing the semiconductor element by sealing using the sealing resin composition is not limited, for example, QFP (Quad Flat Package), SOP (Small Outline Package), BGA (Ball (Ball) Grid Array), CSP (Chip Size Package), QFN (Quad Flat Non-leaded Package), SON (Small Outline Non-leaded Package), LF-BGA (Lead Flame BGA), and the like.
  • the sealing resin composition is also applicable to a structure formed by MAP (Mold Array Package) molding, which is frequently applied to molding of these packages in recent years. In this case, a package can be obtained by collectively sealing a plurality of semiconductor elements mounted on a base material using a sealing resin composition.
  • the semiconductor element examples include, but are not limited to, integrated circuits, large scale integrated circuits, transistors, thyristors, diodes, solid-state imaging elements, and the like.
  • the semiconductor element to be sealed with the sealing resin composition is a so-called element that does not involve light entering and leaving, except for the light semiconductor element such as the light receiving element and the light emitting element (light emitting diode etc.).
  • the content of S in the cured product of the sealing resin composition is the entire cured product from the viewpoint of obtaining a semiconductor device having excellent HTSL characteristics and laser sealability even when used with a Cu wire.
  • it is 10 ppm or less, preferably 9 ppm or less, more preferably 8.5 ppm or less, and still more preferably 7.5 ppm.
  • the lower limit value of the content of S in the cured product is 0 ppm or more, but may be, for example, the detection limit value or more, and specifically 1 ppm or more.
  • the glass transition temperature (Tg) of the cured product of the sealing resin composition is preferably 110 ° C. or higher, more preferably 115 ° C. or higher, from the viewpoint of improving the heat resistance of the cured product. Preferably it is 125 ° C. or more, more preferably 135 ° C. or more.
  • the upper limit of the glass transition temperature of the cured product is not limited, but from the viewpoint of improving the toughness of the cured product, it is preferably 230 ° C. or less, more preferably 200 ° C. or less, and still more preferably 180 ° C. or less.
  • the glass transition temperature of the cured product is a measurement temperature range of 0 ° C. to 320 ° C.
  • TMA thermal mechanical analysis
  • the sealing resin composition contains the components (A) to (C).
  • constituent components of the sealing resin composition will be described.
  • the epoxy resin of the component (A) for example, biphenyl type epoxy resin; bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethyl bisphenol F type epoxy resin; stilbene type Epoxy resin; Novolak type epoxy resin such as phenol novolak type epoxy resin, cresol novolac type epoxy resin; Multifunctional epoxy resin such as triphenolmethane type epoxy resin, alkyl modified triphenolmethane type epoxy resin; consisting of phenylene skeleton and biphenylene skeleton A phenol aralkyl type epoxy resin having one or two skeletons selected from the group, one or two skeletons selected from the group consisting of a phenylene skeleton and a biphenylene skeleton Phenol aralkyl type epoxy resin such as naphthal aralkyl type epoxy resin; naphthol type epoxy resin such as epoxy resin obtained by glycidyl etherifying dihydroxy
  • the epoxy resin is preferably selected from the group consisting of phenylene skeleton-containing phenol aralkyl type epoxy resin, o-cresol novolac type epoxy resin and biphenyl type epoxy resin. One or two or more.
  • the content of the component (A) in the resin composition for sealing is 100% by mass of the entire resin composition for sealing from the viewpoint of obtaining suitable fluidity at the time of molding to improve the filling property and the moldability. When it is carried out, it is preferably 2% by mass or more, more preferably 3% by mass or more, and still more preferably 4% by mass or more.
  • the content of the component (A) in the resin composition for sealing is for sealing from the viewpoint of improving the HTSL characteristics of the semiconductor device provided with the sealing material formed using the resin composition for sealing.
  • the total amount of the resin composition is 100% by mass, preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 15% by mass or less, and still more preferably 10% by mass or less.
  • the inorganic filler of the component (B) one generally used in a resin composition for semiconductor encapsulation can be used.
  • the inorganic filler include silica such as fused silica and crystalline silica; alumina; talc; titanium oxide; silicon nitride; and aluminum nitride.
  • silica such as fused silica and crystalline silica
  • alumina such as fused silica and crystalline silica
  • talc titanium oxide
  • silicon nitride silicon nitride
  • aluminum nitride aluminum nitride.
  • One of these inorganic fillers may be used alone, or two or more thereof may be used in combination.
  • it is preferable to use silica and it is more preferable to use fused silica.
  • the shape of the silica is preferably spherical.
  • the content of the component (B) in the sealing resin composition improves the low hygroscopicity and the low thermal expansion of the sealing material formed using the sealing resin composition, and the moisture resistance of the obtained semiconductor device From the viewpoint of more effectively improving the reliability and the reflow resistance, the total amount of the sealing resin composition is 100% by mass, preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably Is 80 mass% or more.
  • the content of the component (B) in the resin composition for sealing is more preferably the resin composition for sealing from the viewpoint of more effectively improving the flowability and the filling property at the time of molding of the resin composition for sealing. When the whole is 100 mass%, it is preferably 95 mass% or less, more preferably 93 mass% or less, and still more preferably 90 mass% or less.
  • Acetylene black, black titanium oxide (titanium black), etc. are mentioned as a specific example of the black-type coloring agent of a component (C).
  • black titanium oxide, Ti n O (2n-1 ) (n is a positive integer) are present as.
  • Examples of black titanium oxide Ti n O used in the present embodiment (2n-1) it is preferable to use a n is 4 to 6.
  • n is 4 or more, the dispersibility of black titanium oxide in the sealing resin composition can be improved.
  • the marking property of a laser such as a YAG laser can be improved.
  • Component (C) preferably contains acetylene black, and more preferably consists of acetylene black, from the viewpoint of obtaining a semiconductor device excellent in HTSL characteristics even when used together with a Cu wire.
  • the sealing resin composition Preferably, it is substantially free of furnace black, more preferably it contains acetylene black and is substantially free of furnace black.
  • the resin composition for sealing does not contain furnace black substantially means that furnace black is not intentionally blended with the resin composition for sealing.
  • the content of acetylene black in the resin composition for sealing is preferably 0.10% by mass or more with respect to the entire resin composition for sealing, from the viewpoint of obtaining a preferable appearance of the sealing material, and more preferably It is 0.20 mass% or more. Further, from the viewpoint of enhancing the insulation reliability of the semiconductor device, the content of acetylene black in the sealing resin composition is preferably 1.0 mass% or less with respect to the entire sealing resin composition, Preferably it is 0.8 mass% or less, More preferably, it is 0.6 mass% or less.
  • the content of the component (C) in the sealing resin composition is preferably 0.10 mass% or more with respect to the entire sealing resin composition from the viewpoint of obtaining a preferable appearance of the sealing material. Preferably it is 0.20 mass% or more. Further, from the viewpoint of enhancing the insulation reliability of the semiconductor device, the content of the component (C) in the sealing resin composition is preferably 1.0% by mass or less with respect to the entire sealing resin composition. More preferably, it is 0.8 mass% or less, More preferably, it is 0.6 mass% or less.
  • the average particle diameter d50 of secondary particles of acetylene black is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, from the viewpoint of improving the laser sealability. Also, from the viewpoint of improving the laser sealability, the average particle diameter d50 of secondary particles of acetylene black is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less. Here, the average particle diameter d50 of secondary particles of acetylene black is measured by a laser diffraction method.
  • the sealing resin composition may contain components other than the epoxy resin and the inorganic filler.
  • the sealing resin composition may further contain a curing agent.
  • the curing agent can be roughly classified into, for example, three types of a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent, and one or more of these can be used.
  • polyaddition curing agent examples include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), metaxylylenediamine (MXDA), diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), Polyamine compounds containing dicyandiamide (DICY), organic acid dihydrazide, etc.
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • MXDA metaxylylenediamine
  • DDM diaminodiphenylmethane
  • MPDA m-phenylenediamine
  • DIY Polyamine compounds containing dicyandiamide
  • organic acid dihydrazide etc.
  • aromatic polyamines such as diaminodiphenyl sulfone (DDS); Alicyclic acids such as hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA)
  • Anhydrides such as anhydrides, aromatic anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA), etc .
  • tertiary amine compounds such as benzyldimethylamine (BDMA), 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4- And imidazole compounds such as methylimidazole (EMI 24); and Lewis acids such as BF3 complex.
  • BDMA benzyldimethylamine
  • DMP-30 2,4,6-trisdimethylaminomethylphenol
  • 2-methylimidazole, 2-ethyl-4- And imidazole compounds such as methylimidazole (EMI 24)
  • Lewis acids such as BF3 complex.
  • condensation type curing agents include phenol resins; urea resins such as methylol group-containing urea resins; and melamine resins such as methylol group-containing melamine resins.
  • a phenol resin curing agent is preferable.
  • curing agent the monomer which has 2 or more of phenolic hydroxyl groups in 1 molecule, an oligomer, and a polymer general can be used, The molecular weight and molecular structure are not limited.
  • novolac type phenol resin such as phenol novolac resin, cresol novolac resin, bisphenol novolac etc .
  • polyvinyl phenol polyfunctional type such as phenol / hydroxy benzaldehyde resin, triphenolmethane type phenol resin
  • Phenolic resin Modified phenolic resin such as terpene modified phenolic resin, dicyclopentadiene modified phenolic resin, etc .
  • bisphenol compounds such as bisphenol A, bisphenol F, etc.
  • a biphenylaralkyl type phenol resin when applied to a semiconductor device containing a Cu wire, from the viewpoint of obtaining a semiconductor device excellent in HTSL characteristics and laser sealability, a biphenylaralkyl type phenol resin, a novolac type phenol resin and a phenylene skeleton-containing phenol aralkyl resin It is more preferable to use one or more selected from the group consisting of
  • the combination of the component (A) and the phenol resin curing agent preferably a combination of biphenylaralkyl type epoxy resin / biphenylaralkyl type phenol resin, ortho cresol novolac type epoxy resin / novolac type phenol resin Combinations and combinations of biphenyl type epoxy resin / phenol aralkyl resin are mentioned.
  • the content of the curing agent in the resin composition for sealing realizes excellent flowability at the time of molding, and from the viewpoint of improving the filling property and the moldability, the resin composition for sealing Preferably it is 1 mass% or more with respect to the whole, More preferably, it is 2 mass% or more, More preferably, it is 3 mass% or more.
  • the content of the curing agent in the sealing resin composition is the sealing agent from the viewpoint of improving the moisture resistance and the reflow resistance.
  • it is 25 mass% or less with respect to the whole resin composition for stop, More preferably, it is 15 mass% or less, More preferably, it is 10 mass% or less.
  • the resin composition for sealing may contain components other than the components mentioned above, for example, a hardening accelerator, a coupling agent, a mold release agent, an ion capturing agent, a low stress component, a flame retardant, and an antioxidant Etc.
  • a hardening accelerator for example, a hardening accelerator, a coupling agent, a mold release agent, an ion capturing agent, a low stress component, a flame retardant, and an antioxidant Etc.
  • a hardening accelerator for example, a coupling agent, a mold release agent, an ion capturing agent, a low stress component, a flame retardant, and an antioxidant Etc.
  • a hardening accelerator for example, a coupling agent, a mold release agent, an ion capturing agent, a low stress component, a flame retardant, and an antioxidant Etc.
  • a hardening accelerator for example, a coupling agent, a mold release agent, an ion capturing agent, a low stress component,
  • the curing accelerator is, for example, a phosphorus atom-containing compound such as an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, an adduct of a phosphonium compound and a silane compound, etc.
  • a phosphorus atom-containing compound such as an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, an adduct of a phosphonium compound and a silane compound, etc.
  • nitrogen atom-containing compounds such as amidines and tertiary amines exemplified by undecene-7, benzyldimethylamine, 2-methylimidazole and the like, quaternary salts of amidines and
  • the curing accelerator more preferably contains triphenylphosphine.
  • the content of the curing accelerator in the sealing resin composition is preferably 0.01% by mass or more with respect to the entire sealing resin composition, from the viewpoint of enhancing the curing characteristics of the sealing resin composition. More preferably, it is 0.05 mass% or more, Preferably, it is 2.0 mass% or less, More preferably, it is 1.0 mass% or less.
  • Coupling agents include, for example, aminosilanes such as epoxysilane, mercaptosilane and phenylaminosilane, alkylsilanes, various silane compounds such as ureidosilane, vinylsilane and methacrylsilane, titanium compounds, aluminum chelates, aluminum / zirconium compounds, etc. And one or more selected from known coupling agents.
  • aminosilanes such as epoxysilane, mercaptosilane and phenylaminosilane
  • alkylsilanes various silane compounds such as ureidosilane, vinylsilane and methacrylsilane, titanium compounds, aluminum chelates, aluminum / zirconium compounds, etc.
  • silane compounds such as ureidosilane, vinylsilane and methacrylsilane
  • titanium compounds aluminum chelates, aluminum / zirconium compounds, etc.
  • it is more preferable to contain an epoxysilane or an aminosilane it is more preferable to contain
  • secondary aminosilanes include N-phenyl- ⁇ -aminopropyltrimethoxysilane.
  • the content of the coupling agent in the sealing resin composition is preferably 0.01 mass to the entire sealing resin composition, from the viewpoint of obtaining preferable flowability at the time of molding of the sealing resin composition. % Or more, more preferably 0.05% by mass or more, and preferably 2.0% by mass or less, more preferably 1.0% by mass or less.
  • the mold release agent is, for example, a natural wax such as carnauba wax; a synthetic wax such as oxidized polyethylene wax, montanic acid ester wax; a higher fatty acid such as zinc stearate and metal salts thereof; and one or more kinds selected from paraffins Can be included.
  • the content of the release agent in the sealing resin composition is preferably 0.01% by mass or more based on the entire sealing resin composition, from the viewpoint of obtaining preferable releasing characteristics of the cured product. More preferably, it is 0.05 mass% or more, Preferably, it is 2.0 mass% or less, More preferably, it is 1.0 mass% or less.
  • Ion scavengers include, for example, hydrotalcite.
  • the content of the ion scavenger in the sealing resin composition is preferably 0.03% by mass or more, based on the whole sealing resin composition, from the viewpoint of improving the reliability of the semiconductor device.
  • it is 0.05 mass% or more, Moreover, it is preferably 2.0 mass% or less, More preferably, it is 1.0 mass% or less.
  • the low stress component examples include silicone oil, silicone rubber, and carboxyl group-terminated butadiene acrylonitrile rubber.
  • the content of the low stress component in the sealing resin composition is preferably 0.01% by mass or more with respect to the entire sealing resin composition, from the viewpoint of improving the connection reliability of the semiconductor device. More preferably, it is 0.02 mass% or more, Preferably, it is 2.0 mass% or less, More preferably, it is 1.0 mass% or less.
  • the flame retardant can include, for example, one or more selected from aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, and phosphazene.
  • the antioxidant includes, for example, one or more selected from a hindered phenol compound, a hindered amine compound and a thioether compound.
  • Method for producing sealing resin composition Next, the method for producing the sealing resin composition will be described.
  • the sheet-like sealing resin composition may be obtained, for example, by vacuum laminate molding or compression molding after pulverization in the above method.
  • the degree of dispersion, the fluidity, and the like of the obtained sealing resin composition may be adjusted as appropriate.
  • the resin composition for sealing whose content of S in a hardened
  • the sealing resin composition obtained in the present embodiment contains the components (A) to (C), and the content of S in the cured product is in a specific range, so that a Cu wire can be used by using this. Even when used in combination with the above, it is possible to obtain a semiconductor device which is excellent in HTSL characteristics and excellent in laser sealability.
  • FIG. 1 is a cross-sectional view showing an example of a semiconductor device 100 according to the present embodiment.
  • the substrate 30 is, for example, a lead frame.
  • the semiconductor device 100 of the present embodiment includes the semiconductor element 20, the bonding wire 40 connected to the semiconductor element 20, and the sealing member 50, and the sealing member 50 is for the above-described sealing. It consists of a cured product of the resin composition. More specifically, the semiconductor element 20 is fixed on the base 30 through the die attach material 10, and the semiconductor device 100 is connected to the electrode pad 22 provided on the semiconductor element 20 through the bonding wire 40. And the outer lead 34 connected.
  • the bonding wire 40 can be set according to the semiconductor element 20 to be used, but for example, a Cu wire can be used.
  • the semiconductor element 20 may be fixed on the die pad 32 of the base 30 via the die attach material 10.
  • the sealing member 50 is formed of a cured product of the above-described sealing resin composition. Therefore, in the semiconductor device 100, even when the bonding wire 40 is made of a material containing Cu, excellent HTSL characteristics can be obtained, and the semiconductor device 100 is excellent in the marking property of a laser such as a YAG laser. .
  • the sealing member 50 is formed, for example, by sealing and molding the sealing resin composition using a known method such as a transfer molding method or a compression molding method.
  • a mark such as YAG laser is imprinted on the upper surface of the sealing member 50, for example.
  • This mark is made up of, for example, at least one or more of characters, numbers, or symbols consisting of straight lines or curves.
  • the mark indicates, for example, a product name, a product number, a lot number, or a maker name of a semiconductor package.
  • the above mark may be imprinted by, for example, a YVO 4 laser, a carbonic acid laser or the like.
  • Example 1 to 5 and Comparative Examples 1 to 4 Preparation of resin composition for sealing
  • a sealing resin composition was prepared as follows for each of the examples and the comparative examples. First, each component shown in Table 1 was mixed by the mixer. Next, the obtained mixture was roll-kneaded, and then cooled and pulverized to obtain a sealing resin composition which is a powder.
  • Tg (° C) Glass transition temperature: A low-pressure transfer molding machine (manufactured by Kotaki Seiki Co., Ltd., KTS-30) is diverted to insert molding, and a resin for fixing is applied under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa and a curing time of 2 minutes. The composition was injection molded to obtain a 4 mm ⁇ 4 mm ⁇ 15 mm test piece. The resulting test piece is post-cured at 175 ° C. for 4 hours, and then heated in a temperature range of 0 ° C. to 320 ° C.
  • thermomechanical analyzer TMA 100, manufactured by Seiko Instruments Inc.
  • TMA 100 thermomechanical analyzer 100, manufactured by Seiko Instruments Inc.
  • the linear expansion coefficient ( ⁇ 1) in the region below the glass transition temperature and the linear expansion coefficient ( ⁇ 2) of the rubbery equivalent region are determined.
  • the intersection point of the extension lines of ⁇ 1 and ⁇ 2 was taken as the glass transition temperature (unit: ° C.).
  • a semiconductor device was manufactured as follows for each of Examples 1 to 5 and Comparative Examples 1 to 4. First, a TEG (Test Element Group) chip (3.5 mm ⁇ 3.5 mm) having an aluminum electrode pad was mounted on a die pad portion of a lead frame whose surface was plated with Ag. Next, a wire pitch of 120 ⁇ m is formed using a bonding wire composed of an electrode pad of the TEG chip (hereinafter, also simply referred to as “electrode pad”) and an outer lead portion of the lead frame with a metallic material of Cu 99.9%. Wire bonding.
  • electrode pad a bonding wire composed of an electrode pad of the TEG chip (hereinafter, also simply referred to as “electrode pad”) and an outer lead portion of the lead frame with a metallic material of Cu 99.9%. Wire bonding.
  • the structure thus obtained is sealed and molded using a resin composition for sealing under conditions of a mold temperature of 175 ° C., an injection pressure of 10.0 MPa and a curing time of 2 minutes using a low pressure transfer molding machine, A semiconductor package was produced. Thereafter, the obtained semiconductor package was post-cured at 175 ° C. for 4 hours to obtain a semiconductor device.
  • the obtained semiconductor device was subjected to HTSL (high temperature storage test) according to the following method.
  • Each semiconductor device was stored under conditions of a temperature of 200 ° C. for 1500 hours.
  • the electrical resistance value between the wire and the electrode pad was measured for the semiconductor device after storage.
  • the average value of the respective semiconductor devices showed an electric resistance value of less than 110% of the average value of the initial resistance value as OK, and the one showing an electric resistance value of 110% or more as NG.

Abstract

This resin composition for sealing contains an epoxy resin (component (A)), an inorganic filler (component (B)) and a black coloring agent (component (C)); and the content of S in a cured product of this resin composition for sealing is 10 ppm or less relative to the whole of the cured product.

Description

封止用樹脂組成物および半導体装置Resin composition for sealing and semiconductor device
 本発明は、封止用樹脂組成物および半導体装置に関する。 The present invention relates to a sealing resin composition and a semiconductor device.
 半導体パッケージの電気特性を向上させるための技術として、特許文献1(特開2007-161990号公報)に記載ものがある。同文献には、エポキシ樹脂、硬化剤およびあらかじめ樹脂と電気比抵抗が特定の範囲にある着色剤とを混合した着色剤樹脂混合物を含有する封止用エポキシ樹脂成形材料について記載されている。同文献によれば、かかる封止用エポキシ樹脂成形材料は、流動性、硬化性及び着色性が良好であり、パッド間やワイヤー間距離が狭い電子部品装置に封止用材料として用いた場合でも電気特性に優れる電子部品装置が得られるとされている。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-161990) describes a technique for improving the electrical characteristics of a semiconductor package. The same document describes a sealing epoxy resin molding material containing an epoxy resin, a curing agent, and a colorant resin mixture prepared by mixing a resin and a colorant having a specific electric resistance in a specific range in advance. According to this document, such an epoxy resin molding material for sealing has good flowability, curability and colorability, and even when used as a sealing material in an electronic component device in which the distance between pads or between wires is narrow. It is supposed that an electronic component device having excellent electrical characteristics can be obtained.
特開2007-161990号公報Japanese Patent Application Publication No. 2007-161990
 ところで、半導体パッケージにおいて、チップとリードフレームを導通させるために従来はAuワイヤを用いてきたが、低コスト化のために近年、Cuワイヤが多く採用されてきている。
 Cuワイヤは、Auワイヤと比して、安価であるものの化学的安定性が劣っており、封止材に含まれるハロゲンイオン、pH、硫黄系不純物により劣化することが考えられている。殊に、半導体パッケージの適用範囲が拡がり、高温環境下での使用も増えてきていることから、高温動作時での硫黄系不純物による高温保管特性(High Temperature Storage Life:HTSL)の悪化がCuワイヤを用いる際の課題として挙げられる。
 そこで、本発明者らが検討したところ、従来の封止材を用いた場合、Cuワイヤを含む半導体装置に適用される場合にも、得られる半導体装置のHTSL特性に優れるとともに、レーザー捺印性に優れる半導体装置を得るという点で、なお改善の余地があった。
In the semiconductor package, conventionally, Au wire has been used to electrically connect the chip and the lead frame, but in recent years, Cu wire has been widely adopted for cost reduction.
The Cu wire is less expensive than the Au wire, but is inferior in chemical stability, and is considered to be deteriorated by halogen ions, pH and sulfur impurities contained in the sealing material. In particular, as the range of application of semiconductor packages is expanding and their use in high temperature environments is also increasing, deterioration of High Temperature Storage Life (HTSL) due to sulfur-based impurities at high temperature operation is caused by Cu wire. As a problem when using
Then, when the present inventors examined, when using the conventional sealing material, while it is excellent in the HTSL characteristic of the semiconductor device obtained also when it applies to the semiconductor device containing Cu wire, it is excellent in laser seal property. There is still room for improvement in terms of obtaining an excellent semiconductor device.
 本発明によれば、
 以下の成分(A)~(C):
 (A)エポキシ樹脂、
 (B)無機充填材、および
 (C)黒色系着色剤
 を含む、封止用樹脂組成物であって、
 以下の作製方法で得られる試験片を以下の方法で測定することにより得られる、当該封止用樹脂組成物の硬化物中のSの含有量が、前記硬化物全体に対して10ppm以下である、封止用樹脂組成物が提供される。
 (試料作製方法)
 トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間2分で、直径50mm、厚さ3mmの成形品を成形し、175℃、4時間で後硬化して円板状の試料を得る。
 (Sの含有量の測定方法)
 波長分散型蛍光X線分析装置(島津製作所社製、XRF-1800)を用いて、管電圧40kV、管電流95mAの条件にて前記試料中の硫黄濃度を測定する。
According to the invention
The following components (A) to (C):
(A) Epoxy resin,
A sealing resin composition comprising (B) an inorganic filler, and (C) a black colorant,
The content of S in the cured product of the sealing resin composition obtained by measuring a test piece obtained by the following production method by the following method is 10 ppm or less based on the entire cured product And a sealing resin composition.
(Sample preparation method)
Using a transfer molding machine, a molded article with a diameter of 50 mm and a thickness of 3 mm is molded at a mold temperature of 175 ° C, an injection pressure of 7.4MPa, and a curing time of 2 minutes, and post cured at 175 ° C for 4 hours The sample is obtained in the form of
(Method of measuring the content of S)
The sulfur concentration in the sample is measured under the conditions of a tube voltage of 40 kV and a tube current of 95 mA using a wavelength dispersive fluorescent X-ray analyzer (XRF-1800 manufactured by Shimadzu Corporation).
 また、本発明によれば、前記本発明における封止用樹脂組成物で半導体素子を封止してなる、半導体装置が提供される。 Moreover, according to this invention, the semiconductor device formed by sealing a semiconductor element with the resin composition for sealing in the said invention is provided.
 本発明によれば、Cuワイヤを含む半導体装置に適用される場合にも、得られる半導体装置のHTSL特性に優れるとともに、レーザー捺印性に優れる半導体装置を得ることができる。 According to the present invention, even when applied to a semiconductor device containing a Cu wire, it is possible to obtain a semiconductor device which is excellent in HTSL characteristics of the obtained semiconductor device and excellent in laser sealability.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The objects described above, and other objects, features and advantages will become more apparent from the preferred embodiments described below and the following drawings associated therewith.
本実施形態における半導体装置の構成を示す断面図である。It is a sectional view showing the composition of the semiconductor device in this embodiment.
 以下、実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは必ずしも一致していない。また、数値範囲の「A~B」は断りがなければ、「A以上B以下」を表す。 Embodiments will be described below with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and the description thereof is appropriately omitted. Also, the drawings are schematic and do not necessarily match the actual dimensional ratio. Further, “A to B” in the numerical range represents “A or more and B or less” unless otherwise noted.
 本実施形態において、封止用樹脂組成物は、以下の成分(A)~(C)を含む。
(A)エポキシ樹脂
(B)無機充填材、および
(C)黒色系着色剤
 そして、以下の作製方法で得られる試験片を以下の方法で測定することにより得られる、封止用樹脂組成物の硬化物中のS(硫黄)の含有量が、硬化物全体に対して10ppm以下である。
(試料作製方法)
 トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間2分で、直径50mm、厚さ3mmの成形品を成形し、175℃、4時間で後硬化して円板状の試料を得る。
(Sの含有量の測定方法)
 波長分散型蛍光X線分析装置(島津製作所社製、XRF-1800)を用いて、管電圧40kV、管電流95mAの条件にて上記試料中の硫黄濃度を測定する。
In the present embodiment, the sealing resin composition contains the following components (A) to (C).
(A) Epoxy resin (B) inorganic filler, and (C) black-based coloring agent And, the resin composition for sealing obtained by measuring the test piece obtained by the following manufacturing method by the following method The content of S (sulfur) in the cured product is 10 ppm or less based on the entire cured product.
(Sample preparation method)
Using a transfer molding machine, a molded article with a diameter of 50 mm and a thickness of 3 mm is molded at a mold temperature of 175 ° C, an injection pressure of 7.4MPa, and a curing time of 2 minutes, and post cured at 175 ° C for 4 hours The sample is obtained in the form of
(Method of measuring the content of S)
The sulfur concentration in the above sample is measured under the conditions of a tube voltage of 40 kV and a tube current of 95 mA using a wavelength dispersive fluorescent X-ray analyzer (XRF-1800 manufactured by Shimadzu Corporation).
 本実施形態においては、封止用樹脂組成物中に成分(A)~(C)を組み合わせて用いるとともに、封止用樹脂組成物の硬化物中のSの含有量を上述した特定の範囲とする。かかる封止用樹脂組成物を用いることにより、Cuワイヤを含む半導体装置に適用される場合にも、HTSL特性およびレーザー捺印性に優れる半導体装置を得ることができる。 In the present embodiment, the components (A) to (C) are used in combination in the sealing resin composition, and the content of S in the cured product of the sealing resin composition is the above-mentioned specific range and Do. By using such a sealing resin composition, even when applied to a semiconductor device containing a Cu wire, a semiconductor device excellent in HTSL characteristics and laser sealability can be obtained.
 以下、本実施形態における封止用樹脂組成物および半導体装置についてさらに詳細に説明する。 Hereinafter, the sealing resin composition and the semiconductor device in the present embodiment will be described in more detail.
 封止用樹脂組成物は、たとえば粒子状またはシート状である。
 粒子状の封止用樹脂組成物として、具体的には、タブレット状または粉粒体のものが挙げられる。このうち、封止用樹脂組成物がタブレット状である場合、たとえば、トランスファー成形法を用いて封止用樹脂組成物を成形することができる。また、封止用樹脂組成物が粉粒体である場合には、たとえば、圧縮成形法を用いて封止用樹脂組成物を成形することができる。ここで、封止用樹脂組成物が粉粒体であるとは、粉末状または顆粒状のいずれかである場合を指す。
 基材は、たとえば、インターポーザ等の配線基板、またはリードフレームである。また、半導体素子は、ワイヤボンディングまたはフリップチップ接続等により、基材に電気的に接続される。
The sealing resin composition is, for example, in the form of particles or a sheet.
Specifically as a particulate-form resin composition for sealing, the thing of tablet-form or a granular material is mentioned. Among these, when the resin composition for sealing is tablet-like, for example, the resin composition for sealing can be shape | molded using a transfer molding method. Moreover, when the resin composition for sealing is a granular material, for example, the resin composition for sealing can be shape | molded using a compression molding method. Here, that the resin composition for sealing is a granular material refers to the case where it is either powdery or granular.
The substrate is, for example, a wiring board such as an interposer or a lead frame. In addition, the semiconductor element is electrically connected to the base material by wire bonding or flip chip connection.
 封止用樹脂組成物を用いた封止成形により半導体素子を封止して得られる半導体装置としては、限定されないが、たとえば、QFP(Quad Flat Package)、SOP(Small Outline Package)、BGA(Ball Grid Array)、CSP(Chip Size Package)、QFN(Quad Flat Non-leaded Package)、SON(Small Outline Non-leaded Package)、LF-BGA(Lead Flame BGA)等が挙げられる。
 本実施形態において、封止用樹脂組成物は、近年これらのパッケージの成形に多く適用されるMAP(Mold Array Package)成形により形成される構造体にも適用できる。この場合、基材上に搭載される複数の半導体素子を、封止用樹脂組成物を用いて一括して封止することによりパッケージが得られる。
The semiconductor device obtained by sealing the semiconductor element by sealing using the sealing resin composition is not limited, for example, QFP (Quad Flat Package), SOP (Small Outline Package), BGA (Ball (Ball) Grid Array), CSP (Chip Size Package), QFN (Quad Flat Non-leaded Package), SON (Small Outline Non-leaded Package), LF-BGA (Lead Flame BGA), and the like.
In the present embodiment, the sealing resin composition is also applicable to a structure formed by MAP (Mold Array Package) molding, which is frequently applied to molding of these packages in recent years. In this case, a package can be obtained by collectively sealing a plurality of semiconductor elements mounted on a base material using a sealing resin composition.
 また、上記半導体素子としては、たとえば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子等が挙げられるが、これらに限定されない。なお、本実施形態において、封止用樹脂組成物の封止対象となる半導体素子は、受光素子および発光素子(発光ダイオード等)等の光半導体素子を除く、いわゆる、光の入出を伴わない素子をいう。 In addition, examples of the semiconductor element include, but are not limited to, integrated circuits, large scale integrated circuits, transistors, thyristors, diodes, solid-state imaging elements, and the like. In the present embodiment, the semiconductor element to be sealed with the sealing resin composition is a so-called element that does not involve light entering and leaving, except for the light semiconductor element such as the light receiving element and the light emitting element (light emitting diode etc.). Say
 本実施形態において、封止用樹脂組成物の硬化物中のSの含有量は、Cuワイヤとともに用いられる場合にもHTSL特性およびレーザー捺印性に優れる半導体装置を得る観点から、上記硬化物全体に対して10ppm以下であり、好ましくは9ppm以下、より好ましくは8.5ppm以下、さらに好ましくは7.5ppmである。
 上記硬化物中のSの含有量の下限値は0ppm以上であるが、たとえば検出限界値以上であってもよく、具体的には1ppm以上であってもよい。
In the present embodiment, the content of S in the cured product of the sealing resin composition is the entire cured product from the viewpoint of obtaining a semiconductor device having excellent HTSL characteristics and laser sealability even when used with a Cu wire. In contrast, it is 10 ppm or less, preferably 9 ppm or less, more preferably 8.5 ppm or less, and still more preferably 7.5 ppm.
The lower limit value of the content of S in the cured product is 0 ppm or more, but may be, for example, the detection limit value or more, and specifically 1 ppm or more.
 本実施形態において、封止用樹脂組成物の硬化物のガラス転移温度(Tg)は、硬化物の耐熱性を向上させる観点から、好ましくは110℃以上であり、より好ましくは115℃以上、さらに好ましくは125℃以上、さらにまた好ましくは135℃以上である。
 また、硬化物のガラス転移温度の上限に制限はないが、硬化物の靭性を向上させる観点から、好ましくは230℃以下であり、より好ましくは200℃以下、さらに好ましくは180℃以下である。
 ここで、硬化物のガラス転移温度は、熱機械分析(Thermal Mechanical Analysis:TMA)装置(セイコーインスツル社製、TMA100)を用いて測定温度範囲0℃~320℃、昇温速度5℃/分の条件で測定される。ガラス転移温度のさらに具体的な測定方法は、実施例の項で後述する。
In the present embodiment, the glass transition temperature (Tg) of the cured product of the sealing resin composition is preferably 110 ° C. or higher, more preferably 115 ° C. or higher, from the viewpoint of improving the heat resistance of the cured product. Preferably it is 125 ° C. or more, more preferably 135 ° C. or more.
The upper limit of the glass transition temperature of the cured product is not limited, but from the viewpoint of improving the toughness of the cured product, it is preferably 230 ° C. or less, more preferably 200 ° C. or less, and still more preferably 180 ° C. or less.
Here, the glass transition temperature of the cured product is a measurement temperature range of 0 ° C. to 320 ° C. using a thermal mechanical analysis (TMA) device (manufactured by Seiko Instruments Inc., TMA 100), a temperature rising rate of 5 ° C./min. Measured under the conditions of A more specific method of measuring the glass transition temperature will be described later in the section of Examples.
 本実施形態において、封止用樹脂組成物は、上記成分(A)~(C)を含む。以下、封止用樹脂組成物の構成成分について説明する。 In the present embodiment, the sealing resin composition contains the components (A) to (C). Hereinafter, constituent components of the sealing resin composition will be described.
(成分(A):エポキシ樹脂)
 本実施形態において、成分(A)のエポキシ樹脂としては、たとえば、ビフェニル型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格およびビフェニレン骨格からなる群から選択される1または2の骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格およびビフェニレン骨格からなる群から選択される1または2の骨格を有するナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
 半導体装置のHTSL特性およびレーザー捺印性のバランスを向上させる観点から、エポキシ樹脂は、好ましくはフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂およびビフェニル型エポキシ樹脂からなる群から選択される1種または2種以上である。
(Component (A): epoxy resin)
In this embodiment, as the epoxy resin of the component (A), for example, biphenyl type epoxy resin; bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethyl bisphenol F type epoxy resin; stilbene type Epoxy resin; Novolak type epoxy resin such as phenol novolak type epoxy resin, cresol novolac type epoxy resin; Multifunctional epoxy resin such as triphenolmethane type epoxy resin, alkyl modified triphenolmethane type epoxy resin; consisting of phenylene skeleton and biphenylene skeleton A phenol aralkyl type epoxy resin having one or two skeletons selected from the group, one or two skeletons selected from the group consisting of a phenylene skeleton and a biphenylene skeleton Phenol aralkyl type epoxy resin such as naphthal aralkyl type epoxy resin; naphthol type epoxy resin such as epoxy resin obtained by glycidyl etherifying dihydroxy naphthalene type epoxy resin, dimer of dihydroxy naphthalene; triglycidyl isocyanurate, monoallyl di epoxy resin Triazine nucleus-containing epoxy resins such as glycidyl isocyanurate; bridged cyclic hydrocarbon compounds such as dicyclopentadiene-modified phenolic epoxy resins; and modified phenolic epoxy resins. These can be used alone or in combination of two or more. You may use together.
From the viewpoint of improving the balance between HTSL properties and laser sealability of the semiconductor device, the epoxy resin is preferably selected from the group consisting of phenylene skeleton-containing phenol aralkyl type epoxy resin, o-cresol novolac type epoxy resin and biphenyl type epoxy resin. One or two or more.
 封止用樹脂組成物中の成分(A)の含有量は、成形時に好適な流動性を得て充填性や成形性の向上を図る観点から、封止用樹脂組成物全体を100質量%としたとき、好ましくは2質量%以上であり、より好ましくは3質量%以上、さらに好ましくは4質量%以上である。
 また、封止用樹脂組成物を用いて形成される封止材を備える半導体装置のHTSL特性を向上させる観点から、封止用樹脂組成物中の成分(A)の含有量は、封止用樹脂組成物全体を100質量%としたとき、好ましくは40質量%以下であり、より好ましくは30質量%以下、さらに好ましくは15質量%以下、さらにより好ましくは10質量%以下である。
The content of the component (A) in the resin composition for sealing is 100% by mass of the entire resin composition for sealing from the viewpoint of obtaining suitable fluidity at the time of molding to improve the filling property and the moldability. When it is carried out, it is preferably 2% by mass or more, more preferably 3% by mass or more, and still more preferably 4% by mass or more.
In addition, the content of the component (A) in the resin composition for sealing is for sealing from the viewpoint of improving the HTSL characteristics of the semiconductor device provided with the sealing material formed using the resin composition for sealing. The total amount of the resin composition is 100% by mass, preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 15% by mass or less, and still more preferably 10% by mass or less.
(成分(B):無機充填材)
 本実施形態において、成分(B)の無機充填材としては、一般的に半導体封止用樹脂組成物に使用されているものを用いることができる。無機充填材の具体例として、溶融シリカ、結晶シリカ等のシリカ;アルミナ;タルク;酸化チタン;窒化珪素;窒化アルミニウムが挙げられる。これらの無機充填材は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、汎用性に優れている観点から、シリカを用いることが好ましく、溶融シリカを用いることがより好ましい。また、シリカの形状は好ましくは球状である。
(Component (B): inorganic filler)
In the present embodiment, as the inorganic filler of the component (B), one generally used in a resin composition for semiconductor encapsulation can be used. Specific examples of the inorganic filler include silica such as fused silica and crystalline silica; alumina; talc; titanium oxide; silicon nitride; and aluminum nitride. One of these inorganic fillers may be used alone, or two or more thereof may be used in combination.
Among these, in view of excellent versatility, it is preferable to use silica, and it is more preferable to use fused silica. Also, the shape of the silica is preferably spherical.
 封止用樹脂組成物中の成分(B)の含有量は、封止用樹脂組成物を用いて形成される封止材の低吸湿性および低熱膨張性を向上させ、得られる半導体装置の耐湿信頼性や耐リフロー性をより効果的に向上させる観点から、封止用樹脂組成物全体を100質量%としたとき、好ましくは50質量%以上であり、より好ましくは70質量%以上、さらに好ましくは80質量%以上である。
 また、封止用樹脂組成物の成形時における流動性や充填性をより効果的に向上させる観点から、封止用樹脂組成物中の成分(B)の含有量は、封止用樹脂組成物全体を100質量%としたとき、好ましくは95質量%以下であり、より好ましくは93質量%以下、さらに好ましくは90質量%以下である。
The content of the component (B) in the sealing resin composition improves the low hygroscopicity and the low thermal expansion of the sealing material formed using the sealing resin composition, and the moisture resistance of the obtained semiconductor device From the viewpoint of more effectively improving the reliability and the reflow resistance, the total amount of the sealing resin composition is 100% by mass, preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably Is 80 mass% or more.
In addition, the content of the component (B) in the resin composition for sealing is more preferably the resin composition for sealing from the viewpoint of more effectively improving the flowability and the filling property at the time of molding of the resin composition for sealing. When the whole is 100 mass%, it is preferably 95 mass% or less, more preferably 93 mass% or less, and still more preferably 90 mass% or less.
(成分(C):黒色系着色剤)
 成分(C)の黒色系着色剤の具体例として、アセチレンブラック、黒色酸化チタン(チタンブラック)等が挙げられる。
 ここで、黒色酸化チタンは、Tin(2n-1)(nは正の整数)として存在する。本実施形態において用いられる黒色酸化チタンTin(2n-1)としては、nが4以上6以下であるものを用いることが好ましい。nを4以上とすることにより、封止用樹脂組成物中での黒色酸化チタンの分散性を向上させることができる。一方、nを6以下とすることにより、YAGレーザー等のレーザーの捺印性を向上させることができる。ここでは、黒色酸化チタンとしてTi47、Ti59、およびTi611のうちの少なくとも一つを含むことが好ましい。より好ましくは、黒色酸化チタンはTi47である。
(Component (C): black colorant)
Acetylene black, black titanium oxide (titanium black), etc. are mentioned as a specific example of the black-type coloring agent of a component (C).
Here, black titanium oxide, Ti n O (2n-1 ) (n is a positive integer) are present as. Examples of black titanium oxide Ti n O used in the present embodiment (2n-1), it is preferable to use a n is 4 to 6. By setting n to 4 or more, the dispersibility of black titanium oxide in the sealing resin composition can be improved. On the other hand, by setting n to 6 or less, the marking property of a laser such as a YAG laser can be improved. Here, it is preferable to include at least one of Ti 4 O 7 , Ti 5 O 9 , and Ti 6 O 11 as black titanium oxide. More preferably, the black titanium oxide is Ti 4 O 7 .
 成分(C)は、Cuワイヤとともに用いられる場合にも、HTSL特性に優れる半導体装置を得る観点から、好ましくはアセチレンブラックを含み、より好ましくはアセチレンブラックからなる。
 同様の観点から、封止用樹脂組成物は、成分(C)中に不可避的に含まれる原料由来の硫黄の含有量を低減させてCuワイヤを含む半導体装置のHTSL特性をさらに高める観点から、好ましくはファーネスブラックを実質的に含まず、より好ましくはアセチレンブラックを含むとともにファーネスブラックを実質的に含まない。
 ここで、封止用樹脂組成物がファーネスブラックを実質的に含まないとは、封止用樹脂組成物に意図的にファーネスブラックが配合されないことをいう。
Component (C) preferably contains acetylene black, and more preferably consists of acetylene black, from the viewpoint of obtaining a semiconductor device excellent in HTSL characteristics even when used together with a Cu wire.
From the same viewpoint, from the viewpoint of further improving the HTSL characteristics of the semiconductor device including the Cu wire, by reducing the content of sulfur derived from the raw material unavoidably contained in the component (C), the sealing resin composition, Preferably, it is substantially free of furnace black, more preferably it contains acetylene black and is substantially free of furnace black.
Here, that the resin composition for sealing does not contain furnace black substantially means that furnace black is not intentionally blended with the resin composition for sealing.
 封止用樹脂組成物中のアセチレンブラックの含有量は、好ましい封止材の外観を得る観点から、封止用樹脂組成物全体に対して好ましくは0.10質量%以上であり、より好ましくは0.20質量%以上である。また、半導体装置の絶縁信頼性を高める観点から、封止用樹脂組成物中のアセチレンブラックの含有量は、封止用樹脂組成物全体に対して好ましくは1.0質量%以下であり、より好ましくは0.8質量%以下、さらに好ましくは0.6質量%以下である。 The content of acetylene black in the resin composition for sealing is preferably 0.10% by mass or more with respect to the entire resin composition for sealing, from the viewpoint of obtaining a preferable appearance of the sealing material, and more preferably It is 0.20 mass% or more. Further, from the viewpoint of enhancing the insulation reliability of the semiconductor device, the content of acetylene black in the sealing resin composition is preferably 1.0 mass% or less with respect to the entire sealing resin composition, Preferably it is 0.8 mass% or less, More preferably, it is 0.6 mass% or less.
 封止用樹脂組成物中の成分(C)の含有量は、好ましい封止材の外観を得る観点から、封止用樹脂組成物全体に対して好ましくは0.10質量%以上であり、より好ましくは0.20質量%以上である。また、半導体装置の絶縁信頼性を高める観点から、封止用樹脂組成物中の成分(C)の含有量は、封止用樹脂組成物全体に対して好ましくは1.0質量%以下であり、より好ましくは0.8質量%以下、さらに好ましくは0.6質量%以下である。 The content of the component (C) in the sealing resin composition is preferably 0.10 mass% or more with respect to the entire sealing resin composition from the viewpoint of obtaining a preferable appearance of the sealing material. Preferably it is 0.20 mass% or more. Further, from the viewpoint of enhancing the insulation reliability of the semiconductor device, the content of the component (C) in the sealing resin composition is preferably 1.0% by mass or less with respect to the entire sealing resin composition. More preferably, it is 0.8 mass% or less, More preferably, it is 0.6 mass% or less.
 また、アセチレンブラックの2次粒子の平均粒径d50は、レーザー捺印性を向上させる観点から、好ましくは1μm以上であり、より好ましくは3μm以上である。
 また、レーザー捺印性を向上させる観点から、アセチレンブラックの2次粒子の平均粒径d50は、好ましくは20μm以下であり、より好ましくは10μm以下である。
 ここで、アセチレンブラックの2次粒子の平均粒径d50は、レーザー回折法により測定される。
The average particle diameter d50 of secondary particles of acetylene black is preferably 1 μm or more, more preferably 3 μm or more, from the viewpoint of improving the laser sealability.
Also, from the viewpoint of improving the laser sealability, the average particle diameter d50 of secondary particles of acetylene black is preferably 20 μm or less, more preferably 10 μm or less.
Here, the average particle diameter d50 of secondary particles of acetylene black is measured by a laser diffraction method.
 本実施形態において、封止用樹脂組成物は、エポキシ樹脂および無機充填材以外の成分を含んでもよい。
 たとえば、封止用樹脂組成物は、硬化剤をさらに含んでもよい。
In the present embodiment, the sealing resin composition may contain components other than the epoxy resin and the inorganic filler.
For example, the sealing resin composition may further contain a curing agent.
(硬化剤)
 硬化剤は、たとえば重付加型の硬化剤、触媒型の硬化剤、および縮合型の硬化剤の3タイプに大別することができ、これらの1種または2種以上を用いることができる。
(Hardening agent)
The curing agent can be roughly classified into, for example, three types of a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent, and one or more of these can be used.
 重付加型の硬化剤としては、たとえばジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、ポリビニルフェノールなどのフェノール樹脂硬化剤;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。 Examples of the polyaddition curing agent include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), metaxylylenediamine (MXDA), diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), Polyamine compounds containing dicyandiamide (DICY), organic acid dihydrazide, etc. in addition to aromatic polyamines such as diaminodiphenyl sulfone (DDS); Alicyclic acids such as hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA) Anhydrides such as anhydrides, aromatic anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA), etc .; novolac type phenolic resin, polyvinylidene Phenolic resin curing agent such as phenol; polysulfide, thioester, polymercaptan compounds such as thioethers; isocyanate prepolymer, isocyanate compounds such as blocked isocyanate; and organic acids such as carboxylic acid-containing polyester resins.
 触媒型の硬化剤としては、たとえばベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)などのイミダゾール化合物;BF3錯体などのルイス酸などが挙げられる。 As a curing agent of the catalyst type, for example, tertiary amine compounds such as benzyldimethylamine (BDMA), 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4- And imidazole compounds such as methylimidazole (EMI 24); and Lewis acids such as BF3 complex.
 縮合型の硬化剤としては、たとえばフェノール樹脂;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。 Examples of condensation type curing agents include phenol resins; urea resins such as methylol group-containing urea resins; and melamine resins such as methylol group-containing melamine resins.
 これらの中でも、耐燃性、耐湿性、電気特性、硬化性、および保存安定性等についてのバランスを向上させる観点から、フェノール樹脂硬化剤が好ましい。フェノール樹脂硬化剤としては、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量、分子構造は限定されない。 Among these, from the viewpoint of improving the balance of the flame resistance, the moisture resistance, the electrical characteristics, the curability, the storage stability and the like, a phenol resin curing agent is preferable. As a phenol resin hardening | curing agent, the monomer which has 2 or more of phenolic hydroxyl groups in 1 molecule, an oligomer, and a polymer general can be used, The molecular weight and molecular structure are not limited.
 硬化剤に用いられるフェノール樹脂硬化剤としては、たとえばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック等のノボラック型フェノール樹脂;ポリビニルフェノール;フェノール・ヒドロキシベンズアルデヒド樹脂、トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。これらの中でも、Cuワイヤを含む半導体装置に適用される場合に、HTSL特性およびレーザー捺印性に優れる半導体装置を得る観点から、ビフェニルアラルキル型フェノール樹脂、ノボラック型フェノール樹脂およびフェニレン骨格含有フェノールアラルキル樹脂からなる群から選択される1種または2種以上を用いることがより好ましい。 As a phenol resin curing agent used for the curing agent, for example, novolac type phenol resin such as phenol novolac resin, cresol novolac resin, bisphenol novolac etc .; polyvinyl phenol; polyfunctional type such as phenol / hydroxy benzaldehyde resin, triphenolmethane type phenol resin Phenolic resin; Modified phenolic resin such as terpene modified phenolic resin, dicyclopentadiene modified phenolic resin, etc .; Phenolic aralkyl resin having phenylene skeleton and / or biphenylene skeleton, aralkyl type phenolic resin such as naphthol aralkyl resin having phenylene and / or biphenylene skeleton And bisphenol compounds such as bisphenol A, bisphenol F, etc. are mentioned, and two of them may be used alone. It may be used in combination or more. Among them, when applied to a semiconductor device containing a Cu wire, from the viewpoint of obtaining a semiconductor device excellent in HTSL characteristics and laser sealability, a biphenylaralkyl type phenol resin, a novolac type phenol resin and a phenylene skeleton-containing phenol aralkyl resin It is more preferable to use one or more selected from the group consisting of
 また、本実施形態において、成分(A)とフェノール樹脂硬化剤との組み合わせとして、好ましくは、ビフェニルアラルキル型エポキシ樹脂/ビフェニルアラルキル型フェノール樹脂の組み合わせ、オルソクレゾールノボラック型エポキシ樹脂/ノボラック型フェノール樹脂の組み合わせ、および、ビフェニル型エポキシ樹脂/フェノールアラルキル樹脂の組み合わせが挙げられる。 Further, in the present embodiment, as the combination of the component (A) and the phenol resin curing agent, preferably a combination of biphenylaralkyl type epoxy resin / biphenylaralkyl type phenol resin, ortho cresol novolac type epoxy resin / novolac type phenol resin Combinations and combinations of biphenyl type epoxy resin / phenol aralkyl resin are mentioned.
 本実施形態において、封止用樹脂組成物中の硬化剤の含有量は、成形時において、優れた流動性を実現し、充填性や成形性の向上を図る観点から、封止用樹脂組成物全体に対して好ましくは1質量%以上であり、より好ましくは2質量%以上、さらに好ましくは3質量%以上である。
 また、封止用樹脂組成物の硬化物を封止材とする半導体装置について、耐湿信頼性や耐リフロー性を向上させる観点から、封止用樹脂組成物中の硬化剤の含有量は、封止用樹脂組成物全体に対して好ましくは25質量%以下であり、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。
In the present embodiment, the content of the curing agent in the resin composition for sealing realizes excellent flowability at the time of molding, and from the viewpoint of improving the filling property and the moldability, the resin composition for sealing Preferably it is 1 mass% or more with respect to the whole, More preferably, it is 2 mass% or more, More preferably, it is 3 mass% or more.
In addition, in the semiconductor device using the cured product of the sealing resin composition as the sealing material, the content of the curing agent in the sealing resin composition is the sealing agent from the viewpoint of improving the moisture resistance and the reflow resistance. Preferably it is 25 mass% or less with respect to the whole resin composition for stop, More preferably, it is 15 mass% or less, More preferably, it is 10 mass% or less.
 また、封止用樹脂組成物には、上述した成分以外の成分を含んでもよく、たとえば硬化促進剤、カップリング剤、離型剤、イオン捕捉剤、低応力成分、難燃剤、および酸化防止剤等の各種添加剤のうち1種以上を適宜配合することができる。 Moreover, the resin composition for sealing may contain components other than the components mentioned above, for example, a hardening accelerator, a coupling agent, a mold release agent, an ion capturing agent, a low stress component, a flame retardant, and an antioxidant Etc. One or more of various additives such as can be appropriately blended.
 硬化促進剤は、たとえば、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン、2-メチルイミダゾール等が例示されるアミジンや3級アミン、上記アミジンやアミンの4級塩等の窒素原子含有化合物から選択される1種類または2種類以上を含むことができる。これらの中でも、硬化性を向上させる観点からはリン原子含有化合物を含むことがより好ましい。また、成形性と硬化性のバランスを向上させる観点からは、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等の潜伏性を有するものを含むことがより好ましい。同様の観点から、硬化促進剤は、より好ましくはトリフェニルホスフィンを含む。
 封止用樹脂組成物中の硬化促進剤の含有量は、封止用樹脂組成物の硬化特性を高める観点から、封止用樹脂組成物全体に対して、好ましくは0.01質量%以上であり、より好ましくは0.05質量%以上であり、また、好ましくは2.0質量%以下であり、より好ましくは1.0質量%以下である。
The curing accelerator is, for example, a phosphorus atom-containing compound such as an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, an adduct of a phosphonium compound and a silane compound, etc. [5. 4.0] One type selected from nitrogen atom-containing compounds such as amidines and tertiary amines exemplified by undecene-7, benzyldimethylamine, 2-methylimidazole and the like, quaternary salts of amidines and amines described above Or two or more types can be included. Among these, from the viewpoint of improving the curability, it is more preferable to contain a phosphorus atom-containing compound. In addition, from the viewpoint of improving the balance between moldability and curability, the compound has latency such as tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, adducts of phosphonium compounds and silane compounds, etc. It is more preferable to include ones. From the same point of view, the curing accelerator more preferably contains triphenylphosphine.
The content of the curing accelerator in the sealing resin composition is preferably 0.01% by mass or more with respect to the entire sealing resin composition, from the viewpoint of enhancing the curing characteristics of the sealing resin composition. More preferably, it is 0.05 mass% or more, Preferably, it is 2.0 mass% or less, More preferably, it is 1.0 mass% or less.
 カップリング剤は、たとえば、エポキシシラン、メルカプトシラン、フェニルアミノシラン等のアミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、メタクリルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤から選択される1種類または2種類以上を含むことができる。これらの中でも、本発明の効果をより効果的に発現するものとして、エポキシシランまたはアミノシランを含むことがより好ましく、2級アミノシランを含むことが流動性等の観点からさらに好ましい。2級アミノシランの具体例として、N-フェニル-γ-アミノプロピルトリメトキシシランが挙げられる。
 封止用樹脂組成物中のカップリング剤の含有量は、封止用樹脂組成物の成形時に好ましい流動性を得る観点から、封止用樹脂組成物全体に対して、好ましくは0.01質量%以上であり、より好ましくは0.05質量%以上であり、また、好ましくは2.0質量%以下であり、より好ましくは1.0質量%以下である。
Coupling agents include, for example, aminosilanes such as epoxysilane, mercaptosilane and phenylaminosilane, alkylsilanes, various silane compounds such as ureidosilane, vinylsilane and methacrylsilane, titanium compounds, aluminum chelates, aluminum / zirconium compounds, etc. And one or more selected from known coupling agents. Among these, as those which more effectively express the effects of the present invention, it is more preferable to contain an epoxysilane or an aminosilane, and it is more preferable to contain a secondary aminosilane from the viewpoint of fluidity and the like. Specific examples of secondary aminosilanes include N-phenyl-γ-aminopropyltrimethoxysilane.
The content of the coupling agent in the sealing resin composition is preferably 0.01 mass to the entire sealing resin composition, from the viewpoint of obtaining preferable flowability at the time of molding of the sealing resin composition. % Or more, more preferably 0.05% by mass or more, and preferably 2.0% by mass or less, more preferably 1.0% by mass or less.
 離型剤は、たとえばカルナバワックス等の天然ワックス;酸化ポリエチレンワックス、モンタン酸エステルワックス等の合成ワックス;ステアリン酸亜鉛等の高級脂肪酸およびその金属塩類;ならびにパラフィンから選択される1種類または2種類以上を含むことができる。
 封止用樹脂組成物中の離型剤の含有量は、硬化物の好ましい離型特性を得る観点から、封止用樹脂組成物全体に対して、好ましくは0.01質量%以上であり、より好ましくは0.05質量%以上であり、また、好ましくは2.0質量%以下であり、より好ましくは1.0質量%以下である。
The mold release agent is, for example, a natural wax such as carnauba wax; a synthetic wax such as oxidized polyethylene wax, montanic acid ester wax; a higher fatty acid such as zinc stearate and metal salts thereof; and one or more kinds selected from paraffins Can be included.
The content of the release agent in the sealing resin composition is preferably 0.01% by mass or more based on the entire sealing resin composition, from the viewpoint of obtaining preferable releasing characteristics of the cured product. More preferably, it is 0.05 mass% or more, Preferably, it is 2.0 mass% or less, More preferably, it is 1.0 mass% or less.
 イオン捕捉剤は、たとえば、ハイドロタルサイトを含む。
 封止用樹脂組成物中のイオン捕捉剤の含有量は、半導体装置の信頼性を向上させる観点から、封止用樹脂組成物全体に対して、好ましくは0.03質量%以上であり、より好ましくは0.05質量%以上であり、また、好ましくは2.0質量%以下であり、より好ましくは1.0質量%以下である。
Ion scavengers include, for example, hydrotalcite.
The content of the ion scavenger in the sealing resin composition is preferably 0.03% by mass or more, based on the whole sealing resin composition, from the viewpoint of improving the reliability of the semiconductor device. Preferably it is 0.05 mass% or more, Moreover, it is preferably 2.0 mass% or less, More preferably, it is 1.0 mass% or less.
 低応力成分としては、たとえば、シリコーンオイル、シリコーンゴム、カルボキシル基末端ブタジエンアクリロニトリルゴムが挙げられる。
 封止用樹脂組成物中の低応力成分の含有量は、半導体装置の接続信頼性を向上させる観点から、封止用樹脂組成物全体に対して、好ましくは0.01質量%以上であり、より好ましくは0.02質量%以上であり、また、好ましくは2.0質量%以下であり、より好ましくは1.0質量%以下である。
Examples of the low stress component include silicone oil, silicone rubber, and carboxyl group-terminated butadiene acrylonitrile rubber.
The content of the low stress component in the sealing resin composition is preferably 0.01% by mass or more with respect to the entire sealing resin composition, from the viewpoint of improving the connection reliability of the semiconductor device. More preferably, it is 0.02 mass% or more, Preferably, it is 2.0 mass% or less, More preferably, it is 1.0 mass% or less.
 難燃剤は、たとえば水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、モリブデン酸亜鉛、ホスファゼンから選択される1種または2種以上を含むことができる。 The flame retardant can include, for example, one or more selected from aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, and phosphazene.
 酸化防止剤は、たとえば、ヒンダードフェノール系化合物、ヒンダードアミン系化合物およびチオエーテル系化合物から選択される1種または2種以上を含む。 The antioxidant includes, for example, one or more selected from a hindered phenol compound, a hindered amine compound and a thioether compound.
(封止用樹脂組成物の製造方法)
 次に、封止用樹脂組成物の製造方法を説明する。
 本実施形態において、封止用樹脂組成物は、たとえば、上述した各成分を、公知の手段で混合し、さらにロール、ニーダーまたは押出機等の混練機で溶融混練し、冷却した後に粉砕する方法により得ることができる。また、必要に応じて、上記方法における粉砕後にタブレット状に打錠成型して粒子状封止用樹脂組成物を得てもよい。また、上記方法における粉砕後にたとえば真空ラミネート成形または圧縮成形によりシート状封止用樹脂組成物を得てもよい。また得られた封止用樹脂組成物について、適宜分散度や流動性等を調整してもよい。
 そして、本実施形態においては、封止用樹脂組成物に含まれる成分および配合を調整することにより、硬化物中のSの含有量が上述した特定の範囲にある封止用樹脂組成物を得ることができる。
(Method for producing sealing resin composition)
Next, the method for producing the sealing resin composition will be described.
In the present embodiment, for example, a method of mixing the above-described components by known means, melt-kneading them with a kneader such as a roll, a kneader or an extruder, and cooling and then pulverizing them. It can be obtained by In addition, if necessary, after crushing in the above method, it may be tablet-molded into a tablet to obtain a particulate sealing resin composition. In addition, the sheet-like sealing resin composition may be obtained, for example, by vacuum laminate molding or compression molding after pulverization in the above method. In addition, the degree of dispersion, the fluidity, and the like of the obtained sealing resin composition may be adjusted as appropriate.
And in this embodiment, the resin composition for sealing whose content of S in a hardened | cured material is in the specific range mentioned above is obtained by adjusting the component and compound contained in the resin composition for sealing. be able to.
 本実施形態において得られる封止用樹脂組成物は、成分(A)~(C)を含むとともに、硬化物中のSの含有量が特定の範囲にあるため、これを用いることにより、Cuワイヤと組み合わせて用いられる場合にも、HTSL特性に優れるとともに、レーザー捺印性に優れる半導体装置を得ることができる。 The sealing resin composition obtained in the present embodiment contains the components (A) to (C), and the content of S in the cured product is in a specific range, so that a Cu wire can be used by using this. Even when used in combination with the above, it is possible to obtain a semiconductor device which is excellent in HTSL characteristics and excellent in laser sealability.
 (半導体装置)
 本実施形態における半導体装置は、上述した本実施形態における封止用樹脂組成物で半導体素子を封止してなる。
 図1は本実施形態に係る半導体装置100の一例を示す断面図である。ここで、基材30は、たとえば、リードフレームである。
 本実施形態の半導体装置100は、半導体素子20と、半導体素子20に接続されるボンディングワイヤ40と、封止部材50と、を備えるものであり、当該封止部材50は、上述の封止用樹脂組成物の硬化物により構成される。
 より具体的には、半導体素子20は、基材30上にダイアタッチ材10を介して固定されており、半導体装置100は、半導体素子20上に設けられた電極パッド22からボンディングワイヤ40を介して接続されるアウターリード34を有する。ボンディングワイヤ40は用いられる半導体素子20に応じて設定することができるが、たとえばCuワイヤを用いることができる。
 なお、半導体素子20は、基材30が備えるダイパッド32の上にダイアタッチ材10を介して固定されてもよい。
(Semiconductor device)
The semiconductor device in the present embodiment is formed by sealing the semiconductor element with the sealing resin composition in the present embodiment described above.
FIG. 1 is a cross-sectional view showing an example of a semiconductor device 100 according to the present embodiment. Here, the substrate 30 is, for example, a lead frame.
The semiconductor device 100 of the present embodiment includes the semiconductor element 20, the bonding wire 40 connected to the semiconductor element 20, and the sealing member 50, and the sealing member 50 is for the above-described sealing. It consists of a cured product of the resin composition.
More specifically, the semiconductor element 20 is fixed on the base 30 through the die attach material 10, and the semiconductor device 100 is connected to the electrode pad 22 provided on the semiconductor element 20 through the bonding wire 40. And the outer lead 34 connected. The bonding wire 40 can be set according to the semiconductor element 20 to be used, but for example, a Cu wire can be used.
The semiconductor element 20 may be fixed on the die pad 32 of the base 30 via the die attach material 10.
 本実施形態において、封止部材50は、上述の封止用樹脂組成物の硬化物により構成される。このため、半導体装置100において、ボンディングワイヤ40がCuを含む材料により構成されている場合にも、優れたHTSL特性を得ることができるとともに、半導体装置100はYAGレーザー等のレーザーの捺印性に優れる。封止部材50は、たとえば、封止用樹脂組成物をトランスファー成形法または圧縮成形法等の公知の方法を用いて封止成形することにより形成される。 In the present embodiment, the sealing member 50 is formed of a cured product of the above-described sealing resin composition. Therefore, in the semiconductor device 100, even when the bonding wire 40 is made of a material containing Cu, excellent HTSL characteristics can be obtained, and the semiconductor device 100 is excellent in the marking property of a laser such as a YAG laser. . The sealing member 50 is formed, for example, by sealing and molding the sealing resin composition using a known method such as a transfer molding method or a compression molding method.
 また、封止部材50の上面には、たとえば、YAGレーザー等のレーザーによりマークが捺印される。このマークは、たとえば、直線または曲線からなる文字、数字、または記号の少なくとも1種類以上により構成される。また、上記マークは、たとえば、半導体パッケージの製品名、製品番号、ロット番号、またはメーカー名等を示すものである。また、上記マークは、たとえば、YVO4レーザー、炭酸レーザー等により捺印されてもよい。 Further, a mark such as YAG laser is imprinted on the upper surface of the sealing member 50, for example. This mark is made up of, for example, at least one or more of characters, numbers, or symbols consisting of straight lines or curves. The mark indicates, for example, a product name, a product number, a lot number, or a maker name of a semiconductor package. Further, the above mark may be imprinted by, for example, a YVO 4 laser, a carbonic acid laser or the like.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment of this invention was described, these are the illustrations of this invention, and various structures other than the above can also be employ | adopted.
 以下、本実施形態を、実施例・比較例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, the present embodiment will be described in detail with reference to Examples and Comparative Examples. In addition, this embodiment is not limited at all to the description of these Examples.
 (実施例1~5、比較例1~4)
(封止用樹脂組成物の調製)
 各実施例、および各比較例のそれぞれについて、以下のように封止用樹脂組成物を調製した。
 まず、表1に示す各成分をミキサーにより混合した。次いで、得られた混合物を、ロール混練した後、冷却、粉砕して粉粒体である封止用樹脂組成物を得た。
(Examples 1 to 5 and Comparative Examples 1 to 4)
(Preparation of resin composition for sealing)
A sealing resin composition was prepared as follows for each of the examples and the comparative examples.
First, each component shown in Table 1 was mixed by the mixer. Next, the obtained mixture was roll-kneaded, and then cooled and pulverized to obtain a sealing resin composition which is a powder.
 表1中の各成分の詳細は下記のとおりである。また、表1中に示す各成分の配合割合は、樹脂組成物全体に対する配合割合(質量部)を示している。
(原料)
充填材1:溶融球状シリカ(デンカ社製、FB-950FC、平均粒径d50=22μm)
充填材2:合成球状シリカ(アドマテックス社製、SO-E2、平均粒径d50=0.5μm)
着色剤1:カーボンブラック(三菱化学社製、MA-600)
着色剤2:カーボンブラック(三菱化学社製、カーボン#5)
着色剤3:黒色酸化チタン(Ti、体積抵抗率=7.3×104Ω・cm)
着色剤4:アセチレンブラック(デンカ社製、Li-100、2次粒子の平均粒径d50=8μm)
着色剤5:アセチレンブラック(デンカ社製、Li-400、2次粒子の平均粒径d50=5μm)
カップリング剤:N-フェニル-γ-アミノプロピルトリメトキシシラン(東レ・ダウコーニング社製、CF-4083)
エポキシ樹脂1:フェニレン骨格含有フェノールアラルキル型エポキシ樹脂(日本化薬社製、NC-3000)
エポキシ樹脂2:o-クレゾールノボラック型エポキシ樹脂(新日鉄住金化学社製、YDCN-800-70)
エポキシ樹脂3:ビフェニル型エポキシ樹脂(三菱化学社製、YX4000HK)
硬化剤1:ビフェニルアラルキル型フェノール樹脂(日本化薬社製、GPH-65)
硬化剤2:ノボラック型フェノール樹脂(住友ベークライト社製、PR-HF-3)
硬化剤3:フェニレン骨格含有フェノールアラルキル樹脂(三井化学社製、XLC-4L)
硬化促進剤:トリフェニルホスフィン(TPP)
離型剤1:カルナバワックス(日興リカ社製、ニッコウカルナバ)
離型剤2:酸化ポリエチレンワックス(クラリアントケミカルズ社製、リコワックスPED522)
イオン捕捉剤:ハイドロタルサイト(協和化学工業社製、DHT-4H)
低応力剤1:ポリアルキレンエーテル基、メチル基等を有するシリコーンオイル(東レ・ダウコーニング社製、FZ-3730)
低応力剤2:カルボキシル基末端ブタジエンアクリロニトリルゴム(宇部興産社製、CTBN1008SP)
The details of each component in Table 1 are as follows. Moreover, the compounding ratio of each component shown in Table 1 has shown the compounding ratio (mass part) with respect to the whole resin composition.
(material)
Filler 1: fused spherical silica (manufactured by Denka, FB-950FC, average particle diameter d50 = 22 μm)
Filler 2: Synthetic spherical silica (Admatex Co., Ltd., SO-E2, average particle diameter d50 = 0.5 μm)
Colorant 1: Carbon black (manufactured by Mitsubishi Chemical Corporation, MA-600)
Colorant 2: carbon black (Mitsubishi Chemical Corporation, carbon # 5)
Colorant 3: Black titanium oxide (Ti 4 O 7 , volume resistivity = 7.3 × 10 4 Ω · cm)
Colorant 4: Acetylene black (manufactured by Denka, Li-100, average particle diameter of secondary particles d50 = 8 μm)
Colorant 5: Acetylene black (manufactured by Denka, Li-400, average particle diameter of secondary particles d50 = 5 μm)
Coupling agent: N-phenyl-γ-aminopropyltrimethoxysilane (Toray Dow Corning CF-4083)
Epoxy resin 1: phenylene skeleton-containing phenol aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000)
Epoxy resin 2: o-cresol novolac epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., YDCN-800-70)
Epoxy resin 3: Biphenyl type epoxy resin (Mitsubishi Chemical Corporation, YX4000HK)
Hardening agent 1: Biphenylaralkyl type phenol resin (manufactured by Nippon Kayaku Co., Ltd., GPH-65)
Curing agent 2: Novolak type phenol resin (manufactured by Sumitomo Bakelite, PR-HF-3)
Curing agent 3: phenylene skeleton-containing phenol aralkyl resin (Mitsui Chemical Co., Ltd., XLC-4L)
Hardening accelerator: Triphenylphosphine (TPP)
Releasing agent 1: Carnauba wax (manufactured by Nikko Rika, Nikko Co., Ltd.)
Release agent 2: Oxidized polyethylene wax (manufactured by Clariant Chemicals, Lico wax PED 522)
Ion scavenger: Hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd., DHT-4H)
Low stress agent 1: Silicone oil having polyalkylene ether group, methyl group etc. (Toray · Dow Corning, FZ-3730)
Low stress agent 2: Carboxyl group-terminated butadiene acrylonitrile rubber (manufactured by Ube Industries, Ltd., CTBN 1008 SP)
(評価)
 各例で得られた封止用樹脂組成物またはその硬化物について、以下の評価をおこなった。評価結果を表1にあわせて示す。
(Evaluation)
The following evaluation was performed about the resin composition for sealing obtained in each case, or its hardened | cured material. The evaluation results are shown in Table 1 together.
(S量:蛍光X線概算(ppm))
 各例で得られた封止用樹脂組成物について、トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間2分で、直径50mm、厚さ3mmの成形品を成形し、175℃、4時間で後硬化して円板状の試料を得た。
 波長分散型蛍光X線分析装置(島津製作所社製、XRF-1800)を用いて、試料の表面をX線(管電圧40kV、管電流95mAの条件)で走査し、蛍光X線強度を測定した。また、S量(1~50ppm)が既知の標準試料から作成したS量と蛍光X線強度の検量線を用いて試料中の硫黄濃度を算出した。
(S amount: X-ray fluorescence estimation (ppm))
About the resin composition for sealing obtained in each example, a transfer molding machine is used to mold a molded article having a diameter of 50 mm and a thickness of 3 mm with a mold temperature of 175 ° C., an injection pressure of 7.4 MPa and a curing time of 2 minutes. And post-cured at 175 ° C. for 4 hours to obtain a disk-shaped sample.
The surface of the sample was scanned with X-ray (tube voltage 40 kV, tube current 95 mA) using a wavelength dispersive fluorescent X-ray analyzer (XRF-1800 manufactured by Shimadzu Corporation), and the fluorescent X-ray intensity was measured. . In addition, the sulfur concentration in the sample was calculated using a calibration curve of the amount of S and the fluorescent X-ray intensity prepared from a standard sample with a known amount of S (1 to 50 ppm).
(Tg(℃))
 ガラス転移温度:低圧トランスファー成形機(コータキ精機株式会社製、KTS-30)をインサート成形に転用して、金型温度175℃、注入圧力9.8MPa、硬化時間2分の条件で、固定用樹脂組成物を注入成形し、4mm×4mm×15mmの試験片を得た。得られた試験片を、175℃、4時間で後硬化した後、熱機械分析装置(セイコー電子工業社製、TMA100)を用いて、測定温度範囲0℃から320℃までの温度域において昇温速度5℃/分で測定した時のチャートより、ガラス転移温度以下の領域での線膨張係数(α1)とゴム状相当領域の線膨張係数(α2)とを決定する。このとき、α1及びα2の延長線の交点をガラス転移温度(単位は℃)とした。
(Tg (° C))
Glass transition temperature: A low-pressure transfer molding machine (manufactured by Kotaki Seiki Co., Ltd., KTS-30) is diverted to insert molding, and a resin for fixing is applied under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa and a curing time of 2 minutes. The composition was injection molded to obtain a 4 mm × 4 mm × 15 mm test piece. The resulting test piece is post-cured at 175 ° C. for 4 hours, and then heated in a temperature range of 0 ° C. to 320 ° C. using a thermomechanical analyzer (TMA 100, manufactured by Seiko Instruments Inc.) From the chart measured at a rate of 5 ° C./min, the linear expansion coefficient (α1) in the region below the glass transition temperature and the linear expansion coefficient (α2) of the rubbery equivalent region are determined. At this time, the intersection point of the extension lines of α1 and α2 was taken as the glass transition temperature (unit: ° C.).
(捺印性)
 トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間2分で、直径50mm、厚さ3mmの成形品を成形し、175℃、4時間で後硬化して円板状の試料を得た。日本電気社製のマスクタイプのYAGレーザー捺印機(印加電圧2.4kV、パルス幅120μsで15A、30kHz、300mm/secの条件)を用いて、円板上に捺印した。
 評価基準を以下に示す。
OK:比較例1と同等以上の視認性
NG:比較例1に比べ、視認性が劣る
(Sealed)
Using a transfer molding machine, a molded article with a diameter of 50 mm and a thickness of 3 mm is molded at a mold temperature of 175 ° C, an injection pressure of 7.4MPa, and a curing time of 2 minutes, and post cured at 175 ° C for 4 hours Samples were obtained. The disc was imprinted using a mask type YAG laser imprinting machine (applied voltage: 2.4 kV, pulse width: 120 μs, 15 A, 30 kHz, 300 mm / sec conditions) manufactured by NEC Corporation.
Evaluation criteria are shown below.
OK: Visibility NG equal to or higher than Comparative Example 1: Compared with Comparative Example 1, the visibility is inferior
(色味)
 各例において捺印性の評価に用いた試料の色味を、1名の評価者が目視にて評価した。
 評価基準を以下に示す。
OK:比較例1に比べ、同等の黒色の色味を有する
△:比較例1に比べ、色味が他の色に近い
NG:比較例1に比べ、黒色が薄く、さらに他の色に近い
 上記「OK」および「△」のものを合格とした。
(Color)
The color tone of the sample used for evaluation of the sealability in each example was visually evaluated by one evaluator.
Evaluation criteria are shown below.
OK: comparable in color compared to Comparative Example 1 Δ: comparable to other colors compared to Comparative Example 1 NG: lighter in black compared to Comparative Example 1 and further similar to other colors The above "OK" and "△" were regarded as pass.
(HTSL:200℃、1500h)
[半導体装置の作製]
 実施例1~5、比較例1~4のそれぞれについて、次のように半導体装置を作製した。
まず、アルミニウム製電極パッドを備えるTEG(Test Element Group)チップ(3.5mm×3.5mm)を、表面がAgによりめっきされたリードフレームのダイパッド部上に搭載した。次いで、TEGチップの電極パッド(以下、単に「電極パッド」ともよぶ。)と、リードフレームのアウターリード部と、をCu99.9%の金属材料により構成されるボンディングワイヤを用いて、ワイヤピッチ120μmでワイヤボンディングした。これにより得られた構造体を、低圧トランスファー成形機を用いて、金型温度175℃、注入圧力10.0MPa、硬化時間2分の条件で封止用樹脂組成物を用いて封止成形し、半導体パッケージを作製した。その後、得られた半導体パッケージを175℃、4時間の条件で後硬化し、半導体装置を得た。
(HTSL: 200 ° C, 1500 h)
[Fabrication of semiconductor device]
A semiconductor device was manufactured as follows for each of Examples 1 to 5 and Comparative Examples 1 to 4.
First, a TEG (Test Element Group) chip (3.5 mm × 3.5 mm) having an aluminum electrode pad was mounted on a die pad portion of a lead frame whose surface was plated with Ag. Next, a wire pitch of 120 μm is formed using a bonding wire composed of an electrode pad of the TEG chip (hereinafter, also simply referred to as “electrode pad”) and an outer lead portion of the lead frame with a metallic material of Cu 99.9%. Wire bonding. The structure thus obtained is sealed and molded using a resin composition for sealing under conditions of a mold temperature of 175 ° C., an injection pressure of 10.0 MPa and a curing time of 2 minutes using a low pressure transfer molding machine, A semiconductor package was produced. Thereafter, the obtained semiconductor package was post-cured at 175 ° C. for 4 hours to obtain a semiconductor device.
[高温保管特性]
 得られた半導体装置について、以下の方法によるHTSL(高温保管試験)を行った。各半導体装置を、温度200℃、1500時間の条件下に保管した。保管後の半導体装置について、ワイヤと電極パッドとの間における電気抵抗値を測定した。各半導体装置の平均値が初期の抵抗値の平均値に対し110%未満の電気抵抗値を示すものをOK、110%以上電気抵抗値を示すものをNGとした。
[High temperature storage characteristics]
The obtained semiconductor device was subjected to HTSL (high temperature storage test) according to the following method. Each semiconductor device was stored under conditions of a temperature of 200 ° C. for 1500 hours. The electrical resistance value between the wire and the electrode pad was measured for the semiconductor device after storage. The average value of the respective semiconductor devices showed an electric resistance value of less than 110% of the average value of the initial resistance value as OK, and the one showing an electric resistance value of 110% or more as NG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この出願は、2017年10月16日に出願された日本出願特願2017-200110号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-201010 filed on Oct. 16, 2017, the entire disclosure of which is incorporated herein.

Claims (6)

  1.  以下の成分(A)~(C):
     (A)エポキシ樹脂、
     (B)無機充填材、および
     (C)黒色系着色剤
     を含む、封止用樹脂組成物であって、
     以下の作製方法で得られる試験片を以下の方法で測定することにより得られる、当該封止用樹脂組成物の硬化物中のSの含有量が、前記硬化物全体に対して10ppm以下である、封止用樹脂組成物。
     (試料作製方法)
     トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間2分で、直径50mm、厚さ3mmの成形品を成形し、175℃、4時間で後硬化して円板状の試料を得る。
     (Sの含有量の測定方法)
     波長分散型蛍光X線分析装置(島津製作所社製、XRF-1800)を用いて、管電圧40kV、管電流95mAの条件にて前記試料中の硫黄濃度を測定する。
    The following components (A) to (C):
    (A) Epoxy resin,
    A sealing resin composition comprising (B) an inorganic filler, and (C) a black colorant,
    The content of S in the cured product of the sealing resin composition obtained by measuring a test piece obtained by the following production method by the following method is 10 ppm or less based on the entire cured product , A sealing resin composition.
    (Sample preparation method)
    Using a transfer molding machine, a molded article with a diameter of 50 mm and a thickness of 3 mm is molded at a mold temperature of 175 ° C, an injection pressure of 7.4MPa, and a curing time of 2 minutes, and post cured at 175 ° C for 4 hours The sample is obtained in the form of
    (Method of measuring the content of S)
    The sulfur concentration in the sample is measured under the conditions of a tube voltage of 40 kV and a tube current of 95 mA using a wavelength dispersive fluorescent X-ray analyzer (XRF-1800 manufactured by Shimadzu Corporation).
  2.  前記成分(C)がアセチレンブラックを含む、請求項1に記載の封止用樹脂組成物。 The sealing resin composition according to claim 1, wherein the component (C) contains acetylene black.
  3.  当該封止用樹脂組成物中の前記アセチレンブラックの含有量が、当該封止用樹脂組成物全体に対して0.10質量%以上1.0質量%以下である、請求項2に記載の封止用樹脂組成物。 The sealing according to claim 2, wherein the content of the acetylene black in the sealing resin composition is 0.10% by mass or more and 1.0% by mass or less with respect to the entire sealing resin composition. Resin composition for stopping.
  4.  前記アセチレンブラックの2次粒子の平均粒径d50が、1μm以上20μm以下である、請求項2または3に記載の封止用樹脂組成物。 The sealing resin composition according to claim 2 or 3, wherein an average particle diameter d50 of secondary particles of the acetylene black is 1 μm or more and 20 μm or less.
  5.  当該封止用樹脂組成物がファーネスブラックを実質的に含まない、請求項1乃至4いずれか1項に記載の封止用樹脂組成物。 The sealing resin composition according to any one of claims 1 to 4, wherein the sealing resin composition substantially does not contain furnace black.
  6.  請求項1乃至5いずれか1項に記載の封止用樹脂組成物で半導体素子を封止してなる、半導体装置。 The semiconductor device formed by sealing a semiconductor element with the resin composition for sealing of any one of Claims 1 thru | or 5.
PCT/JP2018/037240 2017-10-16 2018-10-04 Resin composition for sealing and semiconductor device WO2019078024A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207013624A KR102166183B1 (en) 2017-10-16 2018-10-04 Sealing resin composition and semiconductor device
JP2019525037A JP6628010B2 (en) 2017-10-16 2018-10-04 Resin composition for sealing and semiconductor device
CN201880067422.7A CN111247206A (en) 2017-10-16 2018-10-04 Resin composition for sealing and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-200110 2017-10-16
JP2017200110 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019078024A1 true WO2019078024A1 (en) 2019-04-25

Family

ID=66173687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037240 WO2019078024A1 (en) 2017-10-16 2018-10-04 Resin composition for sealing and semiconductor device

Country Status (5)

Country Link
JP (1) JP6628010B2 (en)
KR (1) KR102166183B1 (en)
CN (1) CN111247206A (en)
TW (1) TW201927895A (en)
WO (1) WO2019078024A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022070A1 (en) * 2018-07-27 2020-01-30 パナソニックIpマネジメント株式会社 Resin composition for semiconductor encapsulation, semiconductor device, and method for producing semiconductor device
JP7302300B2 (en) 2019-06-03 2023-07-04 住友ベークライト株式会社 Sealing resin composition and aluminum electrolytic capacitor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959769A (en) * 1982-09-29 1984-04-05 Meisei Chiyaachiru Kk Structural adhesive
JP2012025924A (en) * 2010-07-28 2012-02-09 Shin-Etsu Chemical Co Ltd Liquid epoxy resin composition, and semiconductor device sealed with cured product formed by curing the liquid epoxy resin composition
JP2012082281A (en) * 2010-10-08 2012-04-26 Shin-Etsu Chemical Co Ltd Liquid epoxy resin composition and semiconductor device
JP2015036410A (en) * 2013-08-15 2015-02-23 信越化学工業株式会社 High-dielectric constant epoxy resin composition and semiconductor device
WO2015104917A1 (en) * 2014-01-08 2015-07-16 信越化学工業株式会社 Liquid epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device
JP2018184525A (en) * 2017-04-26 2018-11-22 信越化学工業株式会社 Low-temperature curable liquid epoxy resin composition
JP2018184531A (en) * 2017-04-26 2018-11-22 信越化学工業株式会社 Thermosetting epoxy resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472360A (en) * 1990-07-11 1992-03-06 Sumitomo Chem Co Ltd Thermosetting resin composition for sealing semiconductor
JP2000007894A (en) 1998-06-24 2000-01-11 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2000169676A (en) 1998-12-03 2000-06-20 Sumitomo Bakelite Co Ltd Production of epoxy resin molding material and semiconductor apparatus
JP2003337129A (en) 2002-05-17 2003-11-28 Shin Etsu Chem Co Ltd Method for selecting semiconductor sealing epoxy resin composition and method for detecting coarse particle of carbon black in composition
JP5509514B2 (en) 2005-11-21 2014-06-04 日立化成株式会社 Epoxy resin molding material for sealing and electronic component device
JP5411497B2 (en) 2006-03-08 2014-02-12 電気化学工業株式会社 Inorganic hollow powder, method for producing the same, and composition containing the inorganic hollow powder
KR20120078174A (en) * 2010-12-31 2012-07-10 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device, and semiconductor device using the same
JP2017179185A (en) * 2016-03-31 2017-10-05 住友ベークライト株式会社 Epoxy resin composition for sealing semiconductor, and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959769A (en) * 1982-09-29 1984-04-05 Meisei Chiyaachiru Kk Structural adhesive
JP2012025924A (en) * 2010-07-28 2012-02-09 Shin-Etsu Chemical Co Ltd Liquid epoxy resin composition, and semiconductor device sealed with cured product formed by curing the liquid epoxy resin composition
JP2012082281A (en) * 2010-10-08 2012-04-26 Shin-Etsu Chemical Co Ltd Liquid epoxy resin composition and semiconductor device
JP2015036410A (en) * 2013-08-15 2015-02-23 信越化学工業株式会社 High-dielectric constant epoxy resin composition and semiconductor device
WO2015104917A1 (en) * 2014-01-08 2015-07-16 信越化学工業株式会社 Liquid epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device
JP2018184525A (en) * 2017-04-26 2018-11-22 信越化学工業株式会社 Low-temperature curable liquid epoxy resin composition
JP2018184531A (en) * 2017-04-26 2018-11-22 信越化学工業株式会社 Thermosetting epoxy resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022070A1 (en) * 2018-07-27 2020-01-30 パナソニックIpマネジメント株式会社 Resin composition for semiconductor encapsulation, semiconductor device, and method for producing semiconductor device
JP7302300B2 (en) 2019-06-03 2023-07-04 住友ベークライト株式会社 Sealing resin composition and aluminum electrolytic capacitor

Also Published As

Publication number Publication date
CN111247206A (en) 2020-06-05
JP6628010B2 (en) 2020-01-08
KR20200058566A (en) 2020-05-27
TW201927895A (en) 2019-07-16
JPWO2019078024A1 (en) 2019-11-14
KR102166183B1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
US20210183719A1 (en) Semiconductor-chip-encapsulating resin composition and semiconductor package
JP2007023273A (en) Epoxy resin molding compound for sealing use and electronic component device
JP7248071B2 (en) Encapsulating resin composition and semiconductor device
JP7247563B2 (en) Encapsulating resin composition and power module
US9147645B2 (en) Semiconductor device
JP6628010B2 (en) Resin composition for sealing and semiconductor device
JP2020152844A (en) Sealing resin composition and electronic device
WO2020137989A1 (en) Resin composition for sealing, semiconductor device, and production method for semiconductor device
KR102215169B1 (en) Semiconductor device
TWI824463B (en) Thermosetting resin composition and electronic component
JP7142233B2 (en) EPOXY RESIN COMPOSITION FOR ENCAPSULATION, CURED PRODUCT AND SEMICONDUCTOR DEVICE
CN111989772B (en) Resin composition for granular encapsulation, semiconductor device and method for producing same
JP7130985B2 (en) Encapsulating resin composition and power module
JP2020158694A (en) Powder and method for producing sealing resin composition
WO2022118749A1 (en) Resin composition for sealing and semiconductor device
JP2018162351A (en) Resin composition for encapsulation and semiconductor device
JP5125673B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2021187981A (en) Flame-retardant resin composition, and structure
JP2022138253A (en) Flame-retardant resin composition and structure
JP2021187982A (en) Flame-retardant resin composition, and structure
JP2020132723A (en) Semiconductor sealing resin composition and semiconductor device
JP2021063146A (en) Resin composition for sealing, semiconductor device and power device
TW201840801A (en) Epoxy resin composition for sealing and electronic component apparatus
JP2006002039A (en) Epoxy resin molding material for encapsulation and electronic component device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019525037

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207013624

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18868140

Country of ref document: EP

Kind code of ref document: A1