JP2009231584A - Method of manufacturing led substrate and the led substrate - Google Patents

Method of manufacturing led substrate and the led substrate Download PDF

Info

Publication number
JP2009231584A
JP2009231584A JP2008075929A JP2008075929A JP2009231584A JP 2009231584 A JP2009231584 A JP 2009231584A JP 2008075929 A JP2008075929 A JP 2008075929A JP 2008075929 A JP2008075929 A JP 2008075929A JP 2009231584 A JP2009231584 A JP 2009231584A
Authority
JP
Japan
Prior art keywords
led
conductive material
linear
resin film
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008075929A
Other languages
Japanese (ja)
Inventor
Haruyuki Ashigahara
治之 芦ヶ原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Gore Tex Inc
Original Assignee
Japan Gore Tex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gore Tex Inc filed Critical Japan Gore Tex Inc
Priority to JP2008075929A priority Critical patent/JP2009231584A/en
Priority to CN200910128273A priority patent/CN101546715A/en
Priority to TW098109484A priority patent/TW201003994A/en
Publication of JP2009231584A publication Critical patent/JP2009231584A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an LED substrate simply and efficiently. <P>SOLUTION: The method of manufacturing the LED substrate includes the steps of: thermocompression-bonding a linear conductive material to a thermoplastic resin film; and loading at least two LEDs on the linear conductive material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、LED基板を製造するための方法、および当該方法により製造されるLED基板に関するものである。   The present invention relates to a method for manufacturing an LED substrate, and an LED substrate manufactured by the method.

発光ダイオード(LED)などの発光デバイスは、消費電力が低く長寿命である上に、小型化や薄型化が可能である。よって、携帯電話や電光板、信号などに使用されている。特に最近では、液晶ディスプレイのバックライトとしての利用が期待されている。   Light-emitting devices such as light-emitting diodes (LEDs) have low power consumption and long life, and can be reduced in size and thickness. Therefore, it is used for mobile phones, electric boards, signals, and the like. Recently, in particular, it is expected to be used as a backlight for liquid crystal displays.

即ち、現段階では、液晶ディスプレイのバックライトとしては主に冷陰極管が用いられている。しかし近年、液晶ディスプレイの薄型化や省エネルギー化、高機能化により、LEDが冷陰極管に取って代わり得る地位にある。一部では、LEDがバックライトとして既に用いられている。   That is, at present, cold cathode fluorescent lamps are mainly used as backlights for liquid crystal displays. However, in recent years, LEDs are in a position that can replace cold cathode fluorescent lamps due to thinning, energy saving, and high functionality of liquid crystal displays. In some cases, LEDs are already used as backlights.

従来、LEDが搭載された基板は、ガラスエポキシ基板の表面に金属層を形成し、この金属層をエッチングして回路とし、当該回路上にLEDをハンダ付けすることにより製造されていた。しかしガラスエポキシ基板は、その構造上厚くならざるを得ないので、回路の裏面に放熱層を設けても十分な放熱性は確保できない。そこで放熱性を高めるために、薄い基板を用いたLED基板が検討されている。   Conventionally, a substrate on which an LED is mounted is manufactured by forming a metal layer on the surface of a glass epoxy substrate, etching the metal layer into a circuit, and soldering the LED on the circuit. However, since the glass epoxy substrate must be thick due to its structure, even if a heat dissipation layer is provided on the back surface of the circuit, sufficient heat dissipation cannot be ensured. Therefore, in order to improve heat dissipation, an LED substrate using a thin substrate has been studied.

例えば特許文献1には、熱硬化性のエポキシ樹脂などからなる絶縁層に金属箔層を固着させ、LEDを搭載するための回路を形成し、さらに絶縁層と放熱基板とを固着するに当たり、絶縁層を必要箇所にのみ設けることによりコストを低減する技術が開示されている。   For example, in Patent Document 1, a metal foil layer is fixed to an insulating layer made of a thermosetting epoxy resin, a circuit for mounting an LED is formed, and further, an insulating layer and a heat dissipation substrate are fixed by insulating. A technique for reducing costs by providing layers only where necessary is disclosed.

しかし、特許文献1の技術ではエッチングにより回路を形成しており、到底効率的に低コストで実施できるものではない。即ち、エッチングによる回路形成工程では、金属層の脱脂洗浄、レジスト感光膜の形成、露光、現像、エッチング、剥離という複雑な処理が必要である。また、エッチングにより除去される金属層は無駄となる。よって、エッチングにより回路を形成すると、エッチングによるコストは基板自体のコストの数倍にも及ぶ。さらに、エッチングでは一般的に塩化第二鉄が用いられるが、これを含む廃液は容易に廃棄できない。また、熱硬化性樹脂からなる絶縁層に放熱板を接着する場合には熱硬化性接着剤を用いなくてはならない。そのために、熱硬化させるための加熱加圧に時間や設備、多くのエネルギーが必要であり、コストの低減が難しいという事情もある。また、接着剤層の分だけ基板が厚くなる上に、その接着剤により熱伝導性が低下するというデメリットも有する。   However, in the technique of Patent Document 1, a circuit is formed by etching and cannot be implemented efficiently and at low cost. That is, in the circuit forming process by etching, complicated processes such as degreasing and cleaning of the metal layer, formation of a resist photosensitive film, exposure, development, etching, and peeling are necessary. Also, the metal layer removed by etching is wasted. Therefore, when a circuit is formed by etching, the cost of etching reaches several times the cost of the substrate itself. Further, ferric chloride is generally used for etching, but waste liquid containing this cannot be easily discarded. Moreover, when bonding a heat sink to the insulating layer made of a thermosetting resin, a thermosetting adhesive must be used. Therefore, time and equipment and a lot of energy are required for heating and pressurization for thermosetting, and there is a situation that it is difficult to reduce the cost. In addition, the substrate becomes thicker by the amount of the adhesive layer, and there is a demerit that the thermal conductivity is lowered by the adhesive.

一方、特許文献2には、平板状に圧延した複数の導線を柔軟性の絶縁樹脂で一体的に被覆してフレキシブルな平行線を製造する技術が開示されている。しかし、かかる平行線は基板間または回路間を接続するためのものであり、デバイスを搭載するためのものではない。実際、平行線の被覆は絶縁樹脂にディップすることにより行われており、当該平行線を端部以外で露出させてデバイスを搭載することは容易ではない。また、特許文献2では導線を被覆する絶縁樹脂の種類は特定されていない。
特開2007−220925号公報 特開昭57−115714号公報
On the other hand, Patent Document 2 discloses a technique for manufacturing a flexible parallel line by integrally covering a plurality of conductive wires rolled into a flat plate shape with a flexible insulating resin. However, such parallel lines are for connecting between boards or circuits, not for mounting a device. Actually, the parallel lines are covered by dipping the insulating resin, and it is not easy to mount the device by exposing the parallel lines except at the ends. Moreover, in patent document 2, the kind of insulating resin which coat | covers conducting wire is not specified.
JP 2007-220925 A JP 57-115714 A

上述した様に、フレキシブルなLED基板は知られていた。しかしエッチングが必要であるなどその製造工程は複雑であり、決して容易に製造できるものではなかった。   As described above, flexible LED substrates have been known. However, the manufacturing process is complicated, such as requiring etching, and it has never been easy to manufacture.

そこで本発明が解決すべき課題は、LED基板を簡便かつ効率的に製造するための方法を提供することを目的とする。   Therefore, an object to be solved by the present invention is to provide a method for easily and efficiently manufacturing an LED substrate.

本発明者は上記課題を解決すべく鋭意研究を進めた。その結果、基板として液晶ポリマーフィルムなどの熱可塑性樹脂フィルムを用い、この基板に線状の回路を熱圧着すれば、液晶ディスプレイのバックライトなどとして利用可能な、LEDが連続的に搭載された基板を極めて簡便かつ効率的に製造できることを見出して、本発明を完成した。   The present inventor has intensively studied to solve the above problems. As a result, if a thermoplastic resin film such as a liquid crystal polymer film is used as the substrate and a linear circuit is thermocompression bonded to this substrate, the substrate can be used as a backlight for a liquid crystal display, etc. Has been found to be extremely simple and efficient, and the present invention has been completed.

本発明に係るLED基板の製造方法は、熱可塑性樹脂フィルムに線状導電材を熱圧着する工程;および、線状導電材に、少なくとも2個のLEDを搭載する工程;を含むことを特徴とする。なお、線状導電材にLEDを搭載する態様には、線状導電材を回路として基板上にLEDを搭載するあらゆる態様が含まれる。例えば、1本の線状導電材の断線部分または2本の線状導電材の間に表面実装型LEDの本体を配置して各電極を線状導電材にハンダ付けする態様や;LEDベアチップを1本の線状導電材における一方の断線端部または2本の線状導電材の一方にダイボンドして、他方の断線端部または他方の線状導電材にワイアボンドする態様が考えられる。   The method for manufacturing an LED substrate according to the present invention includes a step of thermocompression bonding a linear conductive material to a thermoplastic resin film; and a step of mounting at least two LEDs on the linear conductive material. To do. In addition, the aspect which mounts LED in a linear conductive material includes all the aspects which mount LED on a board | substrate by using a linear conductive material as a circuit. For example, a mode in which the body of a surface-mounted LED is disposed between a broken portion of one linear conductive material or between two linear conductive materials and each electrode is soldered to the linear conductive material; A mode is conceivable in which one wire-breaking end portion or one of the two wire-conducting materials in one wire-conductive material is die-bonded and wire-bonded to the other wire-breaking end portion or the other wire-conducting material.

上記方法においては、線状導電材を熱圧着する際に線状導電材を熱可塑性樹脂フィルムの面まで圧入することが好ましい。例えば、エッチングにより回路を形成した場合や接着剤で回路を基板に貼り付ける場合には、基板表面に対して回路が厚みの分盛り上がることになり平滑な回路は得られない。その結果、図1に示すように、基板とLEDとの間に回路厚みの分の空間が生じる。その結果、特にダイ・ヒートシンク付の表面実装型LEDを搭載する場合には、かかる空間へハンダや銀ペーストなどの高熱伝導性接着剤が入り込み、電極が短絡するという不良が発生する可能性がある。また、LEDベアチップを透明樹脂により封止する場合、図2に示すように回路と基板との間に段差が存在すると、図3のように樹脂が回路に沿って過剰に広がる場合がある。その結果、透明封止樹脂による形成物に光学的に歪みが生じ、光放散の均一性を損ねる原因となり得るばかりでなく、ベアチップの封止が不十分になる原因ともなり得る。また、その際にたとえダム材を使っても、基板とダム材との空間から透明樹脂が流れ出ることがある。しかし、回路となる線状導電材を熱可塑性樹脂フィルムの面まで圧入すれば、図4のとおり基板とダイ・ヒートシンク付表面実装型LEDとの間に隙間は生じ難い。また、図5のとおり線状導電材と熱可塑性樹脂フィルムとの間に段差が無ければ、図6に示すように線状導電材の長さ方向への封止樹脂の過剰な広がりを抑制でき、光学的な歪み形成のリスク低減が可能になる。   In the above method, it is preferable to press-fit the linear conductive material to the surface of the thermoplastic resin film when the linear conductive material is thermocompression bonded. For example, when a circuit is formed by etching or when a circuit is attached to a substrate with an adhesive, the circuit rises by the thickness of the substrate surface, and a smooth circuit cannot be obtained. As a result, as shown in FIG. 1, a space corresponding to the circuit thickness is generated between the substrate and the LED. As a result, particularly when a surface-mounted LED with a die heat sink is mounted, a high heat conductive adhesive such as solder or silver paste may enter the space and the electrode may be short-circuited. . Further, when the LED bare chip is sealed with a transparent resin, if there is a step between the circuit and the substrate as shown in FIG. 2, the resin may spread excessively along the circuit as shown in FIG. As a result, the formed product made of the transparent sealing resin is optically distorted, which may cause the light diffusion uniformity to be impaired, and may cause insufficient bare chip sealing. In this case, even if a dam material is used, the transparent resin may flow out of the space between the substrate and the dam material. However, if a linear conductive material to be a circuit is press-fitted to the surface of the thermoplastic resin film, a gap is hardly generated between the substrate and the surface mounted LED with the die / heat sink as shown in FIG. In addition, if there is no step between the linear conductive material and the thermoplastic resin film as shown in FIG. 5, excessive spreading of the sealing resin in the length direction of the linear conductive material can be suppressed as shown in FIG. The risk of optical distortion formation can be reduced.

さらに回路を設けた基板が平滑であれば、クリームハンダやレジスト剤などを印刷する場合、その精度が向上する。また、後述するようにLED基板では放熱性を高めるためや回路を断線するために穴を開けることがある。この際、生産方法によっては複数の基板を重ねて穴を形成すると効率が高いが、回路面と基板面とに段差がなければ穴を開けるときに基板がずれにくく、安定した穴開けが可能になる。なお、熱可塑性フィルムを絶縁層とする回路基板の場合、当該フィルム上の銅箔をエッチングして回路を形成した後に、当該回路を加熱によりフィルム中に圧入することも考えられる。しかし本発明では、シンプルな線状導電材を回路とするため、当該回路の圧着と圧入を同時に実施することができ、非常に効率的である。   Further, if the substrate on which the circuit is provided is smooth, the accuracy is improved when printing cream solder, a resist agent, or the like. Further, as will be described later, in the LED substrate, a hole may be formed in order to improve heat dissipation or to disconnect the circuit. At this time, depending on the production method, it is efficient to form a hole by stacking multiple substrates, but if there is no step between the circuit surface and the substrate surface, the substrate will not be displaced easily when drilling, and stable drilling is possible. Become. In the case of a circuit board having a thermoplastic film as an insulating layer, it is also conceivable that after the copper foil on the film is etched to form a circuit, the circuit is pressed into the film by heating. However, in the present invention, since a simple linear conductive material is used as a circuit, the circuit can be pressed and pressed at the same time, which is very efficient.

上記方法においては、さらに、2本の線状導電材の間に搭載したLEDを直列につなぐために、搭載されているLED間またはLEDが搭載されるべき部分の間を交互に断線する工程を実施することが好ましい。図7に示すように複数のLEDを並列につなぐと、LEDの個体差により明るさに不均一が生じるおそれがある。しかし複数のLEDを直列につなげば、均一な明るさが得られるという利点がある。また、2本の線状導電材の間に複数のLEDを搭載した場合、図8に示すように回路をLED搭載部間で交互に断線することにより極めて容易にLEDを直列につなぐ回路の形成が可能になる。   In the above method, in order to connect the LEDs mounted between the two linear conductive materials in series, a step of alternately disconnecting between the mounted LEDs or between the portions where the LEDs are to be mounted is performed. It is preferable to implement. As shown in FIG. 7, when a plurality of LEDs are connected in parallel, the brightness may be uneven due to individual differences of the LEDs. However, if a plurality of LEDs are connected in series, there is an advantage that uniform brightness can be obtained. In addition, when a plurality of LEDs are mounted between two linear conductive materials, a circuit that connects LEDs in series extremely easily is formed by alternately disconnecting the circuits between the LED mounting portions as shown in FIG. Is possible.

さらに、少なくとも3本の線状導電材を熱圧着し、LEDを直列につないだ部分をさらに並列につなぐ工程を実施することが好ましい。上記のようにLEDを直列につなげば均一な明るさが得られるが、一つでもLEDに不良が生じると直列につながれた全てのLEDが点灯しなくなってしまう。そこで、図9や図10に示すように直列につながれたLED同士を並列につなげば、一部の直列LEDに不良が生じても、他の直列LEDは点灯するので、全体が点灯しなくなるということはない。かかるLEDの配列は、LED搭載部で断線することにより容易に形成することができる。   Furthermore, it is preferable to carry out a step of thermocompression bonding at least three linear conductive materials and further connecting portions where LEDs are connected in series. If LEDs are connected in series as described above, uniform brightness can be obtained, but if even one LED is defective, all the LEDs connected in series will not light up. Therefore, if the LEDs connected in series are connected in parallel as shown in FIG. 9 and FIG. 10, even if some of the series LEDs are defective, the other series LEDs are turned on, so that the whole is not turned on. There is nothing. Such an array of LEDs can be easily formed by disconnection at the LED mounting portion.

本発明方法においては、さらに、図11に示すように、熱可塑性樹脂フィルムの線状導電材上を熱圧着した側の面において、LEDを搭載した部分以外または搭載すべき部分以外を多孔質樹脂膜により被覆する工程を行うことが好適である。従来、透明または半透明の基板にLEDを搭載する場合には、光反射効率を高めるために基板に酸化チタンなどを混ぜて透明性を低減したり白色化することが行われていた。しかし、酸化チタンなどの無機物を大量に混入すると基板の強度が低下するなどの問題がある。一方、多孔質樹脂膜で基板を被覆することにより反射率を高めれば、上述したような従来技術の問題は起こらない。また、後述するようにLEDベアチップを透明樹脂により封止する場合には、透明樹脂が必要部分外にまで流れ出ないように、多孔質樹脂膜をダム材として利用することもできる。さらに多孔質樹脂膜は、多孔質ゆえに光を極めて高効率に乱反射させることができる。また、多孔質樹脂膜は、熱可塑性樹脂フィルムと貼り合せてもフレキシブル性を損なわないという利点もある。   In the method of the present invention, as shown in FIG. 11, on the surface of the thermoplastic resin film on the side where the linear conductive material is thermocompression bonded, the portion other than the portion on which the LED is mounted or the portion other than the portion to be mounted is porous resin. It is preferable to perform the step of coating with a film. Conventionally, when an LED is mounted on a transparent or translucent substrate, in order to increase the light reflection efficiency, the substrate is mixed with titanium oxide or the like to reduce transparency or whiten. However, when a large amount of an inorganic substance such as titanium oxide is mixed, there is a problem that the strength of the substrate is lowered. On the other hand, if the reflectance is increased by covering the substrate with a porous resin film, the above-described problems of the prior art do not occur. Further, as described later, when the LED bare chip is sealed with a transparent resin, the porous resin film can be used as a dam material so that the transparent resin does not flow out of the necessary portion. Further, since the porous resin film is porous, it can diffuse light with extremely high efficiency. In addition, the porous resin film has an advantage that flexibility is not impaired even if it is bonded to a thermoplastic resin film.

さらに本発明方法においては、LEDベアチップを用いる場合、LEDを透明樹脂により封止する工程を含むことが好ましい。特に、LEDベアチップを用いる場合では、封止は重要である。また、上述したように多孔質樹脂膜で回路面を被覆する場合には、封止樹脂と親和性の低い樹脂からなる多孔質膜を選択することにより、多孔質樹脂膜の凹部体積をやや超える量の封止樹脂を注入しても封止樹脂は多孔質樹脂膜上で広がることはなく、図11に示すように凸レンズ状となる。かかる凸レンズ状の封止樹脂の光取り出し効果は高い。また、LEDベアチップから発せられた光のうち平面方向の光は、多孔質樹脂膜の側面で乱反射を起こす。その結果、従来は有効利用できなかった光の利用が可能になる。   Furthermore, in the method of the present invention, when using an LED bare chip, it is preferable to include a step of sealing the LED with a transparent resin. In particular, when using an LED bare chip, sealing is important. In addition, when the circuit surface is covered with the porous resin film as described above, the concave volume of the porous resin film is slightly exceeded by selecting a porous film made of a resin having a low affinity with the sealing resin. Even if an amount of the sealing resin is injected, the sealing resin does not spread on the porous resin film, and has a convex lens shape as shown in FIG. The light extraction effect of such a convex lens-shaped sealing resin is high. Moreover, the light of a plane direction among the lights emitted from the LED bare chip causes irregular reflection on the side surface of the porous resin film. As a result, it becomes possible to use light that could not be used effectively.

熱可塑性樹脂フィルムの線状導電材上を熱圧着した側または熱圧着すべき側と反対の面には、放熱層を設けることが好ましい。LED基板においては、発光により生じる熱を低減することが重要である。   It is preferable to provide a heat-dissipating layer on the surface of the thermoplastic resin film on the side opposite to the thermocompression-bonded side or the side to be thermocompressed. In the LED substrate, it is important to reduce heat generated by light emission.

また、熱可塑性樹脂フィルム、線状導電材および放熱層には、放熱用の貫通穴を設けることが好ましい。かかる貫通穴を設けることによって、発光による熱をより一層効率的に基板外部へ放出することが可能になる。また、かかる貫通穴は、線状導電材の断線手段としても利用可能である。   Moreover, it is preferable to provide a through hole for heat dissipation in the thermoplastic resin film, the linear conductive material, and the heat dissipation layer. By providing such a through hole, it becomes possible to more efficiently release heat generated by light emission to the outside of the substrate. Such a through hole can also be used as a means for disconnecting the linear conductive material.

本発明のLED基板は、上記本発明方法により製造されることを特徴とする。   The LED substrate of the present invention is manufactured by the above-described method of the present invention.

本発明方法によれば、複数のLEDが搭載された基板を極めて容易かつ効率的に製造できる。より具体的には、絶縁層として液晶ポリマーフィルムなどの熱可塑性樹脂フィルムを用いることによって、エッチングをすることなく、直線状の導電材を熱圧着により貼り付けるのみで回路の形成が可能になる。よって本発明は、近年需要が高まっている、優れた特性を有するLED基板を簡単かつ効率的に製造する技術として、産業上極めて有用である。   According to the method of the present invention, a substrate on which a plurality of LEDs are mounted can be manufactured very easily and efficiently. More specifically, by using a thermoplastic resin film such as a liquid crystal polymer film as the insulating layer, it is possible to form a circuit only by attaching a linear conductive material by thermocompression bonding without etching. Therefore, the present invention is extremely useful industrially as a technique for easily and efficiently manufacturing an LED substrate having excellent characteristics, which has been increasing in demand in recent years.

本発明に係るLED基板の製造方法は、熱可塑性樹脂フィルムに、線状導電材を平行または略平行に熱圧着する工程;および、線状導電材に、少なくとも2個のLEDを搭載する工程;を含むことを特徴とする。以下、本発明の実施条件につき説明する。   The method for producing an LED substrate according to the present invention includes a step of thermocompression bonding a linear conductive material in parallel or substantially in parallel to a thermoplastic resin film; and a step of mounting at least two LEDs on the linear conductive material; It is characterized by including. Hereinafter, the implementation conditions of the present invention will be described.

(1) 線状導電材の熱圧着工程
本発明では、熱可塑性樹脂フィルムに、線状導電材を平行または略平行に熱圧着する。
(1) Thermocompression bonding step of linear conductive material In the present invention, the linear conductive material is thermocompression bonded to the thermoplastic resin film in parallel or substantially in parallel.

本発明で絶縁層を構成する熱可塑性樹脂は、線状導電材の熱圧着に要する熱に対する耐性が高いものであれば使用目的に合わせて広く選ぶことができ、特に制限されない。例えば、液晶ポリマー、ポリエーテルエーテルケトン、ポリエーテルサルホン、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリアリレート、ポリフェニレンサルファイド、ポリエチレンナフタレート、これらのうち2種以上の混合樹脂、およびこれら樹脂を主成分として含むポリマーアロイなどを用いることができる。ここで「主成分」とは、ポリマーアロイに対して50質量%以上含むことを意味し、好適には70質量%以上、より好適には80質量%以上含むことを意味する。   The thermoplastic resin constituting the insulating layer in the present invention can be widely selected according to the purpose of use as long as it has high resistance to heat required for thermocompression bonding of the linear conductive material, and is not particularly limited. For example, liquid crystal polymer, polyether ether ketone, polyether sulfone, polyether imide, polyamide, polyamide imide, polyarylate, polyphenylene sulfide, polyethylene naphthalate, mixed resin of two or more of these, and these resins as main components The polymer alloy etc. which are included as can be used. Here, the “main component” means containing 50% by mass or more, preferably 70% by mass or more, and more preferably containing 80% by mass or more with respect to the polymer alloy.

絶縁層を構成する熱可塑性樹脂としては、液晶ポリマーが好適である。液晶ポリマーは耐熱性に優れ、LEDより発せられる熱のみならず線状導電材の熱圧着に要する熱への耐性も高い。また、線状導電材を構成する金属、例えば代表的な導電素材として多く使用されている銅との線膨張率の近い液晶ポリマーも販売されており、かかる液晶ポリマーを用いれば、熱加工時における応力を低減できる。   As the thermoplastic resin constituting the insulating layer, a liquid crystal polymer is suitable. The liquid crystal polymer is excellent in heat resistance and has high resistance not only to heat generated from the LED but also to heat required for thermocompression bonding of the linear conductive material. In addition, a liquid crystal polymer having a linear expansion coefficient close to that of a metal constituting the linear conductive material, for example, copper, which is often used as a typical conductive material, is also sold. Stress can be reduced.

液晶ポリマーは耐熱性の熱可塑性樹脂であり、溶融状態で液晶性を示すサーモトロピック液晶ポリマーと溶液状態で液晶性を示すリオトロピック液晶ポリマーとがある。本発明で用いる液晶ポリマーとしてはサーモトロピック液晶ポリマーが好適であり、より具体的にはサーモトロピック液晶ポリエステルやサーモトロピック液晶ポリエステルアミドが好ましい。   The liquid crystal polymer is a heat-resistant thermoplastic resin, and includes a thermotropic liquid crystal polymer exhibiting liquid crystallinity in a molten state and a lyotropic liquid crystal polymer exhibiting liquid crystallinity in a solution state. The liquid crystal polymer used in the present invention is preferably a thermotropic liquid crystal polymer, more specifically, a thermotropic liquid crystal polyester or a thermotropic liquid crystal polyester amide.

本発明で絶縁層とする熱可塑性樹脂フィルムの厚さとしては、10μm以上、2000μm以下程度が好ましい。薄過ぎると強度が不足する可能性がある一方で、厚過ぎるとフィルム化が困難となり得る。なお、熱可塑性樹脂フィルムの平面形状や大きさは、完成したLED基板を適用する機器の大きさなどに応じて適宜決定すればよい。   The thickness of the thermoplastic resin film used as the insulating layer in the present invention is preferably about 10 μm or more and 2000 μm or less. If it is too thin, the strength may be insufficient, while if it is too thick, it may be difficult to form a film. In addition, what is necessary is just to determine suitably the planar shape and magnitude | size of a thermoplastic resin film according to the magnitude | size of the apparatus etc. which apply the completed LED board.

上記液晶ポリマーフィルムでは、線膨張係数の調整が可能である。かかる線膨張係数は、フィルム平面に平行な方向で30ppm/℃以下に調整されていることが好ましい。より好ましくは25ppm/℃以下である。なお、液晶ポリマーフィルムの線膨張係数は、分子配向を制御することにより調節することができる。また、フィラーの添加などにより調節してもよい。但しフィラーは液晶ポリマーフィルムの表面平滑性に悪影響を与える場合があるので、線膨張係数は好適には延伸条件により調整する。   In the liquid crystal polymer film, the linear expansion coefficient can be adjusted. Such a linear expansion coefficient is preferably adjusted to 30 ppm / ° C. or less in a direction parallel to the film plane. More preferably, it is 25 ppm / ° C. or less. The linear expansion coefficient of the liquid crystal polymer film can be adjusted by controlling the molecular orientation. Moreover, you may adjust by addition of a filler. However, since the filler may adversely affect the surface smoothness of the liquid crystal polymer film, the linear expansion coefficient is preferably adjusted according to the stretching conditions.

ダイ・ヒートシンク付表面実装型LEDを搭載する場合には、ダイ・ヒートシンクと放熱層とを熱伝導性接着剤で接合するために、熱可塑性樹脂フィルムに穴を開けておくことが好ましい。かかる穴の大きさは、LEDの大きさに合わせて調節すればよい。   When mounting a surface mounted LED with a die heat sink, it is preferable to make a hole in the thermoplastic resin film in order to join the die heat sink and the heat dissipation layer with a heat conductive adhesive. What is necessary is just to adjust the magnitude | size of this hole according to the magnitude | size of LED.

本発明において熱可塑性樹脂フィルムに熱圧着する線状導電材の材質は、回路基板の回路に用いられるものであれば特に制限されない。例えば、銅、銀、金、アルミニウム、鉄、ニッケル、およびこれらを含む合金、さらには炭素繊維などの導電性カーボン素材などを例示することができ、好適には電子回路素材として広く使われている銅または銅合金を用いる。さらに線状導電材は、熱可塑性樹脂フィルムに貼り合わせる前または貼りあわせた後のいずれかに金属メッキ処理したものであってもよい。   In the present invention, the material of the linear conductive material to be thermocompression bonded to the thermoplastic resin film is not particularly limited as long as it is used for the circuit of the circuit board. For example, copper, silver, gold, aluminum, iron, nickel, alloys containing these, and conductive carbon materials such as carbon fibers can be exemplified, and are preferably widely used as electronic circuit materials. Copper or copper alloy is used. Further, the linear conductive material may be metal-plated either before or after being bonded to the thermoplastic resin film.

線状導電材は、本発明のLED基板において回路の役割を有する。よって、直径が20μm以上、5mm以下程度の線でもよいが、好適にはLEDを搭載し易くするために平板状とする。また、LEDの搭載部分を平板状とした線であってもよい。例えば、断面形状が幅0.05〜50mm、厚さ1〜500μm程度の線状金属箔とすることが好ましい。   The linear conductive material has a circuit role in the LED substrate of the present invention. Therefore, although a wire having a diameter of about 20 μm or more and about 5 mm or less may be used, it is preferably formed in a flat plate shape for easy mounting of the LED. Moreover, the line which made the mounting part of LED flat form may be sufficient. For example, it is preferable that the cross-sectional shape is a linear metal foil having a width of 0.05 to 50 mm and a thickness of about 1 to 500 μm.

本発明においては、線状導電材を熱可塑性樹脂フィルムに熱圧着する。熱圧着すべき線状導電材の数は特に制限されないが、好適には2本以上とする。1本のみでは複数のLEDを直列につながざるを得ず、並列につなぐことはできない。また、2本の線状導電材を用いれば、LEDを並列につなぐことができるし、後述するように直列につなぐこともできる。3本以上の線状導電材を用いれば、部分的に直列につないだLED群を、さらに並列につなぐことも可能となる。その結果、直列につながれた各LEDはその品質によらずほぼ均等に発光することができる上に、さらに並列につなぐことによって、一部のLEDに不良が生じた場合にそのLEDを含む直列部分は発光しなくなるが、他の直列部分は発光することができるので、全体的な発光量は低下するが、全消灯のリスクを低減することができる。   In the present invention, the linear conductive material is thermocompression bonded to the thermoplastic resin film. The number of linear conductive materials to be thermocompression bonded is not particularly limited, but is preferably two or more. With only one, a plurality of LEDs must be connected in series, and cannot be connected in parallel. Further, if two linear conductive materials are used, LEDs can be connected in parallel, and can be connected in series as will be described later. If three or more linear conductive materials are used, LED groups partially connected in series can be further connected in parallel. As a result, each LED connected in series can emit light almost evenly regardless of its quality, and in addition, when connected in parallel, some of the LEDs have a defective series part including the LEDs. Ceases to emit light, but the other series portions can emit light, so that the overall light emission amount is reduced, but the risk of total extinction can be reduced.

2本以上の線状導電材を熱圧着する場合には、互いに平行または略平行に並べることが好ましい。2本の線状導電材の間にLEDを搭載することがあり、その場合に線上導電材間の間隔が不均一であると製造の自動化が難しくなることがあり、また、LEDを搭載できなくなる場合があり得る。2本以上の線状導電材を熱圧着する場合における線状導電材間の距離は、搭載するLEDの種類や大きさにもよるが、通常は10μm以上、50mm以下程度とし、より好ましくは20μm以上、5mm以下とする。   When two or more linear conductive materials are thermocompression bonded, they are preferably arranged in parallel or substantially parallel to each other. In some cases, an LED may be mounted between two linear conductive materials. In that case, if the spacing between the conductive materials on the line is not uniform, it may be difficult to automate the manufacturing, and the LED cannot be mounted. There may be cases. When two or more linear conductive materials are thermocompression bonded, the distance between the linear conductive materials depends on the type and size of the LED to be mounted, but is usually about 10 μm or more and 50 mm or less, more preferably 20 μm. More than 5mm.

なお、比較的幅の広い線状導電材を1本貼り合わせた後、その中央部を直線状に切り取ることにより2本以上の線状導電材を形成してもよい。   Note that two or more linear conductive materials may be formed by sticking one linear conductive material having a relatively wide width and then cutting the central portion into a straight line.

線状導電材を液晶ポリマーフィルムに熱圧着する条件は、予備実験などにより適宜決定すればよい。例えば、熱圧着すべき線状導電材を液晶ポリマーフィルム上に配置し、その上下に多孔質PTFEシートなどの離型シートを挿入し、温度:200〜400℃、圧力:0.5〜10MPa、熱圧着時間:3秒〜5分間で熱圧着する。通常、熱硬化性樹脂の硬化には数時間の加熱を要することと比べれば、本発明方法がいかにスピーディーでエネルギー的にも設備拘束時間の点でも有利であるかがうかがえる。   The conditions for thermocompression bonding the linear conductive material to the liquid crystal polymer film may be appropriately determined by a preliminary experiment or the like. For example, a linear conductive material to be thermocompression-bonded is disposed on a liquid crystal polymer film, and a release sheet such as a porous PTFE sheet is inserted above and below it, temperature: 200 to 400 ° C., pressure: 0.5 to 10 MPa, Thermocompression bonding time: Thermocompression bonding in 3 seconds to 5 minutes. In general, it can be seen that the method of the present invention is advantageous in terms of speed and energy and equipment restraint time as compared with the case where heating for several hours is required for curing the thermosetting resin.

線状導電材を熱圧着する際には、線状導電材を熱可塑性樹脂フィルムの面まで圧入することが好ましい。線状導電材と熱可塑性樹脂フィルムとの間に段差がなければ、図4〜6のとおり、ダイ・ヒートシンク付表面実装型LEDをハンダ付けする時における不良や、LEDベアチップを封止する際における樹脂の過剰な広がりをより確実に抑制できる。また、回路を設けた基板が平滑であれば、クリームハンダやレジスト剤などを印刷する場合、その精度が向上する。線状導電材を熱可塑性樹脂フィルムの面まで圧入するには、熱圧着条件を調整すればよい。例えば、熱圧着時の温度や圧力をより高め、熱圧着時間を長くすればよい。   When thermocompression bonding the linear conductive material, it is preferable to press-fit the linear conductive material to the surface of the thermoplastic resin film. If there is no step between the linear conductive material and the thermoplastic resin film, as shown in FIGS. 4 to 6, when soldering the surface mounted LED with die / heat sink, or when sealing the LED bare chip Excessive spread of the resin can be more reliably suppressed. Moreover, if the board | substrate which provided the circuit is smooth, when printing cream solder, a resist agent, etc., the precision will improve. In order to press-fit the linear conductive material to the surface of the thermoplastic resin film, the thermocompression bonding conditions may be adjusted. For example, the temperature and pressure at the time of thermocompression bonding may be increased to extend the thermocompression bonding time.

なお、本発明においては、熱可塑性樹脂フィルムの両面に線状導電材を熱圧着し、スルーホールや導電接合法などにより両面の回路を結合することも可能である。   In the present invention, a linear conductive material can be thermocompression bonded to both surfaces of a thermoplastic resin film, and the circuits on both surfaces can be joined by a through hole or a conductive bonding method.

(2) 線状導電材の断線工程
本発明では、必要に応じて、熱可塑性樹脂フィルムに熱圧着した線状導電材を断線する。例えば図7に示すように2本の線状導電材の間にLEDを並列に搭載する場合には、線状導電材を断線する必要はない。しかし、1本の線状導電材の上に複数のLEDを直列に搭載する場合には、LEDを搭載すべき部分を断線する必要がある。
(2) Disconnection process of linear conductive material In this invention, the linear conductive material thermocompression-bonded to the thermoplastic resin film is disconnected as needed. For example, as shown in FIG. 7, when LEDs are mounted in parallel between two linear conductive materials, it is not necessary to disconnect the linear conductive material. However, when mounting a plurality of LEDs in series on a single linear conductive material, it is necessary to disconnect the portion where the LEDs are to be mounted.

また、図8に示すように、2本の線状導電材の間に複数のLEDを搭載し、これらLEDを直列につなぐには、LEDが搭載されるべき部分の間を交互に断線すればよい。   Moreover, as shown in FIG. 8, in order to mount a plurality of LEDs between two linear conductive materials and connect the LEDs in series, the portions where the LEDs are to be mounted are alternately disconnected. Good.

少なくとも3本の線状導電材を熱圧着した場合、LEDを直列につないだ部分を必要に応じてさらに並列につないでもよい。即ち、1本の線状導電材の上に複数のLEDを直列に搭載する場合には、その線状導電材をLEDの間またはLEDを搭載すべき部分の間で適宜断線し、両端が断線した部分を、それを挟むように配置した2本の線状導電材と結合させればよい。また、2本の線状導電材の間にLEDを直列に搭載する場合には、図9や図10に示すように、LEDと断線部分との間で、その2本の線状導電材を挟むように配置した2本の線状導電材と結合させればよい。   When at least three linear conductive materials are thermocompression-bonded, a portion where LEDs are connected in series may be further connected in parallel as necessary. That is, when a plurality of LEDs are mounted in series on one linear conductive material, the linear conductive material is appropriately disconnected between the LEDs or between the portions where the LEDs are to be mounted, and both ends are disconnected. What is necessary is just to couple | bond this part with the two linear electrically-conductive materials arrange | positioned so that it may be pinched | interposed. In addition, when an LED is mounted in series between two linear conductive materials, as shown in FIGS. 9 and 10, the two linear conductive materials are connected between the LED and the disconnected portion. What is necessary is just to combine with two linear electrically-conductive materials arrange | positioned so that it may pinch | interpose.

線状導電材の断線は、その場所にLEDを搭載する場合にはLEDの大きさにある程度合わせる必要がある。一方、断線箇所にLEDを搭載しない場合には、断線部分の大きさは特に制限されない。例えば、線状導電材と共に熱可塑性樹脂フィルム、さらにはこれらに加えて放熱層を打ち抜く或いは切り抜くなどの手法で、断線と放熱用穴の形成を同時に行ってもよい。   The disconnection of the linear conductive material needs to be adjusted to some extent to the size of the LED when the LED is mounted in that place. On the other hand, in the case where the LED is not mounted at the disconnection location, the size of the disconnection portion is not particularly limited. For example, the disconnection and the heat radiation hole may be formed at the same time by a method such as punching out or cutting out the thermoplastic resin film together with the linear conductive material, and in addition to these, the heat radiation layer.

複数の線状導電材をつなぐには、LEDを用いるほか、必要に応じて抵抗器など他のデバイスを用いてもよいし、単なる電線を用いてもよい。   In order to connect a plurality of linear conductive materials, in addition to using LEDs, other devices such as resistors may be used as needed, or simple electric wires may be used.

なお、線状導電材の断線は、LEDを搭載する前に行ってもよいし、搭載後に行ってもよい。また、線状導電材の断線は、放熱層を設ける前に行ってもよいし、放熱層の形成後に行ってもよい。   The disconnection of the linear conductive material may be performed before mounting the LED or after mounting. The disconnection of the linear conductive material may be performed before the heat dissipation layer is provided, or may be performed after the heat dissipation layer is formed.

以上のとおり、線状の導電材を平行に熱圧着すれば、容易に直列または並列、或いは直列・並列併用のLED基板を製造することが可能になる。   As described above, if linear conductive materials are thermocompression bonded in parallel, it is possible to easily manufacture an LED substrate in series or parallel, or in combination of series and parallel.

(3) 放熱層の形成工程
熱可塑性樹脂フィルムの線状導電材を熱圧着した側または熱圧着すべき側と反対の面には、放熱層を設けることが好ましい。LED基板においては、発光により生じる熱を低減することが重要である。
(3) Formation process of heat dissipation layer It is preferable to provide a heat dissipation layer on the side opposite to the side where the linear conductive material of the thermoplastic resin film is subjected to thermocompression bonding or the side to be thermocompression bonded. In the LED substrate, it is important to reduce heat generated by light emission.

放熱層を形成するための材質は、熱伝導性に優れるものであれば特に制限されないが、例えば銅、銀、金、アルミニウム、鉄、ニッケル、コバルト、およびこれらを含む合金、さらにこれらを亜鉛などによりメッキしたもの、その他にアルミナなどのセラミックスなどを用いることができる。   The material for forming the heat-dissipating layer is not particularly limited as long as it has excellent thermal conductivity. For example, copper, silver, gold, aluminum, iron, nickel, cobalt, and alloys containing them, and further zinc are used. In addition to the above, ceramics such as alumina can be used.

放熱層の厚さは特に制限されないが、例えば5μm以上程度とすることができる。放熱層が薄過ぎるとフィルム強度が低下して貼り合わせ作業が困難になる場合があり得る。その一方で、厚さの上限は特に制限されない。また、放熱層はLEDを搭載した部分または搭載すべき部分の反対側にのみ形成することもできるが、工程が複雑になることから、熱可塑性樹脂フィルムの裏面全部に形成することが好ましい。また、必要に応じてLED搭載面の光取り出しを妨げない部分にも放熱層を貼り合わせることも可能であり、さらに、放熱層を熱可塑性樹脂フィルムよりも大きくしてもよい。   The thickness of the heat dissipation layer is not particularly limited, but can be, for example, about 5 μm or more. If the heat dissipation layer is too thin, the film strength may be reduced and the bonding operation may be difficult. On the other hand, the upper limit of the thickness is not particularly limited. Moreover, although a heat-radiating layer can also be formed only in the part which mounts LED, or the other side of the part which should be mounted, since a process becomes complicated, it is preferable to form in the whole back surface of a thermoplastic resin film. Further, if necessary, a heat dissipation layer can be bonded to a portion of the LED mounting surface that does not hinder light extraction, and the heat dissipation layer may be made larger than the thermoplastic resin film.

放熱層は、接着剤を用いて熱可塑性樹脂フィルムに貼り付けてもよい。但し、接着剤の厚さの分だけ放熱効果が低下することや、接着剤の塗布や乾燥などが必要となるという不利な点がある。よって放熱層は、熱可塑性フィルムの特性を活かして熱圧着することが好ましい。なお、放熱層の熱圧着条件は、線状導電材の熱圧着条件と同様とすることができる。   The heat dissipation layer may be attached to the thermoplastic resin film using an adhesive. However, there are disadvantages that the heat dissipation effect is reduced by the thickness of the adhesive, and that application and drying of the adhesive are required. Therefore, it is preferable that the heat radiation layer is thermocompression-bonded taking advantage of the properties of the thermoplastic film. In addition, the thermocompression bonding conditions of the heat dissipation layer can be the same as the thermocompression bonding conditions of the linear conductive material.

放熱層は線状導電材の熱圧着の前に形成してもよいし、熱圧着後に形成してもよい。或いは、線状導電材の熱圧着と同時に行ってもよい。但しLEDの保護の観点から、少なくともLEDの搭載前に放熱層を形成することが好ましい。   The heat dissipation layer may be formed before thermocompression bonding of the linear conductive material, or may be formed after thermocompression bonding. Or you may carry out simultaneously with the thermocompression bonding of a linear electrically-conductive material. However, from the viewpoint of protecting the LED, it is preferable to form a heat dissipation layer at least before mounting the LED.

なお、放熱層が設計上の理由から放熱に要する面積を十分に確保することができない場合には、熱可塑性フィルムに貼り合わせた放熱層を一次放熱層とし、それをさらに別の放熱用部材に結合させることで、放熱能力の補完が可能となる。例えば、一次放熱層に放熱フィンを貼り合わせたり、或いはLED付装置であれば、一次放熱層に熱伝導性の良い構成部材を結合させることによって、LED付装置全体を放熱材として利用するなどの手法を用いることができる。   If the heat dissipation layer cannot secure a sufficient area for heat dissipation due to design reasons, the heat dissipation layer bonded to the thermoplastic film is used as the primary heat dissipation layer, which is further used as another heat dissipation member. By combining them, it is possible to supplement the heat dissipation capability. For example, if the heat dissipation fin is bonded to the primary heat dissipation layer, or if it is a device with LED, the entire device with LED is used as a heat dissipation material by combining a component with good thermal conductivity to the primary heat dissipation layer. Techniques can be used.

(4) LEDの搭載工程
本発明では、少なくとも2個のLEDを搭載する。回路上に1個のLEDを搭載するのみでは複雑な工程は必要ないが、本発明では、複数のLEDが搭載された基板を簡便かつ効率的に製造することを目的としている。
(4) LED mounting step In the present invention, at least two LEDs are mounted. A complicated process is not required only by mounting one LED on a circuit, but the present invention aims to easily and efficiently manufacture a substrate on which a plurality of LEDs are mounted.

LEDの搭載方法は、従来公知の方法を用いればよい。即ち、ダイ・ヒートシンク付表面実装型LEDの場合、熱可塑性樹脂フィルムに設けた穴にダイ・ヒートシンクを位置させて、裏面の放熱層とダイ・ヒートシンクをハンダなどの高熱伝導性材料により接合し、電極はそれぞれ線状導電材にハンダ付けする。LEDベアチップの場合は、例えばチップを2本の線状導電材の一方にダイボンドし、チップともう一方の線状導電材とを金線などによりワイアボンドする。但し、LEDを搭載する向きは目的に合わせて選択する。   A conventionally known method may be used for mounting the LED. That is, in the case of a surface mount type LED with a die heat sink, the die heat sink is positioned in a hole provided in the thermoplastic resin film, and the heat radiation layer on the back surface and the die heat sink are joined by a highly heat conductive material such as solder, Each electrode is soldered to a linear conductive material. In the case of the LED bare chip, for example, the chip is die-bonded to one of the two linear conductive materials, and the chip and the other linear conductive material are wire-bonded with a gold wire or the like. However, the direction in which the LED is mounted is selected according to the purpose.

(5) 絶縁工程
本発明においては、熱可塑性樹脂に線状導電材を熱圧着し且つLEDを搭載した後には、回路面を外部から保護するために絶縁することが好ましい。かかる絶縁は、一般的な絶縁塗料や光反射性の高い保護レジストを塗布するなどにより行うことができる。もちろん、その他にも一般的に知られている絶縁方法を用いることも可能である。また、回路面にさらに熱可塑性樹脂フィルムを熱圧着してもよい。
(5) Insulating step In the present invention, after the linear conductive material is thermocompression bonded to the thermoplastic resin and the LED is mounted, it is preferable to insulate the circuit surface from the outside. Such insulation can be performed by applying a general insulating paint or a highly light-reflective protective resist. Of course, other generally known insulation methods can also be used. Further, a thermoplastic resin film may be further thermocompression bonded to the circuit surface.

(6) 光反射層の形成工程
本発明においては、熱可塑性樹脂フィルムの線状導電材を熱圧着した側の面において、その最外面に光反射層を形成することが好ましい。熱可塑性樹脂フィルムには、光透過性の低いものも存在するが、一般的には透明または半透明である。よって、LEDから発せられた光はある程度反射するものの、一部は熱可塑性樹脂フィルムを透過しまたは吸収されてしまう。しかし光反射層を形成すれば、LEDから発せられた光を有効に使うことができる。
(6) Formation Step of Light Reflecting Layer In the present invention, it is preferable to form the light reflecting layer on the outermost surface of the thermoplastic resin film on the side where the linear conductive material is thermocompression bonded. Some thermoplastic resin films have low light transmittance, but are generally transparent or translucent. Therefore, although the light emitted from the LED reflects to some extent, a part of the light is transmitted or absorbed by the thermoplastic resin film. However, if the light reflecting layer is formed, the light emitted from the LED can be used effectively.

光反射層の形成手段は特に制限されず、従来技術を適用すればよいが、好適にはLEDを搭載した部分以外または搭載すべき部分以外を多孔質樹脂膜により被覆することにより行う。多孔質の樹脂膜で被覆すれば、光を効果的に乱反射させることが可能になる。また、樹脂膜は軽量で且つフレキシブルであるという長所もある。   The means for forming the light reflecting layer is not particularly limited, and a conventional technique may be applied. However, it is preferably performed by covering a portion other than the portion where the LED is mounted or a portion other than the portion where the LED is mounted with a porous resin film. If it coat | covers with a porous resin film, it will become possible to diffusely reflect light effectively. In addition, the resin film has an advantage of being lightweight and flexible.

多孔質樹脂膜の材質としては、例えばPTFE(ポリテトラフルオロエチレン)、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)などを挙げることができる。また、多孔質樹脂膜の孔径は特に制限されないが、直径の平均値で10μm以下程度とすることができる。本発明の光反射層としては、特に多孔質PTFEフィルムが好適である。PTFEは抜群の耐光性を示す上に、光劣化にも強い。   Examples of the material for the porous resin film include PTFE (polytetrafluoroethylene), PET (polyethylene terephthalate), and PP (polypropylene). The pore diameter of the porous resin film is not particularly limited, but can be about 10 μm or less in terms of an average value of the diameters. As the light reflecting layer of the present invention, a porous PTFE film is particularly suitable. PTFE exhibits excellent light resistance and is also resistant to light degradation.

被覆する多孔質PTFEは、PTFE粉末をシートに成形してさらに一軸方向または二軸方向に延伸して多孔質にするなどすることにより製造できる。また、多孔質PETフィルムや多孔質PPフィルムは、光反射材として市販されているものがあるので、それを使用すればよい。   The porous PTFE to be coated can be produced by forming a PTFE powder into a sheet and further stretching it in a uniaxial direction or biaxial direction to make it porous. Moreover, since there exists what is marketed as a light reflection material, a porous PET film and porous PP film should just be used.

多孔質樹脂膜の厚さは適宜調整すればよいが、10μm以上、2000μm以下程度とすることが好ましい。10μm未満であると光反射効率が低下するおそれがある一方で、2000μmを超えるとコストが高くなる場合がある。   The thickness of the porous resin film may be adjusted as appropriate, but is preferably about 10 μm or more and 2000 μm or less. If the thickness is less than 10 μm, the light reflection efficiency may be reduced, while if it exceeds 2000 μm, the cost may increase.

多孔質樹脂膜による被覆の手段は特に制限されず、従来技術を用いることができる。例えば、多孔質樹脂膜の中には熱圧着のみでは熱可塑性樹脂フィルムに接着し難いものがあるので、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、BT樹脂からなる接着剤を用いて熱可塑性樹脂フィルムに貼り付ければよい。また、粘着剤を用いて貼り付けることも可能である。その他、別途多孔質樹脂膜に上記接着剤を含浸させた接着シートを用い、反射層である多孔質樹脂膜と熱可塑性樹脂フィルムを接着してもよい。かかる接着剤付き光反射フィルムとしては、ジャパンゴアテックス社のFLEXIBOND白色光反射フィルムなど市販されているものがある。かかる接着剤付きフィルムを用いれば、多孔質樹脂膜と熱可塑性樹脂フィルムとを容易に接着することができる。   The means for coating with a porous resin film is not particularly limited, and conventional techniques can be used. For example, since some porous resin films are difficult to adhere to a thermoplastic resin film only by thermocompression bonding, an adhesive composed of an epoxy resin, a phenol resin, a polyimide resin, or a BT resin is used to form a thermoplastic resin film. Just paste. Moreover, it is also possible to stick using an adhesive. In addition, an adhesive sheet obtained by impregnating the above adhesive with a porous resin film may be used to bond the porous resin film serving as the reflective layer and the thermoplastic resin film. As such a light reflective film with an adhesive, there are commercially available films such as FLEXIBOND white light reflective film manufactured by Japan Gore-Tex. If such a film with an adhesive is used, the porous resin film and the thermoplastic resin film can be easily bonded.

光反射層の形成は、線状導電材の熱圧着後であれば特に制限なく行うことができる。放熱用穴の形成の前に光反射層を形成すると、光反射層を除いて放熱用穴を形成することが難しく、また、放熱用穴を反射層にまで設けると反射効率が低下する場合がある。但し、放熱効率を高めるために、反射層にも積極的に放熱用穴を開ける場合もある。   The light reflecting layer can be formed without particular limitation as long as it is after thermocompression bonding of the linear conductive material. If the light reflecting layer is formed before the heat radiating hole is formed, it is difficult to form the heat radiating hole except for the light reflecting layer, and if the heat radiating hole is provided up to the reflecting layer, the reflection efficiency may be lowered. is there. However, in order to increase the heat dissipation efficiency, a heat dissipation hole may be actively formed in the reflective layer.

(7) 放熱用貫通穴の形成工程
本発明のLED基板には、熱可塑性樹脂フィルム、線状導電材および放熱層に放熱用の貫通穴を設けることが好ましい。LEDは発光により熱を発し、かかる熱により発光機能が低下する。近年ではLEDの高輝度化やハイパワー化がより一層進み、LED基板の放熱性が重要になってきている。また、基板の長寿命化のためにも放熱効率を高めることが望ましい。
(7) Step of forming heat radiating through hole In the LED substrate of the present invention, it is preferable to provide a heat radiating through hole in the thermoplastic resin film, the linear conductive material and the heat radiating layer. The LED emits heat by light emission, and the light emission function is reduced by the heat. In recent years, higher brightness and higher power of LEDs have progressed further, and the heat dissipation of LED substrates has become important. It is also desirable to increase the heat dissipation efficiency in order to extend the life of the substrate.

放熱用の穴は、熱可塑性樹脂フィルム、線状導電材および放熱層を貫通するものであることが好ましい。通気性を良好にしてLEDの発熱により生じた熱を外部へ放散するためである。また、穴の位置は、LEDからの熱を効率的に放散するために、LED近辺に設けることが好ましい。   It is preferable that the hole for heat dissipation penetrates the thermoplastic resin film, the linear conductive material, and the heat dissipation layer. This is to improve the air permeability and dissipate the heat generated by the heat generation of the LED to the outside. Moreover, in order to dissipate the heat from LED efficiently, the position of the hole is preferably provided in the vicinity of the LED.

また、ダイ・ヒートシンク付表面実装型LEDの場合には、熱可塑性樹脂フィルムのみに穴を開け、ダイ・ヒートシンクと放熱層とを高熱伝導性材料により接合することが好ましい。かかる態様によって、放熱効率がより一層高まる。   In the case of a surface mount type LED with a die heat sink, it is preferable to make a hole only in the thermoplastic resin film and join the die heat sink and the heat dissipation layer with a high thermal conductivity material. By this aspect, the heat dissipation efficiency is further increased.

放熱用貫通穴の大きさや形状は特に制限されないが、直径でいえば50μm以上、50mm以下とすることが好ましい。但し、貫通穴の数や大きさは、適宜調整する必要がある。貫通穴の数が多過ぎたり大き過ぎたりすると、基板強度が低下するばかりでなく、放熱効果が低下するおそれがあり得るので、LEDの種類や数も考慮して貫通穴の大きさや数、位置などを決定する。また、放熱用穴が線状導電材の断線手段を兼ねる場合には、放熱用穴の大きさを線状導電材の幅以上とする必要がある。一方、放熱用穴を線状導電材の断線箇所以外に設ける場合には、放熱用穴の大きさは断線のおそれがない程度にしなければならない。   The size and shape of the heat radiating through hole are not particularly limited, but are preferably 50 μm or more and 50 mm or less in terms of diameter. However, the number and size of the through holes need to be adjusted as appropriate. If the number of through holes is too large or too large, not only will the substrate strength be reduced, but the heat dissipation effect may be reduced, so the size, number, and position of the through holes in consideration of the type and number of LEDs. Etc. Moreover, when the heat radiating hole also serves as a disconnection means for the linear conductive material, the size of the heat radiating hole needs to be equal to or larger than the width of the linear conductive material. On the other hand, in the case where the heat radiating hole is provided at a place other than the disconnection portion of the linear conductive material, the size of the heat radiating hole must be set to such a degree that there is no fear of disconnection.

(8) LEDの封止工程
LEDベアチップを用いる場合には、線状導電材に搭載した後、透明樹脂により封止することが好ましい。LEDベアチップを用いた場合には、封止は重要である。
(8) LED sealing process When an LED bare chip is used, it is preferably sealed with a transparent resin after being mounted on a linear conductive material. Sealing is important when using LED bare chips.

LEDの封止手段は特に制限されず、従来技術を適用すればよい。例えば、封止用の樹脂としては、エポキシ樹脂やシリコン樹脂からなる透明または半透明の液状封止樹脂から適宜選択して用いることができる。   The LED sealing means is not particularly limited, and a conventional technique may be applied. For example, as the sealing resin, a transparent or translucent liquid sealing resin made of an epoxy resin or a silicon resin can be appropriately selected and used.

従来、平面状の基板を液状樹脂で封止する場合には、樹脂の粘度や揺変性を調整したり、ダム材を用いるといった手法により、封止箇所からの樹脂の広がりを抑えていた。しかし樹脂の粘度を高くすると、封止樹脂中に気泡が残り易くなるなど封止作業が難しくなる。また、ダム材を用いても、加熱硬化する際に透明樹脂の粘度が低下して基板と回路との段差から樹脂が流れ出てしまう場合がある。よって本発明では、線状導電材を熱可塑性樹脂フィルムの面まで圧入することが好ましい。線状導電材と熱可塑性樹脂フィルムとの段差を無くすことにより、封止樹脂の過剰な広がりを抑制することができる(図3と図6を参照)。   Conventionally, when a flat substrate is sealed with a liquid resin, the spread of the resin from the sealing portion has been suppressed by adjusting the viscosity or thixotropic property of the resin or using a dam material. However, when the viscosity of the resin is increased, sealing work becomes difficult, for example, bubbles are likely to remain in the sealing resin. Even when a dam material is used, the viscosity of the transparent resin may decrease during heat curing, and the resin may flow out of the step between the substrate and the circuit. Therefore, in the present invention, it is preferable to press-fit the linear conductive material to the surface of the thermoplastic resin film. By eliminating the step between the linear conductive material and the thermoplastic resin film, excessive spreading of the sealing resin can be suppressed (see FIGS. 3 and 6).

また、反射層として被覆した多孔質樹脂膜をそのままダム材として用いることが好ましい。多孔質樹脂膜は優れた光反射率を有するので、本発明に係るLED基板の発光効率が高まる。また、封止樹脂との親和性が低く封止樹脂をはじくような多孔質樹脂膜を選択することにより、図11に示すように凸レンズ状の透明樹脂形状が得ることも可能になる。なお、ダム材の高さや封止樹脂量を調整することによって、目的に応じて凸レンズ状以外の形状を形成することも可能である。   Moreover, it is preferable to use a porous resin film coated as a reflective layer as it is as a dam material. Since the porous resin film has an excellent light reflectance, the luminous efficiency of the LED substrate according to the present invention is increased. Further, by selecting a porous resin film that has a low affinity with the sealing resin and repels the sealing resin, it becomes possible to obtain a convex lens-like transparent resin shape as shown in FIG. In addition, it is also possible to form shapes other than a convex lens shape according to the objective by adjusting the height of a dam material and the amount of sealing resin.

通常、LED基板を作製する場合には、LEDを別途作製した後に回路上に搭載するので、比較的効率が悪い。しかし本発明でLEDベアチップを搭載する場合、線状導電材上にLEDベアチップを直接ダイボンドし、さらにワイアボンドした後にLEDを封止することが可能である。即ち、本発明によれば、回路の形成からLEDの搭載といった一連の作業により効率良くLED基板を連続的に作製することができる。   Usually, when an LED substrate is manufactured, since the LED is separately manufactured and then mounted on a circuit, the efficiency is relatively low. However, when the LED bare chip is mounted in the present invention, the LED bare chip can be directly die-bonded on the linear conductive material, and then the LED can be sealed after wire bonding. That is, according to the present invention, an LED substrate can be continuously produced efficiently by a series of operations from circuit formation to LED mounting.

本発明方法によれば、複数のLEDが配列された基板を、エッチング工程なしで、簡便かつ連続的に製造することができる。現在のところ、LED照明やLEDバックライトが一般に普及しきれないのは、基板の製造コストが高いことに一因がある。それに対して本発明によれば、エッチング工程なしで、例えば、ロール状の液晶ポリマーフィルムにロール状の導電性線材を連続的に貼り合わせ、製品であるLED用回路基板もロール状で得ることが可能になる。かかる態様は、一般的にロールtoロールといわれ、効率が高いため生産コストを大幅に低減できる、大量生産に適する連続製造方法である。もちろん、本発明方法にロールtoロールを適用しない場合であっても、本発明方法は十分に高効率で低コストである。よって本発明は、発光効率に優れ長寿命であり、環境に優しい光源であるLEDの大幅な普及に寄与できるものと思われる。   According to the method of the present invention, a substrate on which a plurality of LEDs are arranged can be easily and continuously manufactured without an etching step. At present, the reason why LED lighting and LED backlights cannot be widely used is due to the high manufacturing cost of the substrate. On the other hand, according to the present invention, for example, a roll-shaped conductive wire can be continuously bonded to a roll-shaped liquid crystal polymer film without an etching step, and a product LED circuit board can be obtained in a roll-shape. It becomes possible. Such an embodiment is generally referred to as a roll-to-roll, and is a continuous production method suitable for mass production that can greatly reduce production costs due to high efficiency. Of course, even when roll-to-roll is not applied to the method of the present invention, the method of the present invention is sufficiently efficient and low cost. Therefore, it is considered that the present invention can contribute to the widespread use of LEDs which are excellent in luminous efficiency and have a long life and are environmentally friendly light sources.

また、本発明方法の好ましい態様により製造されたLED基板は、発光効率や放熱効率に優れ、高輝度で長寿命である。よって本発明に係るLED基板は、液晶ディスプレイのバックライト、広告宣伝などに用いるパネル用バックライト、住宅照明、自動車における各種照明、機器照明、アミューズメント装置用光源、航空機や宇宙開発や鉄道関連の照明、サインボードや街灯などにも広く利用できるものと期待できる。   Moreover, the LED board manufactured by the preferable aspect of this invention method is excellent in luminous efficiency and heat dissipation efficiency, and is high-intensity and long life. Therefore, the LED substrate according to the present invention is a backlight for a liquid crystal display, a panel backlight used for advertising, etc., house lighting, various types of lighting in automobiles, equipment lighting, light sources for amusement devices, aircraft, space development and railway related lighting. It can be expected to be widely used for sign boards and street lamps.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

実施例1 本発明に係るLED基板の製造
(1) 線状導電材の熱圧着
25mm×300mm、厚さ60μmの液晶ポリマーフィルム(ジャパンゴアテックス社製,製品名「BIAC BC060W−NT」)上に、幅2mm、厚さ18μmの線状銅箔(古河サーキットフォイル社製,製品名「GTS−MP−18」)を2本、4mm間隔で平行に並べた。その上下に離型シートとして多孔質PTFEシートを配置し、小型真空プレス機(井本製作所社製)を使って、温度300℃、圧力1Mpaで3分間加圧加熱し、線状銅箔を液晶ポリマーフィルムの面まで圧入した。線状銅箔を熱圧着した液晶ポリマーフィルムは、冷却した後に取り出した。
Example 1 Production of LED substrate according to the present invention (1) Thermocompression bonding of linear conductive material On a liquid crystal polymer film (product name “BIAC BC060W-NT” manufactured by Japan Gore-Tex Co., Ltd.) having a thickness of 25 mm × 300 mm and a thickness of 60 μm Two linear copper foils having a width of 2 mm and a thickness of 18 μm (manufactured by Furukawa Circuit Foil, product name “GTS-MP-18”) were arranged in parallel at intervals of 4 mm. A porous PTFE sheet is placed above and below it as a release sheet, and heated using a small vacuum press (manufactured by Imoto Seisakusho Co., Ltd.) at a temperature of 300 ° C. and a pressure of 1 Mpa for 3 minutes. Press fit to the surface of the film. The liquid crystal polymer film obtained by thermocompression bonding the linear copper foil was taken out after cooling.

2本の線状銅箔の間に、幅2.5mm、長さ6mmの穴を30mm間隔で9個開けた。   Nine holes having a width of 2.5 mm and a length of 6 mm were formed at intervals of 30 mm between the two linear copper foils.

(2) 放熱層の形成
液晶ポリマーフィルムの裏側全面に、厚さ1.2mmの溶融亜鉛メッキ鋼板を上記(1)の条件と同様に熱圧着した。
(2) Formation of heat dissipation layer A hot-dip galvanized steel sheet having a thickness of 1.2 mm was thermocompression bonded over the entire back side of the liquid crystal polymer film in the same manner as in the above condition (1).

(3) LEDの搭載
上記(1)で空けた穴の部分にダイ・ヒートシンクがくる様な位置関係で、白色チップタイプLED(日亜化学社製,製品名「NS6W083AT」)のアノードとカソードを各線状銅箔にハンダ付けし、また、放熱層である溶融亜鉛メッキ鋼板とダイ・ヒートシンクとを先に開けておいたフィルム穴を通してハンダ付けした。
(3) Mounting of LED The anode and cathode of the white chip type LED (product name “NS6W083AT”) manufactured by Nichia Chemical Co., Ltd. are positioned so that the die / heat sink is placed in the hole formed in (1) above. Soldering was performed on each linear copper foil, and soldering was performed through a film hole in which a hot-dip galvanized steel sheet and a die heat sink, which were heat release layers, were previously opened.

(4) 絶縁
線状銅箔の露出部分とハンダ付け部分とにプリント基板用絶縁塗料(日本曹達社製、製品名「BC1000」)を塗布することにより環境絶縁した。
(4) Insulation Environmental insulation was performed by applying an insulating paint for printed circuit boards (product name “BC1000” manufactured by Nippon Soda Co., Ltd.) to the exposed and soldered portions of the linear copper foil.

以上の結果、軽量且つ放熱性の極めて良好な連続LED基板を、エッチング工程無しで生産性よく得られることが確認できた。   As a result, it was confirmed that a continuous LED substrate having a light weight and extremely good heat dissipation can be obtained with high productivity without an etching process.

実施例2 本発明に係るLED基板の製造
(1) 線状導電材の熱圧着
幅10mm×長さ120mm、厚さ60μmの液晶ポリマーフィルム(ジャパンゴアテックス株式会社製、「BIAC BC060W−NT」)の片面に、幅1.0mm、厚さ18μmの線状銅箔(古川サーキットフォイル社製、「GTS−MP−18」)を2本、100μm間隔で平行に並べた。その上下に離型シートとして多孔質PTFEを配置し、小型真空プレス機(井本製作所社製)を使って温度300℃、圧力1Mpaで3分間加圧加熱し、線状銅箔を液晶ポリマーフィルムの面まで圧入し、冷却後取り出した。線状銅箔の表面には、さらに厚さ1μmの電解銀メッキを施した。
Example 2 Production of LED Substrate According to the Present Invention (1) Thermocompression Bonding of Linear Conductive Material Liquid Crystalline Polymer Film 10 mm Width × 120 mm Length and 60 μm Thickness (“BIAC BC060W-NT” manufactured by Japan Gore-Tex Co., Ltd.) Two linear copper foils (manufactured by Furukawa Circuit Foil, “GTS-MP-18”) having a width of 1.0 mm and a thickness of 18 μm were arranged in parallel at an interval of 100 μm. Porous PTFE is disposed above and below it as a release sheet, and heated using a small vacuum press machine (manufactured by Imoto Seisakusho Co., Ltd.) at a temperature of 300 ° C. and a pressure of 1 Mpa for 3 minutes. It was press-fitted to the surface and taken out after cooling. The surface of the linear copper foil was further subjected to electrolytic silver plating with a thickness of 1 μm.

(2) 放熱層の形成
上記(1)の液晶ポリマーフィルムと同様のフィルムにおいて、上記2本の線状銅箔上に相当する位置に、LEDベアチップ搭載予定位置として、30mm間隔で直径3mmの穴を3箇所開けた。当該液晶ポリマーフィルムを、上記(1)の線状銅箔を圧着した面に重ね、さらにその裏面に同サイズの厚さ3mmのアルミニウム板を重ね、上記(1)と同様の条件で加熱加圧することにより一度に貼り合わせた。
(2) Formation of heat dissipation layer In a film similar to the liquid crystal polymer film of (1) above, holes having a diameter of 3 mm at intervals of 30 mm as positions where LED bare chips are to be mounted at positions corresponding to the two linear copper foils. Was opened in three places. The liquid crystal polymer film is overlaid on the surface of the above-mentioned (1) linear copper foil, and an aluminum plate having the same size of 3 mm is further laminated on the back surface, and heated and pressurized under the same conditions as in (1) above. It stuck together at once.

(3) 光反射層兼ダム材
接着層付き多孔質PTFEシート(ジャパンゴアテックス社製、FLEXIBOND白色光反射フィルム)において、LED搭載箇所に相当する位置に直径3mmの穴を開け、この穴を線状銅箔上の穴に合わせて上記(2)のフィルムと貼り合わせた。
(3) Light-reflective layer / dam material In the porous PTFE sheet with adhesive layer (Japan Gore-Tex, FLEXIBOND white light-reflective film), a hole with a diameter of 3 mm is made at the position corresponding to the LED mounting location, and this hole is lined The film of the above (2) was bonded to the hole on the copper foil.

(4) LEDの搭載
上記多孔質PTFEシートの穴内に位置する2本の線状銅箔の一方に、LEDベアチップ(クリー社製,C527−MB−290)を各穴に一つずつ銀ペーストでダイボンドし、各ベアチップから他方の線状銅箔上に金線でワイアボンドした。
(4) Mounting LED On one of the two linear copper foils located in the hole of the porous PTFE sheet, an LED bare chip (CREE, C527-MB-290) is silver paste one by one in each hole. Die bonding was performed, and wire bonding was performed from each bare chip onto the other linear copper foil with a gold wire.

(5) LEDの封止
LEDベアチップが搭載された多孔質PTFEシート穴部に、透明エポキシ樹脂(稲畑産業社製,「主剤:HL2000A、硬化剤:HL2000B2」)を多孔質PTFEシート表面からやや盛り上がるまで流し込み、水平に保ちながら120℃で60分間、次いで150℃で4時間加熱硬化させた。その結果得られた封止形状は、凸レンズ状のバランスの良いものであった。
(5) LED sealing Transparent epoxy resin (manufactured by Inabata Sangyo Co., Ltd., “main agent: HL2000A, curing agent: HL2000B2”) slightly rises from the surface of the porous PTFE sheet in the hole of the porous PTFE sheet on which the LED bare chip is mounted. And kept at a horizontal level at 120 ° C. for 60 minutes and then at 150 ° C. for 4 hours. The resulting sealing shape was a convex lens with a good balance.

以上のとおり、幅10mmで帯状の回路基板上に30mm間隔でLEDが並列に搭載され、裏面に放熱層が形成され、凸レンズ状の透明樹脂で封止されたLED基板が容易に製造できた。   As described above, an LED substrate in which LEDs are mounted in parallel at intervals of 30 mm on a belt-like circuit board having a width of 10 mm, a heat dissipation layer is formed on the back surface, and sealed with a convex lens-like transparent resin was easily manufactured.

実施例3 本発明に係るLED基板の製造
(1) 線状導電材の熱圧着
25mm×300mm、厚さ60μmの液晶ポリマーフィルム(ジャパンゴアテックス社製,製品名「BIAC BC060W−NT」)上に、幅1.0mm、厚さ18μmの線状銅箔を2本、1.0mm間隔で平行に並べた。その上下に離型シートとして多孔質PTFEを配置し、小型真空プレス機(井本製作所社製)を使って、温度300℃、圧力1Mpaで1分間加圧加熱し、線状銅箔を熱圧着した液晶ポリマーフィルムは、常温まで冷却した後に取り出した。
Example 3 Production of LED substrate according to the present invention (1) Thermocompression bonding of linear conductive material On a liquid crystal polymer film (product name “BIAC BC060W-NT” manufactured by Japan Gore-Tex Co., Ltd.) having a thickness of 25 mm × 300 mm and a thickness of 60 μm Two linear copper foils having a width of 1.0 mm and a thickness of 18 μm were arranged in parallel at intervals of 1.0 mm. Porous PTFE was placed as a release sheet above and below it, and was heated under pressure at a temperature of 300 ° C. and a pressure of 1 Mpa for 1 minute using a small vacuum press (manufactured by Imoto Seisakusho), and the linear copper foil was thermocompression bonded. The liquid crystal polymer film was taken out after cooling to room temperature.

(2) 直列構造の形成
2本の線状銅箔を、60mm間隔で直径1.1mmの穴を基板ごと開けることにより断線した。2本の線状銅箔の断線位置は、互いに30mmずつずらした。
(2) Formation of serial structure Two linear copper foils were disconnected by opening holes with a diameter of 1.1 mm together with the substrate at intervals of 60 mm. The disconnection positions of the two linear copper foils were shifted from each other by 30 mm.

(3) LEDの搭載
図8に示す回路図と同様に、上記(2)で空けた穴によって断線された平行線回路を直列につなぐように、表面実装型タイプのLED素子(日亜化学工業社製、製品名「NSSR426CT」)を半田付けした。LEDの方向は、直列に配列することを前提とした。
(3) Mounting LED As with the circuit diagram shown in FIG. 8, a surface mount type LED element (Nichia Corporation) is connected in series so that the parallel line circuit disconnected by the hole formed in (2) above is connected in series. The product name "NSSR426CT" manufactured by the company was soldered. The direction of the LED was assumed to be arranged in series.

(4)絶縁
線状銅箔の露出部分とハンダ付け部分とにプリント基板用絶縁塗料(日本曹達社製、製品名「BC1000」)を塗布することにより絶縁した。
(4) Insulation Insulation was performed by applying an insulating paint for printed circuit boards (product name “BC1000” manufactured by Nippon Soda Co., Ltd.) to the exposed and soldered portions of the linear copper foil.

以上の結果、軽量且つフレキシブル性のある連続テープ状のLED基板を、エッチング工程無しで得ることができた。かかる結果から、本発明方法によれば、ロール状の熱可塑性樹脂フィルムからロール状のLED基板を連続的に効率良く生産できると考えられる。   As a result, a lightweight and flexible continuous tape-shaped LED substrate could be obtained without an etching step. From this result, according to the method of the present invention, it is considered that a roll-shaped LED substrate can be continuously and efficiently produced from a roll-shaped thermoplastic resin film.

線状導電材を熱可塑性樹脂フィルムの面まで圧入しなかった基板にダイ・ヒートシンク付表面実装型LEDを搭載した場合を示す模式図である。It is a schematic diagram which shows the case where surface mount type LED with a die heat sink is mounted in the board | substrate which did not press-fit a linear electrically conductive material to the surface of a thermoplastic resin film. 線状導電材を熱可塑性樹脂フィルムの面まで圧入しなかった基板にLEDベアチップを搭載した場合を示す模式図である。It is a schematic diagram which shows the case where an LED bare chip is mounted in the board | substrate which did not press-fit a linear electrically conductive material to the surface of a thermoplastic resin film. 図2を90°回転させた場合、即ち線状導電材の長さ方向におけるLED基板の、線状導電材に沿って樹脂が広がった部分の断面の模式図である。FIG. 3 is a schematic diagram of a cross section of a portion where resin spreads along the linear conductive material of the LED substrate in the length direction of the linear conductive material when FIG. 2 is rotated by 90 °. 線状導電材を熱可塑性樹脂フィルムの面まで圧入した基板にダイ・ヒートシンク付表面実装型LEDを搭載した場合を示す模式図である。It is a schematic diagram which shows the case where surface mount type LED with a die heat sink is mounted in the board | substrate which press-fitted the linear electrically conductive material to the surface of the thermoplastic resin film. 線状導電材を熱可塑性樹脂フィルムの面まで圧入した基板にLEDベアチップを搭載した場合を示す模式図である。It is a schematic diagram which shows the case where a LED bare chip is mounted in the board | substrate which press-fits the linear electrically conductive material to the surface of the thermoplastic resin film. 図5を90°回転させた場合、即ち線状導電材の長さ方向におけるLED基板の断面の模式図である。FIG. 6 is a schematic view of a cross section of the LED substrate when FIG. 5 is rotated by 90 °, that is, in the length direction of the linear conductive material. 2本の線状導電材間にLEDを並列につないだ回路の図である。It is a figure of the circuit which connected LED in parallel between two linear electrically-conductive materials. 2本の線状導電材間にLEDを直列につないだ回路の図である。It is a figure of the circuit which connected LED in series between two linear electrically-conductive materials. 4本の線状導電材を用い、直列につないだLED群をさらに並列につないだ回路の図である。It is a figure of the circuit which connected the LED group connected further in series using four linear electrically-conductive materials. 4本の線状導電材を用い、直列につないだLED群をさらに並列につないだ回路を有するLED基板の鳥瞰図である。It is a bird's-eye view of the LED board which has the circuit which connected the LED group further connected in series using four linear electrically-conductive materials. LEDベアチップを3列平行に搭載し、その部分以外を多孔質樹脂膜により被覆し、且つLEDベアチップを封止した基板を示す模式図である。It is a schematic diagram which shows the board | substrate which mounted LED bare chip | tip in parallel 3 rows, coat | covered the other than that part with the porous resin film, and sealed the LED bare chip | tip.

符号の説明Explanation of symbols

1:熱可塑性樹脂フィルム、 2:線状導電材、 3:ダイ・ヒートシンク付LED、 4:ダイ・ヒートシンク、 5:高熱伝導性接着剤、 6:電極、 7:放熱層、 8:基板とLEDとの間の隙間、 9:LEDベアチップ、 10:ワイア、 11:封止樹脂、 12:LED、 13:線状導電材の断線箇所、 14:抵抗器、 15:多孔質PTFEシート   1: Thermoplastic resin film, 2: Linear conductive material, 3: LED with die heat sink, 4: Die heat sink, 5: High heat conductive adhesive, 6: Electrode, 7: Heat dissipation layer, 8: Substrate and LED 9: LED bare chip, 10: wire, 11: sealing resin, 12: LED, 13: disconnection point of linear conductive material, 14: resistor, 15: porous PTFE sheet

Claims (9)

熱可塑性樹脂フィルムに線状導電材を熱圧着する工程;および
線状導電材に、少なくとも2個のLEDを搭載する工程;
を含むことを特徴とするLED基板の製造方法。
A step of thermocompression bonding a linear conductive material to the thermoplastic resin film; and a step of mounting at least two LEDs on the linear conductive material;
The manufacturing method of the LED board characterized by including.
線状導電材を熱圧着する際、線状導電材を熱可塑性樹脂フィルムの面まで圧入する請求項1に記載の製造方法。   The manufacturing method of Claim 1 which press-fits a linear electrically conductive material to the surface of a thermoplastic resin film when thermocompression bonding a linear electrically conductive material. 2本の線状導電材の間に搭載したLEDを直列につなぐために、搭載されているLED間またはLEDが搭載されるべき部分の間を交互に断線する工程を含む請求項1または2に記載の製造方法。   3. The method according to claim 1, further comprising a step of alternately disconnecting between the mounted LEDs or between the portions where the LEDs are to be mounted in order to connect the LEDs mounted between the two linear conductive materials in series. The manufacturing method as described. 少なくとも3本の線状導電材を熱圧着し、LEDを直列につないだ部分をさらに並列につなぐ工程を含む請求項1〜3のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-3 including the process of thermocompression-bonding at least 3 linear electrically-conductive material, and further connecting the part which connected LED in series further in parallel. 熱可塑性樹脂フィルムの線状導電材上を熱圧着した側の面において、LEDを搭載した部分以外または搭載すべき部分以外を多孔質樹脂膜により被覆する工程を含む請求項1〜4のいずれかに記載の製造方法。   5. The method according to claim 1, further comprising a step of covering the surface of the thermoplastic resin film on the side subjected to thermocompression bonding with a porous resin film other than a portion on which the LED is mounted or a portion to be mounted. The manufacturing method as described in. LEDベアチップを用いた場合、当該LEDベアチップを透明樹脂により封止する工程を含む請求項1〜5のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-5 including the process of sealing the said LED bare chip with transparent resin, when an LED bare chip is used. 熱可塑性樹脂フィルムの線状導電材を熱圧着した側または熱圧着すべき側と反対の面に、放熱層を設ける工程を含む請求項1〜6のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-6 including the process of providing a thermal radiation layer in the surface on the opposite side to the side which thermocompression-bonded the linear electrically conductive material of a thermoplastic resin film, or the side which should be thermocompression bonded. 熱可塑性樹脂フィルム、線状導電材および放熱層に、放熱用の貫通穴を設ける工程を含む請求項7に記載の製造方法。   The manufacturing method of Claim 7 including the process of providing the through-hole for heat dissipation in a thermoplastic resin film, a linear electrically conductive material, and a thermal radiation layer. 請求項1〜8のいずれかに記載の製造方法により製造されることを特徴とするLED基板。   An LED substrate manufactured by the manufacturing method according to claim 1.
JP2008075929A 2008-03-24 2008-03-24 Method of manufacturing led substrate and the led substrate Withdrawn JP2009231584A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008075929A JP2009231584A (en) 2008-03-24 2008-03-24 Method of manufacturing led substrate and the led substrate
CN200910128273A CN101546715A (en) 2008-03-24 2009-03-23 Method for manufacturing LED substrate and LED substrate thereof
TW098109484A TW201003994A (en) 2008-03-24 2009-03-24 Manufacturing method for an LED substrate and LED substrate made from said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008075929A JP2009231584A (en) 2008-03-24 2008-03-24 Method of manufacturing led substrate and the led substrate

Publications (1)

Publication Number Publication Date
JP2009231584A true JP2009231584A (en) 2009-10-08

Family

ID=41193752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008075929A Withdrawn JP2009231584A (en) 2008-03-24 2008-03-24 Method of manufacturing led substrate and the led substrate

Country Status (3)

Country Link
JP (1) JP2009231584A (en)
CN (1) CN101546715A (en)
TW (1) TW201003994A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077778A1 (en) * 2009-12-24 2011-06-30 日本メクトロン株式会社 Lighting device and process for production thereof
JP2012059867A (en) * 2010-09-08 2012-03-22 Teijin Dupont Films Japan Ltd Packaging circuit board
JP2012174808A (en) * 2011-02-18 2012-09-10 Nichia Chem Ind Ltd Substrate for mounting light emitting element, and light emitting device
CN103022788A (en) * 2011-09-20 2013-04-03 常州市瑞通电子器材厂 High-frequency connector sheath
JP2013157592A (en) * 2012-01-05 2013-08-15 Canon Components Inc Flexible circuit board for mounting light emitting element
US8963012B2 (en) 2011-01-17 2015-02-24 Canon Components, Inc. Flexible circuit board
JP2015095548A (en) * 2013-11-12 2015-05-18 三菱化工機株式会社 Led circuit board, light device equipped with the same and led circuit board manufacturing method
US9232634B2 (en) 2011-01-17 2016-01-05 Canon Components, Inc. Flexible circuit board for mounting light emitting element, illumination apparatus, and vehicle lighting apparatus
WO2018139535A1 (en) * 2017-01-25 2018-08-02 古河電気工業株式会社 Illumination device and method for manufacturing said illumination device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110175218A1 (en) 2010-01-18 2011-07-21 Shiann-Ming Liou Package assembly having a semiconductor substrate
US20110186960A1 (en) 2010-02-03 2011-08-04 Albert Wu Techniques and configurations for recessed semiconductor substrates
CN102544261B (en) * 2011-03-16 2015-05-27 泰州祥和新能源科技有限公司 Manufacturing method of LED (light-emitting diode) chip
JP6559424B2 (en) * 2012-03-06 2019-08-14 シグニファイ ホールディング ビー ヴィ Lighting module and method for manufacturing the lighting module

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562177B2 (en) 2009-12-24 2013-10-22 Nippon Mektron, Ltd. Lighting device with LEDs mounted on flexible circuit board self maintained in bellows shape and manufacturing method thereof
JP2011134874A (en) * 2009-12-24 2011-07-07 Nippon Mektron Ltd Lighting device and method of manufacturing the same
WO2011077778A1 (en) * 2009-12-24 2011-06-30 日本メクトロン株式会社 Lighting device and process for production thereof
JP2012059867A (en) * 2010-09-08 2012-03-22 Teijin Dupont Films Japan Ltd Packaging circuit board
US9232634B2 (en) 2011-01-17 2016-01-05 Canon Components, Inc. Flexible circuit board for mounting light emitting element, illumination apparatus, and vehicle lighting apparatus
US8963012B2 (en) 2011-01-17 2015-02-24 Canon Components, Inc. Flexible circuit board
JP2012174808A (en) * 2011-02-18 2012-09-10 Nichia Chem Ind Ltd Substrate for mounting light emitting element, and light emitting device
CN103022788A (en) * 2011-09-20 2013-04-03 常州市瑞通电子器材厂 High-frequency connector sheath
JP2013157592A (en) * 2012-01-05 2013-08-15 Canon Components Inc Flexible circuit board for mounting light emitting element
JP2015095548A (en) * 2013-11-12 2015-05-18 三菱化工機株式会社 Led circuit board, light device equipped with the same and led circuit board manufacturing method
WO2018139535A1 (en) * 2017-01-25 2018-08-02 古河電気工業株式会社 Illumination device and method for manufacturing said illumination device
JPWO2018139535A1 (en) * 2017-01-25 2019-11-21 古河電気工業株式会社 LIGHTING DEVICE AND MANUFACTURING METHOD FOR THE LIGHTING DEVICE
US10840422B2 (en) 2017-01-25 2020-11-17 Furukawa Electric Co., Ltd. Reflective layer for an illumination device
JP7012413B2 (en) 2017-01-25 2022-02-14 古河電気工業株式会社 Lighting equipment and manufacturing method of the lighting equipment

Also Published As

Publication number Publication date
TW201003994A (en) 2010-01-16
CN101546715A (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP2009231584A (en) Method of manufacturing led substrate and the led substrate
JP5533183B2 (en) LED light source device and manufacturing method thereof
JP4163228B2 (en) Method of manufacturing circuit board for light emitter, circuit board precursor for light emitter, circuit board for light emitter, and light emitter
CN101036239B (en) Chip component type light emitting device and wiring board for the same
US9445490B2 (en) Film system for LED applications
TW200830590A (en) LED module
JP2011040715A (en) Led mounting substrate and method of manufacturing the same
CN102032483B (en) Light-emitting diode (LED) plane light source
US20180212129A1 (en) Heat dissipation circuit board and method for producing heat dissipation circuit board
US20110101392A1 (en) Package substrate for optical element and method of manufacturing the same
WO2006132147A1 (en) Porcelain enameled substrate for light-emitting device mounting, method for producing same, light-emitting device module, illuminating device, display and traffic signal device
JP2011100959A (en) Flexible board, flexible board module, and method for manufacturing both
JP2011044593A (en) Led substrate and led package
KR20120125509A (en) A manufacture method for a surface mounted power led support and its product
CN203072249U (en) Aluminum substrate used for mounting LED lamps
CN103237410A (en) Non-etched aluminum substrate and manufacturing method thereof
US20160233401A1 (en) Substrate for light emitting device, light emitting device, and method for manufacturing substrate for light emitting device
KR100610275B1 (en) Power LED package and method for producing the same
KR101259304B1 (en) Board for mounting led and method for manufacturing led module
KR100797716B1 (en) Light Emitting Diodes-Backlight Unit without printed circuit boards and Manufacturing method thereof
CN208657154U (en) For being attached the flexible multilayer substrate of light-emitting semiconductor device
KR20120100303A (en) Printed circuit board, light emitting module having the same, lighting unit having the light emitting unit and method of manufacturing the light emitting mudule
JP2009117124A (en) Light source unit
TWI711193B (en) Substrates for LED components, LED packaging modules, and LED display devices obtained by using them
JP2004140150A (en) Substrate for light emitting diode device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607