JP2009227604A - New 3,6-disubstituted carbazole derivative, host material comprising the same and organic el element containing the same - Google Patents

New 3,6-disubstituted carbazole derivative, host material comprising the same and organic el element containing the same Download PDF

Info

Publication number
JP2009227604A
JP2009227604A JP2008074096A JP2008074096A JP2009227604A JP 2009227604 A JP2009227604 A JP 2009227604A JP 2008074096 A JP2008074096 A JP 2008074096A JP 2008074096 A JP2008074096 A JP 2008074096A JP 2009227604 A JP2009227604 A JP 2009227604A
Authority
JP
Japan
Prior art keywords
organic
layer
light emitting
group
carbazole derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008074096A
Other languages
Japanese (ja)
Inventor
Junji Kido
淳二 城戸
Yushin Fu
勇進 夫
Yoshinori Omae
吉則 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2008074096A priority Critical patent/JP2009227604A/en
Publication of JP2009227604A publication Critical patent/JP2009227604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new 3,6-disubstituted carbazole derivative, a host material comprising the same and an organic EL element containing the same. <P>SOLUTION: This 3,6-disubstituted carbazole derivative obtained by e.g. the reaction shown in the figure is exemplified, and the host material comprising the same derivative and the organic EL element containing the same are also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、新規3,6−二置換カルバゾール誘導体、それよりなるホスト材料およびそれを含有する有機EL素子(有機エレクトロルミネッセンス素子)に関する。   The present invention relates to a novel 3,6-disubstituted carbazole derivative, a host material comprising the same, and an organic EL device (organic electroluminescence device) containing the same.

有機ELの実用化に向けた研究開発が、国内外の電気メーカーや材料メーカーなどが中心になって進められている。液晶表示素子や発光ダイオードなどの既に世間に知られているディスプレイなどと、互角に渡り歩いていくには消費電力の低減および素子の長寿命化が必須の課題としてあげられている。   Research and development for the practical application of organic EL is being promoted mainly by domestic and foreign electric and material manufacturers. Reducing power consumption and prolonging the life of the elements are indispensable issues for walking alongside displays that are already known to the public such as liquid crystal display elements and light emitting diodes.

そこで、この問題を解決する目的で、近年リン光材料による有機EL素子の検討が成されている(非特許文献1)。
リン光材料は従来の蛍光材料と異なり、三重項励起状態を使用することができるため量子効率が非常に高く、エネルギー失活がほとんどなく内部発光量子収率でほぼ100%に達する材料である(非特許文献2、3、4)。
しかしこのリン光材料は、濃度消光を起こしやすいため蛍光材料と同様にホスト材料との併用が必要になってくる(非特許文献5)。
高効率発光を得るためには、輸送材料やホスト材料の最適化を図らないといけないが、リン光材料は蛍光材料とは異なり三重項エネルギーを完全に閉じこめないと満足な効果が得られない。特に青色の材料に関してはエネルギーレベルが非常に高い。そのためこれまで使用していたα−NPDでは十分なエネルギーの閉じこめができない。これまでこの青色リン光エネルギーを閉じ込めることができるワイドギャップ化された輸送材料やホスト材料が無く、青色リン光材料の開発を妨げる一つの要因になっていた。
Thus, in order to solve this problem, an organic EL element using a phosphorescent material has been recently studied (Non-Patent Document 1).
Unlike conventional fluorescent materials, phosphorescent materials can use triplet excited states, so that quantum efficiency is very high, and there is almost no energy deactivation and the internal emission quantum yield reaches almost 100% ( Non-patent documents 2, 3, 4).
However, since this phosphorescent material easily causes concentration quenching, it is necessary to use it together with a host material in the same manner as a fluorescent material (Non-patent Document 5).
In order to obtain high-efficiency light emission, it is necessary to optimize transport materials and host materials, but unlike phosphor materials, phosphorescent materials cannot achieve satisfactory effects unless triplet energy is completely confined. Especially for blue materials, the energy level is very high. Therefore, the α-NPD that has been used so far cannot confine sufficient energy. Until now, there was no wide-gap transport material or host material that could confine this blue phosphorescent energy, which was one factor that hindered the development of blue phosphorescent materials.

M.A.Baldo,D.F.O’Brien,Y.You,A.Shoustikov,S.Sibley,M.E.Thompson and S.R.Forrest:Nature(London)395 p.151(1998)M.M. A. Baldo, D.M. F. O'Brien, Y.M. You, A .; Shoustikov, S .; Sibrey, M.M. E. Thompson and S.M. R. Forrest: Nature (London) 395 p. 151 (1998) C.Adachi,M.A.Baldo and S.R.Forrest:Appl.Phys.Lett.,77 p.904(2000)C. Adachi, M .; A. Baldo and S.M. R. Forrest: Appl. Phys. Lett. , 77 p. 904 (2000) C.Adachi,M.A.Baldo,S.R.Forrest,S.Lamansky,M.E.Thompson and R.C.Wrong:Appl.Phys.Lett.,78,1622(2001)C. Adachi, M .; A. Baldo, S .; R. Forrest, S.M. Lamansky, M .; E. Thompson and R.C. C. Wong: Appl. Phys. Lett. , 78, 1622 (2001) C.Adachi,R.C.Wrong,P.Djurovich,V.Adamovich,M.A.Baldo,M.E.Thompson,and S.R.Forrest:Appl.Phys.Lett.,79,2082(2001)C. Adachi, R.A. C. Wong, P.M. Djurovic, V.M. Adamovich, M .; A. Baldo, M .; E. Thompson, and S.M. R. Forrest: Appl. Phys. Lett. 79, 2082 (2001) C.Adachi,M.A.Baldo and S.R.Forrest:J.Appl.Phys.,87,8049(2000)C. Adachi, M .; A. Baldo and S.M. R. Forrest: J.M. Appl. Phys. , 87, 8049 (2000)

本発明は、新規3,6−二置換カルバゾール誘導体、それよりなるホスト材料およびそれを含有する有機EL素子を提供する点にある。   An object of the present invention is to provide a novel 3,6-disubstituted carbazole derivative, a host material comprising the derivative, and an organic EL device containing the host material.

本発明の第1は、下記一般式(1)
(式中、QおよびQは、下記式
であり、ArとArは置換基を有していても構わないアリール基および置換基を有していても構わないヘテロアリール基よりなる群からそれぞれ独立して選ばれた基であり、Rは、アルキル基、置換基を有していても構わないアリール基または置換基を有していても構わないヘテロアリール基よりなる群からそれぞれ独立して選ばれた基)
で示される3,6−二置換カルバゾール誘導体に関する。
本発明の第2は、下記一般式(2)
(式中、QおよびQは、下記式
であり、ArとArは置換基を有していても構わないアリール基および置換基を有していても構わないヘテロアリール基よりなる群からそれぞれ独立して選ばれた基)
で示される3,6−二置換カルバゾール誘導体に関する。
本発明の第3は、請求項1または2記載の3,6−二置換カルバゾール誘導体よりなることを特徴とするホスト材料に関する。
本発明の第4は、請求項1または2記載の3,6−二置換カルバゾール誘導体を用いたことを特徴とする有機EL素子に関する。
本発明の第5は、請求項1または2記載の3,6−二置換カルバゾール誘導体を発光層に使用することを特徴とする有機EL素子に関する。
本発明の第6は、発光層に用いる発光材料としてリン光材料を用いた請求項4または5記載の有機EL素子に関する。
本発明の第7は、発光材料として発光ピーク波長が480nmよりも短波長の青色発光を示すリン光材料を用いた請求項6記載の有機EL素子に関する。
The first of the present invention is the following general formula (1)
(In the formula, Q 1 and Q 2 are the following formulas:
Ar 1 and Ar 2 are groups independently selected from the group consisting of an aryl group which may have a substituent and a heteroaryl group which may have a substituent, R is a group independently selected from the group consisting of an alkyl group, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent)
It is related with the 3, 6- disubstituted carbazole derivative shown by these.
The second of the present invention is the following general formula (2)
(In the formula, Q 1 and Q 2 are the following formulas:
Ar 1 and Ar 2 are groups independently selected from the group consisting of an aryl group which may have a substituent and a heteroaryl group which may have a substituent.
It is related with the 3, 6- disubstituted carbazole derivative shown by these.
A third aspect of the present invention relates to a host material comprising the 3,6-disubstituted carbazole derivative according to claim 1 or 2.
A fourth aspect of the present invention relates to an organic EL device characterized in that the 3,6-disubstituted carbazole derivative according to claim 1 or 2 is used.
A fifth aspect of the present invention relates to an organic EL device characterized in that the 3,6-disubstituted carbazole derivative according to claim 1 or 2 is used for a light emitting layer.
A sixth aspect of the present invention relates to the organic EL element according to claim 4 or 5, wherein a phosphorescent material is used as a light emitting material used for a light emitting layer.
A seventh aspect of the present invention relates to the organic EL device according to claim 6, wherein a phosphorescent material that emits blue light having an emission peak wavelength shorter than 480 nm is used as the light emitting material.

本発明の一般式(1)におけるRは、アルキル基、置換基(置換基としては、アルキル基、アルコキシ基、アルキルアミノ基などを挙げることができる)を有していても構わないアリール基または置換基を有していても構わないヘテロアリール基を挙げることができる。前記アルキル基やアルコキシ基、アルキルアミノ基におけるアルキルとしては、炭素数1〜6の直鎖または枝分かれしていても構わないアルキル基が好ましい。すなわちメチル、エチル、n−プロピル、iso−プロピル、n−ブチル、iso−ブチル、tert−ブチル、n−アミル、iso−アミル、n−ヘキシル、iso−ヘキシルなどを挙げることができる。アリール基としては、フェニル、ビフェニル、ターフェニル、クオーターフェニル、ナフチル、アントラニル、フェナンソレニル、テトラセン、テトラフェンなど、またヘテロアリール基についてはチエニル、ピリジル、ピリミジル、ピラジル、キノリル、イソキノリル、ベンゾ[b]チオフェニル、シンノリル、キノキサリルなどを挙げることができる。   R in the general formula (1) of the present invention is an aryl group which may have an alkyl group, a substituent (which may include an alkyl group, an alkoxy group, an alkylamino group, etc.) or The heteroaryl group which may have a substituent can be mentioned. The alkyl in the alkyl group, alkoxy group or alkylamino group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms. That is, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-amyl, iso-amyl, n-hexyl, iso-hexyl and the like can be mentioned. As aryl groups, phenyl, biphenyl, terphenyl, quarterphenyl, naphthyl, anthranyl, phenanthrenyl, tetracene, tetraphen, etc., and for heteroaryl groups, thienyl, pyridyl, pyrimidyl, pyrazyl, quinolyl, isoquinolyl, benzo [b] thiophenyl , Cinnolyl, quinoxalyl and the like.

前記ArおよびArにおいて、置換基があっても良いアリール基としては、フェニル、ビフェニル、ターフェニル、クオーターフェニル、ナフチル、アントラニル、フェナンソレニル、テトラセン、テトラフェンなどを挙げることができる。また置換基がついていても構わないヘテロアリール基としては、チエニル、ピリジル、ピリミジル、ピラジル、キノリル、イソキノリル、ベンゾ[b]チオフェニル、シンノリル、キノキサリルなどを挙げることができる。前記置換基としては、炭素数1〜6の直鎖又は分岐のアルキル基、アルコキシ基、アルキルアミノ基などを挙げることができるが、とくにアルキル基が好ましく、その例としては、メチル、エチル、n−プロピル、iso−プロピル、n−ブチル、iso−ブチル、tert−ブチル、n−アミル、iso−アミル、n−ヘキシル、iso−ヘキシルなどを挙げることができる。 Examples of the aryl group that may have a substituent in Ar 1 and Ar 2 include phenyl, biphenyl, terphenyl, quarterphenyl, naphthyl, anthranyl, phenanthorenyl, tetracene, and tetraphen. Examples of the heteroaryl group which may have a substituent include thienyl, pyridyl, pyrimidyl, pyrazyl, quinolyl, isoquinolyl, benzo [b] thiophenyl, cinnolyl, quinoxalyl and the like. Examples of the substituent include a linear or branched alkyl group having 1 to 6 carbon atoms, an alkoxy group, and an alkylamino group, and an alkyl group is particularly preferable, and examples thereof include methyl, ethyl, n -Propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-amyl, iso-amyl, n-hexyl, iso-hexyl and the like.

本発明の化合物は、下記の反応により製造することができる。
なお前記式中、Rは、アルキル基、置換基を有していても構わないアリール基またはヘテロアリール基よりなる群からそれぞれ独立して選ばれた基、ArとArは置換基を有していても構わないアリール基およびヘテロアリール基よりなる群からそれぞれ独立して選ばれた基である。Xはハロゲンである。
The compound of the present invention can be produced by the following reaction.
In the above formula, R is an alkyl group, a group independently selected from the group consisting of an aryl group or a heteroaryl group which may have a substituent, and Ar 1 and Ar 2 each have a substituent. Each group may be independently selected from the group consisting of an aryl group and a heteroaryl group. X is a halogen.

本発明化合物の製造法について具体的に説明する。
本発明の第一反応は、N−置換−3,6−ジハロカルバゾールをリチオ化(リチウム化)し、ついでハロゲン化二置換ホスフィンとカップリングさせる反応である。本反応で使用される溶媒は、有機リチウム化合物と反応しない溶媒であれば特に限定されるものではない。たとえば、ジエチルエーテル、1,4−ジオキサン、テトラヒドロフランなどのようなエーテル系の溶媒が好ましい。ハロゲン化二置換ホスフィンとしては例えば、ジフェニルクロロホスフィンなどが挙げられる。
反応温度については、リチオ化(リチウム化)が室温のような20〜25℃で行った場合、一旦結合したリチウム金属がはずれる還元脱離反応が起こるため低温で反応するのが好ましい。一般的にはドライアイス浴で冷却できる−60〜−80℃で反応するのが適している。
第二反応は、得られたジホスフィン化合物を酸化剤でホスホキシドに変換する反応である。本反応で使用される溶媒は、溶媒自身が酸化を受けないものであれば特に限定されるものではない。ジクロロメタン、クロロホルム、ジクロロエタン、クロロベンゼンのようなハロゲン系の溶媒が好ましい。用いる酸化剤としては、過酸化水素、過酸化ベンゾイル、メタクロロ過安息香酸などが使用できるが、後処理を考慮した場合は30%の過酸化水素水が好ましい。反応温度は、加熱をすると反応が暴走し爆発する。また冷却すると反応に時間を要するため室温、すなわち20〜25℃の温和な条件で反応するのがのぞましい。
The production method of the compound of the present invention will be specifically described.
The first reaction of the present invention is a reaction in which N-substituted-3,6-dihalocarbazole is lithiated (lithiated) and then coupled with a halogenated disubstituted phosphine. The solvent used in this reaction is not particularly limited as long as it does not react with the organolithium compound. For example, ether solvents such as diethyl ether, 1,4-dioxane, tetrahydrofuran and the like are preferable. Examples of the halogenated disubstituted phosphine include diphenylchlorophosphine.
Regarding the reaction temperature, when lithiation (lithiation) is carried out at 20 to 25 ° C. such as room temperature, a reductive elimination reaction in which the lithium metal once bound is released occurs, it is preferable to react at a low temperature. In general, it is suitable to react at −60 to −80 ° C. which can be cooled in a dry ice bath.
The second reaction is a reaction in which the obtained diphosphine compound is converted to phosphooxide with an oxidizing agent. The solvent used in this reaction is not particularly limited as long as the solvent itself does not undergo oxidation. Halogen-based solvents such as dichloromethane, chloroform, dichloroethane and chlorobenzene are preferred. As the oxidizing agent to be used, hydrogen peroxide, benzoyl peroxide, metachloroperbenzoic acid and the like can be used, but 30% hydrogen peroxide water is preferable in consideration of post-treatment. As for the reaction temperature, when heated, the reaction runs away and explodes. In addition, since it takes time for the reaction to cool, it is preferable to react at a room temperature, that is, a mild condition of 20 to 25 ° C.

本発明化合物の具体例を以下に例示する。
Specific examples of the compound of the present invention are illustrated below.

本発明の新規な3,6−二置換カルバゾール誘導体は、ホール輸送能および電子輸送能
が確認されるためホスト材料として適している。また広いエネルギーレベルを有しているのでリン光材料用のホスト材料として用いることができる。
The novel 3,6-disubstituted carbazole derivative of the present invention is suitable as a host material since the hole transport ability and the electron transport ability are confirmed. Moreover, since it has a wide energy level, it can be used as a host material for a phosphorescent material.

本発明の新規な3,6−二置換カルバゾール誘導体を有機エレクトロルミネッセンスに
使用する場合、適当な発光材料と組み合わせて使用することが好ましい。
When the novel 3,6-disubstituted carbazole derivative of the present invention is used for organic electroluminescence, it is preferably used in combination with a suitable light emitting material.

次に本発明の有機エレクトロルミネッセンス素子について説明する。本発明の有機EL素子は、陽極と陰極間にそれぞれの機能を持たせた多層の有機化合物を積層した素子であり、該有機化合物層の少なくとも一層が本発明の3,6−二置換カルバゾール誘導体を含む層から成り立つ。ホスト層や発光層は、発光材料を含有し、それに加えて陽極から注入した正孔もしくは陰極から注入した電子を発光材料まで輸送するのが目的である。このホスト層には本発明の化合物を用いるのが好ましいが、既存のホスト材料と混合しても使用できる。機能を持たせた多層型の有機EL素子の構成例としては、例えばITO/ホール輸送層(正孔輸送層)/発光層(発光材料+ホスト材料)/電子輸送層/陰極、ITO/ホール輸送層/発光層(発光材料+ホスト材料)/電子輸送層/電子注入層/陰極、ITO/ホール輸送層/発光層(発光材料+ホスト材料)/ホールブロック層/電子輸送層/陰極、ITO/ホール輸送層/発光層(発光材料+ホスト材料)/ホールブロック層/電子輸送層/電子注入層/陰極、ITO/ホール注入層/ホール輸送層/発光層(発光材料+ホスト材料)/ホールブロック層/電子輸送層/電子注入層/陰極等の多層構成で積層したものが挙げられる。また、必要に応じて陰極上に封止層を有していても良い。   Next, the organic electroluminescence element of the present invention will be described. The organic EL device of the present invention is a device in which multiple organic compounds having respective functions are provided between an anode and a cathode, and at least one of the organic compound layers is a 3,6-disubstituted carbazole derivative of the present invention. It consists of a layer containing. The host layer and the light-emitting layer contain a light-emitting material, and in addition, the purpose is to transport holes injected from the anode or electrons injected from the cathode to the light-emitting material. It is preferable to use the compound of the present invention for this host layer, but it can also be used by mixing with an existing host material. Examples of the configuration of a multilayer organic EL element having a function include, for example, ITO / hole transport layer (hole transport layer) / light emitting layer (light emitting material + host material) / electron transport layer / cathode, ITO / hole transport. Layer / light emitting layer (light emitting material + host material) / electron transport layer / electron injection layer / cathode, ITO / hole transport layer / light emitting layer (light emitting material + host material) / hole block layer / electron transport layer / cathode, ITO / Hole transport layer / light emitting layer (light emitting material + host material) / hole block layer / electron transport layer / electron injection layer / cathode, ITO / hole injection layer / hole transport layer / light emitting layer (light emitting material + host material) / hole block A layer / electron transport layer / electron injection layer / a cathode having a multilayer structure such as a cathode. Moreover, you may have a sealing layer on a cathode as needed.

正孔輸送層、電子輸送層、および発光層のそれぞれの層は、一層構造であっても、多層構造であっても良い。また正孔輸送層、電子輸送層はそれぞれの層で注入機能を受け持つ層(正孔注入層および電子注入層)と輸送機能を受け持つ層(正孔輸送層および電子輸送層)を別々に設けることもできる。   Each of the hole transport layer, the electron transport layer, and the light emitting layer may have a single layer structure or a multilayer structure. In addition, the hole transport layer and the electron transport layer should be provided separately with a layer responsible for the injection function (hole injection layer and electron injection layer) and a layer responsible for the transport function (hole transport layer and electron transport layer). You can also.

本発明の有機エレクトロルミネッセンス素子は、上記構成例に限らず、種々の構成とすることができる。必要に応じて、正孔輸送成分と発光層成分、あるいは電子輸送層成分と発光層成分を混合した層を設けても良い。   The organic electroluminescence element of the present invention is not limited to the above configuration example, and can have various configurations. If necessary, a layer in which a hole transport component and a light emitting layer component or an electron transport layer component and a light emitting layer component are mixed may be provided.

以下本発明の有機エレクトロルミネッセンス素子の構成要素に関して、陽極/正孔輸送層/発光層(発光材料+ホスト材料)/電子輸送層/陰極からなる素子構成を例として取り上げて説明する。本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。   Hereinafter, the constituent elements of the organic electroluminescence device of the present invention will be described by taking as an example the device configuration comprising anode / hole transport layer / light emitting layer (light emitting material + host material) / electron transport layer / cathode. The organic electroluminescence device of the present invention is preferably supported on a substrate.

基板の素材については特に制限はなく、従来の有機エレクトロルミネッセンス素子に慣用されているものであれば良く、例えば、ガラス、石英ガラス、透明プラスチックなどからなるものを用いることができる。   There is no restriction | limiting in particular about the raw material of a board | substrate, What is necessary is just used conventionally for the conventional organic electroluminescent element, For example, what consists of glass, quartz glass, a transparent plastic etc. can be used.

本発明の有機エレクトロルミネッセンス素子の陽極としては、仕事関数の大きな金属単体(4eV以上)、仕事関数の大きな金属同士の合金(4eV以上)または導電性物質およびこれらの混合物を電極材料とすることが好ましい。このような電極材料の具体例としては、金、銀、銅等の金属、ITO(インジウム−スズオキサイド)、酸化スズ(SnO)、酸化亜鉛(ZnO)などの導電性透明材料、ポリピロール、ポリチオフェン等の導電性高分子材料が挙げられる。陽極はこれらの電極材料を、例えば蒸着、スパッタリング、塗布などの方法により形成することができる。陽極のシート電気抵抗は数百Ω/cm以下が好ましい。陽極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。 As an anode of the organic electroluminescence device of the present invention, an electrode material may be a single metal having a high work function (4 eV or more), an alloy of metals having a high work function (4 eV or more), a conductive substance, or a mixture thereof. preferable. Specific examples of such electrode materials include metals such as gold, silver, and copper, conductive transparent materials such as ITO (indium-tin oxide), tin oxide (SnO 2 ), and zinc oxide (ZnO), polypyrrole, and polythiophene. Examples thereof include conductive polymer materials such as For the anode, these electrode materials can be formed by a method such as vapor deposition, sputtering, or coating. The sheet electrical resistance of the anode is preferably several hundred Ω / cm 2 or less. The thickness of the anode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm.

陰極としては、仕事関数の小さな金属単体(4eV以下)、仕事関数の小さい金属同士の合金(4eV以下)または導電性物質およびこれらの混合物を電極材料とすることが好ましい。このような電極材料の具体例としては、リチウム、リチウム−インジウム合金、ナトリウム、ナトリウム−カリウム合金、マグネシウム、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム、アルミニウム−リチウム合金、アルミニウム−マグネシウム合金などが挙げられる。陰極はこれらの電極材料を、例えば蒸着、スパッタリングなどの方法により、薄膜を形成させることにより作成することができる。陰極のシート電気抵抗は数百Ω/cm以下が好ましい。陰極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。本発明の有機EL素子の発光を効率よく取り出すために、陽極または陰極の少なくとも一方の電極は透明もしくは半透明であることが好ましい。 As the cathode, an electrode material is preferably a single metal having a low work function (4 eV or less), an alloy of metals having a low work function (4 eV or less), a conductive substance, or a mixture thereof. Specific examples of such electrode materials include lithium, lithium-indium alloy, sodium, sodium-potassium alloy, magnesium, magnesium-silver alloy, magnesium-indium alloy, aluminum, aluminum-lithium alloy, and aluminum-magnesium alloy. Can be mentioned. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet electrical resistance of the cathode is preferably several hundred Ω / cm 2 or less. The thickness of the cathode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm. In order to efficiently extract light emitted from the organic EL device of the present invention, at least one of the anode and the cathode is preferably transparent or translucent.

本発明の有機エレクトロルミネッセンス素子の正孔輸送層は、正孔伝達化合物からなるもので、陽極より注入された正孔を発光層に伝達する機能を有している。電界が与えた2つの電極の間に正孔伝達化合物が配置されて陽極から正孔が注入された場合、少なくとも10−6cm/V・秒以上の正孔移動度を有する正孔伝達物質が好ましい。本発明の有機エレクトロルミネッセンス素子の正孔輸送層に使用する正孔伝達物質は、前記の好ましい性能を有するものであれば特に制限はない。従来から光導電材料において正孔の電荷注入材料として慣用されているものや有機エレクトロルミネッセンス素子の正孔輸送層に使用されている公知の材料の中から任意のものを選択して用いることができる。 The hole transport layer of the organic electroluminescence device of the present invention is made of a hole transfer compound and has a function of transferring holes injected from the anode to the light emitting layer. A hole transport material having a hole mobility of at least 10 −6 cm 2 / V · sec when a hole transport compound is disposed between two electrodes to which an electric field is applied and holes are injected from an anode Is preferred. The hole transport material used for the hole transport layer of the organic electroluminescence device of the present invention is not particularly limited as long as it has the above-mentioned preferable performance. Any one of materials conventionally used as hole charge injection materials in photoconductive materials and known materials used in hole transport layers of organic electroluminescent elements can be selected and used. .

前記の正孔伝達物質としては、たとえば銅フタロシアニンなどのフタロシアニン誘導体、N,N,N′,N′−テトラフェニル−1,4−フェニレンジアミン、N,N′−ジ(m−トリル)−N,N′−ジフェニル−4,4−ジアミノフェニル(TPD)、N,N′−ジ(1−ナフチル)−N,N′−ジフェニル−4,4−ジアミノフェニル(α−NPD)等のトリアリールアミン誘導体、ポリフェニレンジアミン誘導体、ポリチオフェン誘導体、および水溶性のPEDOT−PSS(ポリエチレンジオキサチオフェン−ポリスチレンスルホン酸)などが挙げられる。正孔輸送層は、これらの他の正孔伝達化合物一種または二種以上からなる一層で構成されたものでよく、前記の正孔伝達物質とは別の化合物からなる正孔輸送層を積層したものでも良い。
正孔注入材料としては、下記化学式に示されるPEDOT−PSS(ポリマー混合物)やDNTPDを挙げることができる。

正孔輸送材料としては、下記化学式に示すTPD、DTASi、α−NPDなどを挙げることができる。
Examples of the hole transport material include phthalocyanine derivatives such as copper phthalocyanine, N, N, N ′, N′-tetraphenyl-1,4-phenylenediamine, and N, N′-di (m-tolyl) -N. , N′-diphenyl-4,4-diaminophenyl (TPD), N, N′-di (1-naphthyl) -N, N′-diphenyl-4,4-diaminophenyl (α-NPD), etc. Examples thereof include amine derivatives, polyphenylenediamine derivatives, polythiophene derivatives, and water-soluble PEDOT-PSS (polyethylenedioxathiophene-polystyrenesulfonic acid). The hole transport layer may be composed of one or more of these other hole transport compounds, and a hole transport layer composed of a compound different from the hole transport material is laminated. Things can be used.
Examples of the hole injection material include PEDOT-PSS (polymer mixture) and DNTPD represented by the following chemical formula.

Examples of the hole transport material include TPD, DTASi, α-NPD, and the like represented by the following chemical formula.

本発明の有機エレクトロルミネッセンス素子の発光層については、特に制限はなく公知の材料について任意のものを選択して用いることができる。   There is no restriction | limiting in particular about the light emitting layer of the organic electroluminescent element of this invention, Arbitrary things can be selected and used for a well-known material.

発光材料としては、ペリレン誘導体、ナフタセン誘導体、キナクリドン誘導体、クマリン誘導体(例えばクマリン1、クマリン540、クマリン545など)、ピラン誘導体(例えばDCM−1、DCM−2、DCJTBなど)、有機金属錯体、例えばトリス(8−ヒドロキシキノリノラト)アルミニウム錯体(Alq)、トリス(4−メチル−8−ヒドロキシキノリノラト)アルミニウム錯体(Almq)等の蛍光材料や[2−(4,6−ジフルオロフェニル)ピリジル−N,C2′]イリジウム(III)ピコリレート(FIrpic)、トリス{1−[4−(トリフルオロメチル)フェニル]−1H−ピラゾラート−N,C2′}イリジウム(III)(Irtfmppz)、ビス[2−(4′,6′−ジフルオロフェニル)ピリジナト−N,C2′]イリジウム(III)テトラキス(1−ピラゾリル)ボレート(FIr6)、トリス(2−フェニルピリジナト)イリジウム(III)(Irppy)などのリン光材料などを挙げることができる。 Examples of the light-emitting material include perylene derivatives, naphthacene derivatives, quinacridone derivatives, coumarin derivatives (eg, coumarin 1, coumarin 540, coumarin 545, etc.), pyran derivatives (eg, DCM-1, DCM-2, DCJTB, etc.), organometallic complexes, such as Fluorescent materials such as tris (8-hydroxyquinolinolato) aluminum complex (Alq 3 ), tris (4-methyl-8-hydroxyquinolinolato) aluminum complex (Almq 3 ) and [2- (4,6-difluorophenyl ) Pyridyl-N, C2 ′] iridium (III) picolylate (FIrpic), tris {1- [4- (trifluoromethyl) phenyl] -1H-pyrazolate-N, C2 ′} iridium (III) (Irtfmpppz 3 ), Bis [2- (4 ′, 6′-difluorophenyl) pyridy DOO -N, C2 '] iridium (III) tetrakis (1-pyrazolyl) borate (FIr6), tris (2-phenylpyridinato) iridium (III) (Irppy 3) and the like phosphorescent material such as .

発光層は、ホスト材料とゲスト材料(ドーパント)から形成されることが望ましい[Appl. Phys. Lett.,65 3610 (1989)]。特にリン光材料を発光層に使用する場合、ホスト材料の使用が必要であり、この時使用されるホスト材料としては本発明の新規な3,6−二置換カルバゾール誘導体を使用することが好ましい。しかし従来からのホスト材料、たとえば4,4′−ジ(N−カルバゾリル)−1,1′−ビフェニル(CBP)、1,4−ジ(N−カルバゾリル)ベンゼン−2,2′−ジ[4″−(N−カルバゾリル)フェニル]−1,1′−ビフェニル(4CzPBP)等との併用なども可能である。   The light emitting layer is preferably formed of a host material and a guest material (dopant) [Appl. Phys. Lett. , 65 3610 (1989)]. In particular, when a phosphorescent material is used for the light emitting layer, it is necessary to use a host material, and it is preferable to use the novel 3,6-disubstituted carbazole derivative of the present invention as the host material used at this time. However, conventional host materials such as 4,4'-di (N-carbazolyl) -1,1'-biphenyl (CBP), 1,4-di (N-carbazolyl) benzene-2,2'-di [4 ″-(N-carbazolyl) phenyl] -1,1′-biphenyl (4CzPBP) or the like can also be used.

ゲスト材料(ドーパント)は、ホスト材料に対して好ましくは0.01〜40重量%であり、より好ましくは0.1〜20重量%である。ゲスト材料としては、下記に示す従来公知のFIrpic、Irppy、FIr6等を挙げることができる。
The guest material (dopant) is preferably 0.01 to 40% by weight, more preferably 0.1 to 20% by weight with respect to the host material. Examples of guest materials include conventionally known FIrpic, Irppy 3 , FIr 6 and the like shown below.

本発明の有機エレクトロルミネッセンス素子の電子輸送層の材料としては従来からのものを使用することができる。このものは単独で使用できるが他の電子輸送材料と併用しても構わない。   Conventional materials can be used as the material for the electron transport layer of the organic electroluminescent device of the present invention. Although this thing can be used independently, you may use together with another electron transport material.

本発明の有機エレクトロルミネッセンス素子で使用される電子輸送材料としては、たとえばトリス(8−ヒドロキシキノリノラト)アルミニウム錯体(Alq)のようなキノリン錯体、1−N−フェニル−2−(p−ビフェニルイル)−5−(p−tert−ブチルフェニル)−1,3,5−トリアジン(TAZ)のようなトリアジン誘導体、1,4−ジ(1,10−フェナントロリン−2−イル)ベンゼン(DPB)のようなフェナントロリン誘導体などが挙げられる。
電子輸送材料としては、とくに好ましいものとしては、下記化学式に示すAlq、TAZ、DPBなどを挙げることができる。
Examples of the electron transport material used in the organic electroluminescence device of the present invention include quinoline complexes such as tris (8-hydroxyquinolinolato) aluminum complex (Alq 3 ), 1-N-phenyl-2- (p- Triazine derivatives such as biphenylyl) -5- (p-tert-butylphenyl) -1,3,5-triazine (TAZ), 1,4-di (1,10-phenanthrolin-2-yl) benzene (DPB) And phenanthroline derivatives such as
Particularly preferable examples of the electron transport material include Alq 3 , TAZ, and DPB represented by the following chemical formula.

本発明の有機エレクトロルミネッセンス素子は、電子注入性をさらに向上させる目的で陰極と有機層の間に導電体から構成される電子注入層をさらに設けても良い。ここで使用される導電体としては、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属有機錯体から選択される少なくとも一つの金属化合物を使用することが好ましい。アルカリ金属ハロゲン化物としては、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、塩化リチウムなどが挙げられる。アルカリ土類金属ハロゲン化物としては、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウムなどが挙げられる。アルカリ金属有機錯体としては、8−ヒドロキシキノリノラトリチウム、8−ヒドロキシキノリノラトセシウムなどが挙げられる。
また本出願人の特願2006−292032号にかかげるフェナントロリン誘導体のリチウム錯体(LiPB)や特願2007−29695号に掲げるフェノキシピリジンのリチウム錯体(LiPP)を用いることもできる。
In the organic electroluminescence device of the present invention, an electron injection layer composed of a conductor may be further provided between the cathode and the organic layer for the purpose of further improving the electron injection property. As the conductor used here, it is preferable to use at least one metal compound selected from alkali metal halides, alkaline earth metal halides, and alkali metal organic complexes. Examples of the alkali metal halide include lithium fluoride, sodium fluoride, potassium fluoride, cesium fluoride, and lithium chloride. Examples of the alkaline earth metal halide include magnesium fluoride, calcium fluoride, barium fluoride, and strontium fluoride. Examples of the alkali metal organic complex include 8-hydroxyquinolinolatolithium and 8-hydroxyquinolinolatocesium.
Moreover, the lithium complex (LiPB) of a phenanthroline derivative according to Japanese Patent Application No. 2006-292032 of the present applicant and the lithium complex (LiPP) of phenoxypyridine listed in Japanese Patent Application No. 2007-29695 can also be used.

正孔輸送層の形成方法については特に限定されるものではない。例えば乾式製膜法(例えば真空蒸着法、イオン化蒸着法など)、湿式製膜法[溶媒塗布法(例えばスピンコート法、キャスト法、インクジェット法など)]を使用することができる。発光層でも使用できるホスト材料としての本発明の新規な3,6−二置換カルバゾール誘導体については、乾式製膜法(例えば真空蒸着法、イオン化蒸着法など)を用いることが好ましい。電子輸送層の製膜については、湿式製膜法で行うと下層が溶出する恐れがあるため乾式製膜法(例えば真空蒸着法、イオン化蒸着法など)に限定される。素子の作成については上記の製膜法を併用しても構わない。   The method for forming the hole transport layer is not particularly limited. For example, a dry film forming method (for example, a vacuum vapor deposition method, an ionization vapor deposition method) or a wet film forming method [a solvent coating method (for example, a spin coating method, a casting method, an ink jet method, etc.)] can be used. For the novel 3,6-disubstituted carbazole derivative of the present invention as a host material that can also be used in the light emitting layer, it is preferable to use a dry film forming method (for example, a vacuum deposition method, an ionization deposition method, etc.). The film formation of the electron transport layer is limited to a dry film formation method (for example, a vacuum vapor deposition method, an ionization vapor deposition method, etc.) because the lower layer may be eluted when the wet film formation method is used. For the production of the element, the above film forming method may be used in combination.

真空蒸着法により正孔輸送層、発光層、電子輸送層などの各層を形成する場合、真空蒸着条件は特に限定されるものではない。通常10−5Torr程度以下の真空下で50〜500℃程度のボート温度(蒸着原温度)、−50〜300℃程度の基板温度で、0.01〜50nm/sec.程度蒸着することが好ましい。正孔輸送層、発光層、電子輸送層の各層を複数の化合物を使用して形成する場合、化合物を入れたボートをそれぞれ温度制御しながら共蒸着することが好ましい。 When forming each layer such as a hole transport layer, a light emitting layer, and an electron transport layer by a vacuum deposition method, the vacuum deposition conditions are not particularly limited. Usually, under a vacuum of about 10 −5 Torr or less, a boat temperature (deposition source temperature) of about 50 to 500 ° C., a substrate temperature of about −50 to 300 ° C., and 0.01 to 50 nm / sec. Vapor deposition is preferred. When each of the hole transport layer, the light emitting layer, and the electron transport layer is formed using a plurality of compounds, it is preferable to co-evaporate the boats containing the compounds while controlling the temperatures of the boats.

正孔輸送層を溶媒塗布法で形成する場合、各層を構成する成分を溶媒に溶解または分散させて塗布液とする。溶媒としては、炭化水素系溶媒(例えばヘプタン、トルエン、キシレン、シクロヘキサン等)、ケトン系溶媒(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等)、ハロゲン系溶媒(例えばジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン等)、エステル系溶媒(例えば酢酸エチル、酢酸ブチル等)、アルコール系溶媒(例えばメタノール、エタノール、ブタノール、メチルセロソルブ、エチルセロソルブ等)、エーテル系溶媒(例えばジブチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン等)、非プロトン性溶媒(例えばN,N′−ジメチルアセトアミド、ジメチルスルホキシド等)、水等が挙げられる。溶媒は単独で使用しても良く、複数の溶媒を併用しても良い。   When forming the hole transport layer by a solvent coating method, the components constituting each layer are dissolved or dispersed in a solvent to obtain a coating solution. Solvents include hydrocarbon solvents (eg, heptane, toluene, xylene, cyclohexane, etc.), ketone solvents (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), halogen solvents (eg, dichloromethane, chloroform, chlorobenzene, dichlorobenzene, etc.) Ester solvents (eg, ethyl acetate, butyl acetate, etc.), alcohol solvents (eg, methanol, ethanol, butanol, methyl cellosolve, ethyl cellosolve, etc.), ether solvents (eg, dibutyl ether, tetrahydrofuran, 1,4-dioxane, 1 , 2-dimethoxyethane, etc.), aprotic solvents (eg, N, N′-dimethylacetamide, dimethyl sulfoxide, etc.), water and the like. The solvent may be used alone, or a plurality of solvents may be used in combination.

正孔輸送層、発光層、電子輸送層等の各層の膜厚は、特に限定されるものではないが、通常5〜5,000nmになるようにする。   The thickness of each layer such as the hole transport layer, the light emitting layer, and the electron transport layer is not particularly limited, but is usually 5 to 5,000 nm.

本発明の有機エレクトロルミネッセンス素子は、酸素や水分等の接触を遮断する目的で保護層(封止層)を設けたり、不活性物質中に素子を封入して保護することができる。不活性物質としては、パラフィン、シリコンオイル、フルオロカーボン等が挙げられる。保護層に使用する材料としては、フッ素樹脂、エポキシ樹脂、シリコーン樹脂、ポリエステル、ポリカーボネート、光硬化性樹脂等がある。   The organic electroluminescence device of the present invention can be protected by providing a protective layer (sealing layer) for the purpose of blocking contact with oxygen, moisture, etc., or by enclosing the device in an inert material. Examples of the inert substance include paraffin, silicon oil, and fluorocarbon. Examples of the material used for the protective layer include fluororesin, epoxy resin, silicone resin, polyester, polycarbonate, and photocurable resin.

本発明の有機エレクトロルミネッセンス素子は、通常直流駆動の素子として使用できる。直流電圧を印加する場合、陽極をプラス、陰極をマイナスの極性として通常1.5〜20V程度印加すると発光が観察される。また本発明の有機エレクトロルミネッセンス素子は交流駆動の素子としても使用できる。交流電圧を印加する場合には、陽極がプラス、陰極がマイナスの状態になった時に発光する。本発明の有機エレクトロルミネッセンス素子は、例えば電子写真感光体、フラットパネルディスプレイなどの平面発光体、複写機、プリンター、液晶ディスプレイのバックライト、計器等の光源、各種発光素子、各種表示装置、各種標識、各種センサー、各種アクセサリーなどに使用することができる。   The organic electroluminescence device of the present invention can be used as a normal DC drive device. When a DC voltage is applied, light emission is usually observed when about 1.5 to 20 V is applied with the positive polarity of the anode and the negative polarity of the cathode. The organic electroluminescence device of the present invention can also be used as an AC drive device. When an AC voltage is applied, light is emitted when the anode is in a positive state and the cathode is in a negative state. The organic electroluminescence element of the present invention is, for example, a flat light emitter such as an electrophotographic photosensitive member or a flat panel display, a copying machine, a printer, a backlight of a liquid crystal display, a light source such as an instrument, various light emitting elements, various display devices, and various signs. It can be used for various sensors and various accessories.

図12〜21に、本発明の有機エレクトロルミネッセンス素子の好ましい断面図の例を示す。   12 to 21 show examples of preferable cross-sectional views of the organic electroluminescence element of the present invention.

図13は、本発明の有機エレクトロルミネッセンス素子における例を示す断面図である。図13は、基板1上に陽極2、正孔輸送層5、発光層3、電子輸送層6および陰極4を順次設けた構成のものである。これはキャリア輸送と発光の機能を分離したものであり、材料選択の自由度が増すために、発光の高効率化や発光色の自由度が増すことになる。   FIG. 13 is a cross-sectional view showing an example of the organic electroluminescence element of the present invention. FIG. 13 shows a configuration in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. This is a separation of the functions of carrier transport and light emission, and the degree of freedom in material selection increases, so that the efficiency of light emission and the degree of freedom in light emission color increase.

図14は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図14は、基板1上に陽極2、正孔注入層7、正孔輸送層5、発光層3、電子輸送層6および陰極4を順次設けた構成のものである。この場合、正孔注入層7を設けることにより、陽極2と正孔輸送層5の密着性を高めたり、陽極からの正孔の注入を良くし、発光素子の低電圧化に効果がある。   FIG. 14 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 14 shows a structure in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the provision of the hole injection layer 7 improves the adhesion between the anode 2 and the hole transport layer 5, improves the injection of holes from the anode, and is effective in lowering the voltage of the light emitting element.

図15は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図15は、基板1上に陽極2、正孔輸送層5、発光層3、電子輸送層6、電子注入層8および陰極4を順次設けた構成のものである。この場合、陰極4から電子の注入を良くし、発光素子の低電圧化に効果がある。   FIG. 15 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 15 shows a configuration in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, injection of electrons from the cathode 4 is improved, which is effective for lowering the voltage of the light emitting element.

図16は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図16は、基板1上に陽極2、正孔注入層7、正孔輸送層5、発光層3、電子輸送層6、電子注入層8および陰極4を順次設けた構成のものである。この場合、陽極2から正孔の注入を良くし、陰極4から電子注入を良くし、最も低電圧駆動に効果がある構成である。   FIG. 16 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 16 shows a configuration in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, the injection of holes from the anode 2 is improved and the injection of electrons from the cathode 4 is improved, which is the most effective for driving at a low voltage.

図17〜21は素子の中に正孔ブロック層9を挿入したものの断面図である。正孔ブロック層9は、陽極から注入された正孔、あるいは発光層3で再結合により生成した励起子が、陰極4に抜けることを防止する効果があり、有機エレクトロルミネッセンス素子の発光効率の向上に効果がある。正孔ブロック層9については、発光層3と陰極4の間もしくは発光層3と電子輸送層6の間あるいは発光層3と電子注入層8の間に挿入することができるが、より好ましいケースは発光層3と電子輸送層6の間に設ける場合である。   17 to 21 are sectional views of the device in which the hole blocking layer 9 is inserted. The hole blocking layer 9 has an effect of preventing holes injected from the anode or excitons generated by recombination in the light emitting layer 3 from escaping to the cathode 4 and improving the light emission efficiency of the organic electroluminescence device. Is effective. The hole blocking layer 9 can be inserted between the light emitting layer 3 and the cathode 4, between the light emitting layer 3 and the electron transport layer 6, or between the light emitting layer 3 and the electron injection layer 8. This is a case where it is provided between the light emitting layer 3 and the electron transport layer 6.

図17〜21で、正孔輸送層5、正孔注入層7、電子輸送層6、電子注入層8、発光層3、正孔ブロック層9のそれぞれの層は、一層構造であっても多層構造であっても良い。   17 to 21, each of the hole transport layer 5, the hole injection layer 7, the electron transport layer 6, the electron injection layer 8, the light emitting layer 3, and the hole blocking layer 9 may have a single layer structure or a multilayer structure. It may be a structure.

図12〜21は、あくまでも基本的な素子構成であり、本発明の化合物を用いた有機エレクトロルミネッセンス素子の構成はこれに限定されるものではない。   12 to 21 are basic device configurations to the last, and the configuration of the organic electroluminescence device using the compound of the present invention is not limited to this.

前記電子注入層に用いる電子注入材料としては、本出願人の特願2006−292032号にかかる化合物、例えば下記化合物群を例示することができる。
Examples of the electron injecting material used for the electron injecting layer include the compounds according to Japanese Patent Application No. 2006-292032 of the present applicant, for example, the following compound group.

本発明の新規な3,6−二置換カルバゾール誘導体は、従来のホスト材料に比べホールおよび電子輸送能が非常に大きい。また蒸着時の成膜安定性も高く結晶化を起こしにくい。よって本発明の新規な3,6−二置換カルバゾール誘導体は工業的に極めて重要なものである。   The novel 3,6-disubstituted carbazole derivative of the present invention has a very large hole and electron transport capability compared to conventional host materials. In addition, the film formation stability during vapor deposition is high and crystallization is unlikely to occur. Therefore, the novel 3,6-disubstituted carbazole derivative of the present invention is extremely important industrially.

以下に実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1
3,6−ビス(ジフェニルホスフィンオキサイド)−9−フェニルカルバゾール(略称CzDPO)の合成
1)3,6−ビス(ジフェニルホスフィン)−9−フェニルカルバゾール(略称CzDP)の合成
窒素気流下にてナスフラスコに3,6−ジブロモ−9−フェニルカルバゾール、テトラヒドロフラン(THF)を入れ、−78℃にてn−ブチルリチウム(n−BuLi)を加え3時間反応させた。ついでジフェニルクロロホスフィン(PPhCl)を加え3時間反応させた。反応終了後、沈殿物をろ過し、ヘキサンと水で洗浄し、白色固体を得た。表1に原料の仕込み割合とCzDPの得量(収率)を表1にまとめた。
2)3,6−ビス(ジフェニルホスフィンオキサイド)−9−フェニルカルバゾール(略称CzDPO)の合成

ナスフラスコに3,6−ビス(ジフェニルホスフィン)−9−フェニルカルバゾール、ジクロロメタン、35%過酸化水素水を入れ、24時間反応させた。反応終了後、酢酸エチル、食塩水を用いて抽出し、エバポレーターを用いて溶媒を除去し、白色固体を得た。同定はH−NMRにて行った。表2に原料の仕込み割合とCzDPOの得量(収率)をまとめた。
図1にCzDPOのH−NMRのチャートを掲げる。
Example 1
Synthesis of 3,6-bis (diphenylphosphine oxide) -9-phenylcarbazole (abbreviation CzDPO) 1) Synthesis of 3,6-bis (diphenylphosphine) -9-phenylcarbazole (abbreviation CzDP)
Under a nitrogen stream, 3,6-dibromo-9-phenylcarbazole and tetrahydrofuran (THF) were placed in an eggplant flask, and n-butyllithium (n-BuLi) was added and reacted at -78 ° C for 3 hours. Then, diphenylchlorophosphine (PPh 2 Cl) was added and reacted for 3 hours. After completion of the reaction, the precipitate was filtered and washed with hexane and water to obtain a white solid. Table 1 summarizes the raw material charge ratio and the CzDP yield (yield).
2) Synthesis of 3,6-bis (diphenylphosphine oxide) -9-phenylcarbazole (abbreviation CzDPO)

3,6-bis (diphenylphosphine) -9-phenylcarbazole, dichloromethane and 35% aqueous hydrogen peroxide were added to an eggplant flask and reacted for 24 hours. After completion of the reaction, extraction was performed using ethyl acetate and brine, and the solvent was removed using an evaporator to obtain a white solid. Identification was performed by 1 H-NMR. Table 2 summarizes the raw material charge ratio and the yield (yield) of CzDPO.
FIG. 1 shows a 1 H-NMR chart of CzDPO.

実施例2
3,6−ビス(ジフェニルホスフィンオキサイド)−9−フェニルカルバゾール(CzDPO)の熱特性評価
CzDPOの熱分解温度、融点およびガラス転移点の測定を行った。熱分解温度は熱量分析装置(PerkinElmer社製TG/TGAダイヤモンド)を用いて昇温速度10℃/minで測定した。また融点、ガラス転移点は示差走査熱量計(PerkinElmer社製DSC)を用いて昇温速度10℃/minで測定した。
表3にCzDPOの融点、ガラス転移温度、分解温度のそれぞれの測定結果を示す。
1)分解温度Td5%とは、熱分解により試料の5%の重量減少が現れたときの温度である。
図2にCzDPOのDSC測定の結果を示す。図中Tgはガラス転移温度であり、右側のピーク部分はこの化合物の融点を示す。
Example 2
Evaluation of thermal properties of 3,6-bis (diphenylphosphine oxide) -9-phenylcarbazole (CzDPO) The thermal decomposition temperature, melting point and glass transition point of CzDPO were measured. The thermal decomposition temperature was measured at a heating rate of 10 ° C./min using a calorimetric analyzer (TG / TGA diamond manufactured by PerkinElmer). The melting point and glass transition point were measured at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC manufactured by PerkinElmer).
Table 3 shows the measurement results of the melting point, glass transition temperature, and decomposition temperature of CzDPO.
1) The decomposition temperature Td of 5% is a temperature at which a 5% weight loss of a sample appears due to thermal decomposition.
FIG. 2 shows the results of DSC measurement of CzDPO. In the figure, Tg is the glass transition temperature, and the peak portion on the right side shows the melting point of this compound.

実施例3
3,6−ビス(ジフェニルホスフィンオキサイド)−9−フェニルカルバゾール(CzDPO)の光学特性評価および電気化学特性評価
石英基板にCzDPOを蒸着したフィルムを作製した。この試料のUV−vis吸収スペクトル、蛍光スペクトルの測定を行った。
光電子分析装置(AC−3)にてITO基板に蒸着したフィルムのイオン化ポテンシャル(Ip)の測定を行った。そして、UV−vis吸収スペクトルの吸収端よりエネルギーギャップ(Eg)を見積もり、電子親和力(Ea)を算出した。
表4にCzDPOの電気化学特性を示す。
図3にCzDPOのUV吸収曲線の図を、図4にCzDPOの励起光とPLスペクトル曲線の図を示す。
Example 3
Evaluation of optical properties and electrochemical properties of 3,6-bis (diphenylphosphine oxide) -9-phenylcarbazole (CzDPO) A film was prepared by depositing CzDPO on a quartz substrate. The UV-vis absorption spectrum and fluorescence spectrum of this sample were measured.
The ionization potential (Ip) of the film deposited on the ITO substrate was measured with a photoelectron analyzer (AC-3). And the energy gap (Eg) was estimated from the absorption edge of the UV-vis absorption spectrum, and the electron affinity (Ea) was calculated.
Table 4 shows the electrochemical properties of CzDPO.
FIG. 3 shows a UV absorption curve of CzDPO, and FIG. 4 shows a CzDPO excitation light and PL spectrum curve.

実施例4、5、6および実施例7
実施例1で合成したCzDPOを発光層ホストに、トリス(4−ベンゾニトリル−2−イル−1H−3,5−ジメチルピラゾール)イリジウム(III)錯体〔略称fac−Ir(dmppzpCN)〕(特願2008−73944に記載)をドーパントに、それぞれ用いた素子を作成し、評価を行った。また実施例7として、ドーパントにトリス(4−ベンゾニトリル−2−イル−1H−ピラゾール)イリジウム(III)錯体〔略称fac−Ir(ppzpCN)〕を用いた素子を作成し、同様に評価した。
使用した化合物は以下のとおりである。
TAPCは、N−{4−[1−〔4−(ジp−トリルアミノ)フェニル〕シクロヘキシル]フェニル}−4−メチル−N−p−トリルベンゼンアミン、BMPyPBは、1,3−ビス〔3,5−ジ(ピリジン−3−イル)フェニル〕ベンゼンの略である。
作成した素子構成は以下の通りである。
素子構造:
実施例4
Device1:ITO/MCC−PC1020(20nm)/TAPC(20nm)/CzDPO:fac−Ir(dmppzpCN)15wt%(40nm)/BMPyPB(20nm)/LiF(0.5nm)/Al(100nm)
実施例5
Device2:ITO/MCC−PC1020(20nm)/TAPC(20nm)/CzDPO:fac−Ir(dmppzpCN)15wt%(20nm)/BMPyPB(40nm)/LiF(0.5nm)/Al(100nm)
実施例6
Device3:ITO/MCC−PC1020(20nm)/TAPC(20nm)/CzDPO:fac−Ir(dmppzpCN)15wt%(10nm)/BMPyPB(50nm)/LiF(0.5nm)/Al(100nm)
実施例7
Ref1:ITO/MCC−PC1020(三菱化学製、ホール注入材料の商品名)(20nm)/TAPC(20nm)/CzDPO:fac−Ir(ppzpCN)15wt%(40nm)/BMPyPB(20nm)/LiF(0.5nm)/Al(100nm)
これらの素子の
エネルギーダイアグラムは図5に、
エレクトロルミネッセンス(EL)スペクトルは図6(0.05mA時)および図7(1.0mA時)に、
電流密度−電圧特性は図8に、
輝 度−電圧特性は図9に、
電流効率−電流密度特性は図10に、
量子効率−電流密度は図11に、
それぞれ示す。
図8〜11にみられるように、実施例7に比べて、実施例4〜6の有機EL素子の性能が極めて優れていることが明らかである。
Examples 4, 5, 6 and 7
Tris (4-benzonitrile-2-yl-1H-3,5-dimethylpyrazole) iridium (III) complex [abbreviation fac-Ir (dmpppzpCN) 3 ] (special) using CzDPO synthesized in Example 1 as a light emitting layer host. Devices described in Japanese Patent Application No. 2008-73944) were used as dopants and evaluated. In Example 7, a device using tris (4-benzonitrile-2-yl-1H-pyrazole) iridium (III) complex [abbreviation fac-Ir (ppzpCN) 3 ] as a dopant was prepared and evaluated in the same manner. .
The compounds used are as follows.
TAPC is N- {4- [1- [4- (di-p-tolylamino) phenyl] cyclohexyl] phenyl} -4-methyl-Np-tolylbenzenamine, BMPyPB is 1,3-bis [3, Abbreviation for 5-di (pyridin-3-yl) phenyl] benzene.
The created device configuration is as follows.
Element structure:
Example 4
Device 1: ITO / MCC-PC1020 (20 nm) / TAPC (20 nm) / CzDPO: fac-Ir (dmpppzCN) 3 15 wt% (40 nm) / BMPyPB (20 nm) / LiF (0.5 nm) / Al (100 nm)
Example 5
Device 2: ITO / MCC-PC1020 (20 nm) / TAPC (20 nm) / CzDPO: fac-Ir (dmpppzpCN) 3 15 wt% (20 nm) / BMPyPB (40 nm) / LiF (0.5 nm) / Al (100 nm)
Example 6
Device 3: ITO / MCC-PC1020 (20 nm) / TAPC (20 nm) / CzDPO: fac-Ir (dmpppzpCN) 3 15 wt% (10 nm) / BMPyPB (50 nm) / LiF (0.5 nm) / Al (100 nm)
Example 7
Ref1: ITO / MCC-PC1020 (Mitsubishi Chemical Corporation, trade name of hole injection material) (20 nm) / TAPC (20 nm) / CzDPO: fac-Ir (ppzpCN) 3 15 wt% (40 nm) / BMPyPB (20 nm) / LiF ( 0.5nm) / Al (100nm)
The energy diagram of these elements is shown in Figure 5,
The electroluminescence (EL) spectrum is shown in FIG. 6 (at 0.05 mA) and FIG. 7 (at 1.0 mA).
The current density vs. voltage characteristics are shown in FIG.
The luminance-voltage characteristics are shown in FIG.
The current efficiency-current density characteristics are shown in FIG.
The quantum efficiency-current density is shown in FIG.
Each is shown.
As seen in FIGS. 8 to 11, it is clear that the performance of the organic EL elements of Examples 4 to 6 is extremely superior to that of Example 7.

実施例1で合成したCzDPOのH−NMRを示す。 1 H-NMR of CzDPO synthesized in Example 1 is shown. 実施例1で合成したCzDPOのDSC測定結果を示す。The DSC measurement result of CzDPO synthesize | combined in Example 1 is shown. CzDPOのUV吸収曲線を示す。The UV absorption curve of CzDPO is shown. CzDPOの励起光とPLスペクトル曲線を示す。The excitation light and PL spectrum curve of CzDPO are shown. 実施例4〜6と実施例7の有機エレクトロルミネセンス素子(有機EL素子)のエネルギーダイアグラムを示す。The energy diagram of the organic electroluminescent element (organic EL element) of Examples 4-6 and Example 7 is shown. 実施例4〜6の有機エレクトロルミネセンス素子(有機EL素子)のエレクトロルミネッセンス(EL)スペクトル(0.05mA時)を示す。The electroluminescence (EL) spectrum (at the time of 0.05 mA) of the organic electroluminescent element (organic EL element) of Examples 4-6 is shown. 実施例4〜6の有機エレクトロルミネセンス素子(有機EL素子)のエレクトロルミネッセンス(EL)スペクトル(1.0mA時)を示す。The electroluminescent (EL) spectrum (at the time of 1.0 mA) of the organic electroluminescent element (organic EL element) of Examples 4-6 is shown. 実施例4〜6と実施例7の有機エレクトロルミネセンス素子(有機EL素子)の電流密度−電圧特性を示す。The current density-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 4-6 and Example 7 is shown. 実施例4〜6と実施例7の有機エレクトロルミネセンス素子(有機EL素子)の輝度−電圧特性を示す。The brightness | luminance-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 4-6 and Example 7 is shown. 実施例4〜6と実施例7の有機エレクトロルミネセンス素子(有機EL素子)の電流効率−電流密度特性を示す。The current efficiency-current density characteristic of the organic electroluminescent element (organic EL element) of Examples 4 to 6 and Example 7 is shown. 実施例4〜6と実施例7の有機エレクトロルミネセンス素子(有機EL素子)の量子効率−電流密度を示す。The quantum efficiency-electric current density of the organic electroluminescent element (organic EL element) of Examples 4-6 and Example 7 is shown. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention.

符号の説明Explanation of symbols

1 基板
2 陽極(ITO)
3 発光層
4 陰極
5 正孔輸送層(ホール輸送層)
6 電子輸送層
7 正孔注入層(ホール注入層)
8 電子注入層
9 正孔ブロック層(ホールブロック層)
1 Substrate 2 Anode (ITO)
3 Light emitting layer 4 Cathode 5 Hole transport layer (hole transport layer)
6 Electron transport layer 7 Hole injection layer (hole injection layer)
8 Electron injection layer 9 Hole blocking layer (hole blocking layer)

Claims (7)

下記一般式(1)
(式中、QおよびQは、下記式
であり、ArとArは置換基を有していても構わないアリール基および置換基を有していても構わないヘテロアリール基よりなる群からそれぞれ独立して選ばれた基であり、Rは、アルキル基、置換基を有していても構わないアリール基または置換基を有していても構わないヘテロアリール基よりなる群からそれぞれ独立して選ばれた基)
で示される3,6−二置換カルバゾール誘導体。
The following general formula (1)
(In the formula, Q 1 and Q 2 are the following formulas:
Ar 1 and Ar 2 are groups independently selected from the group consisting of an aryl group which may have a substituent and a heteroaryl group which may have a substituent, R is a group independently selected from the group consisting of an alkyl group, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent)
A 3,6-disubstituted carbazole derivative represented by the formula:
下記一般式(2)
(式中、QおよびQは、下記式
であり、ArとArは置換基を有していても構わないアリール基および置換基を有していても構わないヘテロアリール基よりなる群からそれぞれ独立して選ばれた基)
で示される3,6−二置換カルバゾール誘導体。
The following general formula (2)
(In the formula, Q 1 and Q 2 are the following formulas:
Ar 1 and Ar 2 are groups independently selected from the group consisting of an aryl group which may have a substituent and a heteroaryl group which may have a substituent.
A 3,6-disubstituted carbazole derivative represented by the formula:
請求項1または2記載の3,6−二置換カルバゾール誘導体よりなることを特徴とするホスト材料。   A host material comprising the 3,6-disubstituted carbazole derivative according to claim 1 or 2. 請求項1または2記載の3,6−二置換カルバゾール誘導体を用いたことを特徴とする有機EL素子。   An organic EL device comprising the 3,6-disubstituted carbazole derivative according to claim 1 or 2. 請求項1または2記載の3,6−二置換カルバゾール誘導体を発光層に使用することを特徴とする有機EL素子。   3. An organic EL device using the 3,6-disubstituted carbazole derivative according to claim 1 for a light emitting layer. 発光層に用いる発光材料としてリン光材料を用いた請求項4または5記載の有機EL素子。   6. The organic EL device according to claim 4, wherein a phosphorescent material is used as a light emitting material used for the light emitting layer. 発光材料として発光ピーク波長が480nmよりも短波長の青色発光を示すリン光材料を用いた請求項6記載の有機EL素子。   The organic EL element according to claim 6, wherein a phosphorescent material exhibiting blue light emission having an emission peak wavelength shorter than 480 nm is used as the light emitting material.
JP2008074096A 2008-03-21 2008-03-21 New 3,6-disubstituted carbazole derivative, host material comprising the same and organic el element containing the same Pending JP2009227604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074096A JP2009227604A (en) 2008-03-21 2008-03-21 New 3,6-disubstituted carbazole derivative, host material comprising the same and organic el element containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074096A JP2009227604A (en) 2008-03-21 2008-03-21 New 3,6-disubstituted carbazole derivative, host material comprising the same and organic el element containing the same

Publications (1)

Publication Number Publication Date
JP2009227604A true JP2009227604A (en) 2009-10-08

Family

ID=41243420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074096A Pending JP2009227604A (en) 2008-03-21 2008-03-21 New 3,6-disubstituted carbazole derivative, host material comprising the same and organic el element containing the same

Country Status (1)

Country Link
JP (1) JP2009227604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120068168A1 (en) * 2009-05-27 2012-03-22 Industry-Academic Cooperation Foundation, Dankook University Carbazole-based phosphine oxide compound, and organic electroluminescent device including the same
JPWO2010098386A1 (en) * 2009-02-27 2012-09-06 新日鐵化学株式会社 Organic electroluminescence device
KR20130020948A (en) 2011-08-18 2013-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Carbazole compound, light-emitting element, light-emitting device, electronic device, and lighting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012061501; Proceedings of SPIE, Organic Light Emitting Materials and Devices XI vol.6655, 2007, p.665506-1-665506-11 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010098386A1 (en) * 2009-02-27 2012-09-06 新日鐵化学株式会社 Organic electroluminescence device
JP5395161B2 (en) * 2009-02-27 2014-01-22 新日鉄住金化学株式会社 Organic electroluminescence device
US20120068168A1 (en) * 2009-05-27 2012-03-22 Industry-Academic Cooperation Foundation, Dankook University Carbazole-based phosphine oxide compound, and organic electroluminescent device including the same
EP2436751A1 (en) * 2009-05-27 2012-04-04 Industry-Academic Cooperation Foundation, Dankook University Carbazole-based phosphine oxide compound, and organic electroluminescent device including the same
JP2012528143A (en) * 2009-05-27 2012-11-12 インダストリー−アカデミック コーポレーション ファウンデーション,ダンクック ユニバーシティ Carbazole-based phosphine oxide compound and organic electroluminescent device containing the same
EP2436751A4 (en) * 2009-05-27 2013-04-10 Univ Dankook Iacf Carbazole-based phosphine oxide compound, and organic electroluminescent device including the same
US9278986B2 (en) * 2009-05-27 2016-03-08 Sk Chemicals Co., Ltd. Carbazole-based phosphine oxide compound, and organic electroluminescent device including the same
KR20130020948A (en) 2011-08-18 2013-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Carbazole compound, light-emitting element, light-emitting device, electronic device, and lighting device
US9029558B2 (en) 2011-08-18 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Carbazole compound, light-emitting element, light-emitting device, electronic device, and lighting device
US9799834B2 (en) 2011-08-18 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Carbazole compound light-emitting element, light-emitting device, electronic device, and lighting device

Similar Documents

Publication Publication Date Title
JP5063992B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP4878819B2 (en) Novel triazine derivative and organic electroluminescence device containing the same
US10374175B2 (en) Platinum complex compound and organic electroluminescence device using the same
TWI429650B (en) Organic electroluminescent elements
JP5207760B2 (en) Novel pyrimidine-based or triazine-based derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP5325402B2 (en) Novel bicarbazole derivative, host material and organic electroluminescence device using the same
TWI466980B (en) Organic electroluminescent elements
JP2008120696A (en) Novel tripyridylphenyl derivative, electron-transporting material comprising the same and organoelectroluminescent element comprising the same
TW200540245A (en) Improved electroluminescent stability
JP5495578B2 (en) Novel triarylphosphine oxide derivative, host material comprising the same, and organic electroluminescence device containing the same
KR101532299B1 (en) New electron transporting compounds and organic electroluminescent device comprising the same
KR20150088163A (en) New organic electroluminescent compounds and organic electroluminescent device comprising the same
JP4960045B2 (en) Heteroaryl compound having novel biphenyl central skeleton and organic electroluminescence device comprising the same
JP2009194166A (en) Organic electroluminescent device
JP5201956B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP5220429B2 (en) NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME
JP5476034B2 (en) Novel triarylamine compound, hole transport material comprising the same, and organic electroluminescence device using the same
JP5349889B2 (en) Novel terphenyl derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP5371312B2 (en) Novel dicarbazolylphenyl derivative, host material using the same, and organic electroluminescence device
JP2010090084A (en) Novel bis(carbazolylphenyl) derivative, host material, and organic electroluminescent element each employing the same
JP2010248112A (en) Aromatic hydrocarbon compound, host material comprising the same, and organic electroluminescence element using the same
JP2010013421A (en) New bis(dicarbazolylphenyl) derivative, host material using the same and organic electroluminescencent device
JP2009227604A (en) New 3,6-disubstituted carbazole derivative, host material comprising the same and organic el element containing the same
JP5674266B2 (en) Novel carbazole derivative, host material comprising the same, and organic electroluminescence device including the same
JP2012167028A (en) Substituted phenylpyridine iridium complex, luminescent material including the same, and organic el element employing the complex

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326