JP2009229014A - 蓄冷器付き冷凍サイクル装置 - Google Patents

蓄冷器付き冷凍サイクル装置 Download PDF

Info

Publication number
JP2009229014A
JP2009229014A JP2008076414A JP2008076414A JP2009229014A JP 2009229014 A JP2009229014 A JP 2009229014A JP 2008076414 A JP2008076414 A JP 2008076414A JP 2008076414 A JP2008076414 A JP 2008076414A JP 2009229014 A JP2009229014 A JP 2009229014A
Authority
JP
Japan
Prior art keywords
refrigerant
regenerator
evaporator
pressure
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008076414A
Other languages
English (en)
Other versions
JP5018584B2 (ja
Inventor
Taiichi Aikawa
泰一 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008076414A priority Critical patent/JP5018584B2/ja
Publication of JP2009229014A publication Critical patent/JP2009229014A/ja
Application granted granted Critical
Publication of JP5018584B2 publication Critical patent/JP5018584B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】車両エンジン停止時のみならず圧縮機作動時にも蓄冷熱の利用を可能とする蓄冷器付き冷凍サイクル装置を提供する。
【解決手段】蒸発器150の冷媒出口側と圧縮機110の冷媒吸入側との間に、低圧冷媒の流れに対して所定の流通抵抗となる流路抵抗体170を設け、蓄冷器160を流路抵抗体170に対して並列配置し、流路抵抗体170の冷媒出口側流路と蓄冷器160の冷媒出口側流路とが合流する合流部170Bと、蓄冷器160の冷媒出口部との間となる流路170Cに、この流路170Cを開閉する開閉手段180を設ける。
【選択図】図1

Description

本発明は、サイクルの作動中に蓄冷器に蓄冷し、圧縮機の停止時に蓄冷熱により冷房を継続可能とする蓄冷器付き冷凍サイクル装置に関するものである。
従来、冷凍サイクルが停止した後にも蒸発器において冷凍能力を発揮することが求められる装置として、例えば特許文献1に示される車両用空調装置がある。即ち、この空調装置には、冷凍サイクルの蒸発器の下流側に直列配置される蓄冷熱交換器が設けられている。そして、車両エンジンの稼働時(蓄冷時)には、蒸発器から流出される低温冷媒により蓄冷熱交換器に充填された蓄冷材が冷却されて蓄冷される。一方、車両エンジンが停止して圧縮機が停止されると(放冷時)、蒸発器で蒸発した冷媒は蓄冷熱交換器(蓄冷材)により冷却凝縮され、蒸発圧力が低く維持される。そして、凝縮器と蒸発器との間の残圧により凝縮器側から蒸発器側に冷媒が流入されることになり、蒸発器での冷房能力が維持され、車両エンジン停止時の空調が継続されるようになっている。
特開2007−113904号公報
しかしながら、上記従来技術では車両エンジンが停止されるアイドルストップを前提として、蒸発器と蓄冷熱交換器とを直列配置の構成としているため、圧縮機の吸入圧が蓄冷熱交換器の冷媒圧力となってしまい、圧縮機運転と蓄冷熱交換器の放冷運転とを併用する圧縮機補助運転ができない。そのため、放冷時に蒸発器吹出し温度の変動(温度上昇)を小さくすることができず、快適性を優先しようとしても放冷運転の適用範囲が限定されてしまい、より一層の燃費向上が難しいという問題があった。
本発明の目的は、上記問題に鑑み、車両エンジン停止時のみならず圧縮機作動時にも蓄冷熱の利用を可能とする蓄冷器付き冷凍サイクル装置を提供することにある。
本発明は上記目的を達成するために、以下の技術的手段を採用する。
請求項1に記載の発明では、蓄冷器付き冷凍サイクル装置において、減圧器(140)によって減圧された低圧冷媒を蒸発させる蒸発器(150)と、
蒸発器(150)から流出される低圧冷媒を吸入して、凝縮器(120)側に圧縮吐出する圧縮機(110)と、
低圧冷媒によって蓄冷され、蒸発器(150)で蒸発された気相冷媒を蓄冷された蓄冷熱によって冷却させる蓄冷材を備える蓄冷器(160)と、
蒸発器(150)の冷媒出口と圧縮機(110)の冷媒吸入口との間に、蓄冷器(160)に対して並列に設けられ、低圧冷媒の流れに対して所定の流通抵抗となる流路抵抗体(170)と、
流路抵抗体(170)の冷媒出口側流路と蓄冷器(160)の冷媒出口側流路とが合流する合流部(170B)と、蓄冷器(160)の冷媒出口部との間の流路(170C)に設けられ、この流路(170C)を開閉する開閉手段(180)とを備えることを特徴としている。
これにより、圧縮機(110)の作動によって冷凍サイクル内に冷媒を循環させる時に、開閉手段(180)を開くことで、蒸発器(150)から流出される低圧冷媒は、流路抵抗体(170)と蓄冷器(160)との両者を流通することになり、蒸発器(150)における空気の冷却(冷房)を可能としつつも、蓄冷器(160)においては低圧冷媒によって蓄冷材に蓄冷することができる。
一方、上記蓄冷がなされた後に、圧縮機(110)が停止した場合には、開閉手段(180)を閉じることで、蒸発器(150)で蒸発した低圧冷媒は蓄冷器(160)に流入して、蓄冷器(160)の蓄冷材により冷却凝縮され(放冷)、蒸発圧力が低く維持される。そして、凝縮器(120)と蒸発器(150)との間の残圧により凝縮器(120)側から蒸発器(150)側に冷媒が流入されることになり、蒸発器(150)での冷房能力が維持され、圧縮機(110)停止時の空調が継続される。
更に、上記蓄冷がなされた後に、圧縮機(110)を作動させたまま、開閉手段(180)を閉じることで、蒸発器(150)で蒸発した低圧冷媒は流路抵抗体(170)を流通すると共に、蓄冷器(160)内に流入することになる(放冷)。言い換えると圧縮機(110)の冷媒吸引流量に対して、蓄冷器(160)に流入する冷媒流量分だけ蒸発器(150)を流通する冷媒流量を増やすことができるので、蒸発器(150)から見て圧縮機(110)と並列となる蓄冷器(160)が補助圧縮機として作動することとなり、見かけ上、圧縮機(110)の吐出量を増加させた場合と同様となり、蓄冷材が蓄冷熱を保持している間は、蒸発器(150)における冷房能力を大きくすることができる。逆に、冷房能力を同等とすると、圧縮機(110)の吐出量を低減することができ、圧縮機(110)の動力を低減することができる。
このように、従来技術では圧縮機(110)を停止した時のみ蓄冷器(160)での放冷作動による冷房の継続を可能としたが、請求項1に記載の発明では圧縮機(110)の作動時に吐出量を低下させて、放冷作動を実現できるので、従来技術の構成よりもより広い圧縮機(110)の運転条件で蓄冷熱を利用することができる。即ち、アイドルストップのような圧縮機停止時以外の状態においても、柔軟に蓄冷熱を利用して冷凍サイクルの駆動動力を下げることが可能になる。
請求項2に記載の発明では、流路抵抗体(170)は、開閉弁(171)であることを特徴としている。
これにより、開閉弁(171)の開閉によって低圧冷媒の流通状態を調整できるので、蓄冷時、あるいは放冷時における対応が容易となる。具体的には、圧縮機(110)の作動時に開閉弁(171)を開くことで、冷房と蓄冷が同時可能となり、開閉弁(171)を閉じることで、蒸発器(150)から流出される低圧冷媒を蓄冷器(160)のみに流通させて、蓄熱能力を高めることができる。
また、圧縮機(110)の停止時に開閉弁(171)を閉じることで、蓄冷器(160)による放冷が可能となり、圧縮機(110)を作動させたまま開閉弁(171)を開くことで、圧縮機(110)の動力を低減し、蓄冷器(160)による放冷を加えた冷房が可能となる。
請求項3に記載の発明では、開閉手段(180)は、蓄冷器(160)の冷媒出口部から合流部(170A)側への低圧冷媒の流れを許容し、合流部(170A)から蓄冷器(160)の冷媒出口部側への低圧冷媒の流れを阻止する逆止弁(180)であることを特徴としている。
これにより、圧縮機(110)作動時において、蓄冷器(160)から圧縮機(110)への冷媒の流通を可能とし、圧縮機(110)停止時において、蓄冷器(160)から圧縮機(110)への冷媒の流通を阻止する開閉手段(180)とすることができる。
請求項4に記載の発明では、蓄冷器(160)と、蒸発器(150)の冷媒入口側とを接続する接続流路(190)を備え、
接続流路(190)には、蓄冷器(160)側から蒸発器(150)の冷媒入口側への低圧冷媒の循環を可能とするポンプ(191)が設けられたことを特徴としている。
これにより、放冷時において、蓄冷器(160)に貯められる低圧冷媒(凝縮冷媒)をポンプ(191)によって接続流路(190)を介して蒸発器(150)に再循環させることができるので、蓄冷器(160)においては、凝縮冷媒によって蓄冷器(160)の有効伝熱面積が減少してしまうのを防止でき、蓄冷器(160)を小型化することができる。
請求項5に記載の発明では、ポンプ(191)は、凝縮器(120)から流出される高圧冷媒の圧力エネルギーを速度エネルギーに変換して高圧冷媒を減圧膨張させるノズル(192a)、およびノズル(192a)から噴射される高い速度の冷媒流により蓄冷器(160)からの低圧冷媒を吸引し、吸引した低圧冷媒とノズル(192a)から噴射される冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を上昇させて蒸発器(150)に流入させる昇圧部(192b)を有するエジェクタ(192)であることを特徴としている。
これにより、一般的に電気駆動されるポンプ(191)に対して、高い速度の冷媒流によってポンプ作用を果たすエジェクタ(192)では電力使用を不要することができるため、装置全体の消費電力を低減することができ、電気容量の大きく取れ無い電源を使用するシステムに適合させやすい。
請求項6に記載の発明では、蓄冷器付き冷凍サイクル装置において、減圧器(140)によって減圧された低圧冷媒を蒸発させる蒸発器(150)と、
蒸発器(150)から流出される低圧冷媒を吸入して、凝縮器(120)側に圧縮吐出する圧縮機(110)と、
低圧冷媒によって蓄冷され、蒸発器(150)で蒸発された気相冷媒を蓄冷された蓄冷熱によって冷却させる蓄冷材を備え、減圧器(140)の冷媒出口側から蒸発器(150)の冷媒入口側に繋がる蒸発器用流路(150A)に対して並列配置された蓄冷器(160)と、
凝縮器(120)から流出される高圧冷媒の圧力エネルギーを速度エネルギーに変換して高圧冷媒を減圧膨張させるノズル(192a)、およびノズル(192a)から噴射される高い速度の冷媒流により蓄冷器(160)からの低圧冷媒を吸引し、吸引した低圧冷媒とノズル(192a)から噴射される冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を上昇させて蒸発器(150)に流入させる昇圧部(192b)を有するエジェクタ(192)と、
並列配置のために蒸発器用流路(150A)から分岐して蓄冷器(160)の冷媒入口側に至る流路(160A)を開閉する第1開閉手段(211)と、
蒸発器(150)の冷媒出口側と、蓄冷器(160)の冷媒入口側とを接続する接続流路(220)と、
接続流路(220)を開閉する第2開閉手段(212)とを備えることを特徴としている。
これにより、第1開閉手段(211)を開き、第2開閉手段(212)を閉じることで、減圧器(140)から流出される冷媒を蒸発器(150)と蓄冷器(160)とに流通させることができ、冷房および蓄冷が可能となる。蓄冷の際には、エジェクタ(192)によって発生する圧力差を利用して蓄冷器(160)における冷媒温度を蒸発器(150)における冷媒温度よりも低下させることができ、蓄冷器(160)における蓄冷能力を向上させることができる。
また、第1開閉手段(211)を閉じ、第2開閉手段(212)を開くことで、蒸発器(150)から流出される冷媒を圧縮機(110)と蓄冷器(160)とに流通させることができる。よって、圧縮機(110)の冷媒吸引流量に対して、蓄冷器(160)に流入する冷媒流量分だけ蒸発器(150)を流通する冷媒流量を増やすことができるので、蒸発器(150)から見て圧縮機(110)と並列となる蓄冷器(160)が補助圧縮機として作動することとなり、見かけ上、圧縮機(110)の吐出量を増加させた場合と同様となり、蓄冷材が蓄冷熱を保持している間は、蒸発器(150)における冷房能力を大きくすることができる。逆に、冷房能力を同等とすると、圧縮機(110)の吐出量を低減することができ、圧縮機(110)の動力を低減することができる。
請求項7に記載の発明では、蓄冷器付き冷凍サイクル装置において、減圧器(140)によって減圧された低圧冷媒を蒸発させる蒸発器(150)と、
蒸発器(150)から流出される低圧冷媒を吸入して、凝縮器(120)側に圧縮吐出する圧縮機(110)と、
低圧冷媒によって蓄冷され、蒸発器(150)で蒸発された気相冷媒を蓄冷された蓄冷熱によって冷却させる蓄冷材を備え、蒸発器(150)に対して並列配置された蓄冷器(160)と、
並列配置のために蒸発器(150)の冷媒入口側から分岐して蓄冷器(160)の冷媒入口側に至る流路(160B)に設けられ、この流路(160B)を開閉する開閉手段(230)とを備えることを特徴としている。
これにより、圧縮機(110)作動時に開閉手段(230)を開くことで、減圧器(140)からの低圧冷媒を蒸発器(150)と蓄熱器(160)とに流通させることができ、冷房と蓄熱とを行うことができる。また、圧縮機(110)の停止時に開閉手段(230)を閉じることで蒸発器(150)から流出される低圧冷媒を蓄熱器(160)に流入させて放冷による冷房の継続が可能となる。
更に、圧縮機(110)の作動時に開閉手段(230)を閉じることで、蒸発器(150)から流出される冷媒を圧縮機(110)と蓄冷器(160)とに流通させることができる。よって、圧縮機(110)の冷媒吸引流量に対して、蓄冷器(160)に流入する冷媒流量分だけ蒸発器(150)を流通する冷媒流量を増やすことができるので、蒸発器(150)から見て圧縮機(110)と並列となる蓄冷器(160)が補助圧縮機として作動することとなり、見かけ上、圧縮機(110)の吐出量を増加させた場合と同様となり、蓄冷材が蓄冷熱を保持している間は、蒸発器(150)における冷房能力を大きくすることができる。逆に、冷房能力を同等とすると、圧縮機(110)の吐出量を低減することができ、圧縮機(110)の動力を低減することができる。このように、請求項7に記載の発明では、1つの開閉手段(230)の設定で、上記の蓄冷、放冷が可能となる。
尚、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
(第1実施形態)
第1実施形態の蓄冷器付き冷凍サイクル装置(以下、冷凍サイクル装置)100Aは、例えば信号待ち等のように走行状態からアイドリングでの停車状態に移行した際にエンジンが停止されるいわゆるアイドルストップ車両に適用されたものであり、以下、図1を用いてその基本構成について説明する。尚、図1は冷凍サイクル装置100Aの全体構成を示す模式図である。
冷凍サイクル装置100Aは、低温側の熱を高温側に移動させて冷熱および温熱を空調に利用するものである。冷凍サイクル装置100Aは、図1に示すように、圧縮機110、凝縮器120、受液タンク130、温度式膨張弁140、蒸発器150が配管101によって順次環状に接続される通常の冷凍サイクルに、蓄冷器160、流路抵抗体170、および逆止弁180が付加されると共に、エアコン制御装置300が設けられたものとなっている。
圧縮機110は、車両のエンジン(図示せず)を駆動源として作動され、冷凍サイクル装置100A内の冷媒(例えばHFC134a)を高温高圧に圧縮して吐出する流体機械である。圧縮機110は、例えば1回転当たりの吐出容量が調節可能な斜板式の可変容量型圧縮機であり、後述するエアコン制御装置300によって吐出容量が調節されるようになっている。圧縮機110の吐出容量は、ほぼゼロとなる最小吐出容量から、圧縮機110自身が吐出し得る最大吐出容量まで連続的に調節されるようになっている。圧縮機110の吐出量は、上記吐出容量と圧縮機回転数との積によって決定される。また、圧縮機110作動時の必要動力は、上記吐出量に相関する。
尚、圧縮機110としては、上記可変容量型圧縮機に代えて、1回転当たりの吐出容量を固定として、電磁クラッチの接続切断によってエンジンからの駆動力が断続されるクラッチ式の圧縮機としても良い。この場合の圧縮機では、電磁クラッチの接続時間および切断時間の比を変えることで、実質的な吐出量を調節できる。
凝縮器120は、圧縮機110によって高温高圧に圧縮された冷媒を冷却して、凝縮液化する熱交換器であり、圧縮機110の冷媒吐出側に設けられている。受液タンク130は、凝縮器120で凝縮された冷媒を気相冷媒と液相冷媒とに分離して液相冷媒を流出させるレシーバである。
温度式膨張弁(本発明における減圧器に対応し、以下膨張弁)140は、受液タンク130で分離された液相冷媒を等エンタルピ的に減圧膨脹させるもので、図示しない弁部と、後述する蒸発器150の冷媒出口側に設けられた感温部とを有している。膨張弁140は、感温部で検出される冷媒温度に応じて弁部の絞り開度が制御されて、蒸発器150から流出される冷媒の過熱度を所定値(例えば5〜10℃)とするようになっている。
膨張弁140には、この膨張弁140に対して並列配置される絞り機構としてのブリードポート141が設けられている。ブリードポート141の絞り度合いは、膨張弁140の最大開度に対して1/10程度に設定されたものとしており、通常の冷凍サイクル作動時は、冷媒は膨張弁140側を流通し、圧縮機110の停止等に伴って、膨張弁140が閉じてしまう場合に、冷媒はブリードポート141を流通するようになっている。
蒸発器150は、膨張弁140にて減圧された低圧冷媒を蒸発させて吸熱作用を発揮する熱交換器であり、図示しない空調ケース内に配設されて、この空調ケース内に供給される空調空気を冷却(空調空気から吸熱)する。尚、空調ケース内には、この他に図示しない空調空気送風用の送風機、空調空気加熱用の熱交換器、冷却空気および加熱空気の混合割合を調整するエアミックスドア機構等が設けられて、室内ユニットを形成している。この室内ユニットは車室内のインストルメントパネル内に配設されている。
流路抵抗体170は、蒸発器150から流出される冷媒に対して所定の流通抵抗となるものであり、配管101上において設蒸発器150の冷媒出口と圧縮機110の冷媒吸入口との間に設けられている。流路抵抗体170は、例えば、配管101に対して、内径が小さくなるように所定量絞られて、蒸発器150から流出される冷媒を流路抵抗体170自身と、後述する蓄冷器160側となる並列流路170Aとに所定比で分配流通させるようになっている。
蓄冷器160は、上記流路抵抗体170に対して並列配置となるように設けられた熱交換器である。つまり、冷凍サイクルの配管101には、上記流路抵抗体170に対して並列となる並列流路170Aが形成されており、蓄冷器160は、この並列流路170Aに介在されている。換言すると、上記流路抵抗体170は蓄冷器160に対して並列に設けられていることになる。
蓄冷器160は、蓄冷熱交換器161と、この蓄冷熱交換器161を内部に収容する蓄冷タンク162とを備えている。そして、蓄冷タンク162内には蓄冷材(例えば、パラフィン、氷等)が所定量充填されており、蓄冷材は蓄冷熱交換器161の外表面と接触するようになっている。蓄冷器160は、例えばシェルアンドチューブタイプの熱交換器として形成することができる。蓄冷熱交換器161は、並列流路170Aに接続されており、蒸発器150から流出される冷媒を内部に流通させると共に、この冷媒と蓄冷タンク162内の蓄冷材との間で熱交換するようになっている。尚、蓄冷器160としての蓄冷、放冷にかかわる伝熱性能は、蓄冷材の選定、蓄冷熱交換器161の熱交換容量(体格)の設定、および蓄冷材の封入量等によって決定することができる。
そして、並列流路170Aにおいて、蓄冷器160の冷媒出口部から流路抵抗体170の冷媒出口側流路(合流点170B)に合流する流路が、合流流路(流路)170Cとなっている。
逆止弁180は、合流流路170Cに設けられた開閉手段である。逆止弁180は、蓄冷器160側と、圧縮機110側との圧力差によって開閉される弁となっている。つまり、圧縮機110の吸引作動によって、蓄冷器160側の圧力よりも圧縮機110側の圧力が低くなると、逆止弁180は開成状態となって、蓄冷器160から流出される冷媒は合流流路170Cを流通して圧縮機110に流れるようになっている。一方、圧縮機110の停止あるいは吐出量低下によって、蓄冷器160側の圧力よりも圧縮機110側の圧力が高くなると、逆止弁180は閉成状態となって、合流流路170Cにおいては圧縮機110から蓄冷器160側への冷媒の流れが阻止されるようになっている。
エアコン制御装置300は、圧縮機110の作動を制御する制御手段である。エアコン制御装置300は、エンジンの作動を制御するエンジン制御装置310と連動しており、エアコン制御装置300にはエンジンの作動状態(オフ状態あるいはオン状態)、およびエンジンの負荷状態等の信号が入力されるようになっている。そして、エアコン制御装置300は、冷凍サイクルの熱負荷、上記エンジンの作動状態、負荷状態、および蓄冷器160における蓄冷状態、放冷状態に応じて圧縮機110の吐出量を調節する。尚、エアコン制御装置300は、蒸発器150から流出される冷媒と蓄冷材融点との温度差、およびその温度差が維持される経過時間等に基づいて、蓄冷材における蓄冷状態、あるいは放冷状態を判定するようになっている。
次に、上記構成に基づく冷凍サイクル装置100Aの作動およびその作用効果について、図2〜図4を加えて説明する。
1.蓄冷モード
車両走行時に、エンジンにより圧縮機110が駆動され、冷凍サイクル装置100Aが作動する。図2に示すように、圧縮機110で圧縮吐出された冷媒は、凝縮器120で凝縮液化され、受液タンク130を経て膨張弁140で減圧され、蒸発器150で空調空気から吸熱して蒸発し、空調空気を冷却する(冷房する)。エアコン制御装置300は、冷凍サイクルの熱負荷に応じて圧縮機110の吐出量を調節する。
そして、蒸発器150から流出される冷媒は、並列流路170Aの分岐点で分流して、流路抵抗体170と蓄冷器160とに流入する。そして、蓄冷器160において、蓄冷材融点より低い温度の冷媒によって蓄冷材を液相から固相に変化させて、その凝固潜熱を蓄える。即ち、冷媒は、蓄冷タンク162内の蓄冷材を冷却し、蓄冷する。エアコン制御装置300は、冷媒と蓄冷材融点との温度差、およびその温度差が維持される経過時間によって蓄冷器160における蓄冷状態を把握する。
尚、蓄冷器160を流通する冷媒は、蓄冷材から吸熱する形となり温度上昇、圧力上昇を伴うことから、逆止弁180の蓄冷器160側圧力が、圧縮機110側圧力よりも高くなり、逆止弁180は開成状態となり、蓄冷器160から流出される冷媒は、合流流路170Cを流れ、流路抵抗体170を流通した冷媒と共に圧縮機110に戻る(吸引される)。
2.圧縮機停止放冷モード
車両が停車してエンジンが停止されると、圧縮機110も停止される。この時、蒸発器150の出口側における冷媒温度が上昇して膨張弁140は全閉状態となる。そして、図3に示すように、冷凍サイクル内では高圧側となる凝縮器120、および受液タンク130から、低圧側となる蒸発器150、および蓄冷器160に、その残圧によりブリードポート141を通じて冷媒が流入する。
蒸発器150に流入した冷媒は空調空気との熱交換により空調空気を冷却して、蓄冷材の融点よりも高い温度の過熱ガス冷媒となる。過熱ガス冷媒は、圧縮機110が停止されていることから、流路抵抗体170を流通せずに、並列流路170Aから蓄冷器160に流入して、蓄冷材に融解潜熱を与えて放冷する。換言すれば、過熱ガス冷媒は、蓄冷材の蓄冷熱により冷却されて凝縮液化し、蓄冷器160内に液冷媒として溜められる。
つまり、蒸発器150からの過熱ガス冷媒は、蓄冷器160の蓄冷熱交換器161で凝縮されて体積を縮小させて、蓄冷熱交換器161内に液冷媒として溜められて圧力を低圧に維持するので、圧縮機110が停止されても蓄冷材の蓄冷熱が保持されている間は凝縮器120と蒸発器150との間の残圧により、冷媒は継続して蒸発器150に流入可能となり、蒸発器150による空調空気の冷却を継続可能とすることができる。
尚、蓄冷器160に流入される冷媒は、蓄冷材によって冷却されて、温度低下、圧力低下を伴い、圧縮機110も停止されていることから、逆止弁180の蓄冷器160側圧力が、圧縮機110側圧力よりも低くなり、逆止弁180は閉成状態となり、蓄冷器160から圧縮機110への冷媒流れは停止される。
3.圧縮機作動放熱モード
本実施形態では、上記圧縮機停止放熱モードに対して、更にエンジンオンで圧縮機110を作動させた状態での圧縮機作動放冷モードの実行を可能としている(図4)。即ち、エアコン制御装置300は、上記蓄冷モードによって、充分な蓄冷状態にあると判定すると、圧縮機110の吐出量を低下させる。
すると、圧縮機110の冷媒吸引量の低下により蒸発器150の空気側熱負荷に対して冷媒循環量が不足するので、サイクルバランスにより蒸発器150における蒸発圧力が上昇する。この時、蓄冷材融点に対して蒸発器150の出口圧力に相当する冷媒飽和温度が高くなる結果、逆止弁180は閉成状態を形成することになる。これにより蒸発器150の出口側冷媒は流路抵抗体170と蓄冷器160とに分流する。
換言すると圧縮機110の吸引流量に対して蓄冷器160に流入する冷媒流量だけ蒸発器150の冷媒流量を増やすことができるので、蒸発器150から見て圧縮機110と並列に蓄冷器160が補助コンプレッサとして作動する結果、見かけ上、圧縮機110の吐出量を増加さることができる。よって、蓄冷材の蓄冷熱の保持している間は、圧縮機110の吐出量を低下させても、高い冷房能力は発揮することができ、圧縮機110、ひいてはエンジンの動力を低減することができる。
このように、蓄冷器160において充分な蓄冷状態にある時には、圧縮機作動放熱モードを実行することで、圧縮機110の作動時に吐出量を低下させても、放冷作動を実現できるので、従来技術よりもより広い圧縮機110の運転条件で蓄冷熱を利用することができる。即ち、アイドルストップのような圧縮機停止時以外の状態においても、柔軟に蓄冷熱を利用して冷凍サイクルの駆動動力を下げることが可能になる。
(第2実施形態)
第2実施形態を図5に示す。第2実施形態の冷凍サイクル装置100Bは、上記第1実施形態に対して、流路抵抗体170をエアコン制御装置300によって開閉制御される開閉弁171に変更したものである。
第2実施形態では、開閉弁171は、エアコン制御装置300によって開成状態が維持されると、第1実施形態の流路抵抗体170と同一の機能を果たす。
よって、圧縮機110の作動時に、開閉弁171を開成状態にすると、蓄冷モード、および圧縮機作動放冷モードの実行が可能となる。また、圧縮機110の停止時に、開閉弁171を閉成状態にすると(開成状態でも可)、圧縮機停止放冷モードの実行が可能となる。
加えて、蓄冷モードにおいて、エアコン制御装置300は、開閉弁171を閉成状態にすることで、蒸発器150から流出される冷媒の全量を蓄冷器160側に流すことができ、蓄冷器160における蓄冷能力を高めることができる(蓄冷強化モード)。
(第3実施形態)
第3実施形態を図6に示す。第3実施形態の冷凍サイクル装置100Cは、上記第2実施形態に対して、逆止弁180をエアコン制御装置300によって開閉制御される開閉弁181に変更したものである。
第3実施形態では、開閉弁181は、エアコン制御装置300によって、蓄冷モード、および蓄冷強化モード時に開成状態に維持され、また、圧縮機停止放冷モード、および圧縮機作動放冷モード時に閉成状態に維持されることで第2実施形態と同様に作動し、同様の作用効果を奏する。
(第4実施形態)
第4実施形態を図7に示す。第4実施形態の冷凍サイクル装置100Dは、上記第1実施形態に対して、接続流路190とポンプ191とを追加したものである。
接続流路190は、蓄冷器160の蓄冷熱交換器161から蒸発器150の冷媒入口側(膨張弁140の冷媒出口部と蒸発器150の冷媒入口部との間)に接続される冷媒流通用の流路である。
また、ポンプ191は、上記接続流路190に配設されて、接続流路190内の冷媒を蓄冷器160側から蒸発器150側に圧送する電動式のポンプである。ポンプ191の作動はエアコン制御装置300によって制御されるようになっている。
第4実施形態においては、上記第1実施形態と同様に、蓄冷モード、圧縮機停止放冷モード、圧縮機作動放冷モードの実行を可能としている。そして、両放冷モード実行時において、エアコン制御装置300は、ポンプ191を作動させるようにしている。
これにより、両放冷モード実行時において、蓄冷器160に貯められる低圧冷媒(凝縮冷媒)をポンプ191によって接続流路190を介して蒸発器150に再循環させることができるので、蓄冷器160においては、凝縮冷媒によって蓄冷器160の有効伝熱面積が減少してしまうのを防止でき、蓄冷器160を小型化することができる。
(第5実施形態)
第5実施形態を図8に示す。第5実施形態の冷凍サイクル装置100Eは、上記第4実施形態に対して、流路抵抗体170をエアコン制御装置300によって開閉制御される開閉弁171に変更したものである。
第5実施形態では、エアコン制御装置300によって開閉弁171が開成あるいは閉成状態にされることで、第4実施形態と同様に、蓄冷モード、圧縮機停止放冷モード、圧縮機作動放冷モードの実行を可能としている。そして、両放冷モード実行時において、蓄冷器160に貯められる低圧冷媒(凝縮冷媒)をポンプ191によって接続流路190を介して蒸発器150に再循環させることで、蓄冷器160において凝縮冷媒によって蓄冷器160の有効伝熱面積が減少してしまうのを防止でき、蓄冷器160を小型化することができる。
更に、蓄冷モードにおいて、エアコン制御装置300は、開閉弁171を閉成状態にすることで、蒸発器150から流出される冷媒の全量を蓄冷器160側に流すことができ、蓄冷器160における蓄冷能力を高めることができる(蓄冷強化モード)。
(第6実施形態)
第6実施形態を図9に示す。第6実施形態の冷凍サイクル装置100Fは、上記第4実施形態に対して、ポンプ191をエジェクタ192に変更したものである。
冷凍サイクルには、膨張弁140に対して並列配置される並列流路143が設けられておりこの並列流路143には、エアコン制御装置300によって開閉制御される開閉弁142が設けられている。
エジェクタ192は、並列流路143の開閉弁142と、並列流路143が蒸発器150の冷媒入口側に合流する合流点との間に介在されている。そして、蓄冷器160から延びる接続流路190の端部がエジェクタ192の吸引部192cに接続されている。
エジェクタ192は、ポンプ作用を備える減圧手段であり、開閉弁142(凝縮器120、受液タンク130)から流出される高圧冷媒の圧力エネルギーを速度エネルギーに変換して高圧冷媒を減圧膨張させるノズル192aと、このノズル192aから噴射される高い速度の冷媒流により蓄冷器160から冷媒(低圧冷媒)を吸引部192cから吸引し、吸引した冷媒とノズル192aから噴射される冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を上昇させて蒸発器150に流入させる昇圧部192bとを有している。
第6実施形態においては、蓄冷モード時にエアコン制御装置300によって、開閉弁142は閉成状態に維持され、冷媒は、圧縮機110→凝縮器120→受液タンク130→膨張弁140→蒸発器150を通り、流路抵抗体170および蓄冷器160を流れる。
一方、両放冷モード時には、エアコン制御装置300によって、開閉弁142は開成状態に維持され、冷媒は、凝縮器120→受液タンク130→開閉弁142→エジェクタ192→蒸発器150を通り、流路抵抗体170および蓄冷器160を流れる。更に蓄冷器160の冷媒は、エジェクタ192のポンプ作用により、接続流路190→エジェクタ192の吸引口192cに流入される。
これにより、電気駆動されるポンプ191に対して、高い速度の冷媒流によってポンプ作用を果たすエジェクタ192では電力使用を不要することができるため、装置全体の消費電力を低減することができ、電気容量の大きく取れ無い電源を使用するシステムに適合させやすい。
(第7実施形態)
第7実施形態を図10に示す。第7実施形態の冷凍サイクル装置100Gは、圧縮機110、凝縮器120、受液タンク130、膨張弁140、蒸発器150によって基本の冷凍サイクルが形成されている。そして、膨張弁140の冷媒出口側から分岐して蒸発器150の冷媒入口側に合流する並列流路(流路)160Aが設けられており、この並列流路160Aに蓄冷器160が介在されている。また、並列流路160Aの分岐点と蓄冷器160との間には、エアコン制御装置300によって開閉制御される第1開閉弁(第1開閉手段)211が設けられている。更に、並列流路160Aの分岐点と第1開閉弁211との間には、減圧機構213が設けられている。
また、並列流路160Aの分岐点から蒸発器150の冷媒入口部との間となる蒸発器用流路150Aには、上記第6実施形態で説明したエジェクタ192が設けられている。エジェクタ192の吸引部192cには、並列流路160Aの合流側端部が接続されている。よって、蓄冷器160は、蒸発器用流路150Aに対して並列配置となっている。
そして、蒸発器150の冷媒出口側と、蓄冷器160の冷媒入口側(並列流路160Aの蓄冷器160と第1開閉弁211との間)とを接続する接続流路220が設けられており、この接続流路220には、エアコン制御装置300によって開閉制御される第2開閉弁(第2開閉手段)212が設けられている。
蓄冷モードにおいて、エアコン制御装置300は、第1開閉弁211を開成状態とし、第2開閉弁212を閉成状態とする。そして、圧縮機110の作動によって、冷媒は、圧縮機110→凝縮器120→受液タンク130→膨張弁140を流れ、エジェクタ192のノズル192aに流入すると共に、減圧機構213→第1開閉弁211→蓄冷器160を通りエジェクタ192の吸引部192cに流入する。そして、エジェクタ192の昇圧部192cから蒸発器150に流入して、圧縮機110に戻る。
よって、蒸発器150にて空調空気は冷却され、また蓄冷器160にて蓄冷材が冷却され、蓄冷が行われる。蓄冷の際には、エジェクタ192によって発生する圧力差を利用して蓄冷器160における冷媒温度を蒸発器150における冷媒温度よりも低下させることができ、蓄冷器160における蓄冷能力を向上させることができる。
圧縮機停止放冷モードにおいて、エアコン制御装置300は、第1開閉弁211を閉成状態とし、第2開閉弁212を開成状態とする。すると、冷媒は、エジェクタ192から蒸発器150に流入し、更に接続流路220→第2開閉弁212→蓄冷器160→エジェクタ192の吸引部192cに流れ、蓄冷器160で冷媒は凝縮液化され、蓄冷材による冷房の継続がなされる。
また、圧縮機作動放冷モードにおいては、エアコン制御装置300は、第1開閉弁211を閉成状態とし、第2開閉弁212を開成状態とする。すると、冷媒は、エジェクタ192から蒸発器150に流入し、更に蒸発器150から流出する冷媒は圧縮機110側と接続流路220側とに分流する。そして、接続流路220側に流入した冷媒は、第2開閉弁212→蓄冷器160→エジェクタ192の吸引部192cに流れる。よって、蒸発器150では圧縮機110によって吸引される冷媒に加えて、エジェクタ192によって蓄冷器160側に吸引される冷媒が流れることになり、見かけ上、圧縮機110の吐出量を増加さることができる。よって、蓄冷材の蓄冷熱の保持している間は、圧縮機110の吐出量を低下させても、高い冷房能力は発揮することができ、圧縮機110、ひいてはエンジンの動力を低減することができる。
(第8実施形態)
第8実施形態を図11に示す。第8実施形態の冷凍サイクル装置100Hは、圧縮機110、凝縮器120、受液タンク130、膨張弁140、蒸発器150によって基本の冷凍サイクルが形成されている。そして、膨張弁140の冷媒出口側から分岐して蒸発器150の冷媒出口側に合流する並列流路(流路)160Bが設けられており、この並列流路160Bに蓄冷器160が介在されている。また、並列流路160Bの分岐点と蓄冷器160との間には、エアコン制御装置300によって開閉制御される開閉弁(開閉手段)230が設けられている。
蓄冷モードにおいて、エアコン制御装置300は、開閉弁230を開成状態とする。そして、圧縮機110の作動によって、冷媒は、圧縮機110→凝縮器120→受液タンク130→膨張弁140を流れ、蒸発器150と蓄冷器160とに流入して、圧縮機110に戻る。よって、蒸発器150にて空調空気は冷却され、また蓄冷器160にて蓄冷材が冷却され、蓄冷が行われる。
圧縮機停止放冷モードにおいて、エアコン制御装置300は、開閉弁230を閉成状態とする。すると、冷媒は、膨張弁140から蒸発器150に流入し、更に蒸発器150から流出する冷媒は、蓄冷器160に流入する。よって、蓄冷器160で冷媒は凝縮液化され、蓄冷材による冷房の継続がなされる。
また、圧縮機作動放冷モードにおいては、エアコン制御装置300は、開閉弁230を閉成状態とする。すると、冷媒は、膨張弁140から蒸発器150に流入し、更に蒸発器150から流出する冷媒は圧縮機110側と並列流路160B側とに分流する。そして、並列流路160B側に流入した冷媒は、蓄冷器160に流入する。よって、蒸発器150では圧縮機110によって吸引される冷媒に加えて、並列流路160Bから蓄冷器160に流入する冷媒が流れることになり、見かけ上、圧縮機110の吐出量を増加さることができる。よって、蓄冷材の蓄冷熱の保持している間は、圧縮機110の吐出量を低下させても、高い冷房能力は発揮することができ、圧縮機110、ひいてはエンジンの動力を低減することができる。
更に、本実施形態では、1つの開閉手段(開閉弁230)の設定で、上記の蓄冷モード、圧縮機停止放冷モード、および圧縮機作動放冷モードが可能となる。
(その他の実施形態)
上記各実施形態では、アイドルストップ車両を対象として説明したが、エンジンと走行用モータとを有するハイブリッド車両としても良い。
また、蓄冷器160は、シェルアンドチューブ式の熱交換器として説明したが、これに限らず、複数積層される冷媒チューブの両端部にタンクが接合される熱交換器の外部に蓄冷タンクを設けたものとしても良い。
第1実施形態における冷凍サイクル装置の全体構成を示す模式図である。 第1実施形態における蓄冷モードにおける冷媒流れを示す模式図である。 第1実施形態における圧縮機停止放冷モードにおける冷媒流れを示す模式図である。 第1実施形態における圧縮機作動止放冷モードにおける冷媒流れを示す模式図である。 第2実施形態における冷凍サイクル装置の全体構成を示す模式図である。 第3実施形態における冷凍サイクル装置の全体構成を示す模式図である。 第4実施形態における冷凍サイクル装置の全体構成を示す模式図である。 第5実施形態における冷凍サイクル装置の全体構成を示す模式図である。 第6実施形態における冷凍サイクル装置の全体構成を示す模式図である。 第7実施形態における冷凍サイクル装置の全体構成を示す模式図である。 第8実施形態における冷凍サイクル装置の全体構成を示す模式図である。
符号の説明
100A〜100H 蓄冷器付き冷凍サイクル装置
110 圧縮機
120 凝縮器
140 温度式膨張弁(減圧器)
150 蒸発器
150A 蒸発器用流路
160 蓄冷器
160A 並列流路(流路)
160B 並列流路(流路)
170 流路抵抗体
170B 合流部
170C 合流流路(流路)
171 開閉弁
180 逆止弁(開閉手段)
190 接続流路
191 ポンプ
192 エジェクタ
192a ノズル
192b 昇圧部
211 第1開閉弁(第1開閉手段)
212 第2開閉弁(第2開閉手段)
220 接続流路
230 開閉弁(開閉手段)

Claims (7)

  1. 減圧器(140)によって減圧された低圧冷媒を蒸発させる蒸発器(150)と、
    前記蒸発器(150)から流出される前記低圧冷媒を吸入して、凝縮器(120)側に圧縮吐出する圧縮機(110)と、
    前記低圧冷媒によって蓄冷され、前記蒸発器(150)で蒸発された気相冷媒を前記蓄冷された蓄冷熱によって冷却させる蓄冷材を備える蓄冷器(160)と、
    前記蒸発器(150)の冷媒出口と前記圧縮機(110)の冷媒吸入口との間に、前記蓄冷器(160)に対して並列に設けられ、前記低圧冷媒の流れに対して所定の流通抵抗となる流路抵抗体(170)と、
    前記流路抵抗体(170)の冷媒出口側流路と前記蓄冷器(160)の冷媒出口側流路とが合流する合流部(170B)と、前記蓄冷器(160)の冷媒出口部との間の流路(170C)に設けられ、この流路(170C)を開閉する開閉手段(180)とを備えることを特徴とする蓄冷器付き冷凍サイクル装置。
  2. 前記流路抵抗体(170)は、開閉弁(171)であることを特徴とする請求項1に記載の蓄冷器付き冷凍サイクル装置。
  3. 前記開閉手段(180)は、前記蓄冷器(160)の冷媒出口部から前記合流部(170A)側への前記低圧冷媒の流れを許容し、前記合流部(170A)から前記蓄冷器(160)の冷媒出口部側への前記低圧冷媒の流れを阻止する逆止弁(180)であることを特徴とする請求項1または請求項2に記載の蓄冷器付き冷凍サイクル装置。
  4. 前記蓄冷器(160)と、前記蒸発器(150)の冷媒入口側とを接続する接続流路(190)を備え、
    前記接続流路(190)には、前記蓄冷器(160)側から前記蒸発器(150)の冷媒入口側への前記低圧冷媒の循環を可能とするポンプ(191)が設けられたことを特徴とする請求項1〜請求項3のいずれか1つに記載の蓄冷器付き冷凍サイクル装置。
  5. 前記ポンプ(191)は、前記凝縮器(120)から流出される高圧冷媒の圧力エネルギーを速度エネルギーに変換して前記高圧冷媒を減圧膨張させるノズル(192a)、および前記ノズル(192a)から噴射される高い速度の冷媒流により前記蓄冷器(160)からの前記低圧冷媒を吸引し、吸引した前記低圧冷媒と前記ノズル(192a)から噴射される冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を上昇させて前記蒸発器(150)に流入させる昇圧部(192b)を有するエジェクタ(192)であることを特徴とする請求項4に記載の蓄冷器付き冷凍サイクル装置。
  6. 減圧器(140)によって減圧された低圧冷媒を蒸発させる蒸発器(150)と、
    前記蒸発器(150)から流出される前記低圧冷媒を吸入して、凝縮器(120)側に圧縮吐出する圧縮機(110)と、
    前記低圧冷媒によって蓄冷され、前記蒸発器(150)で蒸発された気相冷媒を前記蓄冷された蓄冷熱によって冷却させる蓄冷材を備え、前記減圧器(140)の冷媒出口側から前記蒸発器(150)の冷媒入口側に繋がる蒸発器用流路(150A)に対して並列配置された蓄冷器(160)と、
    前記凝縮器(120)から流出される高圧冷媒の圧力エネルギーを速度エネルギーに変換して前記高圧冷媒を減圧膨張させるノズル(192a)、および前記ノズル(192a)から噴射される高い速度の冷媒流により前記蓄冷器(160)からの前記低圧冷媒を吸引し、吸引した前記低圧冷媒と前記ノズル(192a)から噴射される冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を上昇させて前記蒸発器(150)に流入させる昇圧部(192b)を有するエジェクタ(192)と、
    前記並列配置のために前記蒸発器用流路(150A)から分岐して前記蓄冷器(160)の冷媒入口側に至る流路(160A)を開閉する第1開閉手段(211)と、
    前記蒸発器(150)の冷媒出口側と、前記蓄冷器(160)の冷媒入口側とを接続する接続流路(220)と、
    前記接続流路(220)を開閉する第2開閉手段(212)とを備えることを特徴とする蓄冷器付き冷凍サイクル装置。
  7. 減圧器(140)によって減圧された低圧冷媒を蒸発させる蒸発器(150)と、
    前記蒸発器(150)から流出される前記低圧冷媒を吸入して、凝縮器(120)側に圧縮吐出する圧縮機(110)と、
    前記低圧冷媒によって蓄冷され、前記蒸発器(150)で蒸発された気相冷媒を前記蓄冷された蓄冷熱によって冷却させる蓄冷材を備え、前記蒸発器(150)に対して並列配置された蓄冷器(160)と、
    前記並列配置のために前記蒸発器(150)の冷媒入口側から分岐して前記蓄冷器(160)の冷媒入口側に至る流路(160B)に設けられ、この流路(160B)を開閉する開閉手段(230)とを備えることを特徴とする蓄冷器付き冷凍サイクル装置。
JP2008076414A 2008-03-24 2008-03-24 蓄冷器付き冷凍サイクル装置 Expired - Fee Related JP5018584B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076414A JP5018584B2 (ja) 2008-03-24 2008-03-24 蓄冷器付き冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076414A JP5018584B2 (ja) 2008-03-24 2008-03-24 蓄冷器付き冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2009229014A true JP2009229014A (ja) 2009-10-08
JP5018584B2 JP5018584B2 (ja) 2012-09-05

Family

ID=41244620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076414A Expired - Fee Related JP5018584B2 (ja) 2008-03-24 2008-03-24 蓄冷器付き冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP5018584B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246030A (ja) * 2010-05-28 2011-12-08 Denso Corp 車両用空調装置
JP2012122670A (ja) * 2010-12-08 2012-06-28 Daikin Industries Ltd 空気調和装置
WO2012105676A1 (ja) * 2011-02-04 2012-08-09 カルソニックカンセイ株式会社 冷凍サイクル装置
WO2013136148A1 (en) 2012-03-16 2013-09-19 Toyota Jidosha Kabushiki Kaisha Cooling system and vehicle that includes cooling system
JP2016058607A (ja) * 2014-09-11 2016-04-21 株式会社東芝 電波送信システム
WO2018037186A1 (fr) 2016-08-26 2018-03-01 Valeo Systemes Thermiques Systeme thermique, notamment un systeme de climatisation de vehicule automobile
WO2019048751A1 (fr) 2017-09-11 2019-03-14 Valeo Systemes Thermiques Systeme thermique, notament un systeme de climatisation de vehicule automobile
US11124044B2 (en) 2016-10-24 2021-09-21 Denso Corporation Air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306064A (ja) * 1989-05-19 1990-12-19 Daikin Ind Ltd 蓄熱式空気調和装置の運転制御装置
JPH06159743A (ja) * 1992-11-25 1994-06-07 Mitsubishi Electric Corp 蓄熱式冷房装置
JP2005271906A (ja) * 2004-02-27 2005-10-06 Denso Corp 車両用空調装置
JP2006021571A (ja) * 2004-07-06 2006-01-26 Toyota Motor Corp 車両用空調装置
JP2006044579A (ja) * 2004-08-06 2006-02-16 Denso Corp 車両用空調装置
JP2007253947A (ja) * 2002-05-29 2007-10-04 Denso Corp 車両用空調装置の蓄冷熱交換器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306064A (ja) * 1989-05-19 1990-12-19 Daikin Ind Ltd 蓄熱式空気調和装置の運転制御装置
JPH06159743A (ja) * 1992-11-25 1994-06-07 Mitsubishi Electric Corp 蓄熱式冷房装置
JP2007253947A (ja) * 2002-05-29 2007-10-04 Denso Corp 車両用空調装置の蓄冷熱交換器
JP2005271906A (ja) * 2004-02-27 2005-10-06 Denso Corp 車両用空調装置
JP2006021571A (ja) * 2004-07-06 2006-01-26 Toyota Motor Corp 車両用空調装置
JP2006044579A (ja) * 2004-08-06 2006-02-16 Denso Corp 車両用空調装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246030A (ja) * 2010-05-28 2011-12-08 Denso Corp 車両用空調装置
JP2012122670A (ja) * 2010-12-08 2012-06-28 Daikin Industries Ltd 空気調和装置
WO2012105676A1 (ja) * 2011-02-04 2012-08-09 カルソニックカンセイ株式会社 冷凍サイクル装置
WO2013136148A1 (en) 2012-03-16 2013-09-19 Toyota Jidosha Kabushiki Kaisha Cooling system and vehicle that includes cooling system
JP2013194937A (ja) * 2012-03-16 2013-09-30 Nippon Soken Inc 冷却装置およびそれを備える車両
US9631544B2 (en) 2012-03-16 2017-04-25 Toyota Jidosha Kabushiki Kaisha Cooling system and vehicle that includes cooling system
JP2016058607A (ja) * 2014-09-11 2016-04-21 株式会社東芝 電波送信システム
WO2018037186A1 (fr) 2016-08-26 2018-03-01 Valeo Systemes Thermiques Systeme thermique, notamment un systeme de climatisation de vehicule automobile
FR3055251A1 (fr) * 2016-08-26 2018-03-02 Valeo Systemes Thermiques Systeme thermique, notamment un systeme de climatisation de vehicule automobile
US11124044B2 (en) 2016-10-24 2021-09-21 Denso Corporation Air conditioner
WO2019048751A1 (fr) 2017-09-11 2019-03-14 Valeo Systemes Thermiques Systeme thermique, notament un systeme de climatisation de vehicule automobile

Also Published As

Publication number Publication date
JP5018584B2 (ja) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5018584B2 (ja) 蓄冷器付き冷凍サイクル装置
US7779647B2 (en) Ejector and ejector cycle device
US7428826B2 (en) Ejector cycle device
JP4522641B2 (ja) 蒸気圧縮式冷凍機
JP4984453B2 (ja) エジェクタ式冷凍サイクル
US9752801B2 (en) Ejector cycle
CN103597296B (zh) 制冷循环
JP4639541B2 (ja) エジェクタを用いたサイクル
JP4254217B2 (ja) エジェクタサイクル
JP4501984B2 (ja) エジェクタ式冷凍サイクル
US7367200B2 (en) Ejector cycle device
JP3931899B2 (ja) エジェクタサイクル
JP2003083622A (ja) エジェクタサイクル
JP4096824B2 (ja) 蒸気圧縮式冷凍機
JP2004198002A (ja) 蒸気圧縮式冷凍機
JP3818115B2 (ja) エジェクタサイクル
JP5050890B2 (ja) 車両用空調装置
JP2005271906A (ja) 車両用空調装置
JP4930214B2 (ja) 冷凍サイクル装置
JP2004257694A (ja) 蒸気圧縮式冷凍機
JP4924545B2 (ja) 車両用空調装置
JP4831030B2 (ja) 冷凍サイクル装置
JP2007078349A (ja) エジェクタサイクル
JP2009138952A (ja) ブライン式冷却装置
JP2008261512A (ja) エジェクタ式冷凍サイクル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R151 Written notification of patent or utility model registration

Ref document number: 5018584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees