JP2012167028A - Substituted phenylpyridine iridium complex, luminescent material including the same, and organic el element employing the complex - Google Patents

Substituted phenylpyridine iridium complex, luminescent material including the same, and organic el element employing the complex Download PDF

Info

Publication number
JP2012167028A
JP2012167028A JP2011026756A JP2011026756A JP2012167028A JP 2012167028 A JP2012167028 A JP 2012167028A JP 2011026756 A JP2011026756 A JP 2011026756A JP 2011026756 A JP2011026756 A JP 2011026756A JP 2012167028 A JP2012167028 A JP 2012167028A
Authority
JP
Japan
Prior art keywords
group
organic
layer
ppy
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011026756A
Other languages
Japanese (ja)
Inventor
Yushin Fu
勇進 夫
Junji Kido
淳二 城戸
Tomotake Watanabe
倫建 渡邉
Takashi Takeda
孝 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2011026756A priority Critical patent/JP2012167028A/en
Publication of JP2012167028A publication Critical patent/JP2012167028A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an iridium complex, and a luminescent material and an organic EL element each including the same.SOLUTION: There is disclosed a substituted phenylpyridine iridium complex represented by formula (1) (in the formula, Rto Rrepresent a group each independently selected from the group consisting of hydrogen, and a 1C-4C straight chain or branched alkyl group; Rto Rrepresent a group each independently selected from the group consisting of hydrogen, a 1C-4C straight chain or branched alkyl group, a 1C-4C straight chain or branched alkoxy group, and fluorine; Prepresents a group selected from the group consisting of a 3-pyridyl group and a 4-pyridyl group each represented by a specific formula respectively; and Rto Rrepresent a group each independently selected from the group consisting of hydrogen, and a 1C-4C straight chain or branched alkyl group).

Description

本発明は、置換フェニルピリジンイリジウム錯体、該錯体よりなる発光材料及び該錯体を用いた有機EL(エレクトロルミネッセンス)素子に関する。   The present invention relates to a substituted phenylpyridine iridium complex, a light-emitting material comprising the complex, and an organic EL (electroluminescence) device using the complex.

有機EL素子は、電極から注入されたホールと電子の再結合により生成した励起エネルギーが発光過程を経て基底状態に緩和することにより自発光する。しかしながら、ホールと電子の再結合により生成する励起状態では、一重項励起状態と三重項励起状態の2種類がそれぞれ1対3の割合で存在する。これまで多くは一重項励起状態からの発光を利用した蛍光材料が発光材料に利用されていた。この場合、内部量子効率が最大で25%あることから、光取り出し効率を20%とすると、最大外部量子収率は5%が理論的に限界であった(非特許文献1)。
近年、イリジウムやプラチナなどの重原子効果を利用した錯体化合物を用い、三重項励起状態からの発光、すなわちリン光発光を用いることによる発光効率の向上が報告されるようになった。一重項励起状態に加え、三重項励起状態からの発光を利用することにより最大内部量子効率は理論上100%に到達することが可能であり、リン光材料は発光材料として注目を浴びている(非特許文献2)。
また、リン光材料は有機EL素子の発光効率や電気特性向上に寄与することから、これを使用した有機EL素子の研究が精力的に行われている(特許文献1など)。
The organic EL element emits light when excitation energy generated by recombination of holes and electrons injected from the electrode relaxes to a ground state through a light emission process. However, in the excited state generated by recombination of holes and electrons, there are two types of singlet excited state and triplet excited state in a ratio of 1: 3. In the past, fluorescent materials utilizing light emission from a singlet excited state have been used as light emitting materials. In this case, since the internal quantum efficiency is 25% at the maximum, if the light extraction efficiency is 20%, the maximum external quantum yield is theoretically limited to 5% (Non-patent Document 1).
In recent years, it has been reported that emission efficiency is improved by using light emission from a triplet excited state, that is, phosphorescence emission, using a complex compound utilizing a heavy atom effect such as iridium or platinum. In addition to the singlet excited state, the maximum internal quantum efficiency can theoretically reach 100% by utilizing light emission from the triplet excited state, and phosphorescent materials are attracting attention as light emitting materials ( Non-patent document 2).
In addition, since phosphorescent materials contribute to improving the light emission efficiency and electrical characteristics of organic EL elements, research on organic EL elements using the phosphorescent materials has been vigorously conducted (Patent Document 1, etc.).

例えば、緑色発光材料として、下記式で示されるトリス(2−フェニルピリジナト)イリジウム(III)〔Ir(ppy)〕が広く利用されている。
また、安達らにより、青色発光材料である下記式で示されるビス〔2−(4,6−ジフルオロフェニル)ピリジナト〕ピコリナトイリジウム(III)(FIrpic)が注目を浴びるようになり、それ以降、FIrpicを用いた有機EL素子の高効率化検討及び新規な青色リン光錯体探索研究が盛んに行われるようになった(非特許文献3)。
このような状況からみて、今後の有機EL照明や有機ELディスプレイの開発では、新規のリン光材料の開発が大きなウェートを占めると予測される。
For example, tris (2-phenylpyridinato) iridium (III) [Ir (ppy) 3 ] represented by the following formula is widely used as a green light emitting material.
In addition, Adachi et al. Attracted attention as bis [2- (4,6-difluorophenyl) pyridinato] picolinatoiridium (III) (FIrpic) represented by the following formula, which is a blue light emitting material. High efficiency studies of organic EL elements using FIrpic and novel blue phosphorescent complex search studies have been actively conducted (Non-patent Document 3).
In view of such a situation, in the future development of organic EL lighting and organic EL display, development of new phosphorescent materials is expected to occupy a large weight.

特開2010−254642号公報JP 2010-254642 A

猪口敏夫:エレクトロルミネッセントディスプレイ,P.114,産業図書(1991)Toshio Higuchi: Electroluminescent display, p. 114, Industrial Books (1991) C.Adachi,R.C.Kwong,M.A.Baldo,M.E.Thompson,S.R.Forrest,Proc.8th IDW‘01,P.1420(2001)C. Adachi, R.A. C. Kwon, M .; A. Baldo, M .; E. Thompson, S.M. R. Forrest, Proc. 8th IDW'01, P.I. 1420 (2001) Appl.Phys.Lett.,79,2082(2001)Appl. Phys. Lett. 79, 2082 (2001)

本発明は、置換フェニルピリジンイリジウム錯体、該錯体よりなる発光材料及び該錯体を用いた有機EL素子の提供を目的とする。   An object of the present invention is to provide a substituted phenylpyridine iridium complex, a light-emitting material comprising the complex, and an organic EL device using the complex.

上記課題は、次の1)〜3)の発明によって解決される。
1) 下記一般式(1)で示される置換フェニルピリジンイリジウム錯体。
〔式中、R〜Rは水素、炭素数1〜4の直鎖若しくは分岐アルキル基よりなる群からそれぞれ独立して選ばれた基であり、R〜Rは水素、炭素数1〜4の直鎖若しくは分岐アルキル基、炭素数1〜4の直鎖若しくは分岐アルコキシ基、フッ素よりなる群からそれぞれ独立して選ばれた基である。また、Pyは下記式で示される3−ピリジル基又は4−ピリジル基よりなる群から選ばれた基であり、R〜R15は水素、炭素数1〜4の直鎖若しくは分岐アルキル基よりなる群からそれぞれ独立して選ばれた基である。〕

2) 1)記載の置換フェニルピリジンイリジウム錯体よりなる発光材料。
3) 1)記載の置換フェニルピリジンイリジウム錯体を用いた有機EL素子。
The above problems are solved by the following inventions 1) to 3).
1) A substituted phenylpyridine iridium complex represented by the following general formula (1).
[Wherein, R 1 to R 4 are groups independently selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 4 carbon atoms, and R 5 to R 7 are hydrogen and 1 carbon atom. -4 linear or branched alkyl groups, C 1-4 linear or branched alkoxy groups, and groups independently selected from the group consisting of fluorine. Py is a group selected from the group consisting of a 3-pyridyl group or a 4-pyridyl group represented by the following formula, and R 8 to R 15 are each a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. Each independently selected from the group consisting of ]

2) A luminescent material comprising the substituted phenylpyridine iridium complex described in 1).
3) An organic EL device using the substituted phenylpyridine iridium complex described in 1).

本発明によれば、置換フェニルピリジンイリジウム錯体、該錯体よりなる発光材料及び該錯体を用いた有機EL素子を提供できる。また、本発明の置換フェニルピリジンイリジウム錯体は、シクロヘキサノン、2−エトキシエタノールやエチル安息香酸に対して良好な溶解性を示すので、塗布方法による大面積有機ELパネルが容易に製造できる。従って工業的に極めて重要なものであると言える。   According to the present invention, a substituted phenylpyridine iridium complex, a light emitting material comprising the complex, and an organic EL device using the complex can be provided. Moreover, since the substituted phenylpyridine iridium complex of this invention shows favorable solubility with respect to cyclohexanone, 2-ethoxyethanol, and ethylbenzoic acid, the large area organic EL panel by the apply | coating method can be manufactured easily. Therefore, it can be said that it is extremely important industrially.

実施例1で作製したトリス〔2−(3−ブロモフェニル)ピリジン〕イリジウム錯体〔Ir(Br−ppy)〕のH−NMRのチャート。 1 H-NMR chart of tris [2- (3-bromophenyl) pyridine] iridium complex [Ir (Br-ppy) 3 ] prepared in Example 1. 実施例1で作製したトリス{2−〔3−(4−ピリジル)フェニル〕ピリジン}イリジウム錯体〔Ir(4Py−ppy)〕のH−NMRのチャート。 1 H-NMR chart of tris {2- [3- (4-pyridyl) phenyl] pyridine} iridium complex [Ir (4Py-ppy) 3 ] prepared in Example 1. 実施例1で作製したIr(4Py−ppy)のMassスペクトルのチャート。 3 is a mass spectrum chart of Ir (4Py-ppy) 3 produced in Example 1. FIG. 実施例1で作製したIr(4Py−ppy)の高速液体クロマトグラフで純度分析を行ったチャート。The chart which performed the purity analysis with the high performance liquid chromatograph of Ir (4Py-ppy) 3 produced in Example 1. FIG. 実施例2で作製した{2−〔3−(3−ピリジル)フェニル〕ピリジン}イリジウム錯体〔Ir(3Py−ppy)〕のH−NMRのチャート。 1 H-NMR chart of {2- [3- (3-pyridyl) phenyl] pyridine} iridium complex [Ir (3Py-ppy) 3 ] prepared in Example 2. 実施例2で作製したIr(3Py−ppy)の高速液体クロマトグラフで純度分析を行ったチャート。The chart which performed the purity analysis with the high performance liquid chromatograph of Ir (3Py-ppy) 3 produced in Example 2. FIG. 実施例7〜8及び比較例2の、1,2−ジクロロエタン溶液中の紫外−可視吸収スペクトル(UV−vis吸収スペクトル)のチャート。The chart of the ultraviolet-visible absorption spectrum (UV-vis absorption spectrum) in the 1,2- dichloroethane solution of Examples 7-8 and the comparative example 2. FIG. 実施例7〜8及び比較例2の、THF溶液中の紫外−可視吸収スペクトル(UV−vis吸収スペクトル)のチャート。The chart of the ultraviolet-visible absorption spectrum (UV-vis absorption spectrum) in the THF solution of Examples 7-8 and Comparative Example 2. 実施例9〜10及び比較例3の、THF溶液中のフォトルミネッセンススペクトル(PLスペクトル)のチャート。The chart of the photoluminescence spectrum (PL spectrum) in the THF solution of Examples 9 to 10 and Comparative Example 3. 実施例11〜12及び比較例4のイリジウム錯体をCBPに8wt%ドープした蒸着膜の紫外−可視吸収スペクトル(UV−vis吸収スペクトル)のチャート。The chart of the ultraviolet-visible absorption spectrum (UV-vis absorption spectrum) of the vapor deposition film which doped 8 wt% of iridium complexes of Examples 11-12 and Comparative Example 4 to CBP. 実施例13〜14及び比較例5のイリジウム錯体をCBPに8wt%ドープした蒸着膜のフォトルミネッセンススペクトル(PLスペクトル)のチャート。The chart of the photoluminescence spectrum (PL spectrum) of the vapor deposition film which doped 8 wt% of iridium complexes of Examples 13-14 and Comparative Example 5 to CBP. 実施例17〜18及び比較例7で作製した有機EL素子構造を示す図。The figure which shows the organic EL element structure produced in Examples 17-18 and the comparative example 7. FIG. 実施例17〜18及び比較例7の電流密度−電圧特性を示す図。The figure which shows the current density-voltage characteristic of Examples 17-18 and the comparative example 7. FIG. 実施例17〜18及び比較例7の輝度−電圧特性を示す図。The figure which shows the luminance-voltage characteristic of Examples 17-18 and the comparative example 7. FIG. 実施例17〜18及び比較例7の電力効率−輝度特性を示す図。The figure which shows the power efficiency-luminance characteristic of Examples 17-18 and the comparative example 7. FIG. 実施例17〜18及び比較例7の電流効率−輝度特性を示す図。The figure which shows the current efficiency-luminance characteristic of Examples 17-18 and Comparative Example 7. 実施例17〜18及び比較例7の外部量子効率−輝度特性を示す図。The figure which shows the external quantum efficiency-luminance characteristic of Examples 17-18 and the comparative example 7. FIG. 実施例17〜18及び比較例7のELスペクトルを示す図。The figure which shows the EL spectrum of Examples 17-18 and the comparative example 7. FIG. 実施例19〜20及び比較例8で作製した有機EL素子構造を示す図。The figure which shows the organic EL element structure produced in Examples 19-20 and the comparative example 8. FIG. 実施例19〜20及び比較例8の電流密度−電圧特性を示す図。The figure which shows the current density-voltage characteristic of Examples 19-20 and the comparative example 8. FIG. 実施例19〜20及び比較例8の輝度−電圧特性を示す図。The figure which shows the luminance-voltage characteristic of Examples 19-20 and the comparative example 8. FIG. 実施例19〜20及び比較例8の電力効率−輝度特性を示す図。The figure which shows the power efficiency-luminance characteristic of Examples 19-20 and the comparative example 8. FIG. 実施例19〜20及び比較例8の電流効率−輝度特性を示す図。The figure which shows the current efficiency-luminance characteristic of Examples 19-20 and Comparative Example 8. 実施例19〜20及び比較例8の外部量子効率−輝度特性を示す図。The figure which shows the external quantum efficiency-brightness characteristic of Examples 19-20 and the comparative example 8. FIG. 実施例19〜20及び比較例8のELスペクトルを示す図。The figure which shows the EL spectrum of Examples 19-20 and the comparative example 8. FIG. 本発明の有機EL素子の構成例を示す図。The figure which shows the structural example of the organic EL element of this invention. 本発明の有機EL素子の他の構成例を示す図。The figure which shows the other structural example of the organic EL element of this invention. 本発明の有機EL素子の他の構成例を示す図。The figure which shows the other structural example of the organic EL element of this invention. 本発明の有機EL素子の他の構成例を示す図。The figure which shows the other structural example of the organic EL element of this invention. 本発明の有機EL素子の他の構成例を示す図。The figure which shows the other structural example of the organic EL element of this invention. 本発明の有機EL素子の他の構成例を示す図。The figure which shows the other structural example of the organic EL element of this invention. 本発明の有機EL素子の他の構成例を示す図。The figure which shows the other structural example of the organic EL element of this invention. 本発明の有機EL素子の他の構成例を示す図。The figure which shows the other structural example of the organic EL element of this invention.

以下、上記本発明について詳しく説明する。
本発明の置換フェニルピリジンイリジウム錯体におけるR〜R15の炭素数1〜4の直鎖若しくは分岐のアルキル基としては、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、ターシャリーブチル基などを例示することができる。またR〜Rの炭素数1〜4の直鎖若しくは分岐のアルコキシ基としては、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基やターシャリーブトキシ基を例示することができる。
Hereinafter, the present invention will be described in detail.
Examples of the linear or branched alkyl group having 1 to 4 carbon atoms of R 1 to R 15 in the substituted phenylpyridine iridium complex of the present invention include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, and an isobutyl group. And a tertiary butyl group. Examples of the linear or branched alkoxy group having 1 to 4 carbon atoms of R 5 to R 7 include a methoxy group, an ethoxy group, a normal propoxy group, an isopropoxy group, a normal butoxy group, an isobutoxy group, and a tertiary butoxy group. can do.

本発明の置換フェニルピリジンイリジウム錯体は、下記の二段階反応により作製することができる。
<第一反応>

反応式中、NBSは、N−ブロモコハク酸イミドである。

<第二反応>
反応式中、Pd(PPhはテトラキス(トリフェニルホスフィン)パラジウム、KCO aqは炭酸カリウム水溶液である。また、R〜Rは水素、炭素数1〜4の直鎖若しくは分岐アルキル基よりなる群、及びR〜Rは水素、炭素数1〜4の直鎖若しくは分岐アルキル基、炭素数1〜4の直鎖若しくは分岐アルコキシ基、フッ素よりなる群からそれぞれ独立して選ばれた基であり、R〜R15は水素、炭素数1〜4の直鎖若しくは分岐のアルキル基よりなる群から、それぞれ独立して選ばれた基である
The substituted phenylpyridine iridium complex of the present invention can be prepared by the following two-step reaction.
<First reaction>

In the reaction formula, NBS is N-bromosuccinimide.

<Second reaction>
In the reaction formula, Pd (PPh 3 ) 4 is tetrakis (triphenylphosphine) palladium, and K 2 CO 3 aq is an aqueous potassium carbonate solution. R 1 to R 4 are hydrogen, a group consisting of a linear or branched alkyl group having 1 to 4 carbon atoms, and R 5 to R 7 are hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 4 linear or branched alkoxy groups and groups independently selected from the group consisting of fluorine, and R 8 to R 15 are each composed of hydrogen and a linear or branched alkyl group having 1 to 4 carbon atoms. Each group independently selected from the group

第一反応は、トリス(2−フェニルピリジン)イリジウムのブロム化である。ブロム化で使用する臭素化剤としては、臭素水、四臭化炭素、臭化ベンジル、テトラ−n−ブチルアンモニウムトリブロミド、N−ブロモコハク酸イミドなどが使用できるが、取り扱いやすさからN−ブロモコハク酸イミドが好ましい。反応で使用する溶媒は、自身がブロモ化を受けないか又は受けにくい溶媒であれば特に限定されない。その例としては、ジクロロメタン、クロロホルム、ジクロロエタン、クロロベンゼン、ジクロロベンゼンなどが挙げられるが、取り扱いやすさからジクロロメタンが好ましい。   The first reaction is bromination of tris (2-phenylpyridine) iridium. As brominating agents used in bromination, bromine water, carbon tetrabromide, benzyl bromide, tetra-n-butylammonium tribromide, N-bromosuccinimide and the like can be used. Acid imides are preferred. The solvent used in the reaction is not particularly limited as long as it does not undergo bromination or is difficult to undergo bromination. Examples thereof include dichloromethane, chloroform, dichloroethane, chlorobenzene, dichlorobenzene and the like, but dichloromethane is preferable because of ease of handling.

第二反応は、臭素化物とホウ酸エステルとのカップリング反応である。一般には鈴木カップリングと呼ばれる反応で有機合成反応では良く用いられる手法である。反応で用いるパラジウム触媒は、反応系中で0価を示すものであれば特に限定されない。その例としては、テトラキス(トリフェニルホスフィン)パラジウム(0)、ビス[1,2−ビス(ジフェニルホスフィノ)エタン]パラジウム(0)、ビス(ジベンジリデンアセトン)パラジウム(0)、ビス(トリ−tert−ブチルホスフィン)パラジウム(0)などが挙げられる。取り扱いやすさからテトラキス(トリフェニルホスフィン)パラジウム(0)が好ましい。
反応に用いる塩基については、無機物でも有機物でも特に限定されない。無機物としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどの炭酸塩、炭酸水素ナトリウム、炭酸水素カリウムなどの炭酸水素塩、フッ化カリウムやフッ化セシウムなどのフッ化物、有機物しては、ナトリウムメチラートやナトリウムエチラートなどのアルコラート化合物、トリエチルアミン、ジイソプロピルエチルアミンやターシャリーブチルアミンなどのアミン化合物などが例示できる。取り扱いやすさから炭酸カリウムが好ましい。無機塩を使用する場合は、反応系での分散性を上げるために水溶液にして使用することが好ましい。
反応溶媒は、パラジウム触媒や使用する塩基と反応しないものであれば特に限定されない。その例としては、トルエンやキシレンのような芳香族系溶媒、1,4−ジオキサンや1,2−ジメトキシエタンのようなエーテル系溶媒などが使用できる。芳香族系溶媒の場合、メタノールやエタノールなどのアルコール系溶媒と併用して使用することもできる。
The second reaction is a coupling reaction between bromide and borate ester. In general, this is a method called Suzuki coupling, which is often used in organic synthesis reactions. The palladium catalyst used in the reaction is not particularly limited as long as it shows zero valence in the reaction system. Examples include tetrakis (triphenylphosphine) palladium (0), bis [1,2-bis (diphenylphosphino) ethane] palladium (0), bis (dibenzylideneacetone) palladium (0), bis (tri- tert-butylphosphine) palladium (0) and the like. Tetrakis (triphenylphosphine) palladium (0) is preferable because of ease of handling.
The base used for the reaction is not particularly limited, whether it is inorganic or organic. Examples of inorganic substances include carbonates such as sodium carbonate, potassium carbonate, and cesium carbonate; bicarbonates such as sodium bicarbonate and potassium bicarbonate; fluorides such as potassium fluoride and cesium fluoride; and organic substances such as sodium methylate. And alcoholate compounds such as sodium ethylate, and amine compounds such as triethylamine, diisopropylethylamine and tertiary butylamine. Potassium carbonate is preferred for ease of handling. When using an inorganic salt, it is preferable to use it as an aqueous solution in order to increase the dispersibility in the reaction system.
The reaction solvent is not particularly limited as long as it does not react with the palladium catalyst or the base used. For example, aromatic solvents such as toluene and xylene, ether solvents such as 1,4-dioxane and 1,2-dimethoxyethane can be used. In the case of an aromatic solvent, it can also be used in combination with an alcohol solvent such as methanol or ethanol.

本発明の置換フェニルピリジンイリジウム錯体の具体例を示す。なお、例示化合物中のメチル基は他のアルキル基(エチル基、プロピル基など)と置き換えることができる。   The specific example of the substituted phenyl pyridine iridium complex of this invention is shown. In addition, the methyl group in exemplary compounds can be replaced with other alkyl groups (ethyl group, propyl group, etc.).

本発明の置換フェニルピリジンイリジウム錯体は高い発光性を有する。従って発光材料として使用することができる。使用に際しては、蒸着により層形成を行うことが望ましい。
また、本発明の置換フェニルピリジンイリジウム錯体は有機EL素子の材料として有用であるが、使用に際しては、適当なホスト材料と組み合わせて使用することができる。また、有機EL素子の発光層における発光材料として使用することができる。
The substituted phenylpyridine iridium complex of the present invention has high luminescence. Therefore, it can be used as a light emitting material. In use, it is desirable to form a layer by vapor deposition.
The substituted phenylpyridine iridium complex of the present invention is useful as a material for an organic EL device, but can be used in combination with an appropriate host material. Further, it can be used as a light emitting material in a light emitting layer of an organic EL device.

次に本発明の有機EL素子について説明する。
本発明の有機EL素子は、陽極と陰極間に複数層の有機化合物を積層した素子であり、発光層の発光材料として本発明の置換フェニルピリジンイリジウム錯体を含有する。
発光層は、発光材料とホスト材料から構成される。多層型の有機EL素子の構成例としては、陽極(例えばITO)/ホール輸送層/発光層/電子輸送層/陰極、ITO/ホール輸送層/発光層/電子輸送層/電子注入層/陰極、ITO/ホール輸送層/発光層/ホールブロック層/電子輸送層/陰極、ITO/ホール輸送層/発光層/ホールブロック層/電子輸送層/電子注入層/陰極、ITO/ホール注入層(正孔注入層)/ホール輸送層/発光層/ホールブロック層/電子輸送層/電子注入層/陰極等の多層構成で積層したものが挙げられる。また、必要に応じて陰極上に封止層を有していてもよい。
ホール輸送層、電子輸送層、及び発光層のそれぞれの層は、各機能を分離した多層構造であることが望ましい。またホール輸送層、電子輸送層はそれぞれの層で注入機能を受け持つ層(ホール注入層及び電子注入層)と輸送機能を受け持つ層(ホール輸送層及び電子輸送層)を別々に設けることもできる。
Next, the organic EL element of the present invention will be described.
The organic EL device of the present invention is a device in which a plurality of organic compounds are laminated between an anode and a cathode, and contains the substituted phenylpyridine iridium complex of the present invention as a light emitting material of the light emitting layer.
The light emitting layer is composed of a light emitting material and a host material. Examples of the configuration of the multilayer organic EL device include an anode (for example, ITO) / hole transport layer / light emitting layer / electron transport layer / cathode, ITO / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, ITO / hole transport layer / light emitting layer / hole block layer / electron transport layer / cathode, ITO / hole transport layer / light emitting layer / hole block layer / electron transport layer / electron injection layer / cathode, ITO / hole injection layer (hole Injecting layer) / hole transporting layer / light emitting layer / hole blocking layer / electron transporting layer / electron injecting layer / cathode and the like laminated. Moreover, you may have a sealing layer on a cathode as needed.
Each of the hole transport layer, the electron transport layer, and the light emitting layer preferably has a multilayer structure in which the functions are separated. In addition, the hole transport layer and the electron transport layer can be provided separately with a layer responsible for the injection function (hole injection layer and electron injection layer) and a layer responsible for the transport function (hole transport layer and electron transport layer).

以下本発明の有機EL素子の構成要素に関して、陽極/ホール輸送層/発光層/電子輸送層/陰極からなる素子構成を例として取り上げて説明する。本発明の有機EL素子は、基板に支持されていることが好ましい。
基板の素材については特に制限はなく、例えば、従来の有機EL素子に慣用されているものが使用でき、ガラス、石英ガラス、透明プラスチックなどからなるものを用いることができる。
Hereinafter, the constituent elements of the organic EL element of the present invention will be described by taking as an example an element structure composed of an anode / hole transport layer / light emitting layer / electron transport layer / cathode. The organic EL element of the present invention is preferably supported on a substrate.
There is no restriction | limiting in particular about the raw material of a board | substrate, For example, what is conventionally used for the conventional organic EL element can be used, and what consists of glass, quartz glass, a transparent plastic, etc. can be used.

前記陽極としては、仕事関数の大きな金属単体(4eV以上)、仕事関数の大きな金属同士の合金(4eV以上)又は導電性物質及びこれらの混合物を電極材料とすることが好ましい。このような電極材料の例としては、金、銀、銅等の金属、ITO(インジウム−スズオキサイド)、酸化スズ(SnO)、酸化亜鉛(ZnO)などの導電性透明材料、ポリピロール、ポリチオフェン等の導電性高分子材料が挙げられる。陽極はこれらの電極材料を、例えば蒸着、スパッタリング、塗布などの方法により形成することができる。陽極のシート電気抵抗は数百Ω/cm以下が好ましい。陽極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。 As the anode, an electrode material is preferably a single metal having a large work function (4 eV or more), an alloy of metals having a large work function (4 eV or more), a conductive substance, or a mixture thereof. Examples of such electrode materials include gold, silver, copper and other metals, ITO (indium-tin oxide), tin oxide (SnO 2 ), zinc oxide (ZnO), and other conductive transparent materials, polypyrrole, polythiophene, etc. The conductive polymer material is mentioned. For the anode, these electrode materials can be formed by a method such as vapor deposition, sputtering, or coating. The sheet electrical resistance of the anode is preferably several hundred Ω / cm 2 or less. The thickness of the anode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm.

前記陰極としては、仕事関数の小さな金属単体(4eV以下)、仕事関数の小さい金属同士の合金(4eV以下)又は導電性物質及びこれらの混合物を電極材料とすることが好ましい。このような電極材料の例としては、リチウム、リチウム−インジウム合金、ナトリウム、ナトリウム−カリウム合金、マグネシウム、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム、アルミニウム−リチウム合金、アルミニウム−マグネシウム合金などが挙げられる。陰極はこれらの電極材料を、例えば蒸着、スパッタリングなどの方法により、薄膜を形成させることにより作製することができる。
陰極のシート電気抵抗は数百Ω/cm以下が好ましい。陰極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。
本発明の有機EL素子の発光を効率よく取り出すために、陽極又は陰極の少なくとも一方の電極は透明又は半透明であることが好ましい。
As the cathode, an electrode material is preferably a single metal having a low work function (4 eV or less), an alloy of metals having a low work function (4 eV or less), a conductive substance, or a mixture thereof. Examples of such electrode materials include lithium, lithium-indium alloy, sodium, sodium-potassium alloy, magnesium, magnesium-silver alloy, magnesium-indium alloy, aluminum, aluminum-lithium alloy, aluminum-magnesium alloy, and the like. It is done. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
The sheet electrical resistance of the cathode is preferably several hundred Ω / cm 2 or less. The thickness of the cathode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm.
In order to efficiently extract light emitted from the organic EL device of the present invention, at least one of the anode and the cathode is preferably transparent or translucent.

前記ホール輸送層は、ホール伝達化合物からなるもので、陽極より注入されたホールを発光層に伝達する機能を有している。電界が与えた2つの電極の間に正孔伝達化合物が配置されて陽極からホールが注入された場合、少なくとも10−6cm/V・秒以上のホール移動度を有するホール伝達物質が好ましい。本発明の有機EL素子のホール輸送層に使用するホール伝達物質は、前記の好ましい性能を有するものであれば特に制限はない。従来から光導電材料においてホールの電荷注入材料として慣用されているものや有機EL素子のホール輸送層に使用されている公知の材料の中から任意のものを選択して用いることができる。 The hole transport layer is made of a hole transfer compound and has a function of transmitting holes injected from the anode to the light emitting layer. When a hole transfer compound is disposed between two electrodes to which an electric field is applied and holes are injected from the anode, a hole transfer material having a hole mobility of at least 10 −6 cm 2 / V · sec or more is preferable. The hole transfer material used for the hole transport layer of the organic EL device of the present invention is not particularly limited as long as it has the above-mentioned preferable performance. A photoconductive material that has been conventionally used as a hole charge injection material or a known material that is used for a hole transport layer of an organic EL element can be selected and used.

ホール伝達物質の例としては、銅フタロシアニンなどのフタロシアニン誘導体、N,N,N′,N′−テトラフェニル−1,4−フェニレンジアミン、N,N′−ジ(m−トリル)−N,N′−ジフェニル−4,4−ジアミノフェニル(TPD)、N,N′−ジ(1−ナフチル)−N,N′−ジフェニル−4,4−ジアミノフェニル(α−NPD)等のトリアリールアミン誘導体、ポリフェニレンジアミン誘導体、ポリチオフェン誘導体、及び水溶性のPEDOT−PSS(ポリエチレンジオキサチオフェン−ポリスチレンスルホン酸)などが挙げられる。
ホール輸送層は、これらの他のホール伝達化合物の一種又は二種以上からなる一層で構成されたものでよく、前記のホール伝達物質とは別の化合物からなるホール輸送層を積層したものでもよい。
Examples of hole transfer materials include phthalocyanine derivatives such as copper phthalocyanine, N, N, N ′, N′-tetraphenyl-1,4-phenylenediamine, N, N′-di (m-tolyl) -N, N Triarylamine derivatives such as' -diphenyl-4,4-diaminophenyl (TPD), N, N'-di (1-naphthyl) -N, N'-diphenyl-4,4-diaminophenyl (α-NPD) , Polyphenylenediamine derivatives, polythiophene derivatives, and water-soluble PEDOT-PSS (polyethylenedioxathiophene-polystyrenesulfonic acid).
The hole transport layer may be composed of one or more of these other hole transport compounds, or may be a stack of hole transport layers composed of a compound different from the hole transport material. .

ホール注入材料の例としては、下記化学式で示されるPEDOT−PSS(ポリマー混合物)やDNTPDが挙げられる。式中のnは繰り返し単位数である。

ホール輸送材料の例としては、下記化学式で示されるTPD、DTASi、α−NPDなどが挙げられる。
Examples of the hole injection material include PEDOT-PSS (polymer mixture) and DNTPD represented by the following chemical formula. N in the formula is the number of repeating units.

Examples of the hole transport material include TPD, DTASi, α-NPD represented by the following chemical formula.

前記電子輸送層は、電子輸送材料からなるもので、陰極より注入された電子を発光層に伝達する機能を有している。電界が与えた2つの電極の間に電子輸送材料が配置されて陰極から電子が注入された場合、少なくとも10−6cm/V・秒以上の電子移動度を有する電子輸送材料が好ましい。該電子輸送材料は、前記の好ましい性能を有するものであれば特に制限はない。従来から光導電材料において電子の電荷注入材料として慣用されているものや有機EL素子の電子輸送層に使用されている公知の材料の中から任意のものを選択して用いることができる。
電子輸送材料の例としては、トリス(8−ヒドロキシキノリノラト)アルミニウム錯体(Alq)のようなキノリン錯体、1−N−フェニル−2−(p−ビフェニルイル)−5−(p−tert−ブチルフェニル)−1,3,5−トリアジン(TAZ)のようなトリアジン誘導体、1,4−ジ(1,10−フェナントロリン−2−イル)ベンゼン(DPB)のようなフェナントロリン誘導体、フッ化リチウムのようなハロゲン化アルカリ金属などが挙げられる。
AlqとTAZの化学式を次に示す。
The electron transport layer is made of an electron transport material and has a function of transmitting electrons injected from the cathode to the light emitting layer. When an electron transport material is arranged between two electrodes to which an electric field is applied and electrons are injected from the cathode, an electron transport material having an electron mobility of at least 10 −6 cm 2 / V · sec or more is preferable. The electron transport material is not particularly limited as long as it has the above-mentioned preferable performance. Any one of materials conventionally used as electron charge injection materials in photoconductive materials and known materials used for electron transport layers of organic EL elements can be selected and used.
Examples of electron transport materials include quinoline complexes such as tris (8-hydroxyquinolinolato) aluminum complex (Alq 3 ), 1-N-phenyl-2- (p-biphenylyl) -5- (p-tert -Triazine derivatives such as butylphenyl) -1,3,5-triazine (TAZ), phenanthroline derivatives such as 1,4-di (1,10-phenanthroline-2-yl) benzene (DPB), lithium fluoride And alkali metal halides.
Following the Alq 3 and TAZ formula.

上記の他に、下記化学式で示されるトリアジン誘導体の電子輸送材料(TmPyPhTAZ、特開2007−137829号公報参照)やビスフェノール誘導体の電子輸送材料(tetra−pPyPhBP、特開2008−063232号公報参照)などを用いることもできる。

電子輸送層は、上記電子輸送材料の一種又は二種以上からなる一層で構成されたものでよいが、これらとは別の化合物からなる電子輸送層を積層したものでもよい。
In addition to the above, an electron transport material of a triazine derivative represented by the following chemical formula (TmPyPhTAZ, see Japanese Patent Application Laid-Open No. 2007-137829), an electron transport material of a bisphenol derivative (tetra-pPyPhBP, see Japanese Patent Application Laid-Open No. 2008-066322), etc. Can also be used.

The electron transport layer may be composed of one or more of the above electron transport materials, but may be a stack of electron transport layers composed of compounds different from these.

電子注入材料の例としては、下記化学式で示されるフッ化リチウム(LiF)や8−ヒドロキシキノリノラトリチウム錯体(Liq)、フェナントロリン誘導体のリチウム錯体(LiPB、特開2008−106015号公報参照)、フェノキシピリジンのリチウム錯体(LiPP、特開2008−195623号公報参照)が挙げられる。
Examples of the electron injection material include lithium fluoride (LiF), 8-hydroxyquinolinolatolithium complex (Liq) represented by the following chemical formula, lithium complex of phenanthroline derivative (LiPB, see JP 2008-106015 A), A lithium complex of phenoxypyridine (LiPP, see JP 2008-195623 A) can be mentioned.

本発明の有機EL素子の発光層では、発光材料として本発明の置換フェニルピリジンイリジウム錯体を使用するが、その他の任意の発光材料を選択して該錯体と併用することができる。
併用する発光材料としては、ペリレン誘導体、ナフタセン誘導体、キナクリドン誘導体、クマリン誘導体(例えばクマリン1、クマリン540、クマリン545など)、ピラン誘導体(例えばDCM−1、DCM−2、DCJTBなど)、有機金属錯体〔例えばトリス(8−ヒドロキシキノリノラト)アルミニウム錯体(Alq)、トリス(4−メチル−8−ヒドロキシキノリノラト)アルミニウム錯体(Almq)等の蛍光材料や、[2−(4,6−ジフルオロフェニル)ピリジル−N,C2′]イリジウム(III)ピコリレート(FIrpic)、トリス{1−[4−(トリフルオロメチル)フェニル]−1H−ピラゾラート−N,C2′}イリジウム(III)(Irtfmppz)、ビス[2−(4′,6′−ジフルオロフェニル)ピリジナト−N,C2′]イリジウム(III)テトラキス(1−ピラゾリル)ボレート(FIr6)、トリス(2−フェニルピリジナト)イリジウム(III)(Irppy)等のリン光材料〕などが挙げられる。
In the light emitting layer of the organic EL device of the present invention, the substituted phenylpyridine iridium complex of the present invention is used as a light emitting material, but any other light emitting material can be selected and used in combination with the complex.
Examples of the light-emitting material used in combination include perylene derivatives, naphthacene derivatives, quinacridone derivatives, coumarin derivatives (eg, coumarin 1, coumarin 540, coumarin 545), pyran derivatives (eg, DCM-1, DCM-2, DCJTB, etc.), organometallic complexes [For example, fluorescent materials such as tris (8-hydroxyquinolinolato) aluminum complex (Alq 3 ), tris (4-methyl-8-hydroxyquinolinolato) aluminum complex (Almq 3 ), [2- (4,6 -Difluorophenyl) pyridyl-N, C2 '] iridium (III) picolylate (FIrpic), tris {1- [4- (trifluoromethyl) phenyl] -1H-pyrazolate-N, C2'} iridium (III) (Irtfmpppz 3), bis [2- (4 ', 6'-difluoro-phenylene ) Pyridinato -N, C2 '] iridium (III) tetrakis (1-pyrazolyl) borate (FIr6), and the like tris (2-phenylpyridinato) iridium (III) (phosphorescent material Irppy 3), etc.] .

発光層は、一般にホスト材料と発光材料(ドーパント)から形成される[Appl.Phys.Lett.,65 3610(1989)]が、本発明の置換フェニルピリジンイリジウム錯体を発光層に使用する場合にはホスト材料が必要であり、例えば下記化学式で示される4,4′−ジ(N−カルバゾリル)−1,1′−ビフェニル(CBP)、1,4−ジ(N−カルバゾリル)ベンゼン−2,2′−ジ[4″−(N−カルバゾリル)フェニル]−1,1′−ビフェニル(4CzPBP)などを用いる。
本発明の置換フェニルピリジンイリジウム錯体は、ホスト材料に対して好ましくは0.01〜40重量%であり、より好ましくは0.1〜20重量%である。
The light emitting layer is generally formed of a host material and a light emitting material (dopant) [Appl. Phys. Lett. , 65 3610 (1989)] requires a host material when the substituted phenylpyridine iridium complex of the present invention is used in the light-emitting layer. For example, 4,4′-di (N-carbazolyl) represented by the following chemical formula: -1,1'-biphenyl (CBP), 1,4-di (N-carbazolyl) benzene-2,2'-di [4 "-(N-carbazolyl) phenyl] -1,1'-biphenyl (4CzPBP) Etc. are used.
The substituted phenylpyridine iridium complex of the present invention is preferably 0.01 to 40% by weight, more preferably 0.1 to 20% by weight, based on the host material.

本発明の有機EL素子は、ホール注入性をさらに向上させる目的で陽極と有機化合物の層の間に有機導電体から構成されるホール注入層を設けてもよい。ここで使用されるホール注入材料としては、本発明の置換フェニルピリジンイリジウム錯体の他に銅フタロシアニンなどのフタロシアニン誘導体、ポリフェニレンジアミン誘導体、ポリチオフェン誘導体、PEDOT−PSS(ポリエチレンジオキシチオフェン−ポリスチレンスルホン酸)などが挙げられる。
本発明の置換フェニルピリジンイリジウム錯体を含むEL素子のホール注入層、ホール輸送層の形成方法は特に限定されるものではなく、例えば乾式製膜法(真空蒸着法、イオン化蒸着法など)、湿式製膜法(溶媒塗布法:スピンコート法、キャスト法、インクジェット法など)を使用することができる。電子輸送層の製膜については、湿式製膜法で行うと下層が溶出する恐れがあるため乾式製膜法(真空蒸着法、イオン化蒸着法など)に限定される。素子の作製については上記の製膜法を併用しても構わない。
真空蒸着法によりホール輸送層、発光層、電子輸送層などの各層を形成する場合、真空蒸着条件は特に限定されるものではない。通常10−5Torr程度以下の真空下で50〜500℃程度のボート温度(蒸着原温度)、−50〜300℃程度の基板温度で、0.01〜50nm/sec.程度蒸着することが好ましい。正孔輸送層、発光層、電子輸送層の各層を複数の化合物を使用して形成する場合、化合物を入れたボートをそれぞれ温度制御しながら共蒸着することが好ましい。
In the organic EL device of the present invention, a hole injection layer composed of an organic conductor may be provided between the anode and the organic compound layer for the purpose of further improving the hole injection property. As the hole injection material used here, in addition to the substituted phenylpyridine iridium complex of the present invention, phthalocyanine derivatives such as copper phthalocyanine, polyphenylenediamine derivatives, polythiophene derivatives, PEDOT-PSS (polyethylenedioxythiophene-polystyrenesulfonic acid), etc. Is mentioned.
The formation method of the hole injection layer and the hole transport layer of the EL device containing the substituted phenylpyridine iridium complex of the present invention is not particularly limited. For example, a dry film forming method (vacuum vapor deposition method, ionization vapor deposition method, etc.), wet type A film method (solvent coating method: spin coating method, casting method, ink jet method, or the like) can be used. The film formation of the electron transport layer is limited to dry film formation methods (vacuum vapor deposition method, ionization vapor deposition method, etc.) because the lower layer may be eluted when the wet film formation method is used. For the production of the element, the above film forming method may be used in combination.
When forming each layer such as a hole transport layer, a light emitting layer, and an electron transport layer by a vacuum deposition method, the vacuum deposition conditions are not particularly limited. Usually, under a vacuum of about 10 −5 Torr or less, a boat temperature (deposition source temperature) of about 50 to 500 ° C., a substrate temperature of about −50 to 300 ° C., and 0.01 to 50 nm / sec. Vapor deposition is preferred. When forming each layer of a positive hole transport layer, a light emitting layer, and an electron carrying layer using a some compound, it is preferable to co-evaporate the boat which put the compound, respectively controlling temperature.

ホール注入層、ホール輸送層を溶媒塗布法で形成する場合、各層を構成する成分を溶媒に溶解又は分散させて塗布液とする。溶媒としては、炭化水素系溶媒(ヘプタン、トルエン、キシレン、シクロヘキサン等)、ケトン系溶媒(アセトン、メチルエチルケトン、メチルイソブチルケトン等)、ハロゲン系溶媒(ジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン等)、エステル系溶媒(酢酸エチル、酢酸ブチル等)、アルコール系溶媒(メタノール、エタノール、ブタノール、メチルセロソルブ、エチルセロソルブ等)、エーテル系溶媒(ジブチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン等)、非プロトン性溶媒(N,N′−ジメチルアセトアミド、ジメチルスルホキシド等)、水等が挙げられる。溶媒は単独で使用しても複数の溶媒を併用してもよい。
ホール輸送層、発光層、電子輸送層等の各層の膜厚は、特に限定されるものではないが、通常5〜5,000nmになるようにする。
When forming the hole injection layer and the hole transport layer by a solvent coating method, the components constituting each layer are dissolved or dispersed in a solvent to obtain a coating solution. Solvents include hydrocarbon solvents (heptane, toluene, xylene, cyclohexane, etc.), ketone solvents (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), halogen solvents (dichloromethane, chloroform, chlorobenzene, dichlorobenzene, etc.), ester solvents Solvents (ethyl acetate, butyl acetate, etc.), alcohol solvents (methanol, ethanol, butanol, methyl cellosolve, ethyl cellosolve, etc.), ether solvents (dibutyl ether, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, etc.) ), Aprotic solvents (N, N′-dimethylacetamide, dimethylsulfoxide, etc.), water and the like. The solvent may be used alone or in combination with a plurality of solvents.
The thickness of each layer such as a hole transport layer, a light emitting layer, and an electron transport layer is not particularly limited, but is usually set to 5 to 5,000 nm.

本発明の有機EL素子は、酸素や水分等の接触を遮断する目的で保護層(封止層)を設けたり、不活性物質中に素子を封入して保護することができる。不活性物質としては、パラフィン、シリコンオイル、フルオロカーボン等が挙げられる。保護層に使用する材料としては、フッ素樹脂、エポキシ樹脂、シリコーン樹脂、ポリエステル、ポリカーボネート、光硬化性樹脂等がある。   The organic EL device of the present invention can be protected by providing a protective layer (sealing layer) for the purpose of blocking the contact of oxygen, moisture, etc., or encapsulating the device in an inert material. Examples of the inert substance include paraffin, silicon oil, and fluorocarbon. Examples of the material used for the protective layer include fluororesin, epoxy resin, silicone resin, polyester, polycarbonate, and photocurable resin.

図26〜図33に、本発明の有機EL素子の好ましい構成例を示す。
図26は、基板1上に、陽極2、正孔輸送層5、発光層3、電子輸送層6及び陰極4を順次設けた構成のものである。これはキャリア輸送と発光の機能を分離したものであり、材料選択の自由度が増すために、発光の高効率化や発光色の自由度が増すことになる。
図27は、基板1上に、陽極2、ホール注入層7、ホール輸送層5、発光層3、電子輸送層6及び陰極4を順次設けた構成のものである。この場合、ホール注入層7を設けることにより、陽極2とホール輸送層5の密着性が高くなり、陽極からのホールの注入が良くなり、発光素子の低電圧化に効果がある。
図28は、基板1上に、陽極2、ホール輸送層5、発光層3、電子輸送層6、電子注入層8及び陰極4を順次設けた構成のものである。この場合、陰極4から電子の注入が良くなり、発光素子の低電圧化に効果がある。
図29は、基板1上に、陽極2、ホール注入層7、ホール輸送層5、発光層3、電子輸送層6、電子注入層8及び陰極4を順次設けた構成のものである。この場合、陽極2からホールの注入が良くなり、陰極4からの電子注入が良くなり、低電圧駆動に最も効果がある構成である。
26 to 33 show preferred configuration examples of the organic EL element of the present invention.
FIG. 26 shows a configuration in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. This is a separation of the functions of carrier transport and light emission, and the degree of freedom in material selection increases, so that the efficiency of light emission and the degree of freedom in light emission color increase.
FIG. 27 shows a structure in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the provision of the hole injection layer 7 increases the adhesion between the anode 2 and the hole transport layer 5, improves the injection of holes from the anode, and is effective in lowering the voltage of the light emitting element.
FIG. 28 shows a structure in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, injection of electrons from the cathode 4 is improved, which is effective for lowering the voltage of the light emitting element.
FIG. 29 shows a structure in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, hole injection from the anode 2 is improved and electron injection from the cathode 4 is improved, which is the most effective for low voltage driving.

図30〜図33は有機EL素子の中にホールブロック層を挿入した構成例である。
ホールブロック層は、陽極から注入されたホールあるいは発光層3で再結合により生成した励起子が、陰極4に抜けることを防止する効果を有し、有機EL素子の発光効率の向上に効果がある。ホールブロック層9については、発光層3と陰極4の間、発光層3と電子輸送層6の間、あるいは発光層3と電子注入層8の間に挿入することができる。好ましいのは発光層3と電子輸送層6の間である。
ホール輸送層5、ホール注入層7、電子輸送層6、電子注入層8、発光層3、ホールブロック層9のそれぞれの層は、一層構造であっても多層構造であってもよい。
なお、図26〜図33は、あくまでも基本的な素子構成であり、本発明の有機EL素子の構成はこれに限定されるものではない。
30 to 33 are configuration examples in which a hole block layer is inserted into an organic EL element.
The hole blocking layer has an effect of preventing holes injected from the anode or excitons generated by recombination in the light emitting layer 3 from escaping to the cathode 4, and is effective in improving the light emission efficiency of the organic EL element. . The hole blocking layer 9 can be inserted between the light emitting layer 3 and the cathode 4, between the light emitting layer 3 and the electron transport layer 6, or between the light emitting layer 3 and the electron injection layer 8. Preferred is between the light emitting layer 3 and the electron transport layer 6.
Each of the hole transport layer 5, the hole injection layer 7, the electron transport layer 6, the electron injection layer 8, the light emitting layer 3, and the hole block layer 9 may have a single layer structure or a multilayer structure.
26 to 33 are basic element configurations to the last, and the configuration of the organic EL element of the present invention is not limited to this.

以下に実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1
(1)トリス〔2−(3−ブロモフェニル)ピリジン〕イリジウム錯体〔Ir(Br−ppy)〕の合成


300mL四つ口フラスコにIr(ppy)を0.5g(0.77mmol)、ジクロロメタン115mL、N−ブロモコハク酸イミド0.58g(3.14mmol)を加え、窒素気流下、室温で16時間攪拌した。反応溶液を数十mLまで濃縮し、吸引ろ過を行った後、水及びメタノールで洗浄した。その後、60℃で7時間減圧乾燥し、黄色粉末(0.68g、収率99%)を得た。同定はH−NMRにより行った。H−NMRのチャートを図1に示す。
Example 1
(1) Synthesis of tris [2- (3-bromophenyl) pyridine] iridium complex [Ir (Br-ppy) 3 ]


To a 300 mL four-necked flask, 0.5 g (0.77 mmol) of Ir (ppy) 3 , 115 mL of dichloromethane and 0.58 g (3.14 mmol) of N-bromosuccinimide were added, and the mixture was stirred at room temperature for 16 hours under a nitrogen stream. . The reaction solution was concentrated to several tens mL, suction filtered, and then washed with water and methanol. Then, it dried under reduced pressure at 60 degreeC for 7 hours, and obtained the yellow powder (0.68g, yield 99%). Identification was performed by 1 H-NMR. A chart of 1 H-NMR is shown in FIG.

(2)トリス{2−〔3−(4−ピリジル)フェニル〕ピリジン}イリジウム錯体Ir(4Py−ppy)の合成
100mL四つ口フラスコにIr(Br−ppy)を0.20g(0.22mmol)、4−ピリジンボロン酸ピナコールエステル0.46g(2.24mmol)、ジオキサン20mL、2M KCOaq 10mLを加え、1時間窒素バブリングを行った後、Pd(PPh〔テトラキス(トリフェニルホスフィン)パラジウム〕13mg(0.011mmol)を加え、窒素気流下(85℃)で19時間還流を行った。薄層クロマトグラフにより反応の進行を確認し、原料の消費が確認できたところで、反応溶液をジクロロメタンで抽出し水で洗浄した。次いでジクロロメタン:メタノール=24:1でシリカゲルカラムクロマトグラフィーを行い、0.18g(収率91%)の黄色固体を得た。同定はH−NMR、Massスペクトルにより行った。H−NMRのチャートを図2に、Massスペクトルのチャートを図3示す。
また、得られた黄色固体の高真空昇華精製を昇華条件を変えて5回行った。各昇華条件と収量を表1に示す。
また、得られた昇華精製品の元素分析の結果を表2に示す。
(2) Synthesis of tris {2- [3- (4-pyridyl) phenyl] pyridine} iridium complex Ir (4Py-ppy) 3
In a 100 mL four-necked flask, 0.20 g (0.22 mmol) of Ir (Br-ppy) 3 , 0.46 g (2.24 mmol) of 4-pyridineboronic acid pinacol ester, 20 mL of dioxane, 10 mL of 2M K 2 CO 3 aq In addition, nitrogen bubbling was performed for 1 hour, 13 mg (0.011 mmol) of Pd (PPh 3 ) 4 [tetrakis (triphenylphosphine) palladium] was added, and the mixture was refluxed for 19 hours under a nitrogen stream (85 ° C.). The progress of the reaction was confirmed by thin layer chromatography, and when the consumption of the raw material was confirmed, the reaction solution was extracted with dichloromethane and washed with water. Subsequently, silica gel column chromatography was performed using dichloromethane: methanol = 24: 1 to obtain 0.18 g (yield 91%) of a yellow solid. Identification was performed by 1 H-NMR and Mass spectrum. A chart of 1 H-NMR is shown in FIG. 2, and a chart of Mass spectrum is shown in FIG.
Moreover, the high vacuum sublimation purification of the obtained yellow solid was performed 5 times, changing sublimation conditions. Table 1 shows each sublimation condition and yield.
Table 2 shows the results of elemental analysis of the obtained sublimation product.

また高速液体クロマトグラフで純度分析を行った。サンプル濃度0.10g/LのTHF溶液を作製し、注入量5.0μL、移動相 THF:water=1:2、流速1.000mL/min、カラムオーブン温度40℃、検出波長340nmで測定した。得られたチャートを図4に示す。測定の結果、純度は99.8%であり、素子評価に支障のない純度であることが分かった。 Purity analysis was also performed using a high performance liquid chromatograph. A THF solution having a sample concentration of 0.10 g / L was prepared and measured at an injection amount of 5.0 μL, mobile phase THF: water = 1: 2, a flow rate of 1.000 mL / min, a column oven temperature of 40 ° C., and a detection wavelength of 340 nm. The obtained chart is shown in FIG. As a result of the measurement, the purity was 99.8%, and it was found that the purity did not hinder device evaluation.

実施例2
トリス{2−〔3−(3−ピリジル)フェニル〕ピリジン}イリジウム錯体Ir(3Py−ppy)の合成
100mL四つ口フラスコにIr(Br−ppy)を0.30g(0.34mmol)、3−ピリジンボロン酸ピナコールエステル0.70g(3.4mmol)、ジオキサン30mL、2M KCOaq 15mLを加え、1時間窒素バブリングを行った後、Pd(PPhを19.6mg(0.017mmol)加え、窒素気流下(85℃)で20時間還流を行った。薄層クロマトグラフにより反応の進行を確認し、原料の消費が確認できたところで、反応溶液をジクロロメタンで抽出し水で洗浄した。次いでジクロロメタン:メタノール=32:1でシリカゲルカラムクロマトグラフィーを行い、0.29g(収率96%)の黄色固体を得た。同定はH−NMRにより行った。Massスペクトルに関しては材料が飛ばず、ピークが検出できなかった。H−NMRのチャートを図5に示す。
また、得られた黄色固体の高真空昇華精製を昇華条件を変えて4回行った。各昇華条件と収量を表3に示す。
また、得られた昇華精製品の元素分析の結果を表4に示す。
Example 2
Synthesis of tris {2- [3- (3-pyridyl) phenyl] pyridine} iridium complex Ir (3Py-ppy) 3
In a 100 mL four-necked flask, 0.30 g (0.34 mmol) of Ir (Br-ppy) 3 , 0.70 g (3.4 mmol) of 3-pyridineboronic acid pinacol ester, 30 mL of dioxane, 15 mL of 2M K 2 CO 3 aq In addition, nitrogen bubbling was performed for 1 hour, 19.6 mg (0.017 mmol) of Pd (PPh 3 ) 4 was added, and the mixture was refluxed for 20 hours under a nitrogen stream (85 ° C.). The progress of the reaction was confirmed by thin layer chromatography, and when the consumption of the raw material was confirmed, the reaction solution was extracted with dichloromethane and washed with water. Subsequently, silica gel column chromatography was performed with dichloromethane: methanol = 32: 1 to obtain 0.29 g (yield 96%) of a yellow solid. Identification was performed by 1 H-NMR. Regarding the mass spectrum, the material did not fly and no peak could be detected. The 1 H-NMR chart is shown in FIG.
Moreover, the high vacuum sublimation purification of the obtained yellow solid was performed 4 times, changing sublimation conditions. Table 3 shows each sublimation condition and yield.
Table 4 shows the results of elemental analysis of the obtained sublimation product.

また高速液体クロマトグラフで純度分析を行った。サンプル濃度0.10g/LのTHF溶液を作製し、注入量5.0μL、移動相 THF:water=1:2、流速1.000mL/min、カラムオーブン温度40℃、検出波長284nmで測定した。得られたチャートを図6に示す。測定の結果、純度は99.3%であり、素子評価に支障のない純度であることが分かった。 Purity analysis was also performed using a high performance liquid chromatograph. A THF solution having a sample concentration of 0.10 g / L was prepared, and measurement was performed at an injection amount of 5.0 μL, a mobile phase THF: water = 1: 2, a flow rate of 1.000 mL / min, a column oven temperature of 40 ° C., and a detection wavelength of 284 nm. The obtained chart is shown in FIG. As a result of the measurement, the purity was 99.3%, and it was found that the purity did not hinder device evaluation.

実施例3〜4
実施例1で合成したIr(4Py−ppy)及び実施例2で合成したIr(3Py−ppy)の熱重量試験を行った。熱重量を測定することにより、熱分解温度を見積もることができるので、5%重量減衰温度をもって熱分解開始温度と定めた。
測定結果を表5に示す。
三位置換のIr(3Py−ppy)よりも四位置換のIr(4Py−ppy)の方が「Td5%」が高くなったが、これは四位置換の方が三位置換よりも水素結合しやすいためと考えられる。
Examples 3-4
Was thermogravimetric test of Example 1 synthesized Ir (4Py-ppy) 3 and synthesized Ir in Example 2 (3Py-ppy) 3. Since the thermal decomposition temperature can be estimated by measuring the thermogravimetry, the 5% weight decay temperature was determined as the thermal decomposition start temperature.
Table 5 shows the measurement results.
While third place replacement of Ir (3Py-ppy) 3 those of the four-substituted of Ir (4Py-ppy) 3 than has become higher "Td5%", which is more of a four-substituted third place than replacement This is thought to be due to easy hydrogen bonding.

実施例5〜6、比較例1
実施例1で合成したIr(4Py−ppy)及び実施例2で合成したIr(3Py−ppy)(実施例6)の溶解度試験を行った。Ir(4Py−ppy)の溶解度の結果(実施例5)を表6に、Ir(3Py−ppy)の溶解度の結果(実施例6)を表7に示す。比較のため、本発明化合物の原料であるIr(ppy)の溶解度試験も行った(比較例1)。この結果を表8に示す。
溶解度試験は、化合物1.0mgに対してそれぞれの溶媒を5.0mLまで0.5mL刻みで加え、加熱はせず、目視で次の基準により評価した。
〔評価基準〕
×:全く溶けない場合
△:少しでも溶ける場合
○:ほぼ溶解した場合
◎:完全に溶解した場合
Examples 5-6, Comparative Example 1
The solubility test of Ir (4Py-ppy) 3 synthesized in Example 1 and Ir (3Py-ppy) 3 (Example 6) synthesized in Example 2 was performed. The solubility results of Ir (4Py-ppy) 3 (Example 5) are shown in Table 6, and the solubility results of Ir (3Py-ppy) 3 (Example 6) are shown in Table 7. For comparison, a solubility test of Ir (ppy) 3 which is a raw material of the compound of the present invention was also conducted (Comparative Example 1). The results are shown in Table 8.
In the solubility test, each solvent was added to 5.0 mL in increments of 0.5 mL with respect to 1.0 mg of the compound, and heating was not performed.
〔Evaluation criteria〕
×: When not dissolved at all △: When dissolved even a little ○: When almost dissolved ◎: When completely dissolved

2−エトキシエタノール,シクロヘキサノン,エチルベンゾネートに対して良好な溶解性を示した。以下に溶解度の序列を示す。
2−エトキシエタノール>シクロヘキサノン>エチルベンゾネート>トルエン>1−ブタノール>テトラリン>m−キシレン>メシチレン>2−プロパノール
It showed good solubility in 2-ethoxyethanol, cyclohexanone, and ethyl benzoate. The order of solubility is shown below.
2-ethoxyethanol>cyclohexanone> ethyl benzoate>toluene>1-butanol>tetralin>m-xylene>mesitylene> 2-propanol

シクロヘキサノン,エチルベンゾネートに対して良好な溶解性を示した。以下に溶解度の序列を示す。
シクロヘキサノン,エチルベンゾネート>テトラリン>2−エトキシエタノール>メシチレン>m−キシレン>トルエン>2−プロパノール>1−ブタノール
Good solubility in cyclohexanone and ethyl benzoate. The order of solubility is shown below.
Cyclohexanone, ethyl benzoate>tetralin>2-ethoxyethanol>mesitylene>m-xylene>toluene>2-propanol> 1-butanol

トルエン,シクロヘキサノンに関してはある程度の溶解性を示したが、その他に関しては殆ど溶けなかった。以下に溶解度の序列を示す。
トルエン=シクロヘキサノン>m−キシレン>エチルベンゾネート>テトラリン>2−エトキシエタノール>メシチレン>1−ブタノール=2−プロパノール

試験の結果、本発明のIr(4Py−ppy)及びIr(3Py−ppy)はIr(ppy)に比べ溶解性がよいことが分かった。
Toluene and cyclohexanone showed a certain degree of solubility, but the others were hardly soluble. The order of solubility is shown below.
Toluene = cyclohexanone>m-xylene> ethyl benzoate>tetralin>2-ethoxyethanol>mesitylene> 1-butanol = 2-propanol

As a result of the test, it was found that Ir (4Py-ppy) 3 and Ir (3Py-ppy) 3 of the present invention have better solubility than Ir (ppy) 3 .

実施例7〜8、比較例2
実施例1で合成したIr(4Py−ppy)及び実施例2で合成したIr(3Py−ppy)の紫外−可視吸収スペクトル(UV−vis吸収スペクトル)を測定した(実施例7及び実施例8)。比較のため、これらの原料であるIr(ppy)の紫外−可視吸収スペクトルも測定した(比較例2)。
溶液試料は10−5mol/L分光分析用1,2−ジクロロエタン溶液とTHF溶液を調製し、石英セルを使用して測定した。1,2−ジクロロエタン溶液の測定結果を図7に、THF溶液の測定結果を図8に示す。
Ir(ppy)と比べIr(3Py−ppy)及びIr(4Py−ppy)はピリジン環の分吸収が大きくなっている。
Examples 7-8, Comparative Example 2
Synthesized in Example 1 was Ir (4Py-ppy) 3 and Ir synthesized in Example 2 (3Py-ppy) 3 of the UV - to measure the visible absorption spectrum (UV-vis absorption spectra) (Example 7 and Example 8). For comparison, the ultraviolet-visible absorption spectrum of Ir (ppy) 3 as these raw materials was also measured (Comparative Example 2).
A solution sample was prepared by preparing a 1,2-dichloroethane solution for 10-5 mol / L spectroscopic analysis and a THF solution, and using a quartz cell. FIG. 7 shows the measurement result of the 1,2-dichloroethane solution, and FIG. 8 shows the measurement result of the THF solution.
Compared with Ir (ppy) 3 , Ir (3Py-ppy) 3 and Ir (4Py-ppy) 3 have a larger absorption in the pyridine ring.

実施例9〜10、比較例3
実施例1で合成したIr(4Py−ppy)及び実施例2で合成したIr(3Py−ppy)の溶液中でのフォトルミネッセンススペクトル(PLスペクトル)を測定した(実施例9、実施例10)。比較のため、これらの原料であるIr(ppy)のPLスペクトルも測定した(比較例3)。溶液試料は10−5mol/L分光分析用THF溶液を調製し、石英セルを使用して測定した。測定は溶液を窒素置換した後に行った。THF溶液の測定結果を図9示す。
Ir(ppy)、Ir(3Py−ppy)及びIr(4Py−ppy)のTHF溶液中でのPLスペクトルのピーク波長(λmax)は、それぞれ514nm、513nm、504nmとなった。
Examples 9 to 10, Comparative Example 3
Photoluminescence spectra (PL spectra) in a solution of Ir (4Py-ppy) 3 synthesized in Example 1 and Ir (3Py-ppy) 3 synthesized in Example 2 were measured (Examples 9 and 10). ). For comparison, the PL spectrum of Ir (ppy) 3 as these raw materials was also measured (Comparative Example 3). As a solution sample, a THF solution for 10 −5 mol / L spectroscopic analysis was prepared and measured using a quartz cell. The measurement was performed after the solution was purged with nitrogen. The measurement result of the THF solution is shown in FIG.
The peak wavelength (λmax) of the PL spectrum in a THF solution of Ir (ppy) 3 , Ir (3Py-ppy) 3 and Ir (4Py-ppy) 3 was 514 nm, 513 nm, and 504 nm, respectively.

実施例11〜12、比較例4
実施例1で合成したIr(4Py−ppy)及び実施例2で合成したIr(3Py−ppy)の薄膜状での紫外−可視吸収スペクトル(UV−vis吸収スペクトル)を測定した(実施例11、実施例12)。比較のため、これらの原料であるIr(ppy)の紫外−可視吸収スペクトルも測定した(比較例4)。測定は、それぞれのイリジウム錯体をCBPに8wt%ドープした蒸着膜を作製して行った。結果を図10に示す。
Examples 11-12, Comparative Example 4
Synthesized Ir (4Py-ppy) 3 and Ir synthesized in Example 2 (3Py-ppy) Ultraviolet at 3 thin film in Example 1 - was determined visible absorption spectrum (UV-vis absorption spectra) (Example 11, Example 12). For comparison, the ultraviolet-visible absorption spectrum of Ir (ppy) 3 as these raw materials was also measured (Comparative Example 4). The measurement was performed by preparing a deposited film in which 8 wt% of each iridium complex was doped into CBP. The results are shown in FIG.

実施例13〜14、比較例5
実施例1で合成したIr(4Py−ppy)及び実施例2で合成したIr(3Py−ppy)の薄膜状でのフォトルミネッセンススペクトル(PLスペクトル)を測定した(実施例13、実施例14)。比較のため、これらの原料であるIr(ppy)のフォトルミネッセンススペクトル(PLスペクトル)も測定した(比較例5)。測定は、それぞれのイリジウム錯体をCBPに8wt%ドープした蒸着膜を作製して行った。
結果を図11に示す。
Ir(ppy)、Ir(3Py−ppy)、Ir(4Py−ppy)のCBP8wt%ドープ膜でのPLスペクトルのピーク波長(λmax)はそれぞれ519nm、511nm、508nmとなり、置換基の導入による発光波長の変化は少なかった。
Examples 13-14, Comparative Example 5
Synthesized in Example 1 was Ir (4Py-ppy) 3 and Example 2 with synthesized Ir (3Py-ppy) 3 of the photoluminescence spectrum of a thin film form a (PL spectrum) was measured (Example 13, Example 14 ). For comparison, a photoluminescence spectrum (PL spectrum) of Ir (ppy) 3 as these raw materials was also measured (Comparative Example 5). The measurement was performed by preparing a deposited film in which 8 wt% of each iridium complex was doped into CBP.
The results are shown in FIG.
The peak wavelengths (λmax) of PL spectra in Ir (ppy) 3 , Ir (3Py-ppy) 3 , and Ir (4Py-ppy) 3 CBP 8 wt% doped films are 519 nm, 511 nm, and 508 nm, respectively. There was little change in the emission wavelength.

実施例15〜16、比較例6
実施例1で合成したIr(4Py−ppy)及び実施例2で合成したIr(3Py−ppy)のフォトルミネッセンス量子収率(PLQY)を測定した(実施例15、実施例16)。比較のため、これらの原料であるIr(ppy)のフォトルミネッセンス量子収率も測定した(比較例6)。測定は、各イリジウム錯体をCBPに4wt%及び8wt%それぞれドープした蒸着膜を作製し、浜松フォトニクス製積分球を使用して行った。結果を表9に示す。
表の結果から分かるように、どの各イリジウム錯体もIr(ppy)に匹敵する高い数値を示し、濃度依存性は確認できなかった。
Examples 15-16, Comparative Example 6
Ir synthesized in Example 1 (4Py-ppy) 3 and Example 2 with synthesized Ir (3Py-ppy) 3 of the photoluminescence quantum yield (PLQY) was measured (Example 15, Example 16). For comparison, the photoluminescence quantum yield of Ir (ppy) 3 as these raw materials was also measured (Comparative Example 6). The measurement was performed using a integrating sphere manufactured by Hamamatsu Photonics by preparing a deposited film in which 4 wt% and 8 wt% of each iridium complex were doped in CBP. The results are shown in Table 9.
As can be seen from the results in the table, each iridium complex showed a high value comparable to Ir (ppy) 3 , and concentration dependency could not be confirmed.

実施例17〜18、比較例7
実施例1で合成したIr(4Py−ppy)及び実施例2で合成したIr(3Py−ppy)を用いた有機EL素子を作製した(実施例17、実施例18)。ホール輸送層には、下記式〔化24〕で表わされるTAPC{ジ−[4−(N,N−ジトリルアミノ)−フェニル]シクロヘキサン}を、また電子輸送層には下記式〔化25〕で表わされるB3PyPB〔3,3",5,5"−テトラ(ピリジン−3−イル)−1,1′,3′,1"−ターフェニル〕を使用した。比較のため、これらの原料であるIr(ppy)を使用した有機EL素子も作製した(比較例7)。
作製した有機EL素子構造を図12に示す。それぞれのイリジウム錯体はCBPに4wt%ドープした。作製した有機EL素子の構成は下記のとおりである。
実施例17:ITO(陽極)/TAPC(ホール輸送層)(50nm)/CBP:4wt%,Ir(4Py−ppy)(発光層)(10nm)/B3PyPB(電子輸送層)(50nm)/LiF(電子注入層)(1nm)/Al(陰極)(80nm)
実施例18:ITO(陽極)/TAPC(ホール輸送層)(50nm)/CBP:4wt%,Ir(3Py−ppy)(発光層)(10nm)/B3PyPB(電子輸送層)(50nm)/LiF(電子注入層)(1nm)/Al(陰極)(80nm)
比較例7:ITO(陽極)/TAPC(ホール輸送層)(50nm)/CBP:4wt%,Irppy(発光層)(10nm)/B3PyPB(電子輸送層)(50nm)/LiF(電子注入層)(1nm)/Al(陰極)(80nm)

各有機EL素子の電流密度−電圧特性を図13に、輝度−電圧特性を図14に、電力効率−輝度特性を図15に、電流効率−輝度特性を図16に、外部量子効率−輝度特性を図17に、ELスペクトルを図18に示す。
各有機EL素子の100cd/mと1000cd/mにおける電圧、電力効率、電流効率と外部量子効率を表10に示す。
Examples 17-18, Comparative Example 7
Organic EL devices using Ir (4Py-ppy) 3 synthesized in Example 1 and Ir (3Py-ppy) 3 synthesized in Example 2 were prepared (Examples 17 and 18). TAPC {di- [4- (N, N-ditolylamino) -phenyl] cyclohexane} represented by the following formula [Chemical Formula 24] is represented in the hole transport layer, and the following formula [Chemical Formula 25] is represented in the electron transport layer. B3PyPB [3,3 ", 5,5" -tetra (pyridin-3-yl) -1,1 ', 3', 1 "-terphenyl] was used for comparison. An organic EL device using (ppy) 3 was also produced (Comparative Example 7).
The produced organic EL element structure is shown in FIG. Each iridium complex was doped with CBP at 4 wt%. The structure of the produced organic EL element is as follows.
Example 17: ITO (anode) / TAPC (hole transport layer) (50 nm) / CBP: 4 wt%, Ir (4Py-ppy) 3 (light emitting layer) (10 nm) / B3PyPB (electron transport layer) (50 nm) / LiF (Electron injection layer) (1 nm) / Al (cathode) (80 nm)
Example 18: ITO (anode) / TAPC (hole transport layer) (50 nm) / CBP: 4 wt%, Ir (3Py-ppy) 3 (light emitting layer) (10 nm) / B3PyPB (electron transport layer) (50 nm) / LiF (Electron injection layer) (1 nm) / Al (cathode) (80 nm)
Comparative Example 7: ITO (anode) / TAPC (hole transport layer) (50 nm) / CBP: 4 wt%, Irppy 3 (light emitting layer) (10 nm) / B3PyPB (electron transport layer) (50 nm) / LiF (electron injection layer) (1 nm) / Al (cathode) (80 nm)

FIG. 13 shows the current density-voltage characteristics of each organic EL element, FIG. 14 shows the brightness-voltage characteristics, FIG. 15 shows the power efficiency-luminance characteristics, FIG. 16 shows the current efficiency-luminance characteristics, and FIG. 17 and FIG. 18 shows the EL spectrum.
Table 10 shows the voltage, power efficiency, current efficiency, and external quantum efficiency at 100 cd / m 2 and 1000 cd / m 2 of each organic EL element.

実施例19〜20、比較例8
実施例1で合成したIr(4Py−ppy)及び実施例2で合成したIr(3Py−ppy)を用いた有機EL素子を作製した(実施例19、実施例20)。比較のため、これらの原料であるIr(ppy)を使用した素子も作製した(比較例8)。
作製した有機EL素子構造を図19に示す。それぞれのイリジウム錯体はCBPに8wt%ドープした。作製した有機EL素子の構成は次のとおりである。
実施例19:ITO(陽極)/TAPC(ホール輸送層)(50nm)/CBP:8wt%,Ir(4Py−ppy)(発光層)(10nm)/B3PyPB(電子輸送層)(50nm)/LiF(電子注入層)(1nm)/Al(陰極)(80nm)
実施例20:ITO(陽極)/TAPC(ホール輸送層)(50nm)/CBP:8wt%,Ir(3Py−ppy)(発光層)(10nm)/B3PyPB(電子輸送層)(50nm)/LiF(電子注入層)(1nm)/Al(陰極)(80nm)
比較例8:ITO(陽極)/TAPC(ホール輸送層)(50nm)/CBP:8wt%,Irppy(発光層)(10nm)/B3PyPB(電子輸送層)(50nm)/LiF(電子注入層)(1nm)/Al(陰極)(80nm)

各有機EL素子の電流密度−電圧特性を図20に、輝度−電圧特性を図21に、電力効率−輝度特性を図22に、電流効率−輝度特性を図23に、外部量子効率−輝度特性を図24に、ELスペクトルを図25に示す。
各有機EL素子の100cd/mと1000cd/mにおける電圧、電力効率、電流効率と外部量子効率を表11に示す。
Examples 19-20, Comparative Example 8
Organic EL devices using Ir (4Py-ppy) 3 synthesized in Example 1 and Ir (3Py-ppy) 3 synthesized in Example 2 were prepared (Example 19 and Example 20). For comparison, devices using these raw materials Ir (ppy) 3 were also produced (Comparative Example 8).
The produced organic EL element structure is shown in FIG. Each iridium complex was doped with CBP at 8 wt%. The structure of the produced organic EL element is as follows.
Example 19: ITO (anode) / TAPC (hole transport layer) (50 nm) / CBP: 8 wt%, Ir (4Py-ppy) 3 (light emitting layer) (10 nm) / B3PyPB (electron transport layer) (50 nm) / LiF (Electron injection layer) (1 nm) / Al (cathode) (80 nm)
Example 20: ITO (anode) / TAPC (hole transport layer) (50 nm) / CBP: 8 wt%, Ir (3Py-ppy) 3 (light emitting layer) (10 nm) / B3PyPB (electron transport layer) (50 nm) / LiF (Electron injection layer) (1 nm) / Al (cathode) (80 nm)
Comparative Example 8: ITO (anode) / TAPC (hole transport layer) (50 nm) / CBP: 8 wt%, Irppy 3 (light emitting layer) (10 nm) / B 3 PyPB (electron transport layer) (50 nm) / LiF (electron injection layer) (1 nm) / Al (cathode) (80 nm)

FIG. 20 shows the current density-voltage characteristics of each organic EL element, FIG. 21 shows the brightness-voltage characteristics, FIG. 22 shows the power efficiency-luminance characteristics, FIG. 23 shows the current efficiency-luminance characteristics, and FIG. FIG. 24 shows the EL spectrum and FIG. 25 shows the EL spectrum.
Table 11 shows the voltage, power efficiency, current efficiency, and external quantum efficiency at 100 cd / m 2 and 1000 cd / m 2 of each organic EL element.

また本発明の有機EL素子は、通常直流駆動の素子として使用できる。直流電圧を印加する場合、陽極をプラス、陰極をマイナスの極性として通常1.5〜20V程度印加すると発光が観察される。また交流駆動の素子としても使用できる。交流電圧を印加する場合には、陽極がプラス、陰極がマイナスの状態になった時に発光する。
本発明の有機EL素子は、例えば、電子写真感光体、フラットパネルディスプレイなどの平面発光体、複写機、プリンター、液晶ディスプレイのバックライト、計器等の光源、各種発光素子、各種表示装置、各種標識、各種センサー、各種アクセサリーなどに使用することができる。
Further, the organic EL device of the present invention can be used as a normal DC drive device. When a DC voltage is applied, light emission is usually observed when about 1.5 to 20 V is applied with the positive polarity of the anode and the negative polarity of the cathode. It can also be used as an AC drive element. When an AC voltage is applied, light is emitted when the anode is in a positive state and the cathode is in a negative state.
The organic EL element of the present invention includes, for example, a flat light emitter such as an electrophotographic photosensitive member and a flat panel display, a copying machine, a printer, a backlight of a liquid crystal display, a light source such as an instrument, various light emitting elements, various display devices, various signs It can be used for various sensors and various accessories.

1 基板
2 陽極(ITO)
3 発光層
4 陰極
5 正孔(ホール)輸送層
6 電子輸送層
7 正孔(ホール)注入層
8 電子注入層
9 ホールブロック層
1 Substrate 2 Anode (ITO)
DESCRIPTION OF SYMBOLS 3 Light emitting layer 4 Cathode 5 Hole transport layer 6 Electron transport layer 7 Hole injection layer 8 Electron injection layer 9 Hole block layer

Claims (3)

下記一般式(1)で示される置換フェニルピリジンイリジウム錯体。
〔式中、R〜Rは水素、炭素数1〜4の直鎖若しくは分岐アルキル基よりなる群からそれぞれ独立して選ばれた基であり、R〜Rは水素、炭素数1〜4の直鎖若しくは分岐アルキル基、炭素数1〜4の直鎖若しくは分岐アルコキシ基、フッ素よりなる群からそれぞれ独立して選ばれた基である。また、Pyは下記式で示される3−ピリジル基又は4−ピリジル基よりなる群から選ばれた基であり、R〜R15は水素、炭素数1〜4の直鎖若しくは分岐アルキル基よりなる群からそれぞれ独立して選ばれた基である。〕
A substituted phenylpyridine iridium complex represented by the following general formula (1).
[Wherein, R 1 to R 4 are groups independently selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 4 carbon atoms, and R 5 to R 7 are hydrogen and 1 carbon atom. -4 linear or branched alkyl groups, C 1-4 linear or branched alkoxy groups, and groups independently selected from the group consisting of fluorine. Py is a group selected from the group consisting of a 3-pyridyl group or a 4-pyridyl group represented by the following formula, and R 8 to R 15 are each a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. Each independently selected from the group consisting of ]
請求項1記載の置換フェニルピリジンイリジウム錯体よりなる発光材料。   A luminescent material comprising the substituted phenylpyridine iridium complex according to claim 1. 請求項1記載の置換フェニルピリジンイリジウム錯体を用いた有機EL素子。   An organic EL device using the substituted phenylpyridine iridium complex according to claim 1.
JP2011026756A 2011-02-10 2011-02-10 Substituted phenylpyridine iridium complex, luminescent material including the same, and organic el element employing the complex Pending JP2012167028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011026756A JP2012167028A (en) 2011-02-10 2011-02-10 Substituted phenylpyridine iridium complex, luminescent material including the same, and organic el element employing the complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011026756A JP2012167028A (en) 2011-02-10 2011-02-10 Substituted phenylpyridine iridium complex, luminescent material including the same, and organic el element employing the complex

Publications (1)

Publication Number Publication Date
JP2012167028A true JP2012167028A (en) 2012-09-06

Family

ID=46971540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011026756A Pending JP2012167028A (en) 2011-02-10 2011-02-10 Substituted phenylpyridine iridium complex, luminescent material including the same, and organic el element employing the complex

Country Status (1)

Country Link
JP (1) JP2012167028A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160035043A (en) * 2013-07-31 2016-03-30 바스프 에스이 Luminescent diaza- monoaza- and benzimidazole metal carbene complexes for use in electronic devices such as oleds
JP2017522291A (en) * 2014-06-30 2017-08-10 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Metal complex
CN109427987A (en) * 2017-09-05 2019-03-05 三星电子株式会社 Organic luminescent device
JP2019047124A (en) * 2017-09-05 2019-03-22 三星電子株式会社Samsung Electronics Co.,Ltd. Organic light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004045000A2 (en) * 2002-11-06 2004-05-27 Universal Display Corporation Organic light emitting materials and devices
WO2006126389A1 (en) * 2005-05-25 2006-11-30 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
WO2007023659A1 (en) * 2005-08-25 2007-03-01 Konica Minolta Holdings, Inc. Organic electroluminescence device material, organic electroluminescence device, display device, and lighting device
WO2011013843A1 (en) * 2009-07-31 2011-02-03 Fujifilm Corporation Organic electroluminescence device
JP2013509715A (en) * 2009-10-29 2013-03-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Organic light-emitting diode luminaire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004045000A2 (en) * 2002-11-06 2004-05-27 Universal Display Corporation Organic light emitting materials and devices
WO2006126389A1 (en) * 2005-05-25 2006-11-30 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
WO2007023659A1 (en) * 2005-08-25 2007-03-01 Konica Minolta Holdings, Inc. Organic electroluminescence device material, organic electroluminescence device, display device, and lighting device
WO2011013843A1 (en) * 2009-07-31 2011-02-03 Fujifilm Corporation Organic electroluminescence device
JP2013509715A (en) * 2009-10-29 2013-03-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Organic light-emitting diode luminaire

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102253615B1 (en) * 2013-07-31 2021-05-20 유디씨 아일랜드 리미티드 Luminescent diaza- monoaza- and benzimidazole metal carbene complexes for use in electronic devices such as oleds
KR20160034921A (en) * 2013-07-31 2016-03-30 바스프 에스이 Luminescent diazabenzimidazole carbene metal complexes
JP2016531118A (en) * 2013-07-31 2016-10-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Luminescent diaza-monoaza- and benzimidazole metal carbene complexes for use in electronic devices such as OLEDs
JP2016534097A (en) * 2013-07-31 2016-11-04 ユー・ディー・シー アイルランド リミテッド Luminescent Diazabenzimidazole Carbene Metal Complex
US10290817B2 (en) 2013-07-31 2019-05-14 Udc Ireland Limited Luminescent diaza-monoaza-and benzimidazole metal carbene complexes for use in electronic devices such as OLEDs
KR102226202B1 (en) * 2013-07-31 2021-03-12 유디씨 아일랜드 리미티드 Luminescent diazabenzimidazole carbene metal complexes
KR20160035043A (en) * 2013-07-31 2016-03-30 바스프 에스이 Luminescent diaza- monoaza- and benzimidazole metal carbene complexes for use in electronic devices such as oleds
JP2017522291A (en) * 2014-06-30 2017-08-10 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Metal complex
US11800787B2 (en) 2014-06-30 2023-10-24 Udc Ireland Limited Metal complexes
CN109427987A (en) * 2017-09-05 2019-03-05 三星电子株式会社 Organic luminescent device
JP2019047124A (en) * 2017-09-05 2019-03-22 三星電子株式会社Samsung Electronics Co.,Ltd. Organic light-emitting device
US11289668B2 (en) 2017-09-05 2022-03-29 Samsung Electronics Co., Ltd. Organic light-emitting device
CN109427987B (en) * 2017-09-05 2023-04-07 三星电子株式会社 Organic light emitting device

Similar Documents

Publication Publication Date Title
TWI429650B (en) Organic electroluminescent elements
JP5063992B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP5325402B2 (en) Novel bicarbazole derivative, host material and organic electroluminescence device using the same
JP5207760B2 (en) Novel pyrimidine-based or triazine-based derivative, electron transport material comprising the same, and organic electroluminescence device including the same
KR101707799B1 (en) Organic electroluminescent element
TWI466980B (en) Organic electroluminescent elements
TWI475022B (en) Organic electroluminescent elements
JP4628435B2 (en) Organic electroluminescence device
CN107501330A (en) Metal complex comprising azabenzimidazoles carbene ligands and its purposes in OLED
JP5783749B2 (en) 1,8-aryl substituted naphthalene derivative having excimer characteristics and organic EL device using the same
JP2008120696A (en) Novel tripyridylphenyl derivative, electron-transporting material comprising the same and organoelectroluminescent element comprising the same
JP4960045B2 (en) Heteroaryl compound having novel biphenyl central skeleton and organic electroluminescence device comprising the same
JP2008106015A (en) New phenanthroline derivative, its lithium complex, electron transport material using the same, electron injection material and organic el element
JP5495578B2 (en) Novel triarylphosphine oxide derivative, host material comprising the same, and organic electroluminescence device containing the same
JP5201956B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP5727237B2 (en) Novel bicarbazolyl derivative, host material comprising the same, and organic electroluminescence device using the same
JP5220429B2 (en) NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME
JP2008120688A (en) Novel di (phenanthroline) derivative, electron-transporting material comprised of the same and organoelectroluminescent element comprising the same
JP5476034B2 (en) Novel triarylamine compound, hole transport material comprising the same, and organic electroluminescence device using the same
JP5349889B2 (en) Novel terphenyl derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP2007302630A (en) Fluorene compound having di-, tri- or tetra-phenylsilane skeleton, light-emitting layer host material, hole block material and organic el element each using the same
JP2012167028A (en) Substituted phenylpyridine iridium complex, luminescent material including the same, and organic el element employing the complex
JP2010090084A (en) Novel bis(carbazolylphenyl) derivative, host material, and organic electroluminescent element each employing the same
JP2010013421A (en) New bis(dicarbazolylphenyl) derivative, host material using the same and organic electroluminescencent device
JP5674266B2 (en) Novel carbazole derivative, host material comprising the same, and organic electroluminescence device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150428