JP2009226419A - Method for producing copper or copper alloy wire rod and copper or copper alloy wire rod - Google Patents

Method for producing copper or copper alloy wire rod and copper or copper alloy wire rod

Info

Publication number
JP2009226419A
JP2009226419A JP2008072544A JP2008072544A JP2009226419A JP 2009226419 A JP2009226419 A JP 2009226419A JP 2008072544 A JP2008072544 A JP 2008072544A JP 2008072544 A JP2008072544 A JP 2008072544A JP 2009226419 A JP2009226419 A JP 2009226419A
Authority
JP
Japan
Prior art keywords
copper
oxygen
copper alloy
molten
alloy wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008072544A
Other languages
Japanese (ja)
Other versions
JP5137642B2 (en
Inventor
Tsukasa Takazawa
司 高澤
Koichi Yoshida
浩一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2008072544A priority Critical patent/JP5137642B2/en
Publication of JP2009226419A publication Critical patent/JP2009226419A/en
Application granted granted Critical
Publication of JP5137642B2 publication Critical patent/JP5137642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an oxygen-free copper wire rod by which production cost is reduced, the oxidation of molten metal is prevented to obtain oxygen-free copper with an oxygen content of ≤10 ppm, and simultaneously, the generation of blow holes caused by the entanglement of bubbles upon pouring is reduced, thus surface defects upon rolling for wire drawing are reduced. <P>SOLUTION: A method for producing an oxygen-free copper or oxygen-free copper alloy wire rod is disclosed by which molten copper produced from a melting furnace is continuously introduced into a tundish through a gutter, the molten copper within the tundish is formed into an ingot by a belt and wheel type or twin belt type moving mold casting machine, and the ingot is continuously pulled out and is continuously rolled. The molten metal pouring part between a spout provided in the tundish and the casting machine is sealed with a seal gas containing a ≥90 vol.% hydrogen gas, and the concentration of oxygen is controlled to ≤10 ppm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、移動鋳型を用いて銅または銅合金を連続鋳造圧延し、自動車用ワイヤー・ハーネスやその他の信号用線やトロリー線として好適に使用される銅または銅合金線材の製造方法およびこの製造方法により得られる銅または銅合金線材に関する。   The present invention relates to a method for producing copper or a copper alloy wire, which is suitably used as a wire harness for automobiles, other signal wires or trolley wires, by continuously casting and rolling copper or a copper alloy using a moving mold. The present invention relates to a copper or copper alloy wire obtained by the method.

モータやオルタネーターなどの発電機等に用いられる銅導体は、性能と信頼性の向上を目的に溶接接続されるので、溶接部にガスボイドが生じない無酸素銅が使用される。また、電子機器の小型化が進む中で、銅導体には細線化が求められ、延性や加工性に優れる無酸素銅が使用されるようになってきた。
無酸素銅の製造方法には、(1)ディップフォーミング法、(2)アップキャスト法、(3)横型連続鋳造法などがある。これらの製造方法は、いずれも小規模設備のため溶銅周囲を非酸化雰囲気にするのは容易であるが、生産能性が低いことからコストが高くなる欠点がある。
Since copper conductors used in generators such as motors and alternators are welded for the purpose of improving performance and reliability, oxygen-free copper that does not produce gas voids in the weld is used. In addition, as electronic devices become smaller, copper conductors are required to be thin, and oxygen-free copper having excellent ductility and workability has been used.
Examples of the method for producing oxygen-free copper include (1) dip forming method, (2) upcast method, and (3) horizontal continuous casting method. These production methods are all small-scale equipment, and it is easy to make the periphery of the molten copper into a non-oxidizing atmosphere, but there is a disadvantage that the cost is increased because of low productivity.

そこで、無酸素銅を連続鋳造圧延法で製造する方法が提案されており(例えば、特許文献1参照)、ここでは、スパウトと鋳造機の間の溶銅注湯部分を還元性ガスで被覆する手段が示されている。
また、生産能力の高いベルト&ホイール式等の溶融金属がスパウトから回転鋳造機に到達する間、空気にさらされて酸化し、無酸素線を製造することが困難であることより、スパウトの周囲に外筒を設け、注湯部に非酸化性ガスを導入することにより周辺空気を遮断し、無酸素レベルの連続棒を作製できることが開示されている(例えば、特許文献2参照)。
さらに、ベルト&ホイール式連続鋳造圧延法に脱酸槽を設置し、さらにスパウト先端部から鋳型内空間をブタンガス、アセチレンガスの還元性ガスの燃焼炎の雰囲気とし、酸化防止を図ることで無酸素銅線、無酸素銅合金線を製造する方法が知られている(例えば、特許文献3参照)。
Therefore, a method for producing oxygen-free copper by a continuous casting and rolling method has been proposed (see, for example, Patent Document 1). Here, the molten copper pouring portion between the spout and the casting machine is covered with a reducing gas. Means are shown.
In addition, it is difficult to produce oxygen-free wire because it is difficult to produce oxygen-free wire by exposure to air while molten metal such as belt and wheel type with high production capacity reaches the rotary casting machine from the spout. It is disclosed that an outer cylinder is provided and a non-oxidizing gas is introduced into the pouring part to block ambient air, thereby producing an oxygen-free continuous bar (for example, see Patent Document 2).
Furthermore, a deoxidation tank is installed in the belt and wheel type continuous casting and rolling method, and the space inside the mold is made from the tip of the spout to the atmosphere of a flame of reducing gas such as butane gas and acetylene gas. A method for producing a copper wire and an oxygen-free copper alloy wire is known (see, for example, Patent Document 3).

特開昭54−45628号公報JP 54-45628 A 特開平10−249493号公報JP-A-10-249493 特開2002−120050号公報JP 2002-120050 A

しかしながら、特許文献1に記載された前記回転移動鋳型を用いた連続鋳造圧延法による無酸素銅(合金)線材では、溶銅を冷却固化させて鋳塊としたとき、鋳塊にボイド、割れが生成し、圧延時に無酸素銅(合金)線材表面に傷が発生し、表面品質を低下させる問題があった。また、特許文献2には、金属および非酸化性ガスがどのようなものであるのかは示されておらず、また空気の巻き込みによる酸化を防止することを目的としている。さらに、前記鋳塊に発生するボイド、割れの原因として溶銅中の水素に注目し、前記溶銅の移送過程において、脱水素処理を行う技術や、また無酸素銅線材の水素濃度を1ppm以下にすることによって無酸素銅線材の表面品質を向上させる技術が知られている。しかし、この技術を用いても、前記鋳塊でのボイド、割れの生成は皆無にはならず、圧延での無酸素銅(合金)線材表面での傷の発生もさほど抑制されず、得られる無酸素銅線材の表面品質はまだ不十分なままであった。   However, in the oxygen-free copper (alloy) wire rod by the continuous casting rolling method using the rotary moving mold described in Patent Document 1, when the molten copper is cooled and solidified to form an ingot, voids and cracks are formed in the ingot. There was a problem that the surface quality was deteriorated by generating and scratching the surface of the oxygen-free copper (alloy) wire during rolling. Further, Patent Document 2 does not show what kind of metal and non-oxidizing gas are, and aims to prevent oxidation due to air entrainment. Furthermore, paying attention to the hydrogen in the molten copper as a cause of voids and cracks generated in the ingot, a technique for performing a dehydrogenation process in the transfer process of the molten copper, and the hydrogen concentration of the oxygen-free copper wire to 1 ppm or less A technique for improving the surface quality of an oxygen-free copper wire is known. However, even if this technique is used, the generation of voids and cracks in the ingot is not completely eliminated, and the occurrence of scratches on the surface of the oxygen-free copper (alloy) wire during rolling is not suppressed so much. The surface quality of the oxygen-free copper wire remained poor.

ところで、酸素量10ppm以下の無酸素銅や無酸素銅合金を移動鋳型鋳造法であるベルト&ホイール式や双ベルト式等で連続鋳造する際、スパウトから鋳型へ溶銅が流れ込む際に、鋳塊内部のボイドが生成することがある。この原因を究明する上で、この空間の雰囲気ガスとして還元性ガスであるブタンを用いて鋳造を行った。この条件で得られた鋳塊のボイド内面には微量な炭素が付着していることが確認され、これは溶湯上面のガスが巻き込まれ、それが熱分解してできた炭素が付着したものと判断される。   By the way, when continuously casting oxygen-free copper or oxygen-free copper alloy with an oxygen content of 10 ppm or less by the belt-and-wheel method or twin-belt method that is a moving mold casting method, when the molten copper flows from the spout into the mold, Internal voids may form. In order to investigate the cause, casting was performed using butane as a reducing gas as the atmospheric gas in this space. It is confirmed that a small amount of carbon is attached to the inner surface of the void of the ingot obtained under these conditions. This is because the gas on the upper surface of the molten metal is entrained and pyrolytically decomposed. To be judged.

各特許文献には、溶銅中の水素及び微量酸素によりボイドが形成されるとの記載があるが、スパウトから移動鋳型内への高速な流れを伴う注湯では、鋳型内溶銅湯面近くの気体を溶湯中に巻き込むことを新たに見出した。このことから、通常ガスシールとして用いられるアルゴン、窒素、ブタンなどの非酸化性、還元性のガスは溶銅には固溶せず、気体が気泡としてそのまま溶銅中に存在し、凝固界面に捕捉され残存してしまう。前記のとおり特にブタン等の炭化水素系ガスの場合、巻き込まれたガスが鋳塊内で熱分解し、カーボンが付着したボイドとなる。このカーボンが付着したボイドは、鋳造工程に続く圧延工程で圧着させることはきわめて難しく、例えばエナメル被覆工程で最終的に表面欠陥、ブツ欠陥へとつながる。   In each patent document, there is a description that voids are formed by hydrogen and trace oxygen in the molten copper, but in pouring with a high-speed flow from the spout into the moving mold, it is close to the molten copper surface in the mold. Was newly found to entrain the gas in the melt. Therefore, non-oxidizing and reducing gases such as argon, nitrogen, and butane that are usually used as gas seals do not dissolve in the molten copper, and the gas is present in the molten copper as bubbles, and at the solidification interface. It is captured and remains. As described above, particularly in the case of a hydrocarbon-based gas such as butane, the entrained gas is thermally decomposed in the ingot, resulting in a void with carbon attached thereto. The voids to which the carbon adheres are extremely difficult to be pressure-bonded in the rolling process subsequent to the casting process, and eventually lead to surface defects and blisters in the enamel coating process, for example.

そこで本発明は、銅または銅合金(以下、「銅または銅合金」を「銅(合金)」と略記する場合がある。)線材の製造法において、製造コストの低減を図るうえで連続鋳造圧延法を採用し、その工程で溶湯の酸化を防止し、酸素量10ppm以下の無酸素銅(合金)にすると同時に、注湯時の気泡巻き込みによるボイド発生を減少させ、それにより線引き圧延時の表面欠陥を減少させる無酸素銅(合金)線材の製造方法およびそれにより得られる無酸素銅(合金)線材を提供することを目的とする。   Accordingly, the present invention is directed to continuous casting and rolling in order to reduce manufacturing costs in a method of manufacturing copper or copper alloy (hereinafter, “copper or copper alloy” may be abbreviated as “copper (alloy)”). This method prevents oxidation of the molten metal in the process and makes oxygen-free copper (alloy) with an oxygen content of 10 ppm or less, and at the same time, reduces the generation of voids due to entrainment of bubbles during pouring, and thereby the surface during drawing rolling An object of the present invention is to provide a method for producing an oxygen-free copper (alloy) wire that reduces defects and an oxygen-free copper (alloy) wire obtained thereby.

発明者らは、このボイド形成の新たなメカニズムを解明し、その改善として注湯時のシールガスの気泡巻き込みが生じても、従来のシールガスに比べ水素は溶銅に固溶するガスであることを見出した。そのためスパウトからの注湯時にシールガスとして水素を使用すれば、溶湯中に巻き込まれたとしても小さな気泡は溶銅中に固溶していく。そして、水素ガスは溶銅の凝固時に排出され、鋳造工程に続く圧延工程で圧着されて消滅するピンホールという微細な気泡欠陥を生じるのみであることがわかった。本発明はこのような知見に基づきなされるに至ったものである。また、スパウトから供給される溶銅中の酸素量が10ppmを超える場合に於いては、この酸素と巻込まれた水素とが化学反応による水蒸気を形成し、大きなブローホールを形成することも見出した。その為に、スパウトから供給される溶銅若しくは合金溶銅中の酸素量は10ppm以下であることが必要である。   The inventors have elucidated the new mechanism of void formation, and as an improvement, hydrogen is a gas that dissolves in molten copper compared to the conventional seal gas even if bubble entrainment of the seal gas occurs during pouring. I found out. Therefore, if hydrogen is used as a sealing gas when pouring from the spout, even if it is entrained in the molten metal, small bubbles are dissolved in the molten copper. And it turned out that hydrogen gas is discharged | emitted at the time of solidification of a molten copper, and only the fine bubble defect called a pinhole which is crimped | bonded by the rolling process following a casting process and lose | disappears is produced. The present invention has been made based on such findings. It has also been found that when the amount of oxygen in the molten copper supplied from the spout exceeds 10 ppm, this oxygen and the entrained hydrogen form water vapor due to a chemical reaction to form a large blowhole. . For this purpose, the oxygen content in the molten copper or alloy molten copper supplied from the spout needs to be 10 ppm or less.

すなわち本発明は、
(1)溶解炉から製出される銅または銅合金溶銅を、樋を経てタンディッシュ内に連続的に導き、前記タンディッシュ内の溶銅をベルト&ホイール式または双ベルト式の移動鋳型鋳造機に注入し、冷却固化させて鋳塊とし、この鋳塊を前記鋳造機から連続的に引き出してそのまま連続圧延する無酸素銅または無酸素銅合金線材の製造方法であって、前記タンディッシュに付設したスパウトと鋳造機の間の溶湯注湯部分を、90容量%以上の水素ガスを含み、残部が炭素を実質的に含有しない非酸化性ガスであるシールガスでシールし、酸素濃度が10ppm以下である銅または銅合金線材とすることを特徴とする無酸素銅または無酸素銅合金線材の製造方法、
(2)原料銅を溶解炉で溶解し、脱酸・脱水素処理を行い、その後合金元素成分を添加し、前記銅合金溶銅とすることを特徴とする(1)記載の無酸素銅合金線材の製造方法、
(3)前記タンディッシュ内にリン化合物を加え、溶銅の温度を1085〜1100℃に調整することを特徴とする(1)または(2)記載の無酸素銅線材の製造方法、
(4)前記銅合金が、Niを1.0〜5.0質量%、Siを0.25〜1.5質量%含有し、残部がCuおよび不可避的な不純物元素から構成される析出強化型であることを特徴とする、(1)〜(3)のいずれか1項に記載の銅合金線材の製造方法、
(5)前記銅合金が、Crを0.2〜2.0質量%含有し、Ag、Mg、Mn、Zn、SnおよびFeからなる群から選択される少なくとも1つの元素を0.02〜1.0質量%含有し、残部がCuおよび不可避的な不純物元素から構成されることを特徴とする、(1)〜(3)のいずれか1項に記載の銅合金線材の製造方法、および、
(6)前記(1)〜(5)のいずれか1項に記載の方法で製造した銅または銅合金線材、
を提供するものである。
That is, the present invention
(1) Copper or copper alloy molten copper produced from a melting furnace is continuously guided into a tundish through a tub, and the molten copper in the tundish is cast by a belt and wheel type or twin belt type moving mold. A method of producing oxygen-free copper or oxygen-free copper alloy wire that is continuously drawn from the casting machine and continuously rolled as it is, and is attached to the tundish. The molten metal pouring portion between the spout and the casting machine is sealed with a sealing gas which is a non-oxidizing gas containing 90% by volume or more of hydrogen gas, and the remainder does not substantially contain carbon, and the oxygen concentration is 10 ppm or less. An oxygen-free copper or oxygen-free copper alloy wire manufacturing method, characterized in that the copper or copper alloy wire is
(2) The oxygen-free copper alloy according to (1), wherein raw copper is melted in a melting furnace, deoxidation / dehydrogenation treatment is performed, and then an alloying element component is added to form the copper alloy molten copper. Manufacturing method of wire,
(3) A method for producing an oxygen-free copper wire according to (1) or (2), wherein a phosphorus compound is added into the tundish, and the temperature of the molten copper is adjusted to 1085 to 1100 ° C.
(4) Precipitation strengthening type in which the copper alloy contains 1.0 to 5.0% by mass of Ni, 0.25 to 1.5% by mass of Si, and the balance is composed of Cu and inevitable impurity elements The method for producing a copper alloy wire according to any one of (1) to (3),
(5) The copper alloy contains 0.2 to 2.0% by mass of Cr, and 0.02 to 1 at least one element selected from the group consisting of Ag, Mg, Mn, Zn, Sn and Fe The method for producing a copper alloy wire according to any one of (1) to (3), characterized in that the copper alloy wire is contained in an amount of 0.0% by mass and the balance is composed of Cu and inevitable impurity elements, and
(6) Copper or copper alloy wire produced by the method according to any one of (1) to (5),
Is to provide.

本発明によれば、シールガスである水素ガスは溶銅に固溶できるガスであるため、スパウトからの溶銅注湯時に溶湯中に巻き込まれたとしても溶銅中に溶解し、ごく小さな気泡を生成するのみである。そして水素ガスは溶銅の凝固時に排出され、ピンホールという微細な気泡欠陥を生じるが、水素は原子量が小さいため固体内へ拡散し易く、鋳造後に連続して施される熱間圧延工程で圧延を施すことによりピンホールの内圧が上昇することにより鋳塊内に水素が拡散し、最終的には圧着してピンホールを消滅させることができる。
スパウト周辺と注湯部分のシールガスとして水素ガスを90容量%以上含み、かつ炭素を実質的に含有しないガスを使用することにより、非酸化性・還元性であり、溶湯の酸化を防止すると同時に上記したように注湯時の気泡巻き込みによるボイドの発生を減少させることができる。それにより、圧延伸線時の表面欠陥を減少させることができ、皮むき量を減らすことができ歩留が向上する。また、エナメル塗布工程でのぶつ欠陥の発生も低減できる。
したがって、良質な銅または銅合金線材が得られ、短時間に大量かつ低コストで製造できる。その結果の一例として、従来に比べ安価なワイヤー・ハーネスやトロリー線を大量に供給することが可能である。
According to the present invention, the hydrogen gas that is the sealing gas is a gas that can be dissolved in the molten copper, so even if it is caught in the molten metal when pouring the molten copper from the spout, it dissolves in the molten copper and has very small bubbles. Is only generated. The hydrogen gas is discharged when the molten copper is solidified, resulting in minute bubble defects called pinholes, but hydrogen is easy to diffuse into the solid due to its small atomic weight, and is rolled in a hot rolling process that is continuously applied after casting. As a result, the internal pressure of the pinhole is increased, so that hydrogen diffuses into the ingot, and finally the pinhole can be extinguished by pressure bonding.
By using a gas containing 90% by volume or more of hydrogen gas as a sealing gas around the spout and the pouring part and containing substantially no carbon, it is non-oxidizing and reducing, and at the same time prevents oxidation of the molten metal. As described above, the generation of voids due to entrainment of bubbles during pouring can be reduced. Thereby, the surface defect at the time of a drawing line can be reduced, the amount of peeling can be reduced, and the yield is improved. Moreover, the occurrence of hitting defects in the enamel application process can be reduced.
Therefore, a high-quality copper or copper alloy wire can be obtained, and can be manufactured in a large amount and at a low cost in a short time. As an example of the result, it is possible to supply a large amount of wire harnesses and trolley wires that are less expensive than conventional ones.

次に、本発明の移動鋳型を用いた連続鋳造圧延による無酸素銅(合金)線材の製造方法について説明する。本発明の製造方法ではベルト&ホイール式または双ベルト式の移動鋳型鋳造機が用いられる。
本発明の銅合金線材の製造方法について、図面を参照して、本発明に係る実施形態の種々の例について説明する。なお、各図において同一要素には同一符号を付して重複する説明を省略する。
Next, a method for producing an oxygen-free copper (alloy) wire by continuous casting and rolling using the moving mold of the present invention will be described. In the manufacturing method of the present invention, a belt & wheel type or twin belt type moving mold casting machine is used.
About the manufacturing method of the copper alloy wire of this invention, with reference to drawings, the various examples of embodiment which concerns on this invention are demonstrated. In addition, in each figure, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.

図1は本発明に係る製造方法の全工程の一例を示す説明図である。本発明に係る無酸素銅(合金)線材の製造方法は、電気銅の地金等を例えば図1に示すように、シャフト炉1を用いて還元性雰囲気で溶解して溶銅を得て、該溶銅を樋2を経てタンディッシュ3内に連続的に導く。該タンディッシュ3内の溶銅を、ターンロールにより回動するベルト6とホイール7により構成されたベルト&ホイール式の移動鋳型鋳造機8内に注入し、冷却固化して鋳塊9とし、鋳塊9を前記鋳型から連続的に引き出す。この凝固した鋳塊9の温度をできるだけ低下させない状態(好ましくは900℃以上)で、連続圧延機10(2方ロール方式、好ましくは3方ロール方式)で所定の線径まで圧延を行い、荒引線材11とする。その荒引線材11はそのまま巻き取られるか、または図1に示される伸線圧延機12で更に圧延し、伸線材13としパレット14に巻き取る。図1において、伸線圧延機12の設置は任意である。
移動鋳型鋳造機としては、図1に示したベルト6とホイール7により構成されるいわゆるベルト&ホイール式移動鋳型に制限されるわけではなく、そのほかに、たとえばベルトとベルトにより構成されるいわゆる双ベルト式移動鋳型が使用できる。
FIG. 1 is an explanatory view showing an example of all steps of the manufacturing method according to the present invention. The method for producing an oxygen-free copper (alloy) wire according to the present invention, for example, as shown in FIG. 1, is obtained by melting molten copper in a reducing atmosphere using a shaft furnace 1 to obtain molten copper. The molten copper is continuously led into the tundish 3 through the trough 2. The molten copper in the tundish 3 is poured into a belt & wheel type movable mold casting machine 8 constituted by a belt 6 and a wheel 7 which are rotated by a turn roll, and cooled and solidified to form an ingot 9. The mass 9 is continuously withdrawn from the mold. In a state where the temperature of the solidified ingot 9 is not lowered as much as possible (preferably 900 ° C. or more), rolling is performed to a predetermined wire diameter with a continuous rolling mill 10 (two-way roll method, preferably three-way roll method), The drawn wire 11 is used. The rough drawn wire 11 is wound as it is, or further rolled by a wire drawing machine 12 shown in FIG. In FIG. 1, the installation of the wire drawing mill 12 is arbitrary.
The moving mold casting machine is not limited to the so-called belt & wheel type moving mold composed of the belt 6 and the wheel 7 shown in FIG. Expression transfer molds can be used.

本発明の連続鋳造圧延を行う線材製造方法における移動鋳型鋳造機までの設備構成の別の例の概略をさらに図2を参照して説明する。
図2に示す装置は、銅合金線材を製造するのに好ましい一態様であり、図1のシャフト炉1から移動鋳型鋳造機8までにさらに保持炉15、脱酸・脱水素ユニット16、誘導加熱炉17、添加装置18を設けた例である。
シャフト炉1において原料銅を1090〜1150℃で溶解させ、溶銅をシャフト炉1から樋2を通して保持炉15へ出湯させた後、保持炉15内において1100〜1200℃で滞留させながら、保持炉内の溶銅を、樋2を通して脱酸・脱水素ユニット16、誘導加熱炉17へ出湯させる。その後、誘導加熱炉17にて、添加装置18から合金元素成分を添加して、所定の合金組成となるように調整し、溶融させる。
The outline of another example of the equipment configuration up to the moving mold casting machine in the wire manufacturing method for continuous casting and rolling according to the present invention will be further described with reference to FIG.
The apparatus shown in FIG. 2 is a preferable embodiment for producing a copper alloy wire, and further includes a holding furnace 15, a deoxidation / dehydrogenation unit 16, induction heating from the shaft furnace 1 to the moving mold casting machine 8 in FIG. This is an example in which a furnace 17 and an addition device 18 are provided.
In the shaft furnace 1, the raw material copper is melted at 1090 to 1150 ° C., and the molten copper is discharged from the shaft furnace 1 through the trough 2 to the holding furnace 15, and then retained in the holding furnace 15 at 1100 to 1200 ° C. The molten copper inside is discharged to the deoxidation / dehydrogenation unit 16 and the induction heating furnace 17 through the trough 2. Thereafter, in the induction heating furnace 17, the alloy element component is added from the adding device 18, adjusted to have a predetermined alloy composition, and melted.

前記の銅合金のうちで溶湯としたとき、例えばコルソン合金溶湯は、酸素との親和力が高いSi等を含有する為に、溶銅中の酸素ポテンシャルは大変低い状態となっており、それ故に溶銅中の水素ポテンシャルは逆に高い状態となっている。したがって、このような銅合金の場合には予めで誘導加熱炉中の溶銅の脱水素処理を施すのが好ましい。また、ポーラス・プラグ19からバブリングされる気泡により合金溶湯との濡れ性が悪い酸化物が吸着されて除去される。この溶銅中のSi等の酸素との親和力が高い元素の酸化を防止する為に、樋2の上部空間は不活性ガス若しくは還元性ガスで覆っておくのがよい。しかし、僅かな酸化物でも鋳塊に巻き込まれると得られる線材製品の表面欠陥、断線等の不具合を生じる恐れがあるから、好ましくは樋2にセラミックス・フィルター20を設置する。   When a molten metal is used among the above-mentioned copper alloys, for example, the Corson alloy molten metal contains Si having a high affinity with oxygen, so that the oxygen potential in the molten copper is in a very low state. Conversely, the hydrogen potential in copper is high. Therefore, in the case of such a copper alloy, it is preferable to dehydrogenate the molten copper in the induction heating furnace in advance. Further, oxides having poor wettability with the molten alloy are adsorbed and removed by bubbles bubbled from the porous plug 19. In order to prevent oxidation of an element having a high affinity with oxygen such as Si in the molten copper, the upper space of the basket 2 is preferably covered with an inert gas or a reducing gas. However, even if a small amount of oxide is involved in the ingot, there is a risk of causing defects such as surface defects and disconnection of the obtained wire product.

脱酸処理は、例えば、脱酸処理部内に粒状木炭を配置し、内蓋を被せ、ガスバーナーで加熱し、脱酸・脱水素ユニット16内及び木炭が赤熱化したところで保持炉15から溶銅を出湯する。溶銅は脱酸処理部内を迂回しながら通り抜ける間に、溶銅中の酸素は粒状木炭と反応して、炭酸ガスとなり、溶銅中を浮上し、放出される。
脱水素処理は、溶銅を、非酸化ガス雰囲気に保持された樋中を迂回させながら通すことで非酸化ガスと接触させる、脱ガス手段によって行うことができる。あるいは、溶銅に不活性ガス若しくは還元ガスを吹き込む方法、回転子を用いて同ガスを吹き込む方法、溶銅を真空中で還流させる方法などによって脱水素処理を行ってもよい。脱水素は、脱酸処理後に行っても、脱酸処理と同時に行ってもよい。なお、タンディッシュ3の純銅溶湯若しくは合金溶湯中の酸素濃度が10ppm以下になるように調整する。
誘導加熱炉17からの溶銅は、樋2を通ってタンディッシュ3内に連続的に移送され、その溶湯5をガスでシールされた状態でベルト&ホイール式の移動鋳型鋳造機8へスパウト4から注湯し、凝固させる。10ppmを超える酸素を含有する溶銅に対して水素ガスを90容量%以上含むシールガスでシールすると、巻き込まれた水素ガスと溶銅中の酸素との化学反応によって大きな水蒸気起因のブローホールが形成される。
In the deoxidation treatment, for example, granular charcoal is placed in the deoxidation treatment section, covered with an inner lid, heated with a gas burner, and the inside of the deoxidation / dehydrogenation unit 16 and when the charcoal becomes red-hot, the molten copper is supplied from the holding furnace 15. Take out the hot water. While the molten copper passes through the deoxidation treatment section, oxygen in the molten copper reacts with the granular charcoal to form carbon dioxide gas, which floats in the molten copper and is released.
The dehydrogenation treatment can be performed by a degassing means for bringing the molten copper into contact with the non-oxidizing gas by passing it around the soot held in the non-oxidizing gas atmosphere. Alternatively, the dehydrogenation treatment may be performed by a method of blowing an inert gas or a reducing gas into the molten copper, a method of blowing the same gas using a rotor, a method of refluxing the molten copper in a vacuum, or the like. Dehydrogenation may be performed after the deoxidation treatment or simultaneously with the deoxidation treatment. In addition, it adjusts so that the oxygen concentration in the pure copper molten metal or alloy molten metal of the tundish 3 may be 10 ppm or less.
The molten copper from the induction heating furnace 17 is continuously transferred into the tundish 3 through the trough 2, and the molten metal 5 is sealed with gas to the belt & wheel type moving mold casting machine 8 to spout 4. Pour hot water and solidify. When sealing with a sealing gas containing 90% by volume or more of hydrogen gas with respect to molten copper containing oxygen exceeding 10 ppm, a large steam-induced blowhole is formed by a chemical reaction between the entrained hydrogen gas and oxygen in the molten copper. Is done.

本発明の無酸素銅(合金)線材の製造法では、タンディッシュ3内に例えばリン化銅(以下、CuPと略記する)を溶銅に添加し、且つタンディッシュ3内の溶銅の温度を1085〜1100℃、より好ましくは1085〜1095℃に調整する。このとき、添加するCuPは溶銅に溶解、拡散しやすいように2mmφ程度の粒状のものが好ましい。
タンディッシュ3内で、リン化合物を溶銅に添加するのは、溶銅の脱酸を行うためのほかに、脱水素を行い、鋳塊でのボイドを低減させるためであり、さらに、鋳塊にリン化合物が残存することで結晶粒界の強度を向上させ、鋳塊での割れを低減させるためである。さらに、タンディッシュ3内の溶銅の温度を1085〜1100℃に調整するのは、前記リン化合物による溶銅の脱水素、及び鋳塊の結晶粒界の強度向上を顕著に発現させ、鋳塊中のリン含有量が10ppm以下と少ない場合でも、鋳塊でのボイド、割れの生成を少なくし、圧延での無酸素銅線材表面に傷を発生しにくくするためである。
In the method for producing an oxygen-free copper (alloy) wire of the present invention, for example, copper phosphide (hereinafter abbreviated as CuP) is added to the molten copper in the tundish 3, and the temperature of the molten copper in the tundish 3 is set. The temperature is adjusted to 1085 to 1100 ° C, more preferably 1085 to 1095 ° C. At this time, the added CuP is preferably in a granular form of about 2 mmφ so as to be easily dissolved and diffused in the molten copper.
The reason why the phosphorus compound is added to the molten copper in the tundish 3 is to deoxidize the molten copper, to dehydrogenate it, and to reduce voids in the ingot. This is because the phosphorus compound remains to improve the strength of the crystal grain boundaries and reduce cracks in the ingot. Furthermore, the temperature of the molten copper in the tundish 3 is adjusted to 1085 to 1100 ° C. because the dehydrogenation of the molten copper by the phosphorus compound and the strength improvement of the crystal grain boundary of the ingot are remarkably expressed, and the ingot This is because even when the phosphorus content is as low as 10 ppm or less, the generation of voids and cracks in the ingot is reduced, and the surface of the oxygen-free copper wire during rolling is less likely to be damaged.

鋳塊中のリン含有量を1〜10ppmにする理由は、リン含有量が1ppm未満では溶銅を冷却固化させた鋳塊でのボイド、割れの生成が低減できず、圧延時での無酸素銅線材表面の傷が発生しやすくなり、表面品質が悪化するためである。リン含有量が10ppmを超えると、該無酸素銅線材をさらに冷間加工して得られる無酸素銅伸線の導電率が98%未満の低いものになってしまうためである。
タンディッシュ3内の溶銅の温度を1085〜1100℃とする理由は、温度が1085℃未満だと溶銅が凝固する恐れがあるためであり、温度が1100℃を超えると、前記リン化合物による溶銅の脱水素、及び鋳塊の結晶粒界の強度向上を十分に発現できなくなり、溶銅を冷却固化させた鋳塊でのボイド、割れの生成が増加し、圧延時での無酸素銅線材表面の傷が発生しやすくなるためである。
The reason why the phosphorus content in the ingot is 1 to 10 ppm is that if the phosphorus content is less than 1 ppm, voids and cracks in the ingot obtained by cooling and solidifying molten copper cannot be reduced, and oxygen is not present during rolling. This is because scratches on the copper wire surface are likely to occur, and the surface quality deteriorates. This is because if the phosphorus content exceeds 10 ppm, the electrical conductivity of the oxygen-free copper wire obtained by further cold-working the oxygen-free copper wire becomes less than 98%.
The reason for setting the temperature of the molten copper in the tundish 3 to 1085 to 1100 ° C. is that the molten copper may be solidified if the temperature is lower than 1085 ° C. When the temperature exceeds 1100 ° C., the phosphorus compound causes Dehydrogenation of molten copper and improvement in strength of crystal grain boundaries of the ingot cannot be fully expressed, and the generation of voids and cracks in the ingot where the molten copper is cooled and solidified increases, and oxygen-free copper during rolling This is because scratches on the surface of the wire are likely to occur.

本発明の無酸素銅(合金)線材の製造法では、タンディシュ内の溶銅を付設したスパウトから移動鋳型鋳造機に注入して、冷却固化させて鋳塊とする方法であるが、その詳細をベルト&ホイール式移動鋳型鋳造機については図3に、双ベルト式移動鋳型鋳造機については図4にしたがって説明する。
図3に示すベルト&ホイール式の移動鋳型鋳造機8は、ベルト(図示せず)とホイール7により構成され、冷却されたベルトが支持ローラにより鋳型の形成されたホイール外周に押さえつけられてホイールを回転している。図4に示す双ベルト式の移動鋳型鋳造機8は、冷却された2本の回転するベルト6の間で鋳造するものである。
タンディシュに付設したスパウト4から溶湯5が移動鋳型鋳造機に注入されるが、本発明では、そのスパウトと鋳造機の間の溶湯注湯部分A(図3、図4で点線で囲まれた部分)にシールガスを吹き付けシールする。
使用するシールガスは、90容量%以上の水素を含み、残部が窒素、アルゴン等の炭素を実質的に含有しない非酸化性ガスであり、好ましくは水素濃度が95容量%以上、さらに好ましくは98容量%のガスである。
The method for producing an oxygen-free copper (alloy) wire of the present invention is a method in which a molten copper in a tundish is poured from a spout attached to a moving mold casting machine, and cooled and solidified to form an ingot. The belt & wheel type moving mold casting machine will be described with reference to FIG. 3, and the double belt type moving mold casting machine will be described with reference to FIG.
The belt & wheel type moving mold casting machine 8 shown in FIG. 3 is composed of a belt (not shown) and a wheel 7, and the cooled belt is pressed against the outer periphery of the wheel on which the mold is formed by a support roller. It is rotating. A twin-belt type moving mold casting machine 8 shown in FIG. 4 casts between two cooled rotating belts 6.
The molten metal 5 is injected into the moving mold casting machine from the spout 4 attached to the tundish. In the present invention, the molten metal pouring part A between the spout and the casting machine (the part surrounded by the dotted line in FIGS. 3 and 4). ) Seal gas by spraying with seal gas.
The seal gas to be used is a non-oxidizing gas containing 90% by volume or more of hydrogen and the balance substantially not containing carbon such as nitrogen and argon. The hydrogen concentration is preferably 95% by volume or more, more preferably 98%. It is a volume% gas.

本発明の銅(合金)線材の製造方法に適用されるのは純銅または銅合金であるが、銅合金の例として、コルソン系合金等の析出強化型銅合金が好ましい。
ここで、本発明の代表例として以下にコルソン合金(Cu−Ni−Si系銅合金)を適用した製造方法について示すが、析出強化型銅合金であれば他の合金系についても同様な方法で製造することができる。
例えば、コルソン系銅合金は、Niを1.0〜5.0質量%、Siを0.25〜1.5質量%含有し、残部がCuおよび不可避的な不純物元素を含有するものが一般的である。
Niの含有量を1.0〜5.0質量%に規定する理由は、強度を向上させるため、及び連続鋳造圧延直後の荒引線について高温焼入れを行った場合に溶体化処理後の状態(溶体化状態)若しくはそれに近い状態の荒引線を得られるようにするためである。1.0質量%未満では十分な強度が得られず、5.0質量%を超えると、連続鋳造圧延直後に高温焼入れを行っても溶体化状態若しくはそれに近い状態にすることが困難となる。Niの含有量は、好ましくは1.5〜4.5質量%、より好ましくは1.8〜4.2質量%である。
また、Siを0.25〜1.5質量%に規定する理由は、Niと化合物を形成して強度を向上させること、及び上記Niと同様に、連続鋳造圧延直後の荒引線について高温焼入れを行った場合に溶体化状態若しくはそれに近い状態の荒引線を得られるようにするためである。0.25質量%未満では十分な強度が得られず、1.5質量%を超えると、連続鋳造圧延直後に高温焼入れを行っても溶体化状態若しくはそれに近い状態にすることが困難となる。Siの含有量は、好ましくは0.35〜1.25質量%、より好ましくは0.5〜1.0質量%である。
The copper (alloy) wire manufacturing method of the present invention is applied to pure copper or a copper alloy, but as an example of the copper alloy, a precipitation strengthened copper alloy such as a Corson alloy is preferable.
Here, as a representative example of the present invention, a manufacturing method in which a Corson alloy (Cu—Ni—Si based copper alloy) is applied will be described below. However, in the case of a precipitation strengthening type copper alloy, the same method can be applied to other alloy systems. Can be manufactured.
For example, a Corson copper alloy generally contains 1.0 to 5.0 mass% Ni, 0.25 to 1.5 mass% Si, and the remainder contains Cu and inevitable impurity elements. It is.
The reason for prescribing the Ni content to 1.0 to 5.0% by mass is to improve the strength, and when the high temperature quenching is performed on the rough drawn wire immediately after continuous casting rolling (the state after the solution treatment (solution) This is to obtain a rough drawn line in a state close to that). If it is less than 1.0% by mass, sufficient strength cannot be obtained. If it exceeds 5.0% by mass, it becomes difficult to obtain a solution state or a state close to that even if high-temperature quenching is performed immediately after continuous casting rolling. The content of Ni is preferably 1.5 to 4.5% by mass, more preferably 1.8 to 4.2% by mass.
Moreover, the reason for prescribing Si to 0.25 to 1.5% by mass is to improve the strength by forming a compound with Ni, and similarly to Ni, high-temperature quenching is performed on the rough drawn wire immediately after continuous casting and rolling. This is because a rough drawn line in a solution state or a state close thereto can be obtained when it is performed. If it is less than 0.25% by mass, sufficient strength cannot be obtained, and if it exceeds 1.5% by mass, it becomes difficult to obtain a solution state or a state close thereto even if high-temperature quenching is performed immediately after continuous casting rolling. The content of Si is preferably 0.35 to 1.25% by mass, and more preferably 0.5 to 1.0% by mass.

さらに、前記の銅合金は、Ag、Mg、Mn、Zn、Sn、P、およびFeからなる群から選択される少なくとも1つの元素を0.1〜1.0質量%含有していても良い。これらの金属元素が0.1〜1.0質量%含有されていると、強度が優れるためである。0.1質量%未満ではその効果が十分現れず、1.0質量%を超えると、連続鋳造圧延直後の荒引線について高温焼入れを行った場合に溶体化状態若しくはそれに近い状態にすることが困難となる。これらの元素の含有量は、好ましくは0.11〜0.8質量%、より好ましくは0.12〜0.6質量%である。
さらにまた、前記の銅合金は、上記Niの含有量の一部あるいは場合によっては全部をCoに代えてもよい。この場合、NiとCoは合計で1.0〜5.0質量%(好ましくは1.5〜4.5質量%、)含有される。Coは、Siとの化合物形成の点でNiと同様の作用効果を示し、強度向上に寄与するものである。
Further, the copper alloy may contain 0.1 to 1.0% by mass of at least one element selected from the group consisting of Ag, Mg, Mn, Zn, Sn, P, and Fe. It is because the strength is excellent when these metal elements are contained in an amount of 0.1 to 1.0% by mass. If the amount is less than 0.1% by mass, the effect is not sufficiently exhibited. If the amount exceeds 1.0% by mass, it is difficult to obtain a solution state or a state close to that when high-temperature quenching is performed on the rough drawn wire immediately after continuous casting rolling. It becomes. The content of these elements is preferably 0.11 to 0.8% by mass, more preferably 0.12 to 0.6% by mass.
Furthermore, in the copper alloy, a part of the Ni content or in some cases the whole may be replaced with Co. In this case, Ni and Co are contained in a total amount of 1.0 to 5.0 mass% (preferably 1.5 to 4.5 mass%). Co exhibits the same effect as Ni in terms of forming a compound with Si, and contributes to strength improvement.

また、本発明の銅合金線材の製造方法が適用される銅合金の例として、上述したコルソン合金の他に、Crを0.2〜2.0質量%(好ましくは0.3〜1.5質量%、)含有し、残部がCuおよび不可避的な不純物元素から構成される銅合金、およびCrを0.2〜2.0質量%(好ましくは0.3〜1.5質量%)、さらにAg、Mg、Mn、Zn、SnおよびFeからなる群から選択される少なくとも1つの元素を0.02〜1.0質量%(好ましくは0.05〜0.8質量%、)含有し、残部がCuおよび不可避的な不純物元素から構成される銅合金、などが挙げられる。   Moreover, as an example of the copper alloy to which the method for producing a copper alloy wire according to the present invention is applied, in addition to the above-mentioned Corson alloy, 0.2 to 2.0% by mass of Cr (preferably 0.3 to 1.5%). A copper alloy composed of Cu and unavoidable impurity elements, and 0.2 to 2.0 mass% (preferably 0.3 to 1.5 mass%) of Cr, Containing 0.02 to 1.0% by mass (preferably 0.05 to 0.8% by mass) of at least one element selected from the group consisting of Ag, Mg, Mn, Zn, Sn and Fe, and the balance Copper alloy composed of Cu and inevitable impurity elements.

連続圧延機から得られた荒引線材を600℃以上の高温、好ましくは650℃以上で後方に位置する冷却装置で焼入れを施す。本発明の製造方法によれば、ほぼ溶体化状態の荒引線を製造することができ、従来の製造方法で必須であった溶体化処理(例えば、900℃で30分保持などの熱処理工程)を省くことができ、かつ、時効工程で十分な金属間化合物の析出が可能となる。   The rough drawn wire obtained from the continuous rolling mill is quenched by a cooling device located at a high temperature of 600 ° C. or higher, preferably 650 ° C. or higher. According to the manufacturing method of the present invention, it is possible to manufacture a roughly drawn wire in a solution state, and a solution treatment (for example, a heat treatment step such as holding at 900 ° C. for 30 minutes) that is essential in the conventional manufacturing method. It can be omitted, and sufficient intermetallic compound can be deposited in the aging process.

本発明の移動鋳型鋳造機を用いた連続鋳造圧延によれば、低コストで、表面品質が良好で、且つ該無酸素銅(合金)線材をさらに冷間加工して得られる無酸素銅伸線は98%以上の高い導電率を有する無酸素銅(合金)線材が製造できる。   According to the continuous casting and rolling using the moving mold casting machine of the present invention, the oxygen-free copper wire is obtained at a low cost, with a good surface quality, and by further cold working the oxygen-free copper (alloy) wire. Can produce an oxygen-free copper (alloy) wire having a high conductivity of 98% or more.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに制限されるものではない。
酸素濃度が10ppm以下である銅または銅合金線材では、一般に「平均表面欠陥数が2個/10000m(φ2.6mm線)以下」であれば、線材として十分な特性を有するものであるとされている。この実施例により本発明で得られる線材がこの特性を有するものであることを明らかにする。
Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
In general, copper or copper alloy wire having an oxygen concentration of 10 ppm or less is said to have sufficient properties as a wire if the average number of surface defects is 2 / 10,000 m (φ2.6 mm line) or less. Yes. This example demonstrates that the wire obtained in the present invention has this property.

(実施例)
図1に示す回転移動鋳型(ベルト&ホイール式)を用いた連続鋳造圧延法により、電気銅地金をシャフト炉1でCO雰囲気にて溶解し、得られた溶銅を樋2を経てタンディッシュ3内に連続的に導いた。溶銅が銅合金の場合には、図2に示すように添加装置18から合金成分を加え誘導加熱炉で混合溶融し、タンディッシュでの溶銅(合金)温度を1085〜1150℃の範囲とした。該タンディッシュ3内の溶銅(合金)を該タンディッシュ3に取り付けられたスパウト4から溶銅湯5を、ベルト6とホイール7により構成された回転移動型鋳造機内に注入した。その際、シールガスとして表1に示す水素ガス及び混合ガス、不活性ガスをスパウト周辺の注湯部へ10L/minで吹きつけた。なお、実施例No.2〜4で使用した水素ガスは、純度99.99%以上のものである。
冷却固化して鋳塊9とし、この鋳塊9を前記鋳型から連続的に引き出し、そのまま連続圧延機10で連続圧延し、酸素濃度が10ppm以下の銅荒引線、銅合金荒引線(φ8mm)11を20トン/時で製造した。この荒引き線の表面を100μm皮むきし、その後伸線機12でφ2.6mmまで伸線し無酸素銅伸線材13を得た。この伸線材13を、パレット14に巻き取った。
(Example)
By the continuous casting and rolling method using the rotary moving mold (belt and wheel type) shown in FIG. 1, electrolytic copper metal is melted in a CO atmosphere in a shaft furnace 1, and the obtained molten copper is tundished through a trough 2. 3 led continuously. When the molten copper is a copper alloy, as shown in FIG. 2, the alloy components are added from the adding device 18 and mixed and melted in an induction heating furnace, and the molten copper (alloy) temperature in the tundish is in the range of 1085 to 1150 ° C. did. Molten copper (alloy) in the tundish 3 was poured from a spout 4 attached to the tundish 3 into a rotary moving casting machine composed of a belt 6 and a wheel 7. At that time, hydrogen gas, mixed gas, and inert gas shown in Table 1 were sprayed at 10 L / min as a seal gas to the pouring part around the spout. The hydrogen gas used in Examples Nos. 2 to 4 has a purity of 99.99% or more.
The ingot 9 is cooled and solidified to form an ingot 9, which is continuously drawn out from the mold and continuously rolled by the continuous rolling machine 10 as it is, and a copper rough wire or copper alloy rough wire (φ8 mm) 11 having an oxygen concentration of 10 ppm or less. Was produced at 20 tons / hour. The surface of this rough drawing wire was peeled off by 100 μm, and then drawn to φ2.6 mm with a wire drawing machine 12 to obtain an oxygen-free copper wire 13. This wire 13 was wound around a pallet 14.

φ2.6mm伸線する際のダイス出側に渦流探傷試験機(うず電流試験機、日本フェルスター(株)製)を設置し表面欠陥を測定した。この渦流探傷試験機から出力された信号レベルが許容値を超えたものを有害欠陥と判断し、その個数(10000m当たりの平均)を調査した結果を下記の表1に示した。なお、伸線(または荒引き線)の酸素含有量についても酸素分析計(LECOジャパン(株)製)により測定を行い、結果を表1にまとめた。
表1中、OFCは酸素濃度10ppm以下の純銅(無酸素銅:JIS C1020相当)、TPCは酸素濃度が10ppmを超える純銅(タフピッチ銅:JIS C1100相当)である。
An eddy current testing machine (eddy current testing machine, manufactured by Nihon Felster Co., Ltd.) was installed on the die exit side when drawing φ2.6 mm, and surface defects were measured. Table 1 below shows the results of examining the number (average per 10000 m) of the eddy current flaw testing machine, in which the signal level exceeding the allowable value was judged as a harmful defect. The oxygen content of the wire drawing (or rough drawing wire) was also measured with an oxygen analyzer (manufactured by LECO Japan Co., Ltd.), and the results are summarized in Table 1.
In Table 1, OFC is pure copper having an oxygen concentration of 10 ppm or less (oxygen-free copper: equivalent to JIS C1020), and TPC is pure copper having an oxygen concentration exceeding 10 ppm (tough pitch copper: equivalent to JIS C1100).

Figure 2009226419
Figure 2009226419

上記表1から明らかなように、シールガスとして90容量%以上の水素ガスを含有し、残部が炭素を実質的に含有しない非酸化性ガスを使用すると、従来の不活性ガス、還元性ガスを用いたものに比べ、得られる線材の表面欠陥は大幅に減少し、良質な線材となることが明らかとなった。   As is apparent from Table 1 above, when a non-oxidizing gas containing 90% by volume or more of hydrogen gas as a sealing gas and the balance containing substantially no carbon is used, a conventional inert gas or reducing gas is used. Compared with the one used, the surface defects of the obtained wire were greatly reduced, and it became clear that the wire was of good quality.

本発明に係る製造方法の全工程の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of all the processes of the manufacturing method which concerns on this invention. 本発明の製造方法のベルト&ホイール式移動鋳型鋳造機までの工程を示す他の例の概略説明図である。It is a schematic explanatory drawing of the other example which shows the process to the belt & wheel type moving mold casting machine of the manufacturing method of this invention. 本発明で用いられるベルト&ホイール式移動鋳型鋳造機への注湯部分を説明する断面概略図である。It is the cross-sectional schematic explaining the molten metal pouring part to the belt & wheel type moving mold casting machine used by this invention. 本発明で用いられる双ベルト式移動鋳型鋳造機への注湯部分を説明する断面概略図である。It is the cross-sectional schematic explaining the molten metal pouring part to the twin belt type moving mold casting machine used by this invention.

符号の説明Explanation of symbols

1 シャフト炉
2 樋
3 タンディッシュ
4 スパウト
5 溶湯
6 ベルト
7 ホイール
8移動鋳型鋳造機
9 鋳塊
10 連続圧延機
11 荒引線材
12 伸線圧延機
13 伸線材
14 パレット
15 保持炉
16 脱酸・脱水素ユニット高濃度溶銅製造炉
17 誘導加熱炉
18 添加装置
19 ポーラス・プラグ
20 セラミックス・フィルター
A 溶湯注湯部分
1 Shaft furnace 2 樋
DESCRIPTION OF SYMBOLS 3 Tundish 4 Spout 5 Molten metal 6 Belt 7 Wheel 8 Moving mold casting machine 9 Ingot 10 Continuous rolling mill 11 Rough drawing wire 12 Wire drawing mill 13 Wire drawing material 14 Pallet 15 Holding furnace
16 Deoxidation / dehydrogenation unit High-concentration molten copper production furnace 17 Induction heating furnace 18 Addition device 19 Porous plug 20 Ceramics filter A Molten metal pouring part

Claims (6)

溶解炉から製出される銅または銅合金溶銅を、樋を経てタンディッシュ内に連続的に導き、前記タンディッシュ内の溶銅をベルト&ホイール式または双ベルト式の移動鋳型鋳造機に注入し、冷却固化させて鋳塊とし、この鋳塊を前記鋳造機から連続的に引き出してそのまま連続圧延する無酸素銅または無酸素銅合金線材の製造方法であって、前記タンディッシュに付設したスパウトと鋳造機の間の溶湯注湯部分を、90容量%以上の水素ガスを含み、残部が炭素を実質的に含有しない非酸化性ガスであるシールガスでシールし、酸素濃度が10ppm以下である銅または銅合金線材とすることを特徴とする無酸素銅または無酸素銅合金線材の製造方法。   The copper or copper alloy molten copper produced from the melting furnace is continuously guided into the tundish through the trough, and the molten copper in the tundish is injected into a belt & wheel type or twin belt type mobile mold casting machine. A method of producing an oxygen-free copper or oxygen-free copper alloy wire rod that is cooled and solidified into an ingot, continuously drawn from the casting machine and continuously rolled as it is, and a spout attached to the tundish; Copper with an oxygen concentration of 10 ppm or less, where the molten metal pouring part between the casting machines is sealed with a sealing gas which is a non-oxidizing gas containing 90% by volume or more of hydrogen gas, and the remainder does not substantially contain carbon. Alternatively, a method for producing oxygen-free copper or oxygen-free copper alloy wire characterized by using a copper alloy wire. 原料銅を溶解炉で溶解し、脱酸・脱水素処理を行い、その後合金元素成分を添加し、前記銅合金溶銅とすることを特徴とする請求項1記載の無酸素銅合金線材の製造方法。   2. The production of an oxygen-free copper alloy wire according to claim 1, wherein raw material copper is melted in a melting furnace, deoxidation / dehydrogenation treatment is performed, and then an alloy element component is added to form the copper alloy molten copper. Method. 前記タンディッシュ内にリン化合物を加え、溶銅の温度を1085〜1100℃に調整することを特徴とする請求項1または2記載の無酸素銅線材の製造方法。   3. The method for producing an oxygen-free copper wire according to claim 1, wherein a phosphorus compound is added to the tundish, and the temperature of the molten copper is adjusted to 1085 to 1100 ° C. 3. 前記銅合金が、Niを1.0〜5.0質量%、Siを0.25〜1.5質量%含有し、残部がCuおよび不可避的な不純物元素から構成される析出強化型であることを特徴とする、請求項1〜3のいずれか1項に記載の銅合金線材の製造方法。   The copper alloy contains 1.0 to 5.0% by mass of Ni, 0.25 to 1.5% by mass of Si, and the balance is a precipitation strengthening type composed of Cu and inevitable impurity elements. The method for producing a copper alloy wire according to any one of claims 1 to 3, wherein: 前記銅合金が、Crを0.2〜2.0質量%含有し、Ag、Mg、Mn、Zn、SnおよびFeからなる群から選択される少なくとも1つの元素を0.02〜1.0質量%含有し、残部がCuおよび不可避的な不純物元素から構成されることを特徴とする、請求項1〜3のいずれか1項に記載の銅合金線材の製造方法。   The copper alloy contains 0.2 to 2.0 mass% of Cr, and 0.02 to 1.0 mass of at least one element selected from the group consisting of Ag, Mg, Mn, Zn, Sn and Fe The method for producing a copper alloy wire according to any one of claims 1 to 3, wherein the copper alloy wire is contained in a remaining part of Cu and inevitable impurity elements. 前記請求項1〜5のいずれか1項に記載の方法で製造した銅または銅合金線材。   The copper or copper alloy wire manufactured by the method according to any one of claims 1 to 5.
JP2008072544A 2008-03-19 2008-03-19 Method for producing copper or copper alloy wire and copper or copper alloy wire Active JP5137642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072544A JP5137642B2 (en) 2008-03-19 2008-03-19 Method for producing copper or copper alloy wire and copper or copper alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072544A JP5137642B2 (en) 2008-03-19 2008-03-19 Method for producing copper or copper alloy wire and copper or copper alloy wire

Publications (2)

Publication Number Publication Date
JP2009226419A true JP2009226419A (en) 2009-10-08
JP5137642B2 JP5137642B2 (en) 2013-02-06

Family

ID=41242458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072544A Active JP5137642B2 (en) 2008-03-19 2008-03-19 Method for producing copper or copper alloy wire and copper or copper alloy wire

Country Status (1)

Country Link
JP (1) JP5137642B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096238A1 (en) * 2011-01-11 2012-07-19 古河電気工業株式会社 Continuous casting method for copper or copper alloy
CN102814478A (en) * 2012-08-02 2012-12-12 东北大学 Preparation method for continuously forming zinc and zinc alloy pipe, bar or wire
JP2013023765A (en) * 2011-07-26 2013-02-04 Mitsubishi Materials Corp METHOD FOR PRODUCING Cr-CONTAINING COPPER ALLOY WIRE ROD
CN103736949A (en) * 2013-12-13 2014-04-23 宋芬 Copper strip casting device
CN105414238A (en) * 2015-11-13 2016-03-23 芜湖楚江合金铜材有限公司 Copper alloy wire rod production preparation technique
JP2017159334A (en) * 2016-03-10 2017-09-14 日立金属株式会社 Manufacturing apparatus and manufacturing method of copper alloy material
CN111945011A (en) * 2020-08-14 2020-11-17 常宁市隆源铜业有限公司 Copper rod machining process
CN113333695A (en) * 2021-05-27 2021-09-03 中铁建电气化局集团康远新材料有限公司 Production equipment and method for upper-lower type high-strength high-conductivity wear-resistant copper-steel composite contact wire
CN114433760A (en) * 2022-01-04 2022-05-06 中铁建电气化局集团康远新材料有限公司 Mortise and tenon type high-strength high-conductivity copper steel composite contact line production equipment and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312988B2 (en) 2019-12-25 2023-07-24 パナソニックIpマネジメント株式会社 Rice cooker and rice washer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367357A (en) * 1991-06-12 1992-12-18 Kawasaki Steel Corp Continuous casting method
JPH05311364A (en) * 1992-05-14 1993-11-22 Furukawa Electric Co Ltd:The Manufacture of high strength and high conductivity copper alloy
JP2002120050A (en) * 2000-08-07 2002-04-23 Furukawa Electric Co Ltd:The Method for producing oxygen-free copper wire rod with belt and wheel type continuous casting and rolling method for producing copper alloy wire rod
JP2006341268A (en) * 2005-06-08 2006-12-21 Mitsubishi Materials Corp Apparatus and method for continuously manufacturing copper alloy
JP2007038252A (en) * 2005-08-02 2007-02-15 Furukawa Electric Co Ltd:The Method for manufacturing oxygen-free copper wire rod by continuous casting and rolling method using rotation shifting mold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367357A (en) * 1991-06-12 1992-12-18 Kawasaki Steel Corp Continuous casting method
JPH05311364A (en) * 1992-05-14 1993-11-22 Furukawa Electric Co Ltd:The Manufacture of high strength and high conductivity copper alloy
JP2002120050A (en) * 2000-08-07 2002-04-23 Furukawa Electric Co Ltd:The Method for producing oxygen-free copper wire rod with belt and wheel type continuous casting and rolling method for producing copper alloy wire rod
JP2006341268A (en) * 2005-06-08 2006-12-21 Mitsubishi Materials Corp Apparatus and method for continuously manufacturing copper alloy
JP2007038252A (en) * 2005-08-02 2007-02-15 Furukawa Electric Co Ltd:The Method for manufacturing oxygen-free copper wire rod by continuous casting and rolling method using rotation shifting mold

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096238A1 (en) * 2011-01-11 2012-07-19 古河電気工業株式会社 Continuous casting method for copper or copper alloy
JP5863675B2 (en) * 2011-01-11 2016-02-17 古河電気工業株式会社 Continuous casting method of copper or copper alloy
TWI556888B (en) * 2011-01-11 2016-11-11 Furukawa Electric Co Ltd Copper or copper alloy continuous casting method
JP2013023765A (en) * 2011-07-26 2013-02-04 Mitsubishi Materials Corp METHOD FOR PRODUCING Cr-CONTAINING COPPER ALLOY WIRE ROD
CN102814478A (en) * 2012-08-02 2012-12-12 东北大学 Preparation method for continuously forming zinc and zinc alloy pipe, bar or wire
CN103736949A (en) * 2013-12-13 2014-04-23 宋芬 Copper strip casting device
CN105414238A (en) * 2015-11-13 2016-03-23 芜湖楚江合金铜材有限公司 Copper alloy wire rod production preparation technique
JP2017159334A (en) * 2016-03-10 2017-09-14 日立金属株式会社 Manufacturing apparatus and manufacturing method of copper alloy material
CN111945011A (en) * 2020-08-14 2020-11-17 常宁市隆源铜业有限公司 Copper rod machining process
CN113333695A (en) * 2021-05-27 2021-09-03 中铁建电气化局集团康远新材料有限公司 Production equipment and method for upper-lower type high-strength high-conductivity wear-resistant copper-steel composite contact wire
CN113333695B (en) * 2021-05-27 2022-08-26 中铁建电气化局集团康远新材料有限公司 Production equipment and method for upper-lower type high-strength high-conductivity wear-resistant copper-steel composite contact wire
CN114433760A (en) * 2022-01-04 2022-05-06 中铁建电气化局集团康远新材料有限公司 Mortise and tenon type high-strength high-conductivity copper steel composite contact line production equipment and method

Also Published As

Publication number Publication date
JP5137642B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5137642B2 (en) Method for producing copper or copper alloy wire and copper or copper alloy wire
KR101450916B1 (en) Process for manufacturing copper alloy wire rod and copper alloy wire rod
JP5343856B2 (en) Copper alloy wire manufacturing method
JP5053242B2 (en) Method and apparatus for producing copper alloy material
JP5976434B2 (en) Method for producing oxygen-free copper rod
JP5202921B2 (en) Copper alloy wire manufacturing method, copper alloy wire and copper alloy wire manufacturing apparatus
WO2007015491A1 (en) Process for producing oxygen-free copper wire rod by continuous casting rolling process using rotational transfer mold
JP2001297629A (en) Adhesion-resistant oxygen-free copper rough drawing wire, and method and apparatus for manufacturing the same
JP3902544B2 (en) Steel slab surface modification method, modified slab and processed product
JP3771899B2 (en) Method for surface modification of steel slab containing copper, modified slab and processed product
JP4182429B2 (en) Method for producing Cr-Zr-Al based copper alloy wire material
JP2001314950A (en) Manufacturing method for copper wire and manufacturing apparatus therefor
JP2003268466A (en) Low-oxygen copper wire rod for magnet wire, and manufacturing method therefor
CN114130970A (en) Non-vacuum continuous production equipment and production process of copper-chromium-zirconium alloy
JP6493047B2 (en) Copper alloy material and method for producing the same
JP6361194B2 (en) Copper ingot, copper wire, and method for producing copper ingot
KR102589057B1 (en) Method and apparatus for preparing oxygen free copper or oxygen free copper alloy
CN113005325B (en) Copper-iron alloy strip with microcrystalline structure and high iron content and preparation method thereof
CN112359216A (en) Multi-electrode electroslag remelting device and process for high-nitrogen austenitic stainless steel
JP2001259799A (en) Method for continuously casting copper and copper alloy
JP2005059023A (en) Method for manufacturing copper ingot with high-density oxygen
JPH04289136A (en) Production of steel product
JP2013023726A (en) Method for producing copper-iron alloy
JPH1043838A (en) Production of ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R151 Written notification of patent or utility model registration

Ref document number: 5137642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350